
Submitted 5 December 2023
Accepted 11 June 2024
Published 8 August 2024

Corresponding author
Junwei Luo, luojunwei@hpu.edu.cn

Academic editor
Stefano Cirillo

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2169

Copyright
2024 Chang et al.

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Predicting the satisfiability of Boolean
formulas by incorporating gated
recurrent unit (GRU) in the Transformer
framework
Wenjing Chang, Mengyu Guo and Junwei Luo
School of Software, Henan Polytechnic University, Jiaozuo, Henan, China

ABSTRACT
The Boolean satisfiability (SAT) problem exhibits different structural features in
various domains. Neural network models can be used as more generalized algorithms
that can be learned to solve specific problems based on different domain data than
traditional rule-based approaches. How to accurately identify these structural features
is crucial for neural networks to solve the SAT problem. Currently, learning-based
SAT solvers, whether they are end-to-end models or enhancements to traditional
heuristic algorithms, have achieved significant progress. In this article, we propose
TG-SAT, an end-to-end framework based on Transformer and gated recurrent neural
network (GRU) for predicting the satisfiability of SAT problems. TG-SAT can learn the
structural features of SAT problems in a weakly supervised environment. To capture
the structural information of the SAT problem, we encodes a SAT problem as an
undirected graph and integrates GRU into the Transformer structure to update the
node embeddings. By computing cross-attention scores between literals and clauses,
a weighted representation of nodes is obtained. The model is eventually trained
as a classifier to predict the satisfiability of the SAT problem. Experimental results
demonstrate that TG-SAT achieves a 2%–5% improvement in accuracy on random
3-SAT problems compared to NeuroSAT. It also outperforms in SR(N), especially in
handling more complex SAT problems, where our model achieves higher prediction
accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Software Engineering, Neural Networks
Keywords Boolean satisfiability problem, Transformer, Random 3-SAT, Deep learning, GRU,
Cross-attention

INTRODUCTION
The Boolean satisfiability (SAT) problem is a classic problem in mathematical logic, which
involves determining whether there exists at least one assignment to the variables such
that the given formula evaluates to true. If such an assignment exists, the SAT problem is
satisfiable; otherwise, it is unsatisfiable. The SAT problem was proved to be NP-complete
by Cook (1971), and it is widely used in practical applications such as circuit design (Kasi
& Sarma, 2013), scheduling (Li et al., 2012), combinatorial optimization (Rintanen, 2012),
and planning (Goldberg, Prasad & Brayton, 2001). These real-world problems are generally

How to cite this article Chang W, Guo M, Luo J. 2024. Predicting the satisfiability of Boolean formulas by incorporating gated recurrent
unit (GRU) in the Transformer framework. PeerJ Comput. Sci. 10:e2169 http://doi.org/10.7717/peerj-cs.2169

https://peerj.com/computer-science
mailto:luojunwei@hpu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2169
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj-cs.2169

transformed into SAT problems by different coding techniques and then the SAT solver
is invoked to solve them (Gomes et al., 2008). Traditional solvers based on backtracking
search have been able to solve problems of practical interest with millions of Boolean
variables (Silva, Lynce & Malik, 2021). However, in the worst case, for some complex SAT
instances, traditional solvers may face exponential time complexity. SAT solvers are usually
limited by the size of the problem.

In recent years, machine learning techniques have emerged in the field of combinatorial
optimization (Bengio, 2021), and many learning-based methods for solving SAT problems
have been extensively studied. Devlin & O’Sullivan (2008) investigated many machine
learning classification algorithms for predicting the satisfiability of SAT problems based
on hand-designed features. However, hand-designed features are somewhat subjective and
limited. To avoid this problem, Hopfield & Tank (1985) developed a well-known neural
structure that solves a number of instances of the traveling salesman problem. Conventional
system satisfiability logic suffers from the problem of inflexible logic structure leading to
inadequate explanations. Karim et al. (2021) introduced the advantages of non-system
satisfiability logic to improve the flexibility of the logical structure. Non-systematic
satisfiability ignores the distribution of positive and negative literals in logical structures
as neuronal representations, and Zamri et al. (2022) use genetic algorithms to assign
unbiased distributions of negative literals. However, what the model actually learns is not
transparent enough. Someetheram et al. (2022) used an Election Algorithm (EA) to find
consistent interpretations that minimize the cost function of the proposed logic rules,
which plays a vital role in creating interpretable artificial intelligence.

In addition, some work has used graph neural networks (GNN) to obtain embeddings
of SAT problem features to predict their satisfiability. Yolcu & Póczos (2019) introduced
GNN as a heuristic for variable selection in a stochastic local search algorithm. NLocalSAT
improves the stochastic local search algorithm by changing the initial assignment through
a neural network (Zhang et al., 2020). Selsam & Bjørner (2019) guided the CDCL solver by
predicting the variables in the unsatisfied core. These works use neural networks as heuristic
algorithms to guide traditional solvers, which improve solving efficiency but lack flexibility.
Bünz & Lamm (2017) utilized graph neural networks to learn the structural features of SAT
instances. NeuroSAT uses message passing networks to learn the satisfiability of random
SAT instances (Selsam et al., 2018). DeepSAT applies mature knowledge in the field of
electronic design automation to solve SAT problems (Li et al., 2022). Liu et al. (2021) were
the first to use GNN to learn the solution of MaxSAT problems. They built two typical
GNN models to study the ability of GNN learning to solve MaxSAT problems from both
theoretical and practical perspectives. The results show that both models achieve higher
accuracy on the test set and have satisfactory generalisation ability for larger and more
difficult problems.

We focus on end-to-end methods to predict satisfiability. SAT instances that cannot
be satisfied are generally due to variable conflicts in Boolean formulas, resulting in the
inability to satisfy all constraint conditions. If a model wants to learn to identify modules
that cause conflicts, the input needs to include information about the interrelationships

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

between variables. How to capture the structural information of SAT problems in the
feature space is particularly important for studying end-to-end methods.

The Transformer model consists of a self-attention mechanism and a fully-connected
feedforward neural network layer that efficiently captures the dependencies between
input sequences. In natural language, attentional mechanisms can learn the importance
of different words in a sentence and determine which words are more critical for
understanding the meaning of the sentence (Vaswani et al., 2017). We investigate whether
natural language processing models can be used for SAT problems by considering literals in
SAT instances as words and clauses as sentences. the order of words affects the expression
of a sentence. Unlike natural language, SAT instances that change the order of clauses or
the literal order within clauses do not affect satisfiability. From this perspective, we may
not be able to analogize Boolean formulas with natural language. However, we represent
Boolean formulas in graphs and operate on nodes based on the topology of the graph,
without specifying a specific node order. This provides hope for us to study natural
language processing models suitable for SAT problems. In text classification tasks, a few
key words can determine the theme of the text. Similar to natural language processing
tasks, in Boolean formulas, we can deduce the assignment of the remaining variables by
assigning some of them. By identifying these key variables, we can predict the satisfiability
of the SAT problem.

In this article, we present for the first time TG-SAT, an end-to-end Transformer-based
framework for predicting the satisfiability of SAT problems. Transformer learns the
degree of semantic associations between different positions in an input sequence and the
importance of different positions. Whereas GRU is more effective in dealing with long
sequences (Cho et al., 2014), neither of them is able to aggregate information from higher-
order neighboring nodes. Therefore, we enable each node to obtain information about
its related higher-order neighboring nodes by incorporating a message passing network
(Gilmer et al., 2017), and then compute the attention scores between literal and clause nodes
to obtain the weighted embedding of the nodes. Finally, we use a multilayer perceptron for
prediction. Experimental results show that ourmodel outperformsNeuroSAT in prediction
accuracy on both random SAT problems and random 3-SAT problems. The contributions
of our work are summarized below:

• We propose a new neural network framework, TG-SAT, which incorporates message
passing for predicting SAT problems. To obtain rich information about node
embeddings, we use the self-attentionmechanism to transfer information about variables
sharing the same clauses or clauses containing the same variables, and obtain information
about the nodes’ multistep neighboring nodes through the message-passing network.
In addition, we apply the cross-attention mechanism to optimize clause-to-literal and
literal-to-clause message exchanges.
• We make the first attempt to incorporate GRUs into the Transformer architecture to
predict stochastic SAT problems. We encode random SAT instances as graph structures,
taking into account the importance of multi-order neighbor information between nodes,
while traditional Transformer models usually do not have direct access to multi-order

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 3/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

neighbor node information. Therefore, we introduce the GRU module, which performs
message aggregation on the neighboring clause nodes (literal nodes) of literal nodes
(clause nodes), and obtains node embeddings containing the information of multiorder
neighboring nodes after several iterations.
• We also explain the role of self-attention mechanisms and cross-attention mechanisms
in predicting the satisfiability of SAT problems.

The rest of this article is organized as follows. In ‘RelatedWork’, we provide a brief review
of the work. In ‘Methods’, we first outline the model designed, then an overview of the
SAT problems and their graphical representations, and then describe the implementation
details for each network layer of the model. In ‘Experimental setup’, the experimental data
set and the associated settings for the experiment are described in detail, and the results
are presented and analyzed in Results. ‘Conclusions’ and further research are presented in
Conclusion.

RELATED WORK
Learning-based SAT solver
In recent years, many researchers have modeled the relationship between the characteristics
of SAT problems and their satisfiability and used machine learning models to make
predictions. Guo et al. (2022) summarized these approaches. Devlin & O’Sullivan (2008)
treat an instance of a SAT problem as a vector with several features, each representing
some attribute or property of the SAT problem. They transformed the solution of the
SAT problem into a binary classification task on the feature vectors (Devlin & O’Sullivan,
2008). SATzilla uses a set of features to describe the properties of a SAT problem instance
and uses a machine learning model to predict the most suitable solution algorithm for
the features of the current problem instance (Xu et al., 2008). Danisovszky, Yang & Kusper
(2020) constructed a 48-vectored elicitation set and, by selecting suitable features, the
improved the classification performance of the machine learning model. Over the past
decade or so, this method of extracting features from input formulas has achieved high
accuracy on different benchmarks, but some of the structural features of SAT instances
are lost in the feature extraction part. Deep neural networks are able to learn high-level
feature representations of the data through multiple layers of nonlinear transformations,
facilitating the prediction of satisfiability in an end-to-end framework.

Bünz & Lamm (2017) define a graph representation of the Conjunctive Normal Form
(CNF) for Boolean formulas to explore the applicability of neural networks in the study
of Boolean semantics, and the results show that in the absence of problem-specific feature
engineering, a GNN can learn the structural features of SAT instances. Since then, many
methods for solving SAT problems based on GNN have appeared. Boolean formulas have
permutation invariants and negation invariants, and NeuroSAT encodes CNF formulas
into literal clause graphs in order to learn these features, and can solve larger and more
complex problems than in training by simply performing more messaging iterations
(Selsam et al., 2018). Inspired by these efforts, we also studied graph representations of SAT

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

problems to explore whether other neural networks could also learn the features of SAT
problems, such as deep learning models for natural language processing.

Shi et al. (2021a) first attempted to solve theMaxSATproblemusing Transformer, which
applied a transformer to aggregate messages on nodes. SATformer uses GNN to obtain
clause embeddings in CNF. The hierarchical Transformer architecture is applied on the
clause embedding to capture the relationship between clauses, give higher weight to clauses
in the minimum unsatisfiable cores (MUC), and effectively learn the correlation between
clauses (Shi et al., 2022). Based on Transformer, HeterogeneousGraph Transformer (HGT)
defines the heterogeneous attention mechanism based on meta-paths for the self-attention
between literals, the cross-attention based on the bipartite graph links between literals and
clauses (Shi et al., 2021b). The experimental results show that solving SAT problems using
the Transformer framework is more competitive and generalized than simple message
passing networks. Our research focuses on improving the end-to-end framework to predict
satisfaction. Our proposed model represents a given SAT instance as an undirected graph.
First, the Transformer model is applied to obtain node embeddings, after which, to obtain
information aboutmulti-order neighboring nodes, we introduce amessage passing network
and update the node embeddings using a GRU network. Next, we optimize the message
passing of heterogeneous nodes using the cross-attention mechanism to learn the invariant
structural features of key variables. Finally, the updated node embeddings are used to
predict the satisfiability of the problem.

Random SAT problem and random 3-SAT problem
Currently, there are two general forms of SAT problems. One is derived from industrial
problems through transformation, with significant limitations in terms of both quantity
and structure. Consequently, such SAT instances are not utilized in our study to evaluate
our model. The other type is randomly generated SAT problems. Instances of these SAT
problems are generated using random generation algorithms, allowing for control over the
difficulty and characteristics of the generated instances, such as satisfiability probabilities
and phase transition phenomena. They can encompass problems of various difficulties and
sizes in large-scale experiments. Thus, randomly generated SAT instances are commonly
employed to assess the performance and efficiency of SAT solvers. Random3-SAT problems
are random SAT problems in which the number of literals in each clause is fixed to three.
For random 3-SAT problems, even state-of-the-art conventional solvers still struggle to
solve problems with hundreds of variables. Therefore, we primarily chose to use random
SAT problems and random 3-SAT problems to evaluate the performance of our model.

METHODS
The implementation of TG-SAT is shown in Fig. 1. (1) First, we encode the SAT problem
as an undirected graph G, represented by an adjacency matrix. (2) The initial vectors are
created for each literal node li ∈G and each clause node ci ∈G. (3) The self-attention score
for each node is calculated, capturing the dependencies between nodes and the degree of
attention paid to different locations. (4) Message passing for each node, in each iteration,
each clause node receives its ownweighted information and information about neighboring

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 5/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

𝒙2

𝒙2
¬ 𝒙2

¬ 𝒙2
𝒙3

𝒙3
¬ 𝒙3

¬ 𝒙3
𝒙4

𝒙4
𝒙1

𝒙1
¬ 𝒙4

¬ 𝒙4
¬ 𝒙1

¬ 𝒙1

𝒙2

𝒙2
¬ 𝒙2

¬ 𝒙2
𝒙3

𝒙3
¬ 𝒙3

¬ 𝒙3
𝒙4

𝒙4
𝒙1

𝒙1
¬ 𝒙4

¬ 𝒙4
¬ 𝒙1

¬ 𝒙1

… ...

MLP

𝒙1 :0.7
𝒙1 :0.7

𝒙2 :0.6
𝒙2 :0.6

𝒙3 :0.8
𝒙3 :0.8

𝒙4 :0.9
𝒙4 :0.9

Vote

Satisfiability:True

Start

(𝒙1∨¬𝒙2∨𝒙4)∧ (𝒙2∨𝒙3)∧(¬𝒙3∨𝒙4)

C1

C1
C2

C2
C3

C3

𝒙1
𝒙1

𝒙2

𝒙2

¬ 𝒙2
¬ 𝒙2

𝒙3
𝒙3

¬ 𝒙3
¬ 𝒙3

𝒙4
𝒙4

¬ 𝒙1
¬ 𝒙1

¬ 𝒙4
¬ 𝒙4

C1

C1

C2

C2

C3

C3
Encode Boolean formulas as undirected graphs

Input：CNF Formula Initialize the feature vector using a linear transformation

Linear

C_encoder L_encoder

C_decoder L_decoder

C1

C1

C2

C2

C3

C3

𝒙1
𝒙1

𝒙2

𝒙2

¬ 𝒙2
¬ 𝒙2

𝒙3
𝒙3

¬ 𝒙3
¬ 𝒙3

𝒙4
𝒙4

¬ 𝒙1
¬ 𝒙1

¬ 𝒙4
¬ 𝒙4

Calculate self-attention scores

αij

αij

Message passing

𝒙1
𝒙1

𝒙2

𝒙2
¬ 𝒙2

¬ 𝒙2
𝒙3

𝒙3
¬ 𝒙3

¬ 𝒙3
𝒙4

𝒙4
¬ 𝒙1

¬ 𝒙1
¬ 𝒙4

¬ 𝒙4

C1

C1
C2

C2
C3

C3

C1

C1
C2

C2
C3

C3

Calculate cross-attention scores

𝒙1
𝒙1

𝒙2

𝒙2
¬ 𝒙2

¬ 𝒙2
𝒙3

𝒙3
¬ 𝒙3

¬ 𝒙3
𝒙4

𝒙4
¬ 𝒙1

¬ 𝒙1
¬ 𝒙4

¬ 𝒙4

𝒙1
𝒙1

𝒙2

𝒙2
¬ 𝒙2

¬ 𝒙2
𝒙3

𝒙3
¬ 𝒙3

¬ 𝒙3
𝒙4

𝒙4
¬ 𝒙1

¬ 𝒙1
¬ 𝒙4

¬ 𝒙4

α ij α
ij

Figure 1 The overview of our model, TG-SAT.
Full-size DOI: 10.7717/peerjcs.2169/fig-1

literal nodes, and updates its embedding accordingly, and each literal node receives its own
weighted information and information about neighboring clause nodes, and updates its
embedding accordingly. (5) After T iterations, TG-SAT learns the attentional weights αij
between the literal nodes and clause nodes by cross-attention, The feature vectors of literal
nodes and clause nodes are then weighted and averaged according to the attention weights,
and obtain new feature vectors for literal nodes l

′

i and clause node c
′

i . (6) Finally, the literal
node l

′

i is entered into the MLP, and the vote for each literal is obtained by the activation
function, The average of the votes is calculated and if it is greater than 0.5, it is considered
satisfiable, otherwise it is considered unsatisfiable.

Preliminaries
Boolean formula
A Boolean formula consists of a set of variables {xi}

J
j=1 ∈ {True,False} and logical operators

{and ∧, or ∨, no ¬}.i represents the ith variable in a certain clause, and j represents the
jth clause. Since Boolean formulas can be transformed into equivalent conjunctive normal
form(CNF) in linear time, we usually use the CNF to represent SAT problems (Tseitin,
1983). CNF specifies that variables and their negatives are called literals, with positive literals
denoted xi and negative literals denoted ¬xi. A disjunction of several literals constructs
a clause, denoted Ci = (x1∨ x2∨ ...). A conjunction of clauses forms the propositional
instance, denoted φ = (C1∧C2∧ ...).P = (x1∨¬x2∨ x4)∧ (x2∨ x3)∧ (¬x3∨¬x4) as
an example to explain CNF. P contains 4 variables I = {x1,x2,x3,x4} and 3 clauses
{C1 = (x1∨¬x2∨ x4),C2 = (x2∨ x3),C3 = (¬x3∨¬x4)}. In order for P to be true, at
least one literal in each clause takes the value true. If such a set of variable assignments
exists, we call the problem satisfiable, called SAT, and otherwise unsatisfiable, denoted by
UNSAT.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 6/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-1
http://dx.doi.org/10.7717/peerj-cs.2169

𝒙1 𝒙1 𝒙2𝒙2 ¬ 𝒙2 ¬ 𝒙2 𝒙3 𝒙3 ¬ 𝒙3 ¬ 𝒙3 𝒙4 𝒙4 ¬ 𝒙1 ¬ 𝒙1 ¬ 𝒙4 ¬ 𝒙4

C1C1 C2C2 C3C3

Figure 2 Literal-clause graph of formulas.
Full-size DOI: 10.7717/peerjcs.2169/fig-2

M =

1 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1

Figure 3 The adjacency matrix of P.
Full-size DOI: 10.7717/peerjcs.2169/fig-3

Formula graph
We know that variable conflicts in Boolean formulas can lead to unsatisfiability. To enable
our model to learn to recognize these conflicts, it’s essential to ensure that the model’s
input contains information about the relationships between the variables in the formula.
Therefore, in this article, our model encodes CNF formulas as an undirected graph. In
this graph representation, each literal is treated as a literal node, each clause as a clause
node, and an edge is created if a literal occurs in a clause. Additionally, a different type
of edge is created for each pair of complementary literals. This encoding strategy helps
strengthen permutation invariance and negation invariance, aiding our model in better
extracting structural features of SAT problems. The graphical representation of formula
P in ‘Initialize node embedding’ is shown in Fig. 2. The adjacency matrix for formula P
is shown in Fig. 3. Mij = 1 indicates the presence of an edge between a literal node and a
clause node, whileMij = 0 indicates the absence of such an edge.

Simulation design
This section provides a detailed description of the model construction process. Our
network consists of three multilayer perceptrons (Lmsg ,Cmsg ,Lvote), two self-attention
(Lenconder ,Cencoder), two cross-attention (Ldecoder ,Cdecoder), two GRUs (LGRU ,CGRU) as
shown in Fig. 4. Updating the node embedding consists of three phases.

(1) The multi-head self-attention mechanism captures the different positional and
attention weight information of the clause nodes, and then each clause node obtains
information from its neighboring literal nodes and updates the clause embedding
accordingly. After T iterations, the clause nodes’ embeddings will encompass both their
own global information and information from multi-order neighbor nodes.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 7/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-2
https://doi.org/10.7717/peerjcs.2169/fig-3
http://dx.doi.org/10.7717/peerj-cs.2169

M
u

lti-H
ead

S
elf-A

tten
tio

n

A
d

d
&

N
o

rm

M
u

lti-H
ead

S
elf-A

tten
tio

n

A
d

d
&

N
o

rm

F
eed

F
o

rw
ard

A
d

d
&

N
o

rm

F
eed

F
o

rw
ard

A
d

d
&

N
o

rm

In
p

u
t：

T
h

e ad
jacen

cy
 m

atrix
 o

f th
e C

N
F

 fo
rm

u
la(M

)

 C
(t0

):C
lau

se em
b

ed
d

in
g

L
(t0

):L
iteral em

b
ed

d
in

g

L
in

it
C

in
it

Step3.message passingStep1.Linear

L
m

sg
C

m
sg

L
h

id
d

en

Step2.Lencoder and Cencoder

MLP

L
C

m
sg

 C
L

m
sg

×MT

×M

L
G

R
U

C
G

R
U

GRU

Step4.Ldecoder and decoder

Q
(L,C

)

 C
(t)

L
(t)

 C
h

id
d

en

L
in

ear
L

in
ear

K
(L,C

)
V

(L,C
)

M
atM

u
l&

Scale

S
o

ftm
ax

M
atM

u
l

L
(t)'

C
(t)'

Step5.Lvote
M

L
P

M
ean

(𝒙
,¬𝒙

)

S
ig

m
o

id

O
u

tp
u

t:0
(resu

lt<
0

.5
) o

r 1
(resu

lt>
0

.5
)

Figure 4 Schematic diagram of the model.
Full-size DOI: 10.7717/peerjcs.2169/fig-4

(2) The multi-head self-attention mechanism captures the different positional
information and attention weight information of the literal nodes, and then each literal
node obtains the information from its neighboring clauses and complementary literals and
updates the literal embedding accordingly. After T iterations, the literal nodes’ embeddings
will encompass both their own global information and information from multi-order
neighbor nodes.

(3) The cross-attention mechanism is used to compute attention scores between the
literal nodes and the clause nodes, resulting in weighted embeddings for all nodes. All
nodes are updated in each iteration of TG-SAT

Our model operates on nodes and edges based on the graph’s topology, and the order
of nodes and edges does not influence the prediction results. This property aligns with
the permutation invariance of SAT instances. The model’s inputs consist of the adjacency
matrices of an arbitrary number of literals and clauses, enabling training and evaluation
on problems of varying sizes.

Initialize node embedding
In SAT, only the number of variables and the logical relationships between them need
to be considered. There is no need to consider the specific arrangement or values of the
variables. Based on this property, we initialize each literal node Li as a vector Linit ∈Rd , as
shown in Eq. (1), and each clause node Cj as another vector Cinit ∈Rd , as shown in Eq. (2),
to obtain the initial embeddings of the literal and clause nodes, denoted as L(t0) and C (t0),
respectively.

L(t0)= Li ·W T
1 +b1. (1)

C (t0)
=CJ ·W T

2 +b2. (2)

where W1 and W2 are trainable parameter matrices and b1 and b2 are bias vectors. i
represents the ith variable, and j represents the jth clause.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 8/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-4
http://dx.doi.org/10.7717/peerj-cs.2169

3.2.2 Self-attention mechanism
To empower the node embeddings with ample expressive capability, the encoder
layer (Lencoder and Cencoder) computes self-attention for literal nodes and clause nodes,
respectively, as outlined in Eqs. (3)–(6).

Q=XWq,K =YWk,V =YWv . (3)

αi,j =

〈
qi,kj

〉∑
n∈N(i)

〈
qi,kn

〉 = SoftMax
〈
Q, KT 〉. (4)

v ′i =
∑
j∈N(i)

αi,jvj . (5)

MultHeadAttention(Q,K ,V)= concat
(
α1i,jv1,α

2
i,jv2,...α

h
i,jvh

)
W3. (6)

where Q,K ,V are query, key, value in transformer terminology. Wq,Wk,Wv ,W3 are
trainable parameter matrices. qi is the ith row vector of the Q matrix, kj is the jth column

vector of the K matrix, and vj is the jth row vector of the V matrix. 〈q,k〉 = exp
(
qkT
√
d1

)
is

the inner product of two vectors. d1 is the dimension of each header. αi,j is the attention
weight, which indicates the importance of the node. v

′

i is the weighted feature vector.
First, according to Eq. (3), we setX =Y =Z = L(t0) to obtain theQ,K ,V matrices for the

literal nodes. Then, the self-attention weights between literal nodes are computed according
to Eq. (4). Recognizing the challenge of capturing all node features using a single attention
score, we employ a multi-head attention mechanism to capture global feature information
of literal nodes. Specifically, attention weights computed for each head are multiplied
by the corresponding value tensor, as described in Eq. (5). Subsequently, the results are
concatenated and linearly mapped to obtain the final multi-head attention output, which
represents the current embedding of the literal node, as shown in Eq. (6). Similarly, we
set X =Y =Z =C (t0) to obtain the embedding of the clause nodes. Eventually, each node
incorporates its own weighted information, and the updated embedding is used as input in
the next message passing network layer. The specific implementation flow of the attention
layer is illustrated in Fig. 5.

Message passing mechanism
Self-attention mechanisms lack access to information about multi-order neighboring
nodes. Since our goal is for the model to learn to identify conflicting modules that cause
unsatisfiability, it’s crucial to ensure that node embeddings contain rich information about
the relationships between nodes. To address this challenge, we introduce a GRU-based
message passing network. The specific calculation process of message passing is depicted
in Eqs. (7) and (8).

C (t+1),C (t+1)
h ←CGRU

([
C (t)
h ,MTLmsg (L(t))

])
. (7)

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 9/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Self-AttentionSelf-AttentionSelf-AttentionSelf(Cross)-Attention

Concat

LinearLinearLinearLinear
LinearLinearLinearLinear

LinearLinearLinearLinear

Q(L,C) K(L,C) V(L,C)

h

Linear

MatMul

KQ V

Scale&Mask

Softmax

MatMul

Figure 5 Attentionmechanisms andmultiple attentionmechanisms.
Full-size DOI: 10.7717/peerjcs.2169/fig-5

L(t+1),L(t+1)h ← LGRU
([

L(t)h ,Flip(L
(t)),MCmsg (C (t+1))

])
. (8)

Assuming the number of clauses is denoted by m, and the number of variables is
denoted by n. The matrix L(t) ∈R(2n×d) represents the feature vectors of all literals, where
each literal has a feature vector of dimension d . Similarly, C (t)

∈R(m×d) represents the
feature vectors of all clauses. L(t)h ∈R(2n×d) and C (t)

h ∈R(m×d) represent the hidden states
of LGRU and CGRU , respectively. The node embedding dimension is d , set to 128 in this
article. M (i,j)= 1li ∈ cj is the adjacency matrix, indicating whether literal li is in clause cj .
Flip is a function that exchanges the vector representations of positive and negative literals.

The message passing process in each iteration consists of two phases. Firstly, to update
the clause node embeddings, we utilize the clause node embeddings obtained from the
Cencoder layer as inputs to the hidden states of the GRU. These embeddings aggregate the
information from neighboring literal nodes. The clause node embeddings are updated
by the GRU. Secondly, to update the literal node embeddings, we use the literal node
embeddings obtained from the Lencoder layer as inputs to the hidden states of the GRU.
Since the SAT problem exhibits negation invariance, our model ensures this property by
swapping the positions of the embeddings of positive literal nodes with the embeddings of
their corresponding negative literal nodes. The literal node embeddings, which aggregate
information from neighboring clause nodes and their complementary literal nodes, are
then inputted to the current state and updated via GRU. The GRU computation process
involves computing the update gate z , the reset gate r , the candidate hidden state h′t , and
the final hidden state ht , respectively, as shown in Eqs. (9)–(12).

z = σ
(
Wz ·

[
ht−1,xt

]
+bz

)
. (9)

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 10/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-5
http://dx.doi.org/10.7717/peerj-cs.2169

r = σ
(
Wr ·

[
ht−1,xt

]
+br

)
. (10)

h′t = tanh
(
Wh ·

[
r�ht−1,xt

]
+bh

)
. (11)

ht = (1−z)�ht−1+z�h′t . (12)

whereWz ,Wr ,Wh are the learnable weightmatrices, bz ,br ,bh are the bias vectors, σ denotes
the sigmoid activation function and � denotes the element-by-element multiplication.
ht−1 is the hidden state of the previous time step and xt is the input of the current time
step.

Cross-attention mechanism
In each decoder Ldecoder and Cdecoder , attention scores between literals and clauses are
computed using a cross-attention mechanism, facilitating the exchange of weighted
messages between different types of nodes. In Ldecoder , cross-attention is computed by
setting X = L and Y = C , allowing literal nodes to receive weighted information from
clause nodes. Conversely, in Cdecoder , clause nodes receive weighted messages from literal
nodes by setting X =C and Y = L. The computational process mirrors self-attention as
described in Eqs. (3), (4), (5). To enhance the representation of node feature vectors, we
feed the attention-weighted node features into a feed-forward network. Ultimately, we
obtain node embeddings L(t)

′

and C (t)′ containing the weighted structural information.

Vote mechanism
In summary, we know that after simple message passing, the embedding of each node
contains feature information from multi-order neighboring nodes. Through the encoding
layer, the node acquires its own weighted structural information. Through the decoding
layer, the node obtains weighted structural information from nodes of different types.
Ultimately, each node obtains an embedding with rich information. The entire process is
illustrated in Eqs. (13), (14), and (15).

According to Eq. (13) we input each literal embedding into a three-layer perceptron
Lvote with a hidden layer size of 128 dimensions to extract the categorical information
and obtain the vote value L(T) for each literal. Then, the positive and negative literals of
the same variable are combined into a 2d -dimensional eigenvector of the variable X (T),
and X (T) is averaged by rows, as in Eq. (14). Finally, the final prediction is obtained by
the activation function sigmoid, as shown in Eq. (15). Our model trains the network by
minimizing the cross-entropy loss between the predicted and true labels as in Eq. (16).

L(T)= Lvote
(
L(t)

′
)
. (13)

x(t)
′

=Mean
(
concat

(
L(T)[0,n],L(T)[n,2n]

))
. (14)

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Table 1 Setup of the dataset used for the experiment.

Datasets Min_n Max_n train_n val_n eval_n

SRQ(3,10) 3 10 5000 3000 3000
SRW (3,10) 3 10 300000 30000 30000
SRW (10,40) 10 40 300000 30000 30000
SRcv(3,10) 3 10 100 100 100
SR(20) 20 20 100 100 100
SR(40) 40 40 100 100 100
SR(60) 60 60 100 100 100
3SAT100 100 100 8000 1000 1000
3SAT150 150 150 8000 1000 1000
3SAT200 200 200 8000 1000 1000
3SAT250 250 250 8000 1000 1000
3SAT300 300 300 8000 1000 1000

y = sigmoid
(
x(t)

′
)
. (15)

LOSS=−
1
N

N∑
i=1

[
yi log

(
pi
)
+
(
1−yi

)
log
(
1−pi

)]
. (16)

N is the number of SAT instances in the dataset. yi is the true label (0 or 1) for sample i.pi
is the predicted probability (between 0 and 1) for sample i.

EXPERIMENTAL SETUP
To ensure the reproducibility of the experiments, this section provides an explanation of
the experimental setup conducted in this article. For each subsection, we will discuss the
type of data used, the device setup, the list of parameters involved, the development of
performance metrics, and the choice of baseline methodology.

Simulation datasets
In this experiment, we generated two different SAT problems: the random SAT problem
SR(n) and the random 3-SAT problem. To ensure fairness, all experimental datasets
were generated at once, using the same dataset on both models without additional
randomization, and each dataset had 50% of satisfiable and 50% of unsatisfiable instances.
The specific setups for the 12 datasets are shown in Table 1.

Random SAT problem SR (n)
Random SAT problems are often difficult to solve and are widely used to test the
performance of SAT solvers and other optimization algorithms, and by comparing the
performance of different algorithms on random SAT problems can better evaluate their
performance in real problems.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

SR(n) represents a random SAT problem with n variables. We adopt a NeuroSAT-like
approach to generate data, which produces a pair of randomk-SATproblems, one satisfiable
and the other unsatisfiable. The specific generation procedure is as follows: (1) SR(n) first
samples a small integer k (with a mean slightly above 4). (2) It uniformly randomly samples
k variables and negates each variable with a 50% independent probability. (3) It generates
a random clause over n variables and continues this process to generate the clauses Ci. (4)
These clauses are added to the SAT problem instance and solved using the conventional
solver MINISAT until the addition of the clause Cm renders the problem unsatisfiable.
{C1,......Cm−1} is having a satisfiable assignment, and negating the individual literals in Cm

will also result in a satisfiable problem
{
C1,......C ′m

}
. (5) Eventually, SR(n) generates a pair

of instances, satisfiable instance
{
C1,......C ′m

}
and unsatisfiable instance {C1,......Cm}.

Since the number of random clauses of length 2 affects the difficulty of SAT problems, to
avoid this, we control the size of the random clauses by combining different distributions
through Eq. (17). Bernoulli denotes bernoulli distribution and Geo denotes geometric
distribution.

Yx = 1+ Bernoulli (0.7)+Geo(0.4). (17)

We generated small-scale random SAT problems SR(3,10) and SR(10, 40). SR(3,10)
denotes that the smallest instance has three variables and the largest has 10 variables. SR(10,
40) denotes that the smallest instance has 10 variables and the largest has 40 variables. The
properties of these problems are as follows: (1) The number of clauses per instance is
variable, ranging from a few dozen to over 200. (2) Each clause contains a different number
of literals, usually between two and seven. (3) The main difference between satisfiable and
unsatisfiable instances is that only one literal is negated in the same clause. Due to the highly
structured nature of SAT instances, changing one variable may lead to different results.
In order to make the model more accurate in recognizing these structural features and to
evaluate the model’s ability to capture them, we conducted experiments using instances of
thousands and hundreds of thousands, respectively.

We also generated some lightweight data to test the model’s performance on problems
of varying complexity. We usually use CV to denote the complexity of a problem. CV is
the ratio of clauses to literals. The higher the value of CV , the more clause constraints there
are in the formula and the more difficult it is to solve the instance. By default the generated
datasets have a CV greater than 5, in addition to this we generated datasets SRcv(3,10),
SR(20), SR(40), and SR(60) with CV equal to 3 and 4 to evaluate the performance of our
model on SAT instances of varying complexity.

Random 3-SAT problem
Random 3-SAT problems are a form of NP-complete problem, where each clause is
randomly generated and consists of three variables or negations of variables. According
to the theoretical analysis and experimental results, the random 3-SAT problem is almost
certainly satisfiable when the CV is greater than 4.267; it is almost certainly unsatisfiable
when the CV is less than 4.267. When the CV is 4.267, the satisfiability of the random
3-SAT problem becomes very difficult to predict. So at the middle tipping point, we created

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 13/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Table 2 Description and setting of parameters.

Parameter Parameter name Parameter value/setting

N Number of SAT instances /
n Number of variables in each instance /
m Number of clauses in each instance /
CV Ratio of clauses to number of variables /
T Number of iterations for messaging 26
lr Learning rate 10−5

weight_decay Weight decay parameter 10−10

num layers Number of encoder layers 4
h Attention Heads 8
d The dimension of the vector 128

Notes.
A slanted vertical bar (/) indicates different cases of values in the text.

5 datasets 3SAT100, 3SAT150, 3SAT200, 3SAT250, and 3SAT300, the number of variables are
100, 150, 200, 250, 300. The ratio of the number of clauses to the number of variables in
each dataset is 4.26.

Experimental setup
Our model is implemented using the PyTorch framework. All experiments were run on
a device configured with an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.30 GHz and an
NVIDIA GeForce RTX 3090 GPU. In the data generation phase, GPUs cannot be used
because theminisat solver uses a backtracking sequential algorithm, but during training and
evaluation, our models are fully deployed on GPUs, making full use of GPU computational
resources through parallelism.

Hyperparametric configuration
For the message passing part of TG-SAT, we adopt the same configurations as NeuroSAT
(Selsam et al., 2018): we set the embedding dimension of each node and hidden cell to
for each MLP (Lmsg ,Cmsg ,Lvote) there are three hidden layers and one linear output layer.
Regularization is performed using l2. The weight decay parameter is 10−10. The number
of iterations of message passing on each problem is set to 26. We refer to the parameter
settings of Shi et al. (2021a) and set the number of encoder layers to two, four and eight,
respectively, for the experiments, and we choose four as the number of encoder layers to
synthesize the running time and accuracy. The number of attentional heads was set to eight
using the work of Vaswani et al. (2017). We also set it to four for comparison and found a
decrease in the accuracy of the model. The dimensionality of the input features and output
features of each layer of the attention network is 128. The model was trained using the
ADAM optimizer with a learning rate of 1×10−5, dropout of 0.6. The loss function uses
the binary cross-entropy function. The specific settings are shown in Table 2. A slanted
vertical bar (/) indicates different cases of values in the text.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 14/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

TP FN

FP TN

SAT UNSAT

S
A

T
U

N
S

A
T

Predict label

T
ru

th
 lab

el

Confusion Matrix

0.416 0.085

0.004 0.495

SAT UNSAT

S
A

T
U

N
S

A
T

Predict label

T
ru

th
 lab

el

Figure 6 Confusionmatrix for binary classification.
Full-size DOI: 10.7717/peerjcs.2169/fig-6

Evaluation measures
Our model can be considered as a binary classification task. The effectiveness of the model
will be evaluated by choosing the confusion matrix formula. According to Sen & Deokar
(2022), the confusion matrix for discrete classification is a two-by-two table formed by
evaluating the number of four possible outcomes of the classifier. As shown in Fig. 6,
the rows of the matrix represent the true values and the columns of the matrix represent
the predicted values. TP = 0.416 signifies that 41.6% of satisfiable problems are correctly
predicted, FN = 0.085 signifies that 8.5% of satisfiable problems are mistakenly predicted
as unsatisfiable, FP = 0.004 signifies that 4% of unsatisfiable problems are erroneously
predicted as satisfiable, and TN = 0.495 signifies that 49.5% of unsatisfiable problems are
accurately identified.

We assessed the effectiveness of the models by calculating the accuracy(ACC) through
the confusion matrix according to Eq. (18). In addition, we calculated precision(PRE),
recall(REC), specificity(SPE), F1-score(F1), and Matthew’s correlation coefficient(MCC)
to assess the performance of the neurosat and TG-SAT models in predicting problem
satisfiability. These calculations are shown in Eqs. (19)–(23).

ACC =
TP+TN

TP+TN +FP+FN
. (18)

PRE =
TP

TP+FP
. (19)

REC =
TP

TP+FN
. (20)

SPE =
TN

TN +FP
. (21)

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 15/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-6
http://dx.doi.org/10.7717/peerj-cs.2169

F1=
2× Precision × Recall
Precision + Recall

. (22)

MCC =
TP×TN −FP×FN

√
(TP+FP)(TP+FN)(TN +FP)(TN +FN)

. (23)

Baseline methodology
Since the main focus of this article is on evaluating the performance of TG-SAT, we do not
consider comparisons with traditional solvers or learning-based guided heuristic solver
algorithms. These methods are not end-to-end solvers. We also do not consider other
standalone SAT solvers (Amizadeh, Matusevych & Weimer, 2018; Ozolins et al., 2021; Li et
al., 2022), because they do not produce a single binary result.

We compare TG-SAT with NeuroSAT, also an end-to-end neural network framework.
Their input instances are both CNFs and both generate a single binary result.We performed
experiments on random SAT instances of varying size and complexity, as well as on random
3-SAT problems of varying size. We employed 12 randomly generated datasets to evaluate
the performance of our model. Detailed descriptions of these datasets are provided in
Table 1 of ‘Simulation datasets’.

NeuroSAT is a classicalmessage-passing network that, while not as proficient as advanced
solvers in solving SAT problems, can tackle larger andmore challenging instances by simply
executingmore iterations beyond its training scope. It can also be extended to SATproblems
with different structures, showcasing the potential of neural networks in addressing SAT
problems. Our model builds upon NeuroSAT, aiming to enhance its capacity in capturing
the rich generic and domain-specific structures inherent in SAT problems.

RESULTS
Experimental results
In this section, we discuss the model’s prediction results for random SAT problems with
different variable sizes and different complexities, as well as for random 3-SAT problems,
respectively.

Results on SR(n) datasets with different variable sizes
On the SR(3,10) dataset, good accuracy can be achieved by executing only one epoch on
both thousand and hundred thousand level data. We chose to analyze the results with 10
epochs executed. On the SRW (3,10) dataset, NeuroSAT has a training accuracy of 0.854
and a testing accuracy of 0.816, whereas TG-SAT has a training accuracy of 0.950 and a
testing accuracy of 0.957. On the SRW (10,40) dataset, NeuroSAT has a training accuracy
of 0.501 and a testing accuracy of 0.501, while the TG-SAT had a training accuracy of 0.854
and a testing accuracy of 0.867. The team working on NeuroSAT had trained on SR(10,40)
with millions of instances and achieved an accuracy of 0.73–0.85. We trained TG-SAT
with 300,000 instances for more than two weeks, and after 10 epochs, the test accuracy

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Table 3 Comparison of NeuroSAT and TG-SAT performance on SR(n).

Method Dataset Train Val Test

SRW (3,10) 0.854 0.819 0.816
SRW (10,40) 0.501 0.496 0.501NeuroSAT
SRQ(3,10) 0.935 0.933 0.931
SRW (3,10) 0.950 0.957 0.957
SRW (10,40) 0.854 0.867 0.867TG-SAT
SRQ(3,10) 0.945 0.947 0.945

reached 0.867, while NeuroSAT’s test accuracy on the same order of magnitude of data is
only 0.501, which is clearly not as good as that of TG-SAT. this indicates that our model
performs better in solving problems of much larger scale. The results are shown in Table 3.

To assess our model’s performance stability, we conducted multiple training epochs
on the simple and small dataset SRQ(3,10). Each training session involved 50 epochs,
and we selected the best results for evaluation. The outcomes revealed that NeuroSAT
achieved a training accuracy of 0.935 and a testing accuracy of 0.931, while TG-SAT
attained a training accuracy of 0.945 and a testing accuracy of 0.945. Although TG-SAT
only exhibited a marginal 0.014 improvement in accuracy over NeuroSAT on this basic
dataset, our model demonstrated greater consistency and achieved higher accuracy in fewer
epochs. As illustrated in Fig. 7, NeuroSAT’s performance exhibited instability, requiring
approximately 30 epochs to start converging for poor performance, and generally beginning
to converge at 20 epochs for better performance. This suggests that NeuroSAT necessitates
multiple message passing iterations to more precisely capture the structural features of
SAT instances, thereby making its accuracy susceptible to the reliability of the information.
Conversely, as depicted in Fig. 8, our model began to converge around 15 epochs and
attained satisfactory accuracy more rapidly.

Results on SR(N) datasets of varying complexity
We do experiments on four datasets SRcv(3,10), SR(20), SR(40), and SR(60)to compare
the prediction accuracies of NeuroSAT and TG-SAT for SAT instances with different levels
of complexity. It can be seen through Figs. 9–11 that TG-SAT has higher accuracy than
NeuroSAT on all datasets.

With Figs. 12 and 13 we can observe the effect of the size of the instance on the two
models with the same level of complexity. For the simple instance of CV = 3, NeuroSAT
produces similar results on datasets of different sizes, with an accuracy of about 90%. The
accuracies of our models all exceed 90%. However, for complex instance with CV > 5, it
can be clearly observed that the performance of NeuroSAT decreases as the instance size
increases, while our model has more potential to solve problems of larger sizes.

With Figs. 14 and 15 we can observe the effect of the complexity of the instance on both
models at the same scale. For instances of the same size, the performance of NeuroSAT
decreases much more than that of TG-SAT as the CV increases. This may be due to the
fact that TG-SAT is able to utilize correlations between clauses and clauses, literals and
literals, and clauses and literals. When the number of clauses and literals increases, our

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 17/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 7 Variation of accuracy with the number of epochs (poor).
Full-size DOI: 10.7717/peerjcs.2169/fig-7

Figure 8 Variation of accuracy with the number of epochs (good).
Full-size DOI: 10.7717/peerjcs.2169/fig-8

model can learn richer general and domain-specific structures and thus better utilize
these correlations. In contrast, NeuroSAT learns instance-level features only through
single-bit supervision and may not be able to obtain richer representations by reducing the
instance size or decreasing the instance difficulty. Overall, our model TG-SAT outperforms
NeuroSAT.

Results on the random 3-SAT dataset
On the random 3-SAT problem, we trained and evaluated NeuroSAT and TG-SAT using
five datasets 3SAT100, 3SAT150, 3SAT200, 3SAT250, and 3SAT300, respectively. The results

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 18/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-7
https://doi.org/10.7717/peerjcs.2169/fig-8
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 9 Performance of the twomodels for different sizes of SAT problems with CV = 3.
Full-size DOI: 10.7717/peerjcs.2169/fig-9

Figure 10 Performance of the twomodels for different sizes of SAT problems with CV = 4.
Full-size DOI: 10.7717/peerjcs.2169/fig-10

are shown in Table 4. On the 100-variable dataset, NeuroSAT’s test precision was 0.746
and TG-SAT’s was 0.789; on the 200-variable dataset, NeuroSAT’s test precision was 0.783
and TG-SAT’s was 0.817; on the 300-variable dataset, NeuroSAT’s test accuracy is 0.797
and TG-SAT’s test accuracy is 0.828. The test accuracy of TG-SAT on all datasets improved
by 2%–5% over the test accuracy of NeuroSAT.

To verify that TG-SAT can learn the general structural features of a given SAT problem
instance, we test the model using instances of different sizes than those used in training
to evaluate its generalization ability. We employ a model trained on SAT instances with
100 variables to predict the satisfiability of larger scale instances. Specifically, we test the

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 19/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-9
https://doi.org/10.7717/peerjcs.2169/fig-10
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 11 Performance of the twomodels for different sizes of SAT problems with CV > 5.
Full-size DOI: 10.7717/peerjcs.2169/fig-11

Figure 12 Effect of the size of the SAT problem on the prediction accuracy of the NeuroSAT.
Full-size DOI: 10.7717/peerjcs.2169/fig-12

model with instances having 150, 200, 250, and 300 variables, respectively. The results are
summarized in Table 5. Even when trained solely on instances with 100 variables, both
NeuroSAT and TG-SAT demonstrate good performance on other datasets. Although the
accuracy of both models decreases compared to when trained and tested on instances of
the same scale, TG-SAT achieves a test accuracy improvement of 1% to 6% over NeuroSAT
when trained and tested on instances of different scales.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 20/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-11
https://doi.org/10.7717/peerjcs.2169/fig-12
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 13 Effect of the size of the SAT problem on the prediction accuracy of the TG-SAT.
Full-size DOI: 10.7717/peerjcs.2169/fig-13

Figure 14 Effect of SAT problem complexity on the prediction accuracy of the NeuroSAT.
Full-size DOI: 10.7717/peerjcs.2169/fig-14

Performance evaluation
ACC is a metric that can assess the overall predictive accuracy of the model. However, for
a more comprehensive evaluation of model performance, we consider multiple metrics.
In addition to ACC, we also evaluate Precision (PRE), Specificity (SPE), Recall (REC),
F1 score (F1), Matthews correlation coefficient (MCC), and other metrics. These metrics
provide insights into different aspects of model performance. We assess the experimental
results on data from random SAT instances and random 3-SAT instances separately. The
detailed results are presented in Table 6 for random SAT instances and Table 7 for random
3-SAT instances.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 21/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-13
https://doi.org/10.7717/peerjcs.2169/fig-14
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 15 Effect of SAT problem complexity on the prediction accuracy of the TG-SAT.
Full-size DOI: 10.7717/peerjcs.2169/fig-15

Table 4 Experimental results on the random 3-SAT problem.

Data NeuroSAT TG-SAT

Train Val Test Train Val Test

3SAT100 0.762 0.750 0.746 0.879 0.786 0.789
3SAT150 0.769 0.766 0.764 0.826 0.782 0.800
3SAT200 0.784 0.774 0.783 0.823 0.805 0.817
3SAT250 0.812 0.801 0.788 0.835 0.822 0.814
3SAT300 0.805 0.820 0.797 0.834 0.839 0.828

Table 5 Experimental results of training on 3-SAT problems with a variable size of 100, tested on
other variable sizes.

Vars NeuroSAT-100 TG-SAT-100

150 0.758 0.778
200 0.784 0.798
250 0.776 0.783
300 0.753 0.805

As can be seen from Tables 6 and 7, compared with NeuroSAT, the accuracy and F1
scores of our model are improved on all eight datasets, indicating that our model performs
better in predicting both satisfiable and unsatisfiable instances, and the overall performance
of TG-SAT is improved. TG-SAT has higher precision and specificity than NeuroSAT on
five out of eight datasets, which also indicates that our model has better accuracy and
reliability for categorizing positive and negative samples in general. The recall is higher
than NeuroSAT on six datasets, indicating that our model is able to capture positive
category samples effectively. The value of MCC ranges from−1 to 1, where 1 means perfect
prediction, 0 means random prediction, and -1 means completely opposite prediction.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 22/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-15
http://dx.doi.org/10.7717/peerj-cs.2169

Table 6 Comparison of ACC, PRE, and SPE on different datasets.

Data ACC PRE SPE

NeuroSAT TG-SAT NeuroSAT TG-SAT NeuroSAT TG-SAT

SRQ(3,10) 0.931 0.945 0.998 1.000 0.998 1.000
SRw(3,10) 0.816 0.957 0.997 0.996 0.998 0.996
SRw(10,40) 0.501 0.867 0.497 0.946 0.624 0.956
3SAT100 0.746 0.789 0.774 0.808 0.674 0.722
3SAT150 0.764 0.800 0.845 0.829 0.849 0.806
3SAT200 0.783 0.817 0.887 0.853 0.915 0.865
3SAT250 0.788 0.814 0.740 0.857 0.681 0.863
3SAT300 0.797 0.828 0.739 0.788 0.643 0.737

Table 7 Comparison of REC, F1, andMCC on different datasets.

Data REC F1 MCC

NeuroSAT TG-SAT NeuroSAT TG-SAT NeuroSAT TG-SAT

SRQ(3,10) 0.865 0.889 0.927 0.941 0.871 0.895
SRw(3,10) 0.635 0.918 0.776 0.955 0.679 0.917
SRw(10,40) 0.375 0.764 0.427 0.845 −0.002 0.734
3SAT100 0.798 0.837 0.785 0.822 0.475 0.563
3SAT150 0.692 0.795 0.761 0.812 0.543 0.599
3SAT200 0.653 0.770 0.753 0.810 0.588 0.637
3SAT250 0.893 0.768 0.809 0.810 0.588 0.633
3SAT300 0.940 0.913 0.828 0.846 0.615 0.663

In general, the closer the MCC value is to 1, the better the prediction performance of
the model. Our model has MCC values greater than 0.5 on all 8 datasets, especially on
small instances of the SAT problem. Overall, our model outperforms NeuroSAT on several
evaluation metrics.

Effectiveness of transformer and GRU
The traditional Transformer approach solves the SAT problem by computing weighted
feature vectors for each node through self-attention scores. The self-attention layer utilizes
relationships between nodes to determine which nodes are more important, thereby better
capturing contextual information and dependencies. After multiple self-attention layers,
the encoder converts the input sequence into a set of hidden states, where each hidden
state contains relevant information about the input sequence. However, a limitation of
this method is that the obtained node feature representations lack information about
multi-order neighboring nodes. To address this limitation, we incorporate a message
passing step after computing self-attention. This ensures that the resulting node feature
representations contain information about their multi-order neighboring nodes.

We know that for any SAT instance, several key variables can be obtained through
Boolean constraint propagation, and the assignment of other variables does not affect the
satisfiability of the problem. In the message passing process, we aggregate information from

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 23/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 16 Visualization of attention scores when calculating self-attention for a small problem.
Full-size DOI: 10.7717/peerjcs.2169/fig-16

neighboring nodes using graph neural networks. However, the node vector representations
obtained in this way cannot leverage information from past nodes. To address this issue,
we use GRU to update the feature representations of nodes. This ensures that the obtained
node feature representations not only contain contextual information but also incorporate
information about long-term dependencies between nodes. We prioritize assigning values
to key variables to expedite the model’s predictions. To identify these influential variables,
after the message passing phase, we compute cross-attention scores between literal nodes
and clause nodes at the decoding layer. Each node is assigned different weights based on
these scores, guiding the nodes’ voting process. If these few variables that significantly
influence the satisfiability of the SAT problem are correctly assigned values, then the SAT
problem is satisfiable, and a solution can be found.

To illustrate the role of the Transformer in updating node embeddings more clearly, we
visualize the attention scores of adjacent literal nodes and clause nodes before and after
message passing in an SAT instance with three variables and 15 clauses. The visualization of
the self-attention scores before message passing is depicted in Fig. 16. In this visualization,
the horizontal coordinates represent clause nodes, while the vertical coordinates represent
positive literals in the first three rows and negative literals in the last three rows. The
color of each intersection indicates the importance of the literal in adjacent clauses, with
darker colors indicating higher importance. We observe that three clauses (C2), C5, and
(C13) correspond to all literals that are significantly darker in color. We speculate that
after computing self-attention, the literal nodes correlate with the positions of all nodes to
capture the contextual information of the entire instance. Key literals can be identified by
detecting clauses that are likely to conflict based on the importance of most literals in those
clauses. The visualization of the cross-attention scores after message passing is presented
in Fig. 17. We argue that TG-SAT communicates not only within homogeneous nodes but
also among heterogeneous nodes (between literals and clauses) through cross-attention.
This computation of attention scores among neighboring nodes assigns higher weights
to key literal nodes and provides rich semantic information for nodes to update their
states. Consequently, the satisfiability of SAT problems can be predicted faster and more
accurately.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 24/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-16
http://dx.doi.org/10.7717/peerj-cs.2169

Figure 17 Visualization of attention scores when calculating cross-attention for a small problem.
Full-size DOI: 10.7717/peerjcs.2169/fig-17

Table 8 Results of ablation experiments.

Variants SRQ(3,10) 3SAT100

Transformer 0.500 0.583
MPNN 0.739 0.745
MPNN+GRU 0.829 0.758
MPNN+GRU+Cross-Attention 0.902 0.775
TG-SAT 0.937 0.789

Ablation study
In the previous section, we verified the effectiveness of our proposed model. In our model,
Transformer and GRU are used for feature extraction. In order to validate the effectiveness
of our model to extract features, we set up five sets of experiments, changing only the
part of the model that extracts features. The first group is without message passing and
only uses Transformer to compute self-attention to update the node embedding. The
second group is using only the message-passing network. The third group adds GRU to
the message-passing network. The fourth group was to add cross-attention to the third
group. The fifth group is our proposed TG-SAT. We train on two datasets, SRQ(3,10) and
3SAT100, respectively, and the experimental results are test results as shown in Table 8.

As we speculated, Transformer can capture contextual information, but it is difficult
to capture information about multi-order neighbors, and it is also clear from the results
that it is not a suitable approach to solve the SAT problem. The message passing model
can aggregate and update the information of multi-order neighbor nodes to learn the
rich semantic information of the SAT problem, but it cannot judge whether the acquired
information is useful or not. The addition of GRU effectively solves this problem by
selectively capturing important information. Cross-attention is used to update the weighted
embeddings of different attribute nodes, and our model TG-SAT obtains the highest
accuracy. Experiments show that our improved model using Transformer and GRU plays
an important role in improving the accuracy of prediction for SAT problems, especially
for difficult SAT problems.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 25/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2169/fig-17
http://dx.doi.org/10.7717/peerj-cs.2169

CONCLUSION
In recent years, Transformer has demonstrated remarkable performance in various tasks
within natural language processing and computer vision, while GRU has proven effective
in processing time series data with long-term dependencies. In this article, we introduce
TG-SAT, a novel framework for predicting the satisfiability of random SAT problems, by
integrating GRU modules into the Transformer architecture for the first time.Firstly, TG-
SAT leverages the self-attention mechanism to obtain global and contextual information
of all nodes, enabling preliminary predictions regarding which clauses are more likely to
be in conflict. Secondly, multi-order neighbor information and historical data are updated
through a message passing network and GRU. Finally, the cross-attention mechanism
is employed to focus on critical literal nodes. In predicting the satisfiability of SAT
problems, our study emphasizes the feature representation of important literal nodes. Our
findings demonstrate that our model effectively learns and captures invariant structural
features of key nodes, leading to improved representation of the feature space of Boolean
formulas, particularly beneficial for handling complex Boolean formulas. Notably, our
model consistently outperforms NeuroSAT in terms of prediction accuracy on both
random SAT problem and random 3-SAT problem datasets. Moreover, our model learns
the representation of the SAT problem and model parameters directly from raw data,
eliminating the need for manual feature design or rule creation. This end-to-end approach
enhances adaptability to SAT problems of varying sizes and complexities and exhibits
superior generalization capabilities.

This article represents the first endeavor to apply the TG-SAT model for predicting the
satisfiability of Boolean formulas. Further experimental validation is warranted to explore
the impact of different parameter combinations on the model. Future work will delve into
investigating the process of feature selection and parameter optimization. Additionally, for
instances predicted to be satisfiable, we will explore machine learning methods for solving
them.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work has been supported by the National Natural Science Foundation of Chinaunder
Grant No. 62202145 and No. 61972134, the Young Elite Teachers in Henan Province
No. 2020GGJS050, the Doctor Foundation of Henan Polytechnic University under Grant
No. B2020-31, and the Innovative and Scientifc Research Team of Henan Polvtechnic
University under No. T2021-3. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Natural Science Foundation of Chinaunder: No. 62202145, No. 61972134.
Young Elite Teachers in Henan Province: No. 2020GGJS050.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 26/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2169

Doctor Foundation of Henan Polytechnic University: B2020-31.
Innovative and Scientifc Research Team of Henan Polvtechnic University: No. T2021-3.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Wenjing Chang conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.
• Mengyu Guo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Junwei Luo conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at figshare: Guo, Mengyu (2023). 数据.rar. figshare. Dataset.
https://doi.org/10.6084/m9.figshare.24658437.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2169#supplemental-information.

REFERENCES
Amizadeh S, Matusevych S, WeimerM. 2018. Learning to solve circuit-SAT: an

unsupervised differentiable approach. In: International conference on learning
representations.

Bengio APA. 2021.Machine learning for combinatorial optimization: a methodolog-
ical tour d’horizon. European Journal of Operational Research 290(2):405–421
DOI 10.1016/j.2020.07.063.

Bünz B, LammM. 2017. Graph neural networks and boolean satisfiability. ArXiv
arXiv:1702.03592.

Cho K, vanMerrienboer B, Çaglar Gülçehre , Bahdanau D, Bougares F, Schwenk H,
Bengio Y. 2014. Learning phrase representations using RNN Encoder–Decoder
for statistical machine translation. In: Conference on empirical methods in natural
language processing.

Cook S. 1971. The complexity of theorem-proving procedures. In: Proceedings of the third
annual ACM symposium on theory of computing. New York: ACM, 151–158.

DanisovszkyM, Yang ZG, Kusper G. 2020. Classification of SAT problem instances by
machine learning methods. In: International conference on applied informatics.

Devlin D, O’Sullivan B. 2008. Satisfiability as a classification problem. In: Proceedings of
the 19th Irish conference on artificial intelligence and cognitive science.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 27/29

https://peerj.com
https://doi.org/10.6084/m9.figshare.24658437.v1
http://dx.doi.org/10.7717/peerj-cs.2169#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2169#supplemental-information
http://dx.doi.org/10.1016/j.2020.07.063
http://arXiv.org/abs/1702.03592
http://dx.doi.org/10.7717/peerj-cs.2169

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. 2017. Neural message passing
for quantum chemistry. In: International conference on machine learning.

Goldberg EI, PrasadMR, Brayton RK. 2001. Using SAT for combinational equivalence
checking. In: Proceedings design, automation and test in Europe. 114–121.

Gomes CP, Kautz H, Sabharwal A, Selman B. 2008. Satisfiability solvers. In: van
Harmelen F, Lifschitz V, Porter B, eds. Handbook of knowledge representation.
Foundations of artificial intelligence, vol. 3. Amsterdam: Elsevier, 89–134
DOI 10.1016/S1574-6526(07)03002-7.

GuoW, Yan J, Zhen H-L, Li X, jie YuanM, Jin Y. 2022.Machine learning methods in
solving the boolean satisfiability problem.Machine Intelligence Research 20:640–655.

Hopfield JJ, Tank DW. 1985. ‘‘Neural’’ computation of decisions in optimization
problems. Biological Cybernetics 52:141–152 DOI 10.1007/BF00339943.

Karim SA, Zamri NE, Alway A, Mohd KasihmuddinMS, Md Ismail AI, Man-
sor MA, Abu Hassan NF. 2021. Random satisfiability: a higher-order logical
approach in discrete hopfield neural network. IEEE Access 9:50831–50845
DOI 10.1109/ACCESS.2021.3068998.

Kasi BK, Sarma A. 2013. Cassandra: proactive conflict minimization through optimized
task scheduling. In: International conference on software engineering. 732–741.

Li M, Shi Z, Lai Q, Khan S, Xu Q. 2022. DeepSAT: an EDA-driven learning framework
for SAT. ArXiv arXiv:2205.13745.

Li CM, Zhu Z, Manyà F, Simon L. 2012. Optimizing with minimum satisfiability.
Artificial Intelligence 190:32–44 DOI 10.1016/j.artint.2012.05.004.

LiuM, Jia F, Huang P, Zhang F, Sun Y, Cai S, Ma F, Zhang J. 2021. Can graph neural
networks learn to solve MaxSAT problem? ArXiv arXiv:2111.07568.

Ozolins E, Freivalds K, Draguns A, Gaile E, Zakovskis R, Kozlovics S. 2021. Goal-aware
neural SAT solver. In: 2022 International joint conference on neural networks (IJCNN).
1–8.

Rintanen J. 2012. Planning as satisfiability: heuristics. Artificial Intelligence 193:45–86
DOI 10.1016/j.artint.2012.08.001.

SelsamD, Bjørner NS. 2019. Guiding high-performance SAT solvers with unsat-core
predictions. In: International conference on theory and applications of satisfiability
testing.

SelsamD, LammM, Bünz B, Liang P, de Moura LM, Dill DL. 2018. Learning a SAT
solver from single-bit supervision. ArXiv arXiv:1802.03685.

Sen S, Deokar A. 2022. Toward understanding variations in price and billing in US
healthcare services: a predictive analytics approach. Expert Systems with Applications
209:118241 DOI 10.1016/j.eswa.2022.118241.

Shi F, Lee C, Bashar MK, Shukla N, Zhu S, Vijaykrishnan N. 2021a. Transformer-based
machine learning for fast SAT solvers and logic synthesis. ArXiv arXiv:2107.07116.

Shi F, Li C, Bian S, Jin Y, Xu Z, Han T, Zhu S-C. 2021b. Transformers satisfy. In: Openre-
view. Amherst, USA. Available at https://openreview.net/forum?id=Gj9aQfQEHRS.

Shi Z, Li M, Khan S, Zhen H-L, YuanMJ, Xu Q. 2022. SATformer: transformers for SAT
solving. ArXiv arXiv:2209.00953.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 28/29

https://peerj.com
http://dx.doi.org/10.1016/S1574-6526(07)03002-7
http://dx.doi.org/10.1007/BF00339943
http://dx.doi.org/10.1109/ACCESS.2021.3068998
http://arXiv.org/abs/2205.13745
http://dx.doi.org/10.1016/j.artint.2012.05.004
http://arXiv.org/abs/2111.07568
http://dx.doi.org/10.1016/j.artint.2012.08.001
http://arXiv.org/abs/1802.03685
http://dx.doi.org/10.1016/j.eswa.2022.118241
http://arXiv.org/abs/2107.07116
https://openreview.net/forum?id=Gj9aQfQEHRS
http://arXiv.org/abs/2209.00953
http://dx.doi.org/10.7717/peerj-cs.2169

Silva JM, Lynce I, Malik S. 2021. Conflict-driven clause learning SAT solvers. In: Hand-
book of satisfiability. Frontiers in artificial intelligence and applications, Amsterdam:
IOS Press BV, 133–182 DOI 10.3233/FAIA200987.

Someetheram V, Marsani MF, Mohd KasihmuddinMS, Zamri NE, Muhammad Sidik
SS, Mohd Jamaludin SZ, Mansor MA. 2022. Random maximum 2 satisfiability logic
in discrete hopfield neural network incorporating improved election algorithm.
Mathematics 10(24):4734–4763 DOI 10.3390/math10244734.

Tseitin GS. 1983. On the complexity of derivation in propositional calculus. In:
Automation of reasoning: 2: classical papers on computational logic 1967–1970. Berlin,
Heidelberg: Springer, 466–483 DOI 10.1007/978-3-642-81955-1.

Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. ArXiv arXiv:1706.03762.

Xu L, Hutter F, Hoos HH, Leyton-Brown K. 2008. SATzilla: portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research 32:565–606
DOI 10.1613/jair.2490.

Yolcu E, Póczos B. 2019. Learning local search heuristics for Boolean satisfiability. In:
Proceedings of the 33rd international conference on neural information processing
systems. Red Hook: Curran Associates Inc., 7992–8003.

Zamri NE, Azhar SA, Mansor MA, Alway A, KasihmuddinMSM. 2022.Weighted
random k satisfiability for k=1,2 (r2SAT) in discrete hopfield neural network.
Applied Soft Computing 126:109312 DOI 10.1016/j.asoc.2022.109312.

ZhangW, Sun Z, Zhu Q, Li G, Cai S, Xiong Y, Zhang L. 2020. NLocalSAT: boosting local
search with solution prediction. ArXiv arXiv:2001.09398.

Chang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2169 29/29

https://peerj.com
http://dx.doi.org/10.3233/FAIA200987
http://dx.doi.org/10.3390/math10244734
http://dx.doi.org/10.1007/978-3-642-81955-1
http://arXiv.org/abs/1706.03762
http://dx.doi.org/10.1613/jair.2490
http://dx.doi.org/10.1016/j.asoc.2022.109312
http://arXiv.org/abs/2001.09398
http://dx.doi.org/10.7717/peerj-cs.2169

