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ABSTRACT
This study aims to address a variant of the hybrid flow shop problem by simultaneously
integrating lag times, unloading times, and transportation times, with the goal of
minimizing the maximum completion time, or makespan. With applications in
image processing, manufacturing, and industrial environments, this problem presents
significant theoretical challenges, being classified as NP-hard. Notably, the problem
demonstrates a notable symmetry property, resulting in a symmetric problem for-
mulation where both the scheduling problem and its symmetric counterpart share
the same optimal solution. To improve solution quality, all proposed procedures
are extended to the symmetric problem. This research pioneers the consideration
of the hybrid flow shop scheduling problem with simultaneous attention to lag,
unloading, and transportation times, building upon a comprehensive review of existing
literature. A two-phase heuristic is introduced as a solution to this complex problem,
involving iterative solving of parallel machine scheduling problems. This approach
decomposes the problem into manageable sub-problems, facilitating focused and
efficient resolution. The efficient solving of sub-problems using the developed heuristic
yields satisfactory near-optimal solutions. Additionally, two new lower bounds are
proposed, derived from estimating minimum idle time within each stage via solving
a polynomial parallel machine problem aimed at minimizing total flow time. These
lower bounds serve to evaluate the performance of the developed two-phase heuristic,
over measuring the relative gap. Extensive experimental studies on benchmark test
problems of varying sizes demonstrate the effectiveness of the proposed approaches. All
test problems are efficiently solvedwithin reasonable timeframes, indicating practicality
and efficiency. The proposed methods exhibit an average computational time of 8.93
seconds and an average gap of 2.75%. These computational results underscore the
efficacy and potential applicability of the proposed approaches in real-world scenarios,
providing valuable insights and paving the way for further research and practical
implementations in hybrid flow shop scheduling.
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INTRODUCTION
The hybrid flow shop (HFS) is an industrial system consisting of sequential production
stages, each comprising multiple identical parallel machines. In order to meet the criteria
of being classified as an HFS, it is mandatory for at least one stage to contain more than one
machine. The fundamental nature of an HFS lies in its ability to process a series of jobs in a
specific order, flowing from the initial stage to the final stage. In this system, each machine
within a stage can handle only one job at a time, and each job is exclusively processed by a
single machine in each stage.

TheHFS represents an extension of other shop configurations, including single machine,
parallel machine, and flow shop. The scheduling problem within the HFS environment
poses an intriguing challenge encountered in various real-world contexts, notably within
manufacturing industries such as electronic ships (Jin et al., 2002), cable production
(Narastmhan & Panwalkar, 1984), textile manufacturing (Elmaghraby & Karnoub, 1997),
steel industry (Jiang et al., 2023), and glass manufacturing systems (Geng & Li, 2023).
However, it is worth noting that the HFS scheduling problem, along with its different
variants, has been proven to be NP-hard, presenting an important theoretical challenge
(Ruiz & Vázquez-Rodríguez, 2010).

The scheduling problem related to HFS has been the subject of extensive research,
resulting in a large body of available literature on the topic (Hidri & Gharbi, 2017;
Ribas, Leisten & Framiñan, 2010; Ruiz & Vázquez-Rodríguez, 2010; Wu & Cao, 2022).
The problem has been the focus of numerous studies aiming to solve it optimally
or approximately using various algorithms, including heuristics, metaheuristics, and
exact procedures. For further information on the HFS scheduling problems, readers are
encouraged to refer to the cited literature (Lee & Loong, 2019; Ribas, Leisten & Framiñan,
2010; Ruiz & Vázquez-Rodríguez, 2010; Tosun, Marichelvam & Tosun, 2020).

Accurately modeling real-life situations in the context of the HFS scheduling
problem necessitates considering parameters and constraints that have significant
impacts, such as job release times, setup times, and machine unavailability, among others.
Incorporating these parameters, including release dates and setup times, based on actual
conditions can help bridge the gap between theoretical and practical aspects.

The unloading time, which refers to the duration required to remove a completed job
from a machine, holds considerable importance in various industrial and manufacturing
settings. It is a crucial real-life parameter that cannot be ignored, especially in specific
applications such as sand casting (Li et al., 2023b). It becomes necessary to consider the
unloading time separately from the processing time under certain circumstances when it
becomes comparable to the processing time or more important. Steel industries commonly
experience this problem, where parts removed from molds take longer to unload (remove)
than the actual processing time. Furthermore, the bio-process industry, specifically in the
context of utilizing fermentation techniques, encounters restrictions related to unloading
time (Gicquel et al., 2012).

It is common in many HFS environments to ignore or neglect the transportation
time between stages, when compared with the processing time. This scenario is frequently
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encountered, particularly in cases where the distance between stages is neglected (Shao, Shao
& Pi, 2020). However, in numerous real-life cases, the transportation time of a job becomes
a pivotal factor that cannot be overlooked. In this context, researchers in Amirteimoori et
al. (2022) tackled an HFS problem that incorporated transportation time considerations.
They proposed a MILP (Mixed Integer Linear Programming) model. Due to the NP-hard
nature of the problem under investigation, the authors proposed a metaheuristic approach
called Particle SwarmOptimization-Genetic Algorithm (PSO-GA). The combination of the
Particle PSO-GA metaheuristic was employed to achieve a solution that is close to optimal
for the problem at hand. An experimental study was conducted to evaluate the proposed
procedures, and the obtained results demonstrate the efficiency of these approaches.

Lag time in scheduling refers to the minimum time delay between the completion
of a task or job and the start of a subsequent task or job. Lag time can occur due to
various reasons, such as cooling (steel making industry), fermentation (bioprocess), or any
other type of delay. In scheduling problems, lag time is an important consideration, as it
can impact the overall efficiency and effectiveness of the scheduling solution. In specific
scheduling scenarios, like the HFS scheduling problem involving lag time, this temporal
gap becomes a critical parameter necessitating consideration for achieving the optimal
scheduling solution (Tran et al., 2023).

After conducting an extensive literature review on the HFS problem, it is noteworthy
that no existing studies have simultaneously considered unloading times, lag times,
and transportation times for HFS scheduling problems. Consequently, this study aims
to investigates the HFS scheduling problem with unloading times, lag times, and
transportation times between stages. The problem consists of a serial set of stages, each
containing identical parallel machines that process a given set of jobs. In this particular
problem, each job undergoes processing on a machine within the first stage, followed by
its unload (removal). Subsequently, the job is required to wait for a minimum duration
of time, known as the lag time, before being transported to the subsequent stage. This
is repeated until reaching the final stage where a machine carries out the processing of
the job. Once the job is processed, it is removed from the machine and exits the system.
Minimizing the maximum completion time or makespan is the objective function.

The investigation begins by defining the problem at hand. Moreover, an analysis of its
complexity confirms its robust NP-hard categorization. One crucial aspect of the issue
is pinpointed: its symmetric nature. This property signifies that scheduling from the
initial stage to the final one (forward) or scheduling from the final stage to the initial one
(symmetric) results in the same optimal solution. The significance of this attribute lies
in the fact that all proposed algorithms are adapted to the symmetric problem, thereby
broadening the scope for enhancing solution quality.

In addition a new set of lower bounds is proposed. These lower bounds can be divided
into two types. In the first type, we relax the capacities of the stages, except for one, reducing
the problem into a parallel machine scheduling problem with release dates and delivery
times. In the second type, the lower bound is based on estimation of the minimum idle
machine times.
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In the third step, an existing heuristic (ADA) designed for addressing the parallel
machine scheduling problem with release dates and delivery times (Gharbi & Haouari,
2007) is modified and repurposed into another heuristic (ADAU) to handle the parallel
machine scheduling problem with release dates, unloading times, and delivery times.

Using the suggested heuristic (ADAU), we have formulated a two-phase heuristic
for addressing the current problem under study. The initial phase involves constructing
preliminary solutions, followed by a refinement process in the second phase. The latter
heuristic employs the optimal solution for the parallel machine scheduling problem,
considering release dates, unloading times, and delivery time, which is obtained through
the ADAU heuristic. During the initial phase, we select an initial stage and allocate and
solve a scheduling problem for parallel machines. Afterward, the process progresses to
the subsequent stage, where another parallel machine scheduling problem is formulated
and solved. This sequence is repeated until reaching the final stage. Next, a backward
movement commences, beginning from the initially selected stage, towards the preceding
stages. At each visited stage, a parallel machine problem is established and resolved. This
process halts upon reaching the first stage. By concatenating all the schedules acquired
from various stages, a feasible solution is achieved. By altering the starting stage, several
feasible solutions are produced, and the best one is chosen as the initial solution.

The improvement phase focuses on enhancing the quality of the initial solution. This
phase follows a similar procedure to the initial phase in terms of generating feasible
solutions. Indeed, starting with the initial solution, we choose a starting stage where a
parallel machine problem is defined and solved. If an enhancement is identified, it is passed
on to the subsequent stages by updating the characteristics of the jobs. Following this,
the next stage is visited, and a parallel machine scheduling problem is formulated and
resolved. These iterations continue until reaching the final stage. Commencing from the
final stage and moving backward to the preceding stage, where a parallel machine problem
is formulated and resolved. This process is reiterated until reaching the initial stage. The
forward and backward procedures continue until a predefined stopping condition is
satisfied. By varying the starting stage, multiple improved solutions are generated, and the
best one is retained.

The contributions of this study are as follows:

• Novel investigation: This is the first study, based on existing literature, to simultaneously
investigate the HFS problem considering transportation, lag, and unloading times.
• Identification of key properties: The study identifies significant properties of the
problem, particularly its symmetric nature. Utilizing this property helps improve the
quality of the solutions.
• Development of lower bounds: New lower bounds are proposed, enabling the
evaluation of solution quality through the relative gap. These lower bounds are derived
from relaxations that simplify to polynomial parallel machine scheduling problems.
• Heuristic algorithm presentation: The study introduces an efficient two-phase heuristic
algorithm capable of generating optimal or near-optimal solutions within a reasonable
computational time frame. This heuristic is based on a novel algorithm designed to solve
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parallel machine scheduling problems with release dates, unloading time, and delivery
time.
• Real-world application: The research enables themodeling of real-worldmanufacturing
systems that consider unloading, lag, and transportation times—factors often neglected
in many industries. Practical applications include the steel industry and bioprocess
industry.

The subsequent sections of this article are organized as follows. ‘Literature review’
formally defines the scheduling problem under study and presents some of its noteworthy
properties. ‘Proposed lower bounds’ focuses on a new family of tight lower bounds.
The proposed heuristic algorithm, consisting of two phases, is introduced in ‘Two-phase
heuristic solution’. ‘Experimental results’ entails a comprehensive experimental analysis
that focuses on evaluating the effectiveness of the developed algorithms. Through this
rigorous evaluation, the study provides valuable insights into the performance and efficacy
of the proposed approaches in addressing the problem at hand. Finally, the article concludes
by providing a summary of the main findings derived from the study. Additionally, it
presents future research directions that requires further investigation and exploration in
order to advance the field.

LITERATURE REVIEW
The literature review of this study focuses on recent publications concerning the general
HFS problem. Special attention is given to HFS scheduling problems incorporating
transportation times, lag times, or unloading times. Ultimately, the study identifies the
research gap.

General HFS
The HFS has captured substantial interest within academic spheres and the manufacturing
industry alike, thanks to its remarkable relevance and remarkable adaptability across
a wide array of production systems. In make-to-order environments, there is a strong
demand for flexible production systems, particularly because scheduling plans frequently
face unforeseen disruptions. In the contemporary research landscape, there has been a
discernible trend highlighting the efficacy of adaptable systems, such as the flexible flow
shop, in adeptly managing the uncertainties characteristic of these environments (Fattahi,
Hosseini & Jolai, 2013; Gen, Gao & Lin, 2009). Extensive literature exists regarding HFS,
underscoring a substantial body of research and discourse within this references (Lee
& Loong, 2019; Ribas, Leisten & Framiñan, 2010; Ruiz & Vázquez-Rodríguez, 2010; Tosun,
Marichelvam & Tosun, 2020). These references provide comprehensive insights anddetailed
analyses of problems related to HFS. Below is a concise summary of recent publications
that delve into different versions of the HFS.

Liu et al. (2024) examined the distributed HFS with blocking constraints. They proposed
using greedy algorithms to tackle the problem, reducing idle machine time through active
decoding techniques. Subsequently, a neighborhood search framework is implemented
to increase the diversity of solutions. To generate effective initial solutions, they devised
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a heuristic rule centered on blocking constraints. Li et al. (2023a) addressed an HFS
problem that incorporates energy considerations. To address this challenging problem,
a multi-objective Mixed-Integer Linear Programming (MILP) approach is proposed.
Furthermore, the article introduces both a Q-learning technique and an enhanced genetic
algorithm as solutions tailored specifically for this problem. The investigation by Guan
et al. (2023) explores various solution representations for the HFS, emphasizing their
respective advantages and limitations. It also deals with the task of striking a balance
between narrowing down the solution space and maintaining an efficient search process
within the confines of the limited solution space. Liu et al. (2023) concentrate on the
dynamic HFS with re-entrant jobs, integrating factors such as skill levels and worker
fatigue into their analysis. They utilize a multi-agent technique reinforced by deep learning
to achieve a solution that approaches optimality. Thorough experimental studies illustrate
the effectiveness of the algorithm put forth. In the study by Ghodratnama, Amiri-Aref &
Tavakkoli-Moghaddam (2023), researchers explore an MFFS problem that entails fuzzy
maintenance time and robotic integration. They present a bi-objective mathematical
model and utilize two multi-objective decision-making strategies: LP-metric and goal
attainment (GA). The efficacy of these solution methods is evaluated and prioritized
using the ‘‘TOPSIS’’ (Technique for Order of Preference by Similarity to Ideal Solution)
methodology. In the study outlined in Huang et al. (2023), diverse uncertain parameters
linked to the production process in HFS are considered. To tackle the problem, they
introduce a two-stage stochastic programming approach. To address this challenge
effectively, they propose a novel iteration of the pointer-based discrete differential
evolution (PDDE) algorithm, referred to as H-PDDE. This variant is crafted to enhance
the performance and efficiency of the PDDE algorithm, particularly tailored for addressing
the specified problem.

Gholami & Sun (2023), address a distributed MFFS involving multiprocessor jobs. They
frame the issue as a Markov Decision Process (MDP) and subsequently utilize a hybrid
Q-learning-local search algorithm to resolve it. This approach combines the advantages of
Q-learning, a reinforcement learning technique, with local search methods to effectively
obtain near-optimal solutions for the given problem. In their work Tran et al. (2023),
improved mathematical integer formulations are introduced for the HFS, integrating
chaining time-lag and time-varying resources. To reinforce these formulations, researchers
devise valid inequalities. These inequalities are subjected to testing and evaluation, with
the findings demonstrating their performance. In Fernandez-Viagas, Molina-Pariente &
Framinan (2018), a thorough investigation into constructive heuristics for theHFS is carried
out. The assessed heuristics are put to experimental scrutiny and juxtaposedwith four newly
proposed counterparts. Twomemory-centric constructive heuristics are unveiled, featuring
a gradual integration of jobs into a partial sequence, while advantageous insertions are
cataloged to form the eventual sequence. Furthermore, two constructive heuristics based
on Johnson’s algorithm are put forth as an alternative strategy. In their work Li et al.
(2023b), researchers addressed a challenge within the HFS related to batch processing in
the sand casting industry. They introduced an upgraded cuckoo algorithm, integrating
crossover and mutation operations to enhance its search capabilities. These enhancements
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were aimed at replacing the traditional long and short flight strategies within the cuckoo
algorithm.

In their study (Wang et al., 2023), researchers investigate a distributed two-stage HFS
issue related to maintenance requirements. They introduce a mixed integer programming
model and suggest employing a genetic algorithm to tackle this challenge. In their
study (Utama & Primayesti, 2022), researchers delve into the HFS, incorporating energy
considerations. They present an optimization algorithm that employs the Hybrid Aquila
Optimizer (HAO) to tackle this specific issue. Within their study (Shao, Shao & Pi, 2023),
researchers explore the distributed heterogeneousMFFS that integrates lot-streaming. They
unveil a mixed-integer linear programming model and suggest a series of constructive
heuristics, alongside an iterated local search algorithm. These constructive heuristics,
grounded in time-based rules, form a notable part of their approach.

Scheduling multiprocessor tasks entails the necessity for a task to be processed
simultaneously bymultiple parallel processors (machines). Researchers have paid particular
attention to scheduling multiprocessor tasks in hybrid flow shops (HFSMT) due to its
significance in real-world applications. In this context authors in Engin & Engin (2020)
addressed a HFSMT problem. This study proposes a novel memetic algorithm that
integrates both global and local search methods to address the challenges of HFSMT
scheduling problems. An intensive experimental study on benchmark test problems
demonstrates that the proposed algorithms surpass existing ones in performance.
Additionally, in Engin & Engin (2018) a HFSMT under the environment of a common
time window is examined. In this research, a new memetic algorithm in which a global
search algorithm is accompanied with the local search mechanism is developed to solve
the HFSMT with jobs having a common time window. Memetic algorithm is tested using
HFSMT problems. In Kahraman et al. (2010), authors introduced a highly efficient parallel
greedy algorithm for solving the HFSMT problem. Furthermore, they proposed four
constructive heuristic methods to tackle HFSMT problems. Comparative computational
results with previous works in the literature demonstrate the remarkable effectiveness of the
proposed algorithms in terms of significantly reducing total completion time or makespan.
Engin, Ceran & Yilmaz (2011) conducted a study that focused on an HFS scheduling
problem involving multiprocessor tasks, where each job necessitates the use of more than
one machine for processing. In their research, the authors proposed an efficient genetic
algorithm specifically designed for tackling this problem.

HFS with lag times
In a recent study conducted by Tran et al. (2023), an improved and refined linear integer
formulation is presented for the HFS. This advanced formulation takes into account
time-varying resources and incorporates chaining time-lag constraints, thereby offering
a more comprehensive approach to addressing the complexities of the problem. To
enhance the robustness of the formulations, two valid inequalities are proposed. These
inequalities serve to strengthen the mathematical models and improve their ability
to accurately represent and solve the problem at hand. The revised formulations are
evaluated through a benchmarking process, and the results indicate that the valid
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inequalities significantly improve their performance. Tran et al. (2021) Introduces a
novel mathematical formulation for the HFS problem, which considers time-varying
resources and exact time-lag constraints. A comparison of this formulation to others is
made, and it is found that it always guarantees a feasible solution for all instances. In a
study conducted by Harbaoui, Khalfallah & Bellenguez-Morineau (2018), a two-stage HFS
problem incorporating precedence constraints, setup times, and lag times is examined
and addressed. Due to the complexity of the studied problem, a hybrid genetic algorithm
(HGA) is presented. The proposed procedures are successfully demonstrated to efficiently
solve the problem under study within acceptable CPU time constraints. This outcome is
the culmination of a rigorous experimental study. In a study conducted by Javadian et al.
(2012), the HFS problem is investigated, taking into account both setup and lag times.
In Authors proposed a mathematical model that solves efficiently small sizes instances.
In addition, for medium and large sizes problems a meta-heuristic algorithm based on
the immune algorithm is proposed. The computational results indicate that the proposed
algorithm can generate near-optimal solutions in a short period of time. In Botta-Genoulaz
(2000), authors studied the HFS problem under precedence constraints, lag times and
due dates. In the latter research work, six new heuristics aiming to solve the problem are
presented. An experimental study is performed to assess the performance and robustness
of these algorithms, and the computational results substantiate the high quality of the
obtained solutions.

HFS with transportation times
The authors in Gheisariha et al. (2021) investigated the HFS problem associated with
transportation time, sequence setup time, and rework. To solve the problem, they proposed
an efficient Enhanced Harmony Search Algorithm. In Lei et al. (2020), the HFS problem
with dynamic transportation waiting time is examined, and a memetic algorithm is
proposed to provide a near-optimal solution. In the work by Naderi, Zandieh & Shirazi
(2009b), the authors focus on addressing the HFS problem that considers both setup
time and transportation time. They propose an effective solution approach based on
the electromagnetism metaheuristic to solve this problem. In Naderi et al. (2009a), the
HFS problem with transportation and setup times is examined, with respective objective
functions of total tardiness and total completion time. A proposed solution entails using
a metaheuristic based on the simulated annealing algorithm in order to overcome this
problem. Additionally, Zabihzadeh & Rezaeian (2016) conducted a study examining the
HFS problem, with a specific focus on incorporating release dates and transportation time
with robots. The objective of their study is to minimize the makespan in this context.
Both ant colony optimization algorithm and genetic algorithms are proposed to solve this
problem.

Zhong & Lv (2014) examined a two-stage HFS which considers the transportation times.
In the latter problem, the machine-stage configuration involves two machines in the
second stage and a single machine in the first stage. The transportation between stages
is performed by a one-capacity transporter. To find a solution that is close to optimal,
the researchers propose an efficient heuristic algorithm. Zhu (2012) addresses the HFS
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problem with batching restrictions and transportation times. In a specific case, the author
suggests a heuristic approach with polynomial time complexity to address the problem.
Furthermore, for the general case, a heuristic with pseudo-polynomial complexity is
developed as a solution. Elmi & Topaloglu (2013) examines the HFS problem with robots’
transportation and blocking restrictions, proposing an efficient simulated annealing
metaheuristic to minimize makespan. The presented algorithms are subjected to a
comprehensive experimental evaluation. Chikhi et al. (2015) focus on examining the
two-stage HFS problem that involves the inter-stage transportation with robots. In
the considered problem, the initial stage comprises two dedicated machines operating
in parallel, while the subsequent stage is composed of a single machine. A thorough
investigation of the problem and its various specific cases is conducted, including those
that are considered NP-hard. In response to the NP-hard variants, the researchers develop
two efficient heuristics.

HFS with unloading times
In their publication (Gupta & Tunc, 1994), the authors investigate the HFS problem that
incorporates unloading times and setup times. The authors propose a set of heuristics,
which are thoroughly evaluated through an experimental study. The results of the study
show the efficiency and effectiveness of these algorithms in addressing the studied HFS
problem. Botta-Genoulaz (2000) focuses on studying an HFS problem that considers
both precedence constraints and unloading times. In order to provide a near-optimal
solution for the addressed scheduling problem, the authors propose a set of six heuristic,
which are demonstrated to be efficient through an extensive computational study. The
authors of the study conducted by Low (2005) investigate an HFS problem that involves
unloading and setup times. Notably, the parallel machines within each stage are unrelated,
adding complexity to the problem. A heuristic algorithm is developed by the authors to
obtain an initial feasible solution. A simulated annealing metaheuristic is then used to
enhance this initial feasible solution. To assess the efficiency of the developed algorithms,
an experimental study is conducted, providing substantial evidence of their effectiveness.
A real-life HFS problem with unloading times and additional constraints is investigated
in Gicquel et al. (2012). A mixed integer linear program (MILP) is proposed. This MILP is
then improved by including several new inequalities. The obtained algorithm is providing
optimal solution for the industrial test problems.

Research gap
Based on the current literature, the HFS scheduling problem involving lag times,
transportation and unloading times has yet to be addressed. Therefore, there is a research
gap that needs to be filled by studying this type of problem and developing effective
procedures to solve it.

PROBLEM STATEMENT
This section will provide a detailed explanation of the problem under study, along with a
thorough examination of its key features.
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Definition of the studied problem
The HFS with lag time, transportation time, and unloading time (HFSULT) is defined as
follows: A set of n tasks, denoted {J = 1,2,...,n}, must be processed in a shop comprising
a series of K production stages, denoted {ST = S1,S2,...,SK }. Each stage, Si contains mi

parallel machines which are identical, denoted Mi,1,Mi,2,...,Mi,mi ( i =1 ,2,...,K ). To
be consider as HFSULT, at least one stage contains more than one machine. It is also
assumed that n is greater than the maximum of mi for all i between 1 and K . The tasks
must be processed consecutively, starting with stage S1 and ending with stage SK . Following
the completion of processing in stage Si, each task j is unloaded from the machine and
then subjected to a lag time (such as cooling, cleaning, or fermentation) during which no
further treatment is carried out. Once the lag time has elapsed, task j is transported to stage
Si+1(1≤ i≤K −1). In the HFSULT problem, the processing time for task j in stage Si is
identical across all machines. Additionally, the machine responsible for processing a task j
remains unavailable until the task is entirely unloaded. The following notations are utilized
to describe the problem:

• pri,j : the processing time of task j at stage Si.
• uni,j : the unloading time of task j at stage Si.
• lgi,j : the lag time of task j at stage Si.
• tri,j : the transportation time of task jfrom stage Si to stage Si+1(1≤ i≤K −1).

Following the completion of task processing, it is crucial to note that the unloading
operation may not commence immediately. The unloading and processing operations are
completely separate, meaning that while a task is being unloaded or still present in the
machine, themachine cannot be utilized for the processing of additional tasks. Additionally,
it should be noted that during the lag time, neither transportation nor processing can be
carried out.

The following assumptions serve as the basis for scheduling activities:

• No interruptions or preemption are allowed during processing.
• In a stage, each job is treated by only one machine.
• It is not possible for multiple jobs to be processed by the same machine simultaneously.
• Machines have the possibility to remain idle and await assignment for the next job.
• No breakdowns are assumed to occur with the machines.
• Between stages, buffers with an infinite capacity are assumed to be present.
• All jobs strictly follow a predefined route during processing. This route initiates from
the first stage and progresses sequentially until reaching the final stage.
• There is no disparity in the processing time among themachines within each production
stage since the machines are identical.
• pri,j , uni,j , lgi,j , and tri,j ( i =1 ,...,K ;j =1 , ...,n) are deterministic and have positive
integer values.
• All machines and jobs are assumed to be available starting from time zero.

Finding a schedule π∗, that optimized the makespan is the objective of this study. The
makespan is defined as the maximum completion time and is represented by the following
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Table 1 Processing, unloading, and transportation times of example 1.

j 1 2 3 4

pr1,j 2 3 2 4
un1,j 3 3 2 3
lg1,j 2 3 2 2
tr1,j 3 3 2 2
pr2,j 2 2 2 2
un2,j 2 3 3 3
lg2,j 3 2 2 2
tr2,j 2 2 2 3
pr3,j 2 2 3 3
un3,j 3 2 2 2

expression:

Cmax(π∗)=max
j∈J

(cK ,j(π∗)) (1)

Here, cK ,j(π∗) is the exit time of job j from the system (leaving the last stage SK ). In
addition, cK ,j(π∗)=CUK ,j (π

∗)+ lgK ,j (π∗) where CUK ,j (π
∗) is the finishing date of the

unloading operation of job j in SK .
FHK ,

((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax is the notation of the studied problem following
the three-field notation (Graham et al., 1979).

Here, FHK represents the problem type, where ‘‘FH ’’ indicates that the problem is a flow
shop hybrid scheduling problem, and K denotes the number of stages in the production
process. The second part of the first field,

((
PM (l)

)K
l=1

)
, describes the set of machines

available for processing in each stage. This field specifies the existence of parallel machines,
represented as PM (l), within each stage denoted as Sl .

The second field,
∣∣uni,j,lgi,j,tri,j∣∣, specifies the parameters of the problem,

including unloading time uni,j , lag time lgi,j , and transportation time tri,j , for each job j in
each stage Si. Finally, Cmax in the third field represents the objective function, which is to
minimize the maximum completion time over all jobs.

The above points can be illustrated using the following example.
Example 1: Consider n= 4,K = 3, and m3 =m2 =m1 = 2. Table 1 presents the

processing times pri,j , unloading times pri,j , lag times lgi,j , and transportation times
tri,j for each job j in each stage Si, (i= 1,2,..,K and j ∈ J ).

Figure 1 depicts a feasible scheduling solution with a makespan of Cmax = 34 for the
problem at hand, as per the example discussed earlier.

In Fig. 1, it can be observed that task 3 remains onmachineM1,1 even after its processing
is completed at time 7. An unloading operation starts at time 10 and finishes at time 12.
During this time window [7;10], the machine is not accessible and cannot be utilized for
jobs treatment. This observation involves that the unloading operates independently of the
required processing time.

Moreover, in the first stage, the lag time for task 1 starts once the unloading operation is
completed, which occurs at time 5. The lag time period ends at time 7, but transportation
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Figure 1 Gantt chart of a feasible schedule for example 1.
Full-size DOI: 10.7717/peerjcs.2168/fig-1

is postponed until time 9. Hence, it can be inferred that the lag time is independent of the
transportation operation.

Properties of the problem
Time complexity of the problem
According to the following lemma (Lemma 2) the problem under study is complex for
solving.

Lemma 2: The problem under investigation is strongly NP-hard.
Proof. The particular case K = 2 and uni,j = lgi,j = tri,j = 0 defines the scheduling problem

H2,
((
PM (l)

)2
l=1

)
||Cmax. According to (Gupta & Tunc, 1991), H2,

((
PM (l)

)2
l=1

)
||Cmax is

strongly NP-hard. Therefore, the general problem FHK ,
((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax

is NP-hard.

The symmetric problem
This subsection is devoted to the introduction of the symmetric problem as well as its
proprieties. Indeed, the study demonstrates that the optimal solutions for the original
problem and its symmetric are equivalent and have the same makespan. As a result, to
improve the solution quality, we conducted a systematic investigation of the symmetric
problem.

Definition 3: The symmetric problem (backward) of FHK ,
((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣
Cmax , involves beginning scheduling from the last stage SK toward the first one S1. By
interchanging the roles of the stages, the symmetric (backward) problem can be derived,
leading to a symmetric arrangement.
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According to the aforementioned definition (definition 3), the following notations are
presented. The forward problem is starting scheduling in the first stage, S1, and ending at
the last stage, SK .
• The symmetric problem is starting scheduling in the last stage, SK, and ending at the

first stage, S1.
Definition 4

• The following notations represent the stages and machines respectively in the context
of the symmetric problem: mB

k =mK−k+1, and SBk = SK−k+1 (k =1 , ...,K ).
• The machines are represented by the following notations: MB

k,l =MK−k+1,l (k =1
,...,K ;l =1 , 2,...,mB

k
)
.

• The processing, unloading, lag , and transportation times of the backward (symmetric)
problem are denoted respectively as follows: prBk,j,un

B
k,j , lg

B
k,j , and trBk,j .

• We have: trBk,j = lgK−k+1,j , pr
B
k,j = unK−k+1,j , lg

B
k,j = trK−k+1,j , and unBk,j = prK−k+1,j .

• FHK ,
((
PM (l)

)K
l=1

)∣∣∣unBk,j,lgBk,j,trBk,j∣∣∣Cmax is the three-field notation of the symmetric
problem.

This following result highlights the significance of exploring the symmetric problem.
Proposition 5: Every feasible solution for the forward problem FHK ,

((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax can be converted into a feasible solution for the symmetric problem

FHK ,
((
PM (l)

)K
l=1

)∣∣∣unBi,j,lgBi,j,trBi,j∣∣∣Cmax .
Furthermore, the makespans for both schedules exhibit similarity.
Proof . A feasible solution FS for the FHK ,

((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax problem can serve as the foundation for generating a feasible solution

FSB for the FHK ,
((
PM (l)

)K
l=1

)∣∣∣unBi,j,lgBi,j,trBi,j∣∣∣Cmax problem. This can be accomplished
by maintaining identical sequences and assignments on each machine. In the forward
problem, the time scale is denoted by ′′t ′′, whereas in the backward problem, the time scale
is represented by tB, where tB=Cmax− t . The makespans of both feasible schedules FS
and FSB are identical since they share the same critical path. Similarly, utilizing the method
outlined above, it becomes possible to convert a valid schedule obtained for the symmetric
problem into an feasible schedule for the investigated problem.

In order to illustrate the concept of symmetry, Example 1 is revisited, and Table 2
presents the processing, unloading, lag, and transportation times associated with the
symmetric problem.

Figure 2 displays a feasible solution to the symmetric problem, which is achieved by
reversing the time scale from ‘‘t ’’ to (Cmax− t ).

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 13/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2168


Table 2 A symmetric problem’s processing, unloading, lag times, and transportation times.

j 1 2 3 4

prB1,j 3 2 2 2
unB1,j 2 2 3 3
lg B1,j 2 2 2 3
trB1,j 3 2 2 2
prB2,j 2 3 3 3
unB2,j 2 2 2 2
lg B2,j 3 3 2 2
trB2,j 2 3 2 2
prB3,j 3 3 2 3
unB3,j 2 3 2 4
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Figure 2 Gantt chart of a feasible schedule for the symmetric problem relative to example 1.
Full-size DOI: 10.7717/peerjcs.2168/fig-2

Proposition 5 entails the following significant corollary.
Corollary 6: The FHK ,

((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax problem and its symmetric

counterpart, FHK ,
((
PM (l)

)K
l=1

)∣∣∣unBi,j,lgBi,j,trBi,j∣∣∣Cmax , share the same optimal makespan.
Proof. This outcome directly follows from Proposition 5.
The subsequent proposed procedures, including lower bounds and heuristic, are

systematically employed to tackle the symmetric problem, resulting in enhanced outcomes.
This observation directly follows from Corollary 6.

In the following sections, useful notations will be presented.
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In each stage Sk (k =1 ,2, ...,K ) and for j ∈ J , rek,j given below is the release date.rek,j =
k−1∑
i=1

(
pri,j+uni,j+ lgi,j+ tri,j

)
if k> 1

rek,j = 0 if k= 1

(2)

For Sk (k = 1 ,2,...,K ) and for j ∈ J , qek,j given below is the delivery time.qek,j = lgk,j+ trk,j
K

+

∑
i=k+1

(
pri,j+uni,j+ lgi,j+ tri,j

)
if k<K

qek,j = 0 if k=K

(3)

Furthermore, for each stage Sk (k =1 ,...,K ):
� rek,j (i) is the ith value in the increasingly sorted list of rek,j ’s (j = 1,...,n).
� qek,j (i) is the ith value in the increasingly sorted list of qek,j ’s (j = 1,...,n).

�
(
unk,j+prk,j

)
(i) is the ith value in the increasingly sorted list of

(
unk,j+prk,j

)
’s

(j = 1,...,n).
� (lgk,j+ trk,j)(i) is the ith value in the increasingly sorted list of trk,j ’s (j = 1,...,n).

PROPOSED LOWER BOUNDS
In this section, we introduce lower bounds for the problem under investigation. Two
categories of lower bounds are incorporated in this study. The first type comprises stages
where capacity is relaxed for all but one element. The second type involves determining a
lower bound by estimating the minimum idle time for each stage. The effectiveness of the
heuristic is assessed by evaluating the relative gap between the upper and lower bounds.
This is the objective of developing lower bounds.

Lower bound based on capacity relaxation
Suppose that all stages, with the exception of one stage Sk are equipped with an infinite
number of machines. Once a task reaches a relaxed stage, it undergoes immediate
processing. Consequently, the scheduling problem for stage Sk can be represented as
Pm| rek,j,unk,j,qek,j |Cmax, where the problem characteristics encompass:1) the number of
machines (m=mk), 2) release dates (rek,j), 3) unloading times (unk,j), and 4) delivery
times (qek,j).

To introduce further relaxation to this problem, one can exclude the idle time after the
completion of task processing and the commencement of the unloading for each job. By
applying this relaxation, we obtain a Pm| rek,j,qek,j |Cmax problem. In this scenario, each
task j is assigned a processing time (prk,j+unk,j). In their study (Carlier, 1987) of parallel
machine scheduling with release and delivery (Pm| rj,qj |Cmax), the researchers introduced
a new lower bound. By using the aforementioned lower bound as a reference, we can derive
the following lower bound specific to stage Sk .

LBSk =

 1
mk

 mk∑
i=1

rek,j (i)+
n∑

j=1

prk,j+
n∑

j=1

unk,j+
mk∑
i=1

qek,j (i)

. (4)
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Proof : For the problem Pm|rj,qj |Cmax, Carlier (1987) established that

LB=

⌈
1
m

(
m∑
i=1

rj (i)+
n∑

j=1
pj+

m∑
i=1

qj (i)

)⌉
is a lower bound. Here, rj (i) and qj (i) represent

the ith release date and delivery time, respectively, sorted in increasing order. In stage Sk ,
let m=mk , rj = rek,j , and qj = qek,j . By omitting the idle time between the completion of
a job’s processing and the beginning of its unloading operation (as a relaxation), we define
pj = prk,j+unk,j Therefore, Therefore, rj (i) = rek,j (i), q(i) = qek,j (i). Thus, the expression
given in Eq. (4) indeed represents a lower bound for the studied problem.

It is important to note that Eq. (4) does not explicitly account for the transportation
and lag times. However, these two parameters are implicitly considered and incorporated
within rek,j (i) and qek,j (i).

Therefore, we can conclude that the following result can be derived.
Proposition 7: The following expression represents a lower bound with complexity

O(Kn).

LBS= max
1≤k≤K

{LBSk}. (5)

Proof : Eq. (4) involves that LBSk is a lower bound for Pmk | rek,j,qek,j |Cmax at stage Sk . By
exploring all stages, the expression LBS=max1≤ k ≤K {LB

S
k} yield a valid lower bound for

the studied problem. The primary computational effort involved in calculating LBSk is the
sorting of rek,j (i) and qek,j (i), which has a time complexity of O(n). Therefore, by exploring
all the K stages, the time complexity of LBS is O(Kn).

An idle time based lower bound
This subsection aims to derive a secondary lower bound by introducing relaxation to a
particular parallelmachine scheduling problem. The purpose of this relaxation is to evaluate
the minimum idle time within stage Sk . Specifically, we consider stage Sk−1 (if k ≥ 2) and
stage Sk+1 if (if k<K ). The scheduling problem under consideration is a parallel machine
problem with release dates, with the objective of minimizing the sum of completion times.
The notation of the above mentioned problem is Pm

∣∣rj∣∣∑Cj . This problem is defined as
follows. A set of m identical parallel machine has to process without preemption n jobs.
Each job j is subject to a release date constraint (mentioned by rj in the second field of the
previous three-field notation). Each job j is processed during pj = prk,j+unk,j units of time
in a machine. The primary objective of this problem is to identify a viable schedule that
satisfies the specified constraints while minimizing the total completion time, represented
by the sum of all task completion times

∑
Cj . According to Yalaoui & Chu (2006), this

problem is recognized as NP-hard.
Pm
∣∣rj∣∣∑Cj can be relaxed by permitting the job splitting. In this relaxed problem,

jobs are permitted to be interrupted and resumed at any time, and they can also be
executed concurrently on multiple machines. According to Yalaoui & Chu (2006), the
Shortest Remaining Processing Time (SRPT) algorithm is capable of effectively solving this
relaxation by employing job splitting, with a time complexity of O(nlog (n)). In simpler
terms, the SRPT rule selects the job j with the shortest remaining processing time at any
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given time t . Following that, the available machines schedule portions of job j until either
the entire job is processed or another available job with a shorter remaining processing
time is found. For the problem Pm

∣∣rj∣∣∑Cj a lower bound is obtained by summing the n
smallest completion times obtained by using the SRPT rule.

The sum of the l smallest completion times, obtained through the SRPT rule (splitting
relaxation) within stage Sk , is denoted as JSRPMk(l).

The second lower bound is presented below over Proposition 8.
Proposition 8: Let LB2S(k) expressed as follows.

LB2S(k)=d
1
mk
( JSRPMk−1(mk)+

mk∑
i=1

(lgk−1,j+ trk−1,j)(i)+
n∑

j=1

(prk,j+unk,j)+

mk∑
i=1

(lgk,j+ trk,j)(i)+ JSRPMk+1(mk) ) e. (6)

Therefore, for the problem under study, LB2S(k) is a lower bound specific to stage Sk
(2≤ k ≤K ). Furthermore, the time complexity of LB2S(k) is O

(
nlogn

)
.

Proof : When analyzing an optimal schedule with an optimal solution of C∗max and
focusing on a specific stage Sk (where 2≤ k ≤K ), the following notations are utilized:

• fi denotes the first task processed by the machineMk,i.
• li represents the last task that was unloaded from the machineMk,i.
• sk,fi signifies the start time of processing task fi on machineMk,i.
• Prk,i: This represents the total processing time on machineMk,i

• UNk,i: This signifies the total unloading time on machineMk,i

• Idk,i: denotes the total idle time in machineMk,i.

Clearly, we have:

sk,fi+Prk,i+ Idk,i+UNk,i+qek,li ≤C∗max. (7)

Therefore,
mk∑
i=1

sk,fi+
mk∑
i=1

Prk,i+
mk∑
i=1

Idk,i+
mk∑
i=1

UNk,i+

mk∑
i=1

qek,li ≤mkC∗max , (8)

In addition,
mk∑
i=1

Prk,i=
n∑

j=1

pk,jand
mk∑
i=1

UNk,i=

n∑
j=1

unk,j (9)

Furthermore,
mk∑
i=1

qek,j (i)≤
mk∑
i=1

qek,li (10)

In stage Sk−1, we have a parallel machine problem Pm
k−1

∣∣rek−1,j∣∣∑Cj and,

JSRPMk−1(mk)+

mk∑
i=1

(lgk−1,j+ trk−1,j)(i)≤
mk∑
i=1

sk,fi . (11)
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Based on Eqs. (8), (9), (10) and (11), the following relationship can be established: 1
mk

JSRPMk−1(mk)+

mk∑
i=1

trk−1,j (i)+
n∑

j=1

(
prk,j+unk,j

)
+

mk∑
i=1

qek,j (i)

≤C∗max (12)

By considering the symmetric problem and directing attention to stage Sk+1, one can
illustrate the following:

JSRPMk+1(mk)+

mk∑
i=1

(lgk,j+ trk,j)(i)≤
mk∑
i=1

qek,j (i) (13)

This ends the first part of the proof.
The main effort computing LB2S(k), lies in determining JSRPMk−1(mk) and

JSRPMk+1(mk) (1≤ k ≤K ), which takes O(nlogn) time.
The following corollary is presented as a direct consequence of the preceding proposition

(Proposition 8).
Corollary 9: The expression for a valid lower bound on the problem can be formulated

as follows:

LB2S= max
1≤k≤K

{LB2S(k)} (14)

Additionally, the time complexity of LB2S is O(Knlogn).
Proof : The lower bound LB2S(k) is derived from the preceding proposition (Proposition

8). By taking the maximum value among all LB2S(k) for 1 ≤ k ≤ K , denoted as
LB2S =max1≤ k ≤K {LB2S(k)}, we obtain a lower bound that has a time complexity

of O(Knlog(n)).

A general lower bound
By jointly considering LBS and LB2S, the lower bounds can be enhanced to be more
comprehensive and robust. The following expression represents this strengthened lower
bound:

Corollary 13: A lower bound for the examined problem is expressed as follows.

LB=max
(
LB2S,LBS

)
(15)

Proof . Obvious.

TWO-PHASE HEURISTIC SOLUTION
By using this two-phase heuristic, a high-quality near-optimal solution can be achieved for
the FHK ,

((
PM (l)

)K
l=1

)∣∣uni,j,lgi,j,tri,j∣∣Cmax problem. The heuristic consists of two distinct
phases, namely Phase 1 (P1) and Phase 2 (P2). In Phase 1, an initial schedule is generated
by solving the Pm|rj,unj,qj |Cmax problem successively in each stage. Subsequently, in
Phase 2, the initial solution is refined further. This phase also requires solving parallel
machine scheduling problems, but in addition to the factors mentioned earlier, it takes
into account a related variant (Pm|rj,unj |Lmax) that aims to minimize the maximum
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lateness. By combining these two phases and considering the specific scheduling problem
constraints, an effective and high-quality solution can be obtained for the studied problem.

In the current research work, the heuristic algorithm employed is the Approximate
Decomposition Algorithm with Unloading (ADAU). This algorithm is tailored to generate
a near-optimal solution for the NP-hard problem Pm|rj,unj,qj |Cmax. ADAU builds upon
the foundations of ADA heuristic (Gharbi & Haouari, 2007) and incorporates additional
considerations for unloading times. Recall that ADAwas designed to approximate solutions
for the scheduling problem Pm|rj,qj |Cmax.

Taking into account the unloading, lag, and transportation times forms a crucial aspect
of the ADAU algorithm. During each iteration of ADAU, the algorithm identifies the
machines with the shortest and longest completion times. Subsequently, a parallel machine
problem involving these two machines and the scheduled jobs is solved. In the case of
multiple machines having the same completion time, ADAU employs random selection
to ensure fairness and prevent bias in the selection process. These iterations persist until
a predefined stopping criterion is met. Through our experiments, it has been observed
that ADAU is a fast algorithm that generally produces optimal schedules. The following
sections offer a comprehensive explanation of both phases (P1 and P2) in the two-phase
heuristic algorithm.

Initial feasible solution (Phase 1)
A constructive procedure is employed to generate a feasible schedule γi for each starting
stage Si(1≤ i≤K ). The pseudocode for stage Si is presented in Algorithm 1 as follows:

Algorithm 1: Initial feasible schedule γi construction
Step 1: Setqj = qei,j , rj = rei,j , unj = uni,j , and pj = pri,j (j ∈ J )
Step 2: Using ADAU and solve Pmi

∣∣rj ,unj ,q,j ∣∣Cmax (Step 1).
Set the finishing unloading date as CUi,j (j ∈ J ).
If i==K Then Go to Step 4.
Step 3: For s = i + 1 to K
Step 3.1: Set pj = prs,j ,unj = uni,j , rj = CUs−1,j + lgs−1,j + trs−1,j , and qj = qes,j (
j ∈ J

)
.

Step 3.2: Solve Pms

∣∣rj ,unj ,qj ∣∣Cmax (obtained in Step 3.1) uti-
lizing ADAU. Set the finishing unloading date as CUh,j (j ∈ J ).
End (For)
Step 4: Set UBi=maxj∈J

(
CUK ,j+ lgK ,j

)
. If i== 1 Then Go to Step 6.

Step 5: For s = i − 1 to 1
Step 5.1: Set Ts+1,j the beginning processing of j in Ss+1
dj = Ts+1,j unj = uni,j pj = prs,j , and rj = res,j (j ∈ J ).
Step 5.2: Solve Pms

∣∣rj ,unj ∣∣Lmax (defined in Step 5.1) by using ADAU.
Step 5.3: In stage Sl (s + 1 ≤ l ≤ K Set Tl,j := Tl,j + Lsmax (j ∈ J ).
Set UBi := UBi + Lsmax.
End (For)
Step 6: Save γi (schedule) and UBi (its makespan).

The first step involves solving the problem Pmi

∣∣rj,unj,qj∣∣Cmax which is specific to stage
Si. This task is accomplished in Steps 1–2 by applying the ADAUheuristic. Moving on to the
subsequent stage, Si+1, the durations CUi,j+ lgi,j+ tri,j for each task j ∈ J are designated as
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the release dates rj , where CUi,j represents the completion unloading dates. Subsequently,
the scheduling problem identified as Pmi+1

∣∣rj,unj,qj∣∣Cmax, as defined in Step 3.1, is tackled
and resolved. This is achieved by utilizing the ADAU heuristic once again in Step 3.2. This
process is repeated iteratively, starting from stage Si+2 and continuing until stage SK , with
Steps 3.1–3.2 being executed in the same sequential order.

To achieve a comprehensive solution, iterative scheduling is utilized for the upstream
stages Si−1,...,S1. More precisely, in stage Si−1, a problem P

∣∣rj,unj∣∣Lmax is formulated by
assigning due dates dj to each task j ∈ J , where the due dates are set equal to the starting
time in stage Si−1 (Step 5.1). Subsequently, in Step 5.2, ADAU is employed to generate a
schedule with a maximum lateness Li−1max. During this phase, two cases need to be addressed:

• Case 1: If the maximum lateness in Step 5.2 is greater than zero (Li−1max> 0), it is required
to shift the starting time in the subsequent stages (Si,...,SK ) to the right by Li−1max units
of time.
• Case 2: Conversely, if the maximum lateness is less than or equal to zero (Li−1max ≤ 0),
the schedules in the subsequent stages (Si,...,SK ) should be left-shifted by Li−1max units of
time.

By implementing these adjustments, it ensures that the tasks are completed within their
assigned due dates and maintains the overall feasibility of the solution.

Both in Case 1 and Case 2, it is essential to update the upper bound UBi in Step 5.3 to
reflect the adjusted starting times. The latter procedure is applied in each stage Si−1,...,S1.
As a result, a feasible schedule γi is generated for the problem under investigation, ensuring
that all the given constraints are satisfied. By modifying the starting stage Si (1≤ i≤K ),
K schedules γ1,...,γK are obtained. From these schedules, the one with the minimum
makespan UB is selected as the initial solution. By adopting this approach, the overall
solution is guaranteed to achieve the minimum possible makespan while still being feasible
within the given constraints of the problem.

To simplify the presentation of the various steps in the above procedure (Phase 1), a
straightforward example comprising five stages is provided. The entire process is illustrated
in the self-contained Fig. 3.

In this example, stage 4 is chosen as the starting point (i= 4). A parallel machine
problem is set up and solved. The same procedure is repeated for the subsequent stage
(stage 5) as part of the forward process. For each iteration, a parallel machine problem is
defined and solved. Once the last stage is reached, a backward procedure starts from stage
3 (i−1= 3), and continues with stages 2 and 1. For each of these stages, a parallel machine
problem is defined and solved. By reaching the first stage, feasible solutions for all five
stages are obtained. These solutions are not conflicting, and their combination provides
a feasible solution for the studied problem. The ADAU heuristic is used to solve each
parallel machine scheduling problem. If the starting stage is 1, 2, 3, or 5, four other feasible
solutions are obtained, and the best one is kept as the initial feasible solution. Additionally,
the parameters of the parallel machine problems are updated according to Step 3.1 and
Step 5.3.
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Figure 3 Illustration of the initial feasible solution construction.
Full-size DOI: 10.7717/peerjcs.2168/fig-3

The enhancement phase (Phase 2)
The iterative improvement phase begins after obtaining the feasible schedule γ from Phase
1. A stopping criterion is set to determine when to terminate the improvement phase.
In this phase, iterative refinements are applied to the schedules of all stages, excluding
one specific stage (Sh), in order to enhance the solution. To facilitate the rescheduling
process, it is crucial to address the problem denoted as Pmh

∣∣rj,unj∣∣Lmax as a fundamental
aspect of the iterative adjustments. In the aforementioned problem, the release dates are
defined as rj =CUh−1,j , where CUh−1,j represents the completion unloading time of job
j in the previous stage (Sh+1). Additionally, the due dates dj are determined based on the
scheduled start time Th+1,j of the jobs in the next stage (Sh+1), denoted as dj =Th+1,j . In
the last stage SK , the due date dj is assigned as the makespan UB (dj =UB). After solving
the rescheduling problem, two possible scenarios arise with respect to ADAU:
1. When Lhmax is negative (i.e., L

h
max< 0), it indicates that an improved solution has been

achieved at stage Sh, with a makespan reduced by
∣∣Lhmax

∣∣ units of time. In this case,
a new schedule is created by shifting all tasks in stages from Sh to SK to the left by∣∣Lhmax

∣∣ units of time. This adjustment guarantees that tasks are completed within their
designated due dates and ensures the overall feasibility of the solution.
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2. When Lhmax is greater than or equal to zero (i.e., Lhmax ≥ 0), it indicates that no
improvement has been achieved in this case. The iterative process is repeated for
the subsequent stages until the convergence criterion is satisfied.
Remark 14: The optimal solution Lhmax of Pmh

∣∣rj,unj∣∣Lmax guarantees feasibility by
satisfying Lhmax ≤ 0. This condition is essential to guarantee that tasks are accomplished
within their designated due dates, ensuring an optimal overall solution that adheres to the
constraints of the problem.

Subsequently, we provide a pseudo-code (Algorithm 2) that outlines the sequential steps
of the improvement phase when initiating from stage Sh.

Algorithm 2: Phase 2 (Enhancement phase)
Step 0: Initialization, Set k= h, u= 0 .
Step 1: Set u := u + 1,
Set pj = pk,j ,rj =CUk−1,j dj =Tk+1,j ,andunj = unk,j (j ∈ J ).
Step 2: Solve Pmk

∣∣rj ,unj ∣∣Lmax (defined in Step 1) by using ADAU.
Step 3: Step 3.1: & If Lkmax < 0 , Set UB := UB + Lkmax (enhanced solution)
Set = 0.
Step 3.2: If k== 1 Then Go to Step 5.
Step 4: Set k := k−1, If u≤ 2K −1 Then Go to Step 1, Otherwise go to Step 9 .
Step 5: Set u := u + 1
Set rj =CUk−1,j ,dj =Tk+1,j ,unj = unk,j , and pj = pk,j

(
dj =UBif k=K ).

Step 6: Solve Pmk

∣∣rj ,unj ∣∣Lmax (defined in Step 5) by using ADAU.
Step 7: Step 7.1: If Lkmax < 0 , Set UB := UB + Lkmax
(an improvement is detected), Set u = 0 .
Step 7.2: If k==K Then Go to Step 4.
Step 8: Set k := k+1, If u≤ 2K −1 Then Go to Step 5.
Step 9: Save γ h(obtained schedule) and UB (makespan).

To commence the improvement phase, we begin by selecting an initial stage Sh for
starting the procedure, where a problem Pmh

∣∣rj,unj∣∣Lmax is defined (Step 1). In Step 2, the
problem Pmh

∣∣rj,unj∣∣Lmax is solved by applying the ADAU heuristic. If improvements are
identified, Step 3 involves performing a rescheduling of stage Sh. Similarly, if enhancements
are identified in Step 4, the upstream stages Sh−1 Sh−2, . . . , S1 are subjected to rescheduling.
When the heuristic procedure reaches the first stage in Step 3.2, the improvement phase
is iteratively applied to each downstream stage S2, S3, . . . , SK in Steps 5–8. During this
process, Step 7.2 involves revisiting and rescheduling the upstream stages. The stopping
criterion for the second phase is met when 2K-2 consecutive problems are solved without
any improvement. The latter halting condition is represented by Step 9. This guarantees
that the algorithm terminates either after a satisfactory number of iterations without any
improvement or when an optimal solution is achieved.

The improvement phase operates on the feasible schedule γ derived from Phase 1 as
its input. The proposed improvement phase can commence with any starting stage Sh
(h= 1,...,K ), and K improvement phases are carried out, each initiated with a different
starting stage Sh (h= 1,...,K ). As a result, K feasible schedules are generated, and the
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best schedule γ ∗ is chosen from among them. By exploring various starting stages, the
algorithm can discover a diverse range of solutions and ultimately select the one with the
lowest makespan that satisfies all the problem’s constraints. Incorporating multiple starting
stages ensures the algorithm’s robustness and its ability to handle diverse scenarios and
input data effectively.

In the following, an example is provided to clearly explain the enhancement phase. This
example involves five stages and assumes that an initial feasible solution has been obtained
from phase 1. The entire process of this phase is illustrated in Fig. 4.

Stage 4 is chosen as the starting point (h= 4), where a parallel machine problem is set up
and solved. This procedure is then repeated for the subsequent stage (stage 5) as part of the
forward process. At each iteration, a parallel machine problem is defined and solved. Once
the final stage (stage 5) is reached, a backward procedure begins from stage 5 and proceeds
through stages 4, 3, 2, and 1 in that order. For each of these stages, a parallel machine
problem is defined and solved. After reaching the first stage, a forward procedure starts
again from stage 1 and continues to stage 5, with a parallel machine problem defined and
solved at each stage. The backward and forward procedures are repeated until a stopping
condition is met. These solutions are non-conflicting, and their combination provides a
feasible solution for the problem under study. All parallel machine scheduling problems
are solved using the ADAU heuristic. If the starting stage is 1, 2, 3, or 5, four other feasible
solutions are generated, and the best one is retained as the improved solution.

Remark 15: By exploring the symmetric problem the algorithm can effectively explore a
wider search space, enabling the identification of better solutions. Through the exploitation
of problem symmetry, the algorithm can significantly reduce redundancy and eliminate
duplicates within the search space. This optimization facilitates faster convergence and
enhances the quality of the obtained solutions. In summary, incorporating the symmetric
problem within the two-phase heuristic enhances the overall effectiveness and efficiency of the
algorithm, enabling it to discover optimal or near-optimal solutions to the HFSULT problem
more effectively.

EXPERIMENTAL RESULTS
Input instances
The test problems utilized in this study follow a similar generation approach as those in
Vandevelde et al. (2005). More specifically, K ∈ {2,4,6,8,10} and n∈ {10,20,40,80}.

Table 3 presents the stage-machine configurations utilized in this study. It provides a
comprehensive overview and details of the specific stage-machine combinations employed
for the experimental analysis.
A noteworthy observation regarding the testbed is the presence of distinct patterns in the

instances, stemming from their random distribution. These patterns can be characterized
as follows:

• All-equal patterns: as 2-2-2-2-2-2-2-2-2-2.
• Increasing patterns: as 1-1-2-2-3-3-4-4-5-5.
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Figure 4 Illustration of the improvement phase.
Full-size DOI: 10.7717/peerjcs.2168/fig-4

Table 3 The used stages andmachines configurations.

Configuration 2 stages 4 stages 6 stages 8 stages 10 stages

1 2-2 2-2-2-2 2-2-2-2-2-2 2-2-2-2-2-2-2-2 2-2-2-2-2-2-2-2-2-2
2 1-2 2-4-4-6 1-2-3-4-5-6 1-1-2-2-3-3-4-4 1-1-2-2-3-3-4-4-5-5
3 1-4 2-4-2-4 1-2-3-1-2-3 1-3-1-3-1-3-1-3- 1-2-3-4-5-1-2-3-4-5
4 3-5 2-3-4-2 1-2-4-4-2-1 1-2-3-4-1-2-3-4 2-2-3-3-4-4-3-3-2-2
5 3-1-2-3 5-5-1-1-5-5 1-2-3-4-4-3-2-1 5-4-3-2-1-1-2-3-4-5
6 4-2-1-1-2-4 5-4-3-2-2-3-4-5 1-2-4-2-1-3-4-4-2-2
7 1-3-2-3-1-4-2-3 5-4-3-2-3-4-5-2-3-5
8 1-3-2-4-1-3-2-4-1-4

• Top patterns: as 2-2-3-3-4-4-3-3-2-2.
• Valley patterns: as 5-4-3-2-1-1-2-3-4-5.
• Random patterns: as 1-3-2-4-1-3-2-4-1-4.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 24/38

https://peerj.com
https://doi.org/10.7717/peerjcs.2168/fig-4
http://dx.doi.org/10.7717/peerj-cs.2168


Table 4 Types’ Heuristic global results.

MT MG MaxG

Type 1 8.16 3.07 17.78
Type 2 10.46 1.69 8.08
Type 3 8.18 3.49 14.34
All types 8.93 2.75 17.78

The pattern given in the stage-machine configurations expresses the number ofmachines
assigned to each stage. For example, the pattern 1-3 signifies that we have two stages where
the first one contains one machine while the second one has three machines.

pk,j are generated randomly and uniformly in [20,40].
The following distributions are employed to generate the unloading, lag, and

transportation times:

• Type 1: unk,j , lgk,j , and trk,j are uniformly generated from [1,10].
• Type 2: unk,j , lgk,j , and trk,j are uniformly generated from [20,40].
• Type 3: unk,j , lgk,j , and trk,j are uniformly generated from [20,60].

When considering unloading, lag, and transportation times, it is essential to consider
the relative magnitude of their respective times in relation to the processing times. As an
example, in the first type (Type 1), the unloading, lag, and transportation times are typically
relatively minor compared to the processing time.

A total of 1,800 instances were generated by creating five instances for each combination
of stage-machine configuration (Sk;mk), number of tasks n, transportation time trk,j ,
processing time pk,j , lag time lgk,j , and unloading time unk,j . The testbed encompasses a
broad spectrumof problem sizes,machine distribution patterns, processing times, lag times,
transportation times, and unloading times, rendering it highly diverse and well-suited for
impartial evaluation of the proposed procedures.

The performance of the two-phase heuristic
Two-phase heuristic performance assessment
To assess the performance of the proposed two-phase heuristic, an implementation was
executed on the already generated set of 1,800 test problems. Table 4 presents the overall
results obtained from the evaluation. Table 5 shows detailed results categorized by type
(Type 3, Type 2, and Type 1), along with the number of stages K , and the number of jobs n.
Additionally, a relative gap (rg ) was computed for each instance, defined by the following
formula:

rg = 100×
UB−LB

LB
. (16)

In this equation, UB represents the makespan determined by the two-phase heuristic,
while LB corresponds to the lower bound derived in ‘A general lower bound’. The relative
gap is expressing the maximum relative deviation of the heuristic compared to the optimal
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Table 5 Detailed results for phase 1 (PH1) and phase 2 (PH2).

K = 2 K = 4 K = 6 K = 8 K = 10

n MT MG MaxG MT MG MaxG MT MG MaxG MT MG MaxG MT MG MaxG

PH1 0.49 2.04 10.86 0.28 0.00 0.00 1.90 0.71 5.71 4.93 3.34 11.65 3.17 3.53 13.83
10

PH2 2.50 1.61 4.42 4.97 5.51 12.42 11.73 1.75 7.64 3.69 2.25 7.58 2.52 1.37 5.52

PH1 21.97 9.44 17.78 8.51 2.49 11.86 3.39 3.09 7.74 4.52 3.37 9.43 11.39 4.43 13.09
20

PH2 36.02 5.00 10.77 12.42 1.88 6.39 14.30 5.32 11.99 10.87 1.32 4.61 14.02 4.39 8.96

PH1 1.17 1.16 5.81 0.25 0.00 0.00 2.53 1.33 8.08 5.87 1.91 5.45 5.03 1.86 7.71
40

PH2 5.64 0.89 2.27 5.11 2.86 6.05 14.46 1.01 4.26 6.39 1.25 3.84 1.94 0.78 2.64

PH1 21.16 4.89 7.90 8.87 1.26 5.29 8.42 1.69 3.46 11.74 1.73 5.30 12.92 2.27 6.92

Type 1

80
PH2 37.69 2.72 5.79 14.10 1.01 3.24 29.09 2.67 5.72 13.73 0.76 1.91 12.56 2.42 4.30

PH1 1.34 3.42 8.52 0.12 0.00 0.00 2.54 0.25 4.10 6.20 3.81 11.90 4.10 4.03 8.44
10

PH2 5.09 2.33 5.19 5.84 6.29 12.25 9.25 1.58 7.95 3.97 3.12 7.38 2.71 2.09 4.76

PH1 29.00 9.30 12.88 5.96 2.23 10.23 2.91 3.71 7.85 7.14 3.56 8.29 6.70 4.69 12.92
20

PH2 43.97 5.60 10.90 10.00 2.07 6.61 19.52 5.95 14.34 7.28 2.27 7.28 8.63 4.83 9.53

PH1 0.49 2.04 10.86 0.28 0.00 0.00 1.90 0.71 5.71 4.93 3.34 11.65 3.17 3.53 13.83
40

PH2 2.50 1.61 4.42 4.97 5.51 12.42 11.73 1.75 7.64 3.69 2.25 7.58 2.52 1.37 5.52

PH1 21.97 9.44 17.78 8.51 2.49 11.86 3.39 3.09 7.74 4.52 3.37 9.43 11.39 4.43 13.09

Type 2

80
PH2 36.02 5.00 10.77 12.42 1.88 6.39 14.30 5.32 11.99 10.87 1.32 4.61 14.02 4.39 8.96

PH1 1.17 1.16 5.81 0.25 0.00 0.00 2.53 1.33 8.08 5.87 1.91 5.45 5.03 1.86 7.71
10

PH2 5.64 0.89 2.27 5.11 2.86 6.05 14.46 1.01 4.26 6.39 1.25 3.84 1.94 0.78 2.64

PH1 21.16 4.89 7.90 8.87 1.26 5.29 8.42 1.69 3.46 11.74 1.73 5.30 12.92 2.27 6.92
20

PH2 37.69 2.72 5.79 14.10 1.01 3.24 29.09 2.67 5.72 13.73 0.76 1.91 12.56 2.42 4.30

PH1 1.34 3.42 8.52 0.12 0.00 0.00 2.54 0.25 4.10 6.20 3.81 11.90 4.10 4.03 8.44
40

PH2 5.09 2.33 5.19 5.84 6.29 12.25 9.25 1.58 7.95 3.97 3.12 7.38 2.71 2.09 4.76

80 PH1 29.00 9.30 12.88 5.96 2.23 10.23 2.91 3.71 7.85 7.14 3.56 8.29 6.70 4.69 12.92

Type 3

80 PH2 43.97 5.60 10.90 10.00 2.07 6.61 19.52 5.95 14.34 7.28 2.27 7.28 8.63 4.83 9.53

solution. Furthermore, we calculated the average relative gap for each class of instances,
utilizing the following performance measures:

• MT : The average computational time (s).
• MG: The average gap.
• MaxG: The maximum gap.

These performance measures serve as evaluation criteria to assess the efficiency of the
two-phase heuristic as well as the lower bounds.

The outcomes depicted in Table 4 underscore the notable efficacy of the proposed
two-phase heuristic in generating solutions of satisfactory quality. The average CPU time
required for the implementation is impressively less than 10 seconds, demonstrating the
algorithm’s efficiency. Additionally, the average relative gap is remarkably low, standing
at a mere 2.75%. These results highlight both the computational speed and satisfactory
precision of the proposed approach. In addition, when examining Type 1 and Type 3, the
average gaps are 3.07% and 3.49%, respectively. Among the three types of problems, Type
2 emerges as the least complex to solve, exhibiting an average relative gap of merely 1.69%.
On the other hand, Type 3 emerges as the most demanding challenge, exhibiting the largest
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average relative gap of 3.49%. These results indicate that Type 3 instances present greater
complexity and require more computational resources to achieve optimal or near-optimal
solutions. The larger average relative gap suggests that Type 3 instances have more intricate.
These findings suggest that in Type 3, the unloading, lag, and transportation times play a
more critical role than the processing time in determining the overall makespan.

Table 5 provides a comprehensive breakdown of the performance data for Phases 1 and
2 (PH1 and PH2), respectively. The detailed results presented in Table 5 unveil noteworthy
observations. Among these observations, one notable finding is the maximum average
relative gap (MG) of 9.44% is observed for instances with n= 40 and K = 2. For instance,
when examining the case of K = 2, it is worth highlighting that the instances with n= 40
display the highest maximum gaps (MG) for Type 1, Type 2, and Type 3. Specifically,
the corresponding values for these maximum relative gaps are 9.44%, 4.89%, and 9.30%
respectively. This finding highlights the significance of instances with n= 40 and K = 2
as the most challenging ones to solve, as they consistently exhibit the highest relative gaps
across different problem types. It is important to highlight that a similar observation applies
to the maximum gap (MaxG) as well.

During our analysis, an interesting observation emerged: the average CPU time reaches
its peak when the number of jobs n is set to 80, regardless of the specific configuration,
type, or number of stages. This finding suggests that instances with n= 80 require more
computational resources due to their increased complexity and larger search space.

However, it is worth noting that even for these computationally demanding instances, the
time required for our methods to run remains within a reasonable range, not exceeding 10
seconds. This is quite remarkable considering the challenging nature of the parallel machine
problems being solved during the two-phase heuristic running. Despite the intricacy of the
addressed problem and the vast search space involved, the proposed methods demonstrate
their efficiency by generating satisfactory-quality solutions in a relatively short amount of
time. This demonstrates the effectiveness of our approach in tackling complex problem
instances while maintaining a practical level of computational effort.

The PH2 effect
Table 5 provides evidence that Phase 2 yields improvements in terms of both solution
quality and efficiency compared to Phase 1. To further understand the differences between
Phase 1 and Phase 2, a pairwise comparison was performed for each instance type, and the
results are summarized in Table 6. The results underscore the effectiveness of Phase 2 in
enhancing the solutions’ quality.

For instance, in the case of Type 1 instances, Phase 2 successfully reduced the maximum
relative gap (MG) from 3.10% to 3.07% while requiring a mere additional 0.58 s of
computational time. This demonstrates the impact of Phase 2 in generating satisfactory-
quality solutions within a short timeframe.

Furthermore, a second pairwise comparison was performed between PH1 and PH2,
utilizing the following metrics:
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Table 6 Comparison between PH1 and PH2 according to types.

MT MG MaxG

P1 7.58 3.10 18.77
Type 1

P2 8.16 3.07 17.78
P1 10.16 1.70 8.08

Type 2
P2 10.46 1.69 8.08
P1 7.74 3.50 14.34

Type 3
P2 8.18 3.49 14.34

All types P1 8.49 2.77 18.77
All types P2 8.93 2.75 17.78

Table 7 Types pairwise comparison between PH1 and PH2.

PH2 < PH1 PH2= PH1

Type 1 5.50 94.50
Type 2 4.67 95.33
Type 3 3.83 96.17
All types 4.67 95.33

• (PH2 < PH1): This metric represents the percentage of time during which Phase 2
dominates Phase 1, indicating instances where Phase 2 outperforms Phase 1 in terms of
solution quality.
• (PH2= PH1): This metric denotes the percentage of instances where Phase 2 and Phase
1 yield identical solutions.

The latter metrics allow to deep analyzing of the difference between Phase 1 and Phase
2, as well as the influence of the second phase on enhancing the quality of solutions.

The results of the subsequent pairwise comparison study, as illustrated in Table 7, offer
extensive insights into the performance differences between the two phases (PH1 and
PH2). The table provides a breakdown of the instances where PH2 strictly dominates PH1,
indicating that PH2 outperforms PH1 in terms of solution quality.

The data in Table 7 reveals that PH2 strictly dominates PH1 in 4.67% of instances.
Notably, Type 1 instances exhibit a slightly higher percentage (5.50%) of instances where
PH2 dominates PH1 compared to Type 2 and Type 3 instances. This suggests that the
improvement achieved by Phase 2 of the proposed two-phase heuristic is generally more
pronounced for Type 1 instances, indicating the effectiveness of Phase 2 in generating
satisfactory-quality solutions for these specific problem instances.

These findings highlight the overall superiority of Phase 2 over Phase 1 in terms
of solution quality, with a significant proportion of instances experiencing improved
performance. The results further emphasize the importance of incorporating Phase 2 into
the heuristic approach, particularly for Type 1 instances, to achieve enhanced solution
quality and ultimately address the optimization problem more effectively.
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Table 8 Global comparison between PH2S and PH2D according to types.

MT MG MaxG

PH2D 4.47 3.53 17.78
Type 1

PH2S 3.69 3.07 17.78
PH2D 4.77 1.94 8.08

Type 2
PH2S 5.69 1.69 8.08
PH2D 3.86 3.92 15.47

Type 3
PH2S 4.32 3.49 14.34

Table 9 Pairwise comparison between PH2D and PH2S.

PH2D > PH2S PH2D= PH2S PH2D < PH2S

Type 1 31.33 2.17 66.50
Type 2 34.00 1.67 64.33
Type 3 28.33 0.67 71.00
All types 31.22 1.50 67.28

The symmetry impact
To assess the influence of exploring the symmetric problem, as defined in definition
3, a comparison was carried out between the efficiency of the forward problem in
Phase 2 (PH2D) and the symmetric problem (PH2S). We aimed to evaluate how the
incorporation of symmetry affected the overall performance of the algorithm. The results
of this comparison are summarized in Tables 8 and 9.

The detailed analysis of the comparison between the forward problem of Phase 2 (PH2D)
and the symmetric problem (PH2S) provides further insights into the exploration effect
of the symmetric problem. The findings presented in Table 8 emphasize the advantages of
investigating the symmetric problem, as they illustrate an enhancement in the quality of
the solution and a decrease in both the average gap and the maximum gap.

The superior performance observed when exploring the symmetric problem suggests
that it offers a more efficient approach to exploring the search space and identifying
satisfactory-quality solutions. Through harnessing the inherent symmetry property of
the HFSULT, the algorithm achieves a more efficient exploration of the solution space,
thereby resulting in enhanced outcomes. These findings validate the effectiveness of
incorporating the symmetry property in the optimization process and indicate that the
proposed two-phase heuristic successfully takes advantage of this property.

In Table 9, a more detailed breakdown of the performance metrics is provided. This
table includes the following metrics:

• (PH2D < PH2S): This metric quantifies the percentage of instances in which PH2D
exhibits strict dominance over PH2S.
• (PH2D = PH2S): This metric indicates the percentage of instances where both PH2D
and PH2S yield identical solutions, suggesting that there is no significant difference in
solution quality between the two approaches.
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• (PH2D > PH2S): This metric represents the percentage of instances in which PH2S
demonstrates strict dominance over PH2D.

Considering these metrics and the corresponding data in Table 9 allows for a more
fine-grained analysis of the performance differences between PH2D and PH2S. It provides
insights into the specific instances or problem characteristics where one approach excels
over the other, contributing to a deeper understanding of the benefits and limitations of
exploring the symmetric problem.

In conclusion, the comprehensive comparison between PH2D and PH2S reveals the
substantial benefits of incorporating the symmetry property of the HFSULT. The obtained
results highlight the effectiveness of the presented two-phase heuristic in leveraging the
benefits provided by the symmetric problem exploration.

The detailed results in Table 9 offers further insights into the impact of investigating
the symmetric counterpart problem (PH2S) compared to the forward problem of Phase
2 (PH2D). Specifically, it highlights the improvements in solution quality achieved by the
symmetric problem formulation.

According to the results in Table 9, the symmetric problem (PH2S) demonstrated an
improvement in solution quality in 31.22% of instances. This indicates that exploring the
symmetric problem led to better solutions compared to the forward problem formulation
(PH2D) in a significant proportion of the cases. Furthermore, when considering specific
instance types, the improvement rate was slightly higher for Types 2 and 3, at 34.00% and
31.33% respectively.

These findings underscore the benefits of incorporating the symmetry property into the
optimization process for the HFSULT. By exploring the symmetric problem, the algorithm
is able to identify satisfactory-quality solutions more efficiently, leading to an improvement
in solution quality. This suggests that leveraging the symmetry property can be an effective
strategy for overcoming the limitations of traditional search methods and enhancing both
solution quality and efficiency.

By incorporating the symmetric problem formulation into the proposed heuristic,
researchers and practitioners can take advantage of the inherent structure and properties of
the problem, resulting in improved optimization performance. These findings contribute to
the growing body of evidence supporting the effectiveness of symmetry-based approaches
in solving combinatorial optimization problems.

Overall, the results imply that considering symmetry within the HFSULT optimization
process can yield significant improvements in solution quality, particularly when exploring
the symmetric problem formulation. This highlights the potential of symmetry-based
techniques as a valuable tool for addressing challenging optimization problems.

DISCUSSION
The HFS problem has been extensively studied, but the simultaneous consideration of
unloading, lag, and transportation times is relatively novel (according to the literature
review). Previous studies have predominantly focused on optimizing individual aspects
such as processing times, machine availability, and basic scheduling constraints. For
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instance, traditional HFS research often aims at minimizing makespan, total completion
time, or machine idle time, primarily dealing with straightforward scheduling without
delving into the intricacies of additional time factors.

However, our study goes a step further by integrating these additional complexities,
which more accurately reflect the challenges faced in real-world manufacturing and
production environments. In many industrial settings, the efficiency of the scheduling
process is not solely determined by processing times but also by the coordination of
various logistical elements. For example, the time required to transport materials between
different stages, the lag time necessary for machines to reset or workers to reposition,
and the unloading time for finished products are critical factors that influence overall
productivity.

The obtained numerical results are promising, as indicated by an average relative gap of
2.75% and an average computation time of 8.93 s. Compared to existing literature, these
metrics show the superior performance of the proposed approach. While previous studies
have primarily focused on optimizing individual aspects such as processing times and
basic scheduling constraints, our integration of unloading, lag, and transportation times
addresses a more comprehensive range of real-world complexities.

The relatively small average relative gap demonstrates that the solutions provided by our
method are near-optimal, a significant improvement over some traditional methods that
may not account for all these factors simultaneously. Additionally, the average computation
time of 8.93 s is notably efficient, especially when compared to other complex scheduling
algorithms that often require longer computational periods to achieve similar accuracy.

These results underscore the effectiveness and practicality of our approach. By providing
high-quality solutions in a short amount of time, our method stands out as a valuable tool
for industries that require precise and efficient scheduling. This advancement not only
contributes to the theoretical understanding of the HFS problem but also offers a robust
framework for practical application, setting a new benchmark in the field of scheduling
optimization.

From a theoretical implications perspective, this study advances the existing body of
knowledge in scheduling theory by introducing a novel approach to solving the HFS
problem that simultaneously considers transportation, lag, and unloading times. The
identification of key properties, such as the symmetric nature of the problem, and the
development of new lower bounds, contributes to the theoretical understanding of complex
scheduling problems. Additionally, the study’s innovative two-phase heuristic algorithm
sets a precedent for future research, offering a new methodology that other researchers
can build upon and refine. The theoretical contributions can be utilized by academics
and researchers focusing on optimization, scheduling, and operations research to further
explore and validate these findings in different contexts and industries.

From a practical implications perspective, the results of this study have significant
applications in various industries where scheduling, transportation, and unloading times
are critical factors. For instance, in the steel industry, the study’s methodologies can be
used to optimize production schedules, reducing downtime and improving efficiency.
Similarly, in the bioprocess industry, where precise timing and coordination of processes
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are crucial, the proposed solutions can lead to more effective resource utilization and cost
savings. Manufacturing managers and operations planners can use the study’s findings
to develop more efficient scheduling systems that take into account all relevant factors,
leading to improved productivity and reduced operational costs. The implementation of
the two-phase heuristic in real-world scenarios can help organizations achieve near-optimal
solutions within reasonable computational times, making it a valuable tool for decision-
making processes. Additionally, policymakers and consultants focused on manufacturing
efficiency can leverage these insights to propose and implement best practices across various
sectors. Overall, the study provides a comprehensive framework that can be adapted to
various industries facing similar scheduling challenges, ultimately contributing to improved
operational efficiency and effectiveness.

Despite the promising results, it is essential to acknowledge some limitations of the
study. One limitation is the assumption of deterministic processing times, which may
not accurately reflect the variability often encountered in real-world manufacturing
environments. Incorporating stochastic elements into the model could provide a
more realistic representation of scheduling challenges, although it may also increase
computational complexity.

Additionally, the proposed algorithm’s performance may vary depending on the specific
characteristics of the problem instances. Certain factors such as the number of stages,
machines, and job types could influence the algorithm’s effectiveness and efficiency.
In this scenario, the test problems involving two stages and 20 jobs pose significant
challenges, necessitating a more thorough analysis to uncover the underlying reasons for
their complexity. This deeper examination is crucial for identifying the root causes of their
difficulty and subsequently devising appropriate methods to address this limitation.

Furthermore, the study’s evaluation is based on numerical experiments, and further
validation through real-world case studies or comparative analyses with existing industry
practices would strengthen the study’s findings. Real-world implementationmay introduce
additional complexities and constraints not captured in the current model, highlighting
the need for ongoing refinement and adaptation of the proposed methodology.

CONCLUSION
In this work we examine the hybrid flow shop scheduling problem with unloading, lag,
and transportation times. To tackle this NP-hard problem, an efficient heuristic approach
accompanied by the introduction of several new lower bounds are proposed. In the first
step of deriving these lower bounds, the capacities of all stages, except for one are relaxed.
This relaxation allows to establish lower bounds for the relaxed problem, which are still
valid lower bounds for the original problem. Furthermore, a second kind of lower bound
is proposed. This lower bound is established by estimating the minimum idle time for each
stage. This estimation process involves solving a polynomial parallel machine scheduling
problem in the previous and subsequent stages. This general lower bound provides a more
accurate estimate of the optimal solution and helps to narrow down the search space,
thereby guiding the optimization process more effectively.
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In order to address theHFSULTproblem aheuristic composed of two phases is proposed.
The first phase is intended to provide an initial feasible solution while the second one is an
improvement phase. In addition, this heuristic adopts a step-by-step approach to iteratively
solve a parallel machine scheduling problem in each stage. Through the process of breaking
down the problem into distinct stages, the heuristic facilitates a systematic exploration of
the solution space.

This is performed by iteratively adjusting the already obtained schedules in the initial
feasible solution for each stage. The improvement phase is based also in iteratively solving
two equivalent types of parallel machines scheduling problems.

To assess the efficacy of the proposed approach, a comprehensive experimental study is
conducted. The results obtained provide strong evidence of the effectiveness of the proposed
procedures. The two-phase heuristic consistently delivers schedules of satisfactory quality,
as demonstrated by the computational results.

It is important to note that the inclusion of unloading, lag, and transportation times in
the scheduling process introduces additional complexity to the problem, especially when
these factors becomemore critical compared to processing time. This observation highlights
the crucial importance of incorporating unloading, lag, and transportation operations as
integral components in the scheduling process. By acknowledging the importance of these
aspects, researchers and practitioners can better address the inherent challenges associated
with optimizing schedules and make informed decisions that account for the impact of
unloading, lag, and transportation times.

The proposed approach offers a promising solution to effectively address the intricate
hybrid flow shop scheduling problem that involves unloading, lag, and transportation
operations. The integration of lower bounds and heuristics allows for the efficient
identification of satisfactory-quality solutions. The results obtained from the study indicate
that this approach can effectively address the challenges posed by this intricate scheduling
problem.

To further enhance the solution quality and computational efficiency, future research
could explore additional methodologies such as metaheuristics. With their advanced
capabilities, these techniques hold the potential to generate near-optimal solutions while
adhering to acceptable CPU time limits. Moreover, there is ample opportunity to expand
the current procedures and explore diverse variants of the flexible flow shop scheduling
problem that involve unloading, lag, and transportation operations. For instance, one
potential extension to explore involves considering a single server dedicated to the
unloading operation. This could be performed by considering different constraints and
objectives that can lead to a more comprehensive understanding of the problem and the
development of effective solutions.

Given the complexity and diversity of real-world scheduling applications, further
investigation is necessary to fully comprehend the intricacies of the problem and devise
efficient solutions. By exploring different approaches and problem variants, researchers can
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continue to make progress towards developing scheduling solutions that are both efficient
and effective in practical scenarios.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by King Saud University through Researchers Supporting Project
number (RSPD2024R685). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Saud University through Researchers: RSPD2024R685.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Lotfi Hidri conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Mehdi Tlija performed the experiments, prepared figures and/or tables, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2168#supplemental-information.

REFERENCES
Amirteimoori A, Mahdavi I, SolimanpurM, Ali SS, Tirkolaee EB. 2022. A parallel

hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation.
Computers & Industrial Engineering 173:108672 DOI 10.1016/j.cie.2022.108672.

Botta-Genoulaz V. 2000.Hybrid flow shop scheduling with precedence constraints
and time lags to minimize maximum lateness. International Journal of Production
Economics 64:101–111 DOI 10.1016/S0925-5273(99)00048-1.

Carlier J. 1987. Scheduling jobs with release dates and tails on identical machines to
minimize the makespan. European Journal of Operational Research 29:298–306
DOI 10.1016/0377-2217(87)90243-8.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 34/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2168#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2168#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2168#supplemental-information
http://dx.doi.org/10.1016/j.cie.2022.108672
http://dx.doi.org/10.1016/S0925-5273(99)00048-1
http://dx.doi.org/10.1016/0377-2217(87)90243-8
http://dx.doi.org/10.7717/peerj-cs.2168


Chikhi N, Abbas M, Benmansour R, Bekrar A, Hanafi S. 2015. A two-stage flow
shop scheduling problem with transportation considerations. 4OR 13:381–402
DOI 10.1007/s10288-015-0297-4.

Elmaghraby SE, Karnoub RE. 1997. Production control in hybrid flowshops:
an example from textile manufacturing. In: Artiba A, Elmaghraby SE, eds.
The planning and scheduling of production systems. Boston, MA: Springer
DOI 10.1007/978-1-4613-1195-9_6.

Elmi A, Topaloglu S. 2013. A scheduling problem in blocking hybrid flow shop robotic
cells with multiple robots. Computers & Operations Research 40:2543–2555
DOI 10.1016/j.cor.2013.01.024.

Engin BE, Engin O. 2020. A new memetic global and local search algorithm for solving
hybrid flow shop with multiprocessor task scheduling problem. SN Applied Sciences
2:2059 DOI 10.1007/s42452-020-03895-5.

Engin O, Ceran G, YilmazMK. 2011. An efficient genetic algorithm for hybrid flow
shop scheduling with multiprocessor task problems. Applied Soft Computing
11:3056–3065 DOI 10.1016/j.asoc.2010.12.006.

Engin O, Engin B. 2018.Hybrid flow shop with multiprocessor task scheduling based
on earliness and tardiness penalties. Journal of Enterprise Information Management
31:925–936 DOI 10.1108/JEIM-04-2017-0051.

Fattahi P, Hosseini SMH, Jolai F. 2013. A mathematical model and extension algorithm
for assembly flexible flow shop scheduling problem. The International Journal of
Advanced Manufacturing Technology 65:787–802 DOI 10.1007/s00170-012-4217-x.

Fernandez-Viagas V, Molina-Pariente JM, Framinan JM. 2018. New efficient con-
structive heuristics for the hybrid flowshop to minimise makespan: a compu-
tational evaluation of heuristics. Expert Systems with Applications 114:345–356
DOI 10.1016/j.eswa.2018.07.055.

GenM, Gao J, Lin L. 2009. Multistage-based genetic algorithm for flexible job-shop
scheduling problem. In: Intelligent and evolutionary systems. Studies in computational
intelligence, vol 187, Berlin, Heidelberg: Springer DOI 10.1007/978-3-540-95978-6_13.

Geng Y-D, Li J-Q. 2023. A knowledge-driven multiobjective algorithm for distributed
hybrid flowshop with group and carryover setup in glass manufacturing systems.
Computers & Industrial Engineering 181:109325 DOI 10.1016/j.cie.2023.109325.

Gharbi A, Haouari M. 2007. An approximate decomposition algorithm for scheduling
on parallel machines with heads and tails. Computers & Operations Research
34:868–883 DOI 10.1016/j.cor.2005.05.012.

Gheisariha E, TavanaM, Jolai F, Rabiee M. 2021. A simulation–optimization
model for solving flexible flow shop scheduling problems with rework and
transportation.Mathematics and Computers in Simulation 180:152–178
DOI 10.1016/j.matcom.2020.08.019.

Ghodratnama A, Amiri-Aref M, Tavakkoli-Moghaddam R. 2023. Solving a new bi-
objective mathematical model for a hybrid flow shop scheduling problem with
robots and fuzzy maintenance time. Computers & Industrial Engineering 182:109349
DOI 10.1016/j.cie.2023.109349.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 35/38

https://peerj.com
http://dx.doi.org/10.1007/s10288-015-0297-4
http://dx.doi.org/10.1007/978-1-4613-1195-9_6
http://dx.doi.org/10.1016/j.cor.2013.01.024
http://dx.doi.org/10.1007/s42452-020-03895-5
http://dx.doi.org/10.1016/j.asoc.2010.12.006
http://dx.doi.org/10.1108/JEIM-04-2017-0051
http://dx.doi.org/10.1007/s00170-012-4217-x
http://dx.doi.org/10.1016/j.eswa.2018.07.055
http://dx.doi.org/10.1007/978-3-540-95978-6_13
http://dx.doi.org/10.1016/j.cie.2023.109325
http://dx.doi.org/10.1016/j.cor.2005.05.012
http://dx.doi.org/10.1016/j.matcom.2020.08.019
http://dx.doi.org/10.1016/j.cie.2023.109349
http://dx.doi.org/10.7717/peerj-cs.2168


Gholami H, Sun H. 2023. Toward automated algorithm configuration for distributed
hybrid flow shop scheduling with multiprocessor tasks. Knowledge-Based Systems
264:110309 DOI 10.1016/j.knosys.2023.110309.

Gicquel C, Hege L, MinouxM, Van CanneytW. 2012. A discrete time exact solution
approach for a complex hybrid flow-shop scheduling problem with limited-wait con-
straints. Computers & Operations Research 39:629–636 DOI 10.1016/j.cor.2011.02.017.

Graham RL, Lawler EL, Lenstra JK, Kan AR. 1979. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics:
Elsevier 5:287–326 DOI 10.1016/S0167-5060(08)70356-X.

Guan Y, Chen Y, Gan Z, Zou Z, DingW, Zhang H, Liu Y, Ouyang C. 2023.Hybrid
flow-shop scheduling in collaborative manufacturing with a multi-crossover-
operator genetic algorithm. Journal of Industrial Information Integration 36:100514
DOI 10.1016/j.jii.2023.100514.

Gupta JN, Tunc EA. 1991. Schedules for a two-stage hybrid flowshop with parallel
machines at the second stage. The International Journal of Production Research
29:1489–1502 DOI 10.1080/00207549108948025.

Gupta JN, Tunc EA. 1994. Scheduling a two-stage hybrid flowshop with separable
setup and removal times. European Journal of Operational Research 77:415–428
DOI 10.1016/0377-2217(94)90407-3.

Harbaoui H, Khalfallah S, Bellenguez-Morineau O. 2018. A novel hybrid GA for
the assignment of jobs to machines in a complex hybrid flow shop problem. In:
Intelligent systems design and applications: 17th international conference on intelligent
systems design and applications (ISDA 2017) held in Delhi, India, December (2017)
14-16. Springer, 640–649.

Hidri L, Gharbi A. 2017. New efficient lower bound for the hybrid flow shop
scheduling problem with multiprocessor tasks. IEEE Access 5:6121–6133
DOI 10.1109/ACCESS.2017.2696118.

Huang Y, Deng L,Wang J, QiuW, Liu J. 2023.Modeling and solution for hybrid flow-
shop scheduling problem by two-stage stochastic programming. Expert Systems with
Applications 233:120846 DOI 10.1016/j.eswa.2023.120846.

Javadian N, Fattahi P, Farahmand-MehrM, Amiri-Aref M, KazemiM. 2012. An
immune algorithm for hybrid flow shop scheduling problem with time lags and
sequence-dependent setup times. The International Journal of Advanced Manufac-
turing Technology 63:337–348 DOI 10.1007/s00170-012-3911-z.

Jiang S-L, Xu C, Zhang L, Ma Y. 2023. A decomposition-based two-stage online schedul-
ing approach and its integrated system in the hybrid flow shop of steel industry.
Expert Systems with Applications 213:119200 DOI 10.1016/j.eswa.2022.119200.

Jin Z, Ohno K, Ito T, Elmaghraby SE. 2002. Scheduling hybrid flowshops in printed
circuit board assembly lines. Production and Operations Management 11:216–230
DOI 10.1111/j.1937-5956.2002.tb00492.x.

Kahraman C, Engin O, Kaya I, Öztürk RE. 2010.Multiprocessor task scheduling in
multistage hybrid flow-shops: a parallel greedy algorithm approach. Applied Soft
Computing 10:1293–1300 DOI 10.1016/j.asoc.2010.03.008.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 36/38

https://peerj.com
http://dx.doi.org/10.1016/j.knosys.2023.110309
http://dx.doi.org/10.1016/j.cor.2011.02.017
http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/10.1016/j.jii.2023.100514
http://dx.doi.org/10.1080/00207549108948025
http://dx.doi.org/10.1016/0377-2217(94)90407-3
http://dx.doi.org/10.1109/ACCESS.2017.2696118
http://dx.doi.org/10.1016/j.eswa.2023.120846
http://dx.doi.org/10.1007/s00170-012-3911-z
http://dx.doi.org/10.1016/j.eswa.2022.119200
http://dx.doi.org/10.1111/j.1937-5956.2002.tb00492.x
http://dx.doi.org/10.1016/j.asoc.2010.03.008
http://dx.doi.org/10.7717/peerj-cs.2168


Lee T, Loong Y. 2019. A review of scheduling problem and resolution methods in flexible
flow shop. International Journal of Industrial Engineering Computations 10:67–88.

Lei C, Zhao N, Ye S, Wu X. 2020.Memetic algorithm for solving flexible flow-shop
scheduling problems with dynamic transport waiting times. Computers & Industrial
Engineering 139:105984 DOI 10.1016/j.cie.2019.07.041.

Li X, Guo X, Tang H,Wu R, Liu J. 2023b. An improved cuckoo search algorithm
for the hybrid flow-shop scheduling problem in sand casting enterprises con-
sidering batch processing. Computers & Industrial Engineering 176:108921
DOI 10.1016/j.cie.2022.108921.

Li P, Xue Q, Zhang Z, Chen J, Zhou D. 2023a.Multi-objective energy-efficient hybrid
flow shop scheduling using Q-learning and GVNS driven NSGA-II. Computers &
Operations Research 159:106360 DOI 10.1016/j.cor.2023.106360.

Liu F, Li G, Lu C, Yin L, Zhou J. 2024. A tri-individual iterated greedy algorithm for
the distributed hybrid flow shop with blocking. Expert Systems with Applications
237:121667 DOI 10.1016/j.eswa.2023.121667.

Liu Y, ShenW, Zhang C, Sun X. 2023. Agent-based simulation and optimization of
hybrid flow shop considering multi-skilled workers and fatigue factors. Robotics and
Computer-Integrated Manufacturing 80:102478 DOI 10.1016/j.rcim.2022.102478.

Low C. 2005. Simulated annealing heuristic for flow shop scheduling problems with
unrelated parallel machines. Computers & Operations Research 32:2013–2025
DOI 10.1016/j.cor.2004.01.003.

Naderi B, ZandiehM, Balagh AKG, Roshanaei V. 2009a. An improved simulated
annealing for hybrid flowshops with sequence-dependent setup and transportation
times to minimize total completion time and total tardiness. Expert Systems with
Applications 36:9625–9633 DOI 10.1016/j.eswa.2008.09.063.

Naderi B, ZandiehM, Shirazi M. 2009b.Modeling and scheduling a case of flexible flow-
shops: Total weighted tardiness minimization. Computers & Industrial Engineering
57:1258–1267 DOI 10.1016/j.cie.2009.06.005.

Narastmhan SL, Panwalkar SS. 1984. Scheduling in a two-stage manufactur-
ing process. The International Journal of Production Research 22:555–564
DOI 10.1080/00207548408942479.

Ribas I, Leisten R, Framiñan JM. 2010. Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspec-
tive. Computers & Operations Research 37:1439–1454 DOI 10.1016/j.cor.2009.11.001.

Ruiz R, Vázquez-Rodríguez JA. 2010. The hybrid flow shop scheduling problem.
European Journal of Operational Research 205:1–18 DOI 10.1016/j.ejor.2009.09.024.

ShaoW, Shao Z, Pi D. 2020.Modeling and multi-neighborhood iterated greedy
algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based
Systems 194:105527 DOI 10.1016/j.knosys.2020.105527.

ShaoW, Shao Z, Pi D. 2023.Modelling and optimization of distributed heterogeneous
hybrid flow shop lot-streaming scheduling problem. Expert Systems with Applications
214:119151 DOI 10.1016/j.eswa.2022.119151.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 37/38

https://peerj.com
http://dx.doi.org/10.1016/j.cie.2019.07.041
http://dx.doi.org/10.1016/j.cie.2022.108921
http://dx.doi.org/10.1016/j.cor.2023.106360
http://dx.doi.org/10.1016/j.eswa.2023.121667
http://dx.doi.org/10.1016/j.rcim.2022.102478
http://dx.doi.org/10.1016/j.cor.2004.01.003
http://dx.doi.org/10.1016/j.eswa.2008.09.063
http://dx.doi.org/10.1016/j.cie.2009.06.005
http://dx.doi.org/10.1080/00207548408942479
http://dx.doi.org/10.1016/j.cor.2009.11.001
http://dx.doi.org/10.1016/j.ejor.2009.09.024
http://dx.doi.org/10.1016/j.knosys.2020.105527
http://dx.doi.org/10.1016/j.eswa.2022.119151
http://dx.doi.org/10.7717/peerj-cs.2168


Tosun Ö, MarichelvamMK, Tosun N. 2020. A literature review on hybrid flow shop
scheduling. International Journal of Advanced Operations Management 12:156–194
DOI 10.1504/IJAOM.2020.108263.

Tran QNH, Nguyen NQ, Chehade H, Yalaoui F, Dugardin F. 2021. A new mathematical
model for hybrid flow shop under time-varying resource and exact time-lag con-
straints. In: Le Thi HA, Pham Dinh T, Le HM, eds.Modelling, computation and opti-
mization in information systems and management sciences. MCO 2021. Lecture notes in
networks and systems, vol 363, Cham: Springer, 87–99 DOI 10.1007/978-3-030-92.

Tran QNH, Nguyen NQ, Yalaoui F, Amodeo L, Chehade H. 2023. Improved formula-
tions and new valid inequalities for a Hybrid Flow Shop problem with time-varying
resources and chaining time-lag. Computers & Operations Research 149:106018
DOI 10.1016/j.cor.2022.106018.

Utama DM, Primayesti MD. 2022. A novel hybrid Aquila optimizer for energy-
efficient hybrid flow shop scheduling. Results in Control and Optimization 9:100177
DOI 10.1016/j.rico.2022.100177.

Vandevelde A, Hoogeveen H, Hurkens C, Lenstra JK. 2005. Lower bounds for
the head-body-tail problem on parallel machines: a computational study of
the multiprocessor flow shop. INFORMS Journal on Computing 17:305–320
DOI 10.1287/ijoc.1040.0082.

Wang Z, Deng Q, Zhang L, Li H, Li F. 2023. Joint optimization of integrated mixed
maintenance and distributed two-stage hybrid flow-shop production for multi-
site maintenance requirements. Expert Systems with Applications 215:119422
DOI 10.1016/j.eswa.2022.119422.

WuX, Cao Z. 2022. An improved multi-objective evolutionary algorithm based on
decomposition for solving re-entrant hybrid flow shop scheduling problem with
batch processing machines. Computers & Industrial Engineering 169:108236
DOI 10.1016/j.cie.2022.108236.

Yalaoui F, Chu C. 2006. New exact method to solve the Pm/rj/
∑

Cj schedule problem.
International Journal of Production Economics 100:168–179
DOI 10.1016/j.ijpe.2004.11.002.

Zabihzadeh SS, Rezaeian J. 2016. Two meta-heuristic algorithms for flexible flow shop
scheduling problem with robotic transportation and release time. Applied Soft
Computing 40:319–330 DOI 10.1016/j.asoc.2015.11.008.

ZhongW-y, Lv L-h. 2014.Hybrid flowshop scheduling with interstage job trans-
portation. Journal of the Operations Research Society of China 2:109–121
DOI 10.1007/s40305-014-0040-4.

ZhuH. 2012. A two stage scheduling with transportation and batching. Information
Processing Letters 112:728–731 DOI 10.1016/j.ipl.2012.06.013.

Hidri and Tlija (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2168 38/38

https://peerj.com
http://dx.doi.org/10.1504/IJAOM.2020.108263
http://dx.doi.org/10.1007/978-3-030-92
http://dx.doi.org/10.1016/j.cor.2022.106018
http://dx.doi.org/10.1016/j.rico.2022.100177
http://dx.doi.org/10.1287/ijoc.1040.0082
http://dx.doi.org/10.1016/j.eswa.2022.119422
http://dx.doi.org/10.1016/j.cie.2022.108236
http://dx.doi.org/10.1016/j.ijpe.2004.11.002
http://dx.doi.org/10.1016/j.asoc.2015.11.008
http://dx.doi.org/10.1007/s40305-014-0040-4
http://dx.doi.org/10.1016/j.ipl.2012.06.013
http://dx.doi.org/10.7717/peerj-cs.2168

