
Submitted 28 November 2023
Accepted 9 June 2024
Published 3 July 2024

Corresponding author
Xuan Zuo, 1069114233@qq.com

Academic editor
Jin-Kao Hao

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.2167

Copyright
2024 Zuo et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

NALA: a Nesterov accelerated look-ahead
optimizer for deep learning
Xuan Zuo1, Hui-Yan Li2, Shan Gao1, Pu Zhang3 and Wan-Ru Du2

1 School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China
2China Academy of Aerospace Systems Science and Engineering, Beijing, China
3 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China

ABSTRACT
Adaptive gradient algorithms have been successfully used in deep learning. Previous
work reveals that adaptive gradient algorithms mainly borrow the moving average
idea of heavy ball acceleration to estimate the first- and second-order moments of the
gradient for accelerating convergence. However, Nesterov acceleration which uses the
gradient at extrapolation point can achieve a faster convergence speed than heavy ball
acceleration in theory. In this article, a new optimization algorithm which combines
adaptive gradient algorithm with Nesterov acceleration by using a look-ahead scheme,
called NALA, is proposed for deep learning. NALA iteratively updates two sets of
weights, i.e., the ‘fast weights’ in its inner loop and the ‘slow weights’ in its outer
loop. Concretely, NALA first updates the fast weights k times using Adam optimizer in
the inner loop, and then updates the slow weights once in the direction of Nesterov’s
AcceleratedGradient (NAG) in the outer loop.We compareNALAwith several popular
optimization algorithms on a range of image classification tasks on public datasets.
The experimental results show that NALA can achieve faster convergence and higher
accuracy than other popular optimization algorithms.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Optimization Theory and Computation, Neural Networks
Keywords Nesterov’s accelerated gradient, Look-ahead, Deep learning, Optimization algorithms

INTRODUCTION
The remarkable success of deep learning largely owes to the advances on large scale
datasets (Russakovsky et al., 2015), powerful computing resources, sophisticated network
architectures (He et al., 2016) and improved optimization algorithms (Bottou, 1991). The
training of deep neural networks (DNNs) can be cast as the optimization of a scalar
parameterized loss function, which requires minimizing with respect to its parameters.
Efficient optimization algorithms make it possible to train very deep artificial neural
networks with large-scale datasets. Large-scale distributed optimization algorithms, which
are combined with improved learning rate scheduling schemes (Vaswani et al., 2017),
have shown impressive performance in the optimization of stochastic objectives with
high-dimensional parameter spaces (Zuo et al., 2023).

In the last few years, a variety of optimization algorithms have been proposed to
achieve the goal that accelerates the training of DNNs. Among current DNN optimizers,
stochastic gradient descent (SGD) (Robbins & Monro, 1951) is the earliest and also the

How to cite this article Zuo X, Li H-Y, Gao S, Zhang P, Du W-R. 2024. NALA: a Nesterov accelerated look-ahead optimizer for deep
learning. PeerJ Comput. Sci. 10:e2167 http://doi.org/10.7717/peerj-cs.2167

https://peerj.com/computer-science
mailto:1069114233@qq.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2167
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2167

most representative stochastic optimizer, with dominant popularity for its simplicity and
effectiveness. Most of the current DNN optimization algorithms are based on SGD, and
improve SGD to overcome the gradient vanishing and explosion problems (Yong et al.,
2020). These optimization algorithms for DNN can be broadly categorized into three
approaches: (i) SGD (Robbins & Monro, 1951) and its accelerated schemes, such as Polyak
heavy ball (Polyak, 1964) and NAG (Nesterov, 1983),(ii) adaptive gradient schemes, such
as AdaGrad (Duchi, Hazan & Singer, 2011), RMSProp (Tieleman & Hinton, 2012) and
Adadelta (Zeiler, 2012), (iii) mixed schemes combining the advantages of adaptive gradient
schemes and accelerated schemes, such as Adam (Kingma & Ba, 2015), AdamW (Loshchilov
& Hutter, 2019), Adan (Xie et al., 2022), AdaXod (Liu & Li, 2023), Nadam (Dozat, 2016),
AMSGrad (Reddi, Kale & Kumar, 2018), RAdam (Liu et al., 2020), Ranger21 (Wright &
Demeure, 2021) and AdamP (Heo et al., 2021).

Although optimization algorithms with adaptive gradient can adjust the learning rate
according to the geometry curvature of the loss objective, previous work has revealed that
these algorithms mainly borrow the moving average idea from heavy ball acceleration
to estimate the first- and second-order moments of the gradient in order to accelerate
convergence. Furthermore, Nesterov acceleration can achieve a faster convergence speed
than heavy ball acceleration, since it uses the gradient at extrapolation point and sees a slight
‘future’ (Xie et al., 2022; Nesterov, 1983). That inspires us to combine adaptive gradient
algorithms with Nesterov acceleration.

In this work, a new optimization algorithm, named Nesterov Accelerated Look-Ahead
(NALA), is proposed to combine the advantages of two popular optimization algorithms:
NAG, which is superior to heavy ball acceleration for conventionally difficult optimization
problems (Sutskever et al., 2013), and Adam, which works well with sparse gradients and
non-stationary objectives (Kingma & Ba, 2015). Moreover, the trick of maintaining two
sets of weights which is used in Lookahead (Zhang et al., 2019) for choosing a good search
direction is also applied in NALA. This trick improves learning in high curvature directions,
reduces variance, andmakes the optimization algorithm converge rapidly in practice (Zhang
et al., 2019). NALA first updates the ‘fast weights’ k times using Adam optimizer in its inner
loop, and then updates the ‘slow weights’ once in the direction of Nesterov’s accelerated
gradient in its outer loop. After the slow weights update, the fast weights are reset to the
current slow weights value. Since the anticipatory updates in Nesterov acceleration can
prevent from going too fast and lead to the increased responsiveness, the slow weights
updating in the direction of NAG can avoid the missing of the global optimum (Lin et
al., 2020). Portions of this text were previously published as part of a preprint (Zuo et al.,
2023).

‘Related Work’ provides a review of the related work. ‘Nesterov Accelerated Look-
Ahead Algorithm’ gives the details of the proposed algorithm and its update rule.
In ‘Experiments’, the convergence and the accuracy rate of NALA are evaluated on
a range of image classification tasks on the CIFAR10, CIFAR100 (both collected
from the 80 Million tiny images dataset which was withdrawn from use in 2000,
https://groups.csail.mit.edu/vision/TinyImages/) and Fashion-MNIST (Xiao, Rasul &
Vollgraf, 2017) datasets. ‘Robustness to the Hyperparameters’ explores the robustness

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 2/19

https://peerj.com
https://groups.csail.mit.edu/vision/TinyImages/
http://dx.doi.org/10.7717/peerj-cs.2167

of NALA to its hyperparameters by fixing the inner optimizer and evaluating runs with
varied synchronization period, decay factor and step size of slow weights. The results
of our experiments show that NALA performs better than other popular optimization
algorithms on the image classification models in most cases, and it is robust to a wide range
of hyperparameter settings.

RELATED WORK
This work is inspired by recent advances in improving adaptive gradient algorithms
with Nesterov momentum (Dozat, 2016; Li, Li & Zhang, 2021; Chen et al., 2022; Xie et al.,
2022) and the idea of parameter averaging (Anderson, 1965; Nichol, Achiam & Schulman,
2018; Izmailov et al., 2018; Zhang et al., 2019). While previous work has demonstrated
the advantage of combining adaptive gradient algorithms with Nesterov momentum,
incorporating Nesterov momentum into averaging weights method has not been carefully
studied. The most related work to ours is Lookahead (Zhang et al., 2019), which performs
parameter averaging to achieve faster convergence. There are a few important differences
between Lookahead and NALA: Lookahead generates its parameter updates using the
moving averages of its fast weights and slow weights, whereas NALA generates parameter
updates by applying the Nesterov accelerated gradient of the moving averages over its
weights. This section briefly reviews the related work from two aspects, i.e., adaptive
gradient algorithms with Nesterov momentum, and parameter averaging methods.

Adaptive gradient algorithms with Nesterov momentum
The Nadam algorithm (Dozat, 2016) simplifies Nesterov acceleration to estimating the first
moment of gradient in Adam. Although its acceleration does not use any gradient from
the extrapolation points, the improvement of Nadam over Adam is fairly dramatic in most
cases (Dozat, 2016). A similar algorithm is Adan (Xie et al., 2022), which adopts a new
Nesterov momentum estimation (NME) method to estimate the first- and second-order
moments of the gradients in Adam. Adan avoids the extra computation and memory
overhead of computing gradient at the extrapolation point, and speedup the training
of DNNs effectively (Xie et al., 2022). Nesterov momentum is also used for improving
the rapidly promoted distributed adaptive gradient descent optimization algorithm.
NDADAM (Li, Li & Zhang, 2021) algorithm incorporates Nesterov’s momentum into
distributed adaptive gradient method for online optimization. The experimental results
show that the convergent speed of NDADAM has been greatly improved. NAI-FGM (Chen
et al., 2022) is a gradient-based attack algorithm, which applies Nesterov momentum and
Adam to iterative attacks to improve its transferability. NAI-FGM can not only effectively
avoid local optimum, but also adaptively adjust the attack step size to reach the global
optimum fast. In contrast to these approaches, which combine the advantages of NAG and
Adam optimization algorithm, NALA additionally performs parameter averaging so as to
take advantage of the geometry of loss surfaces to improve convergence.

Parameter averaging methods
The parameter averaging scheme, which focuses on averaging the weights of different
neural networks, have been used in natural language processing (Jean et al., 2014; Merity,

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

Keskar & Socher, 2017) and generative adversarial networks (Yazici et al., 2018). Anderson
acceleration (Anderson, 1965), an algorithm of iterative procedures for nonlinear integral
equations, keeps track of all iterates within an inner loop and then computes some linear
combinations which extrapolate the iterates towards their fixed point. The Reptile (Nichol,
Achiam & Schulman, 2018) algorithm, a first-order gradient-based meta-learning method,
also uses an outer and inner loop during optimization. Reptile works by repeatedly sampling
a task in its outer loop, training on it within the inner loop, and moving the initialization
towards the trained weights on that task. Stochastic Weight Averaging (SWA) (Izmailov et
al., 2018) is an algorithm employing the average of SGD weights with a cyclical or constant
learning rate, which averages the weights of different neural networks obtained during
training. SWA also leads to a better understanding of the geometry of their loss surface.
Lookahead (Zhang et al., 2019) is a simple version of Anderson acceleration wherein
only the first and last iterates are used. It avoids the challenges in the form of additional
memory overhead as the number of inner-loop steps increases and finding the best linear
combination of iterates. Moreover, Lookahead can combine parameter averaging with
any standard optimizer. Ranger21 (Wright & Demeure, 2021) is a mix of several current
optimization techniques which also absorbs the parameter averaging scheme used in
Lookahead. Ranger21 combines AdamW (Loshchilov & Hutter, 2019) with eight optimizer
components, and experimentally provides consistent improvements over AdamW. Our
NALA algorithm, which is closely related to Lookahead, adds a Nesterov momentum on
top of the Lookahead to accelerate convergence speed.

NESTEROV ACCELERATED LOOK-AHEAD ALGORITHM
Accelerated gradient schemes were first proposed by Polyak (1964). This well-known
technique is called heavy ball because its idea comes from a heavier ball which intuitively
bounces less and moves faster through regions of low curvature than a lighter ball due to
momentum. After that, Nesterov (1983) demonstrated a modification to gradient descent
that could obtain optimal performance for the algorithms applied to minimize smooth
convex functions (Brendan & Emmanuel, 2015). Like heavy ball, Nesterov’s Accelerated
Gradient (NAG) is a first-order optimization method with better convergence rate
guarantee than gradient descent in certain situations. Moreover, it has been demonstrated
that NAG is in general superior to heavy ball (Sutskever et al., 2013). The NAG algorithm
can be written as follows (Nesterov, 1983):

yt+1= (1+µt)θt −µtθt−1,

θt+1= yt+1−αt J ′
(
yt+1

)
, (1)

where θ is the parameter of the objective function J , and µt is a decay factor of previous
parameters at timestep t . NAG computes the gradient of J at an extrapolation point with
parameter yt+1, which represents the moving average of previous parameters θt and θt−1,
then updates the parameter using a learning step size αt . As shown in Eq. (1), NAG smooths
the previous two parameter values and takes a gradient descent step from the smoothed
value yt+1. Sutskever et al. (2013) rewrites NAG as an improvedmomentummethod, which

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

can be expressed as:

vt+1=µt vt −αt J ′(θt +µt vt),
θt+1= θt +vt+1,

(2)

where vt+1 is the Nesterov momenum at timestep t , and µt is the parameter of this
momenum. Equation (2) reveals the relation of NAG to the Polyak heavy ball method.
Compared with the heavy ball method, NAG can prevent the gradient descent from going
too fast and lead to increased responsiveness, so as to avoid missing the global optimum
(Lin et al., 2019).

Motivated by NAG, this work focuses on how to incorporate Nesterov momentum
into Lookahead. Lookahead chooses a search direction by looking ahead at the sequence
of ‘fast weights’ generated by its inner loop optimizer, and it is orthogonal to previous
optimization algorithms and robust to changes in the inner loop optimizer (Zhang et al.,
2019). Therefore, any standard optimizers can be used as the inner loop optimizer in
Lookahead.

The proposed optimization algorithm, NALA, adopts a modified look-ahead scheme
which incorporates Nesterov momentum into Lookahead. Like the vanilla Lookahead,
NALA maintains two sets of weights (i.e., fast weights in the inner loop, slow weights in
the outer loop). Moreover, NALA can also combine with another standard optimizer in its
inner loop. For the optimization of convex function, NALA theoretically achieves a faster
convergence speed than Lookahead, as it sees a slight future at the extrapolation point by
using Nesterov’s momentum.

The algorithm details of NALA are shown in Algorithm 1, wherein θ denotes the fast
weights for inner loop, φ denotes the slow weights for outer loop with the step size α,
and µdenotes the decay factor (µ< 0). One of the good default settings for the image
classification tasks in this work is α = 0.001, µ=−0.5. The synchronization period k
of the fast and slow weights is set to 5 in the image classification tasks below. And in
‘Robustness to the Hyperparameters’, it will be proved that the performance of NALA is
robust to different settings of k. The implicit function A denotes the inner loop optimizer.

Since adaptive gradient algorithms can adaptively adjust the learning rate to solve the
problems that may be caused by the fixed step size, we prefer to exploit an adaptive gradient
algorithm as the inner loop optimizer A for our NALA. As is widely known, Adam and its
variants are among the most commonly employed adaptive optimizers in deep learning
(Wright & Demeure, 2021). In our NALA, Adam is employed as the inner loop optimizer
A to generate the sequence of fast weights, as it works well with sparse gradients and
non-stationary objectives (Kingma & Ba, 2015). The algorithm details of Adam are given
as Kingma & Ba (2015):

gt←∇θt−1 f (θt−1),

mt←β1mt−1+ (1−β1)gt ,

m̂t←
mt

1−β t
1
,

vt←β2vt−1+ (1−β2)g 2t ,

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

Algorithm 1 NALA Optimizer:
Require: Initial parameters φ0, objective function J
Require: Synchronization period k, slow weights step
size α, decay factor µ, optimizer A
for t = 1,2,..., do
Synchronize parameters θt ,0←φt−1

for i= 0,1,2,...,k−1 do
sample mini-batch of data d ∼D
θt ,i+1= θt ,i+A

(
J ,θt ,i,dD

)
end for
Perform outer update{
yt = (1+µ)θt ,k−µ ·φt−1
φt = yt −α ·∇J

(
yt

)
end for
return parameters φ

v̂t←
vt

1−β t
2
,

θt← θt−1−η
m̂t
√
v̂t +ε

. (3)

where gt is the gradient of the objective founction f with parameters θ at timestep t . The
first and second moment estimates of gt are denoted as mt and vt with exponential decay
rates β1 and β2 respectively, and the bias-corrected first and second moment estimate
are denoted as m̂t and v̂t . In the last line of Eq. (3), ε is an extremely small positive
constant. Adam combines RMSProp with classical momentum (Dozat, 2016), and replaces
the estimated gradient gt with a moving average mt of all previous gradient gt based on
RMSProp. It adjusts the learning rate for each step gradient according to the current
geometry curvature of the loss objective, thus offers faster convergence speed than SGD
across most DNN models (Xie et al., 2022).

NALA maintains a set of fast weights θ and another set of slow weights φ, which get
synchronized every k updates. The fast weights are updated by applying the inner loop
optimizer A to the mini-batch training examples d , which are sampled from the dataset D.
The trajectory of the fast weights θ in the inner loop is given by:

θt ,i+1= θt ,i+A
(
J ,θt ,i,dD

)
, (4)

where t denotes the timestep of the outer loop, and i denotes the timestep of the inner loop.
After k inner optimizer updates by using the optimizer A, the slow weights are updated
in the direction of NAG at the extrapolation point derived from exponentially-decayed
moving averages of the fast and slow weights. The trajectory of the slow weights φt can be
characterized as an exponential moving average of the final fast weights in each inner loop
θt ,k and the gradient at each extrapolation point ∇J

(
yt

)
:

φt = yt −α ·∇J
(
yt

)

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

= (1+µ)θt ,k−µ ·φt−1−α ·∇J
(
yt

)
= (1+µ)

[
θt ,k+|µ|θt−1,k+|µ|

2θt−2,k+···+|µ|
t−1θ1,k

]
+|µ|tφ0−

α
[
∇J

(
yt

)
+|µ|∇J

(
yt−1

)
+|µ|2∇J

(
yt−2

)
+···+|µ|t−1∇J

(
y1

)]
. (5)

According to Eq. (5), in each inner loop, only the last step of the fast weights θt ,i has a
direct impact on the trajectory of the slow weights. After the slow weights update, the fast
weights are reset to current slow weights value.

Figure 1 illustrates the trajectories of the fast weights in the inner loop and the slow
weights in the outer loop during the running of algorithm. While the fast weights explore
around the minima of the loss surface, the slow weights look ahead at the extrapolation
point and are then updated in the direction of NAG. Therefore, the proposed algorithm
can update parameters of models to be optimized along a shortcut.

Martens (2014) has demonstrated that ‘an exponentially-decayed moving average
typically works much better in practice’. Intuitively, the combination of fast weights and
slow weights can improve learning in high curvature directions, reduces oscillation, and
enables this algorithm to converge rapidly (Zhang et al., 2019). Theoretically, oscillation
often occurs in the high curvature direction, while the fast weights updates make rapid
progress along the low curvature direction. Moreover, the slow weights can help smooth
out the oscillation through the parameter averaging.

We evaluate the computational complexity of the proposed NALA algorithm. As NALA
maintains a single additional copy of the learnable parameters of the trained model, the
number of operations is O(k+1k) times that of its inner optimizer. Compared with second
order methods which need to solve the intractable Hessian matrix, the computation and
memory cost of this additional copy is acceptable and negligible.

EXPERIMENTS
To evaluate the performance of our NALA algorithm, we train three classical convolutional
neural networks (CNN) models with NALA and several popular optimizers for image
classification on the famous public datasets, i.e., CIFAR-10, CIFAR-100 (both collected
from the 80 Million tiny images dataset which was withdrawn from use in 2000,
https://groups.csail.mit.edu/vision/TinyImages/) and Fashion-MNIST (Xiao, Rasul &
Vollgraf, 2017).

Datasets
The CIFAR-10/CIFAR-100 dataset for classification tasks consists of 60,000 32×32 color
images in 10/100 classes. Each class has 6,000 images in CIFAR-10 and 600 images in
CIFAR-100. The classes are completely mutually exclusive, and there is no overlap between
different classes. For both CIFAR-10 and CIFAR-100, the 60,000 color images are split
into a training set with 50,000 images and a test set with 10,000 images. Fashion-MNIST
is a dataset comprising of 28×28 grayscale images of 70,000 fashion products from 10
categories, with 7,000 images per category. The training set of Fashion-MNIST has 60,000
images, and the test set of it has 10,000 images.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 7/19

https://peerj.com
https://groups.csail.mit.edu/vision/TinyImages/
http://dx.doi.org/10.7717/peerj-cs.2167

Start point

Slow weights

Fast weights

Figure 1 NALA trajectories of the fast weights and slow weights on loss surface. The fast inner-loop
weights explore along the black solid path. The slow outer-loop weights first go along the dark blue solid
arrow to the extrapolation point, and then updates in the direction of NAG (purple solid arrow). The dark
blue dashed arrow denotes the direction of the classical momentum.

Full-size DOI: 10.7717/peerjcs.2167/fig-1

In this work, three classcial CNN architectures (i.e., LeNet-5, AlexNet and ResNet-18)
are trained on the CIFAR-10, CIFAR-100 or Fashion-MNIST datasets with 2 random seeds
and batches of 256 images. All the experiments are conducted for 230 epochs, and the
learning rate is decayed every 20 epochs by an exponential decay factor of 0.5. A series
of data augmentation techniques, including random crop, horizontal flipping, random
brightness and random contrast, have been utilized to facilitate the learning of the three

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 8/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2167/fig-1
http://dx.doi.org/10.7717/peerj-cs.2167

CNN models on these classification tasks. The experimental data of these classification
tasks are recorded at every 100 timesteps throughout the training process.

Experiments on LeNet-5
To compare our NALA algorithm with other popular algorithms, this work implements
five different optimization algorithms, i.e., NALA, NAG, Lookahead, Adam and SGD, to
train the LeNet-5 architecture on CIFAR-10 and CIFAR-100 datasets respectively. LeNet-5
(LeCun et al., 1998) is one among the earliest CNNs which promotes the event of deep
learning. The LeNet-5 architecture consists of two sets of convolutional and average pooling
layers, followed by a flattening convolutional layer, then two fully-connected layers and
finally a softmax classifier.

This work uses the standard deterministic cross-entropy objective function to train
LeNet-5 models with the above five optimization algorithms and shows the learning curves
in Fig. 2. Since the default initial learning rate of popular optimizers is empirically effective
for most optimization problems, the initial learning rate of NALA, Lookahead, and Adam
is set to 0.001, while the rate for NAG and SGD is set to 0.1. The momentum parameter
of NAG is empirically set to 0.1 in these experiments. For both NALA and Lookahead, the
synchronization period of the weights of inner and outer loops is set to 5. The loss curves
during training on CIFAR-10 and CIFAR-100 are shown in Figs. 2A and 2B, and the top-1
accuracy curves on CIFAR-10 and CIFAR-100 are shown in Figs. 2C and 2D.

As shown in Fig. 2, NALA exhibits comparable performance to Adam, and both of them
outperform NAG, Lookahead and SGD on CIFAR-10. On CIFAR-100, the two algorithms
also achieve significantly faster convergence and higher accuracy than Lookahead and
SGD, while they have a slight advantage over NAG. It can be found that, during the early
stage of training, NALA and Adam show a faster learning speed than the other algorithms.
Furthermore, NALA converge to lower training loss and higher top-1 accuracy than the
other algorithms at the end of training; see Table 1.

The number of timesteps the five optimization algorithms require to achieve 70% top-1
accuracy and 90% or 50% top-1 accuracy are given in Table 2. As shown in Table 2 and
Fig. 2, for the CIFAR-10 and CIFAR-100 classification tasks on LeNet-5 architecture,
SGD and Lookahead take much longer to converge, and they are unable to match the
final performance of the other three optimizers. In contrast to the other optimization
algorithms, NALA achieves a faster learning speed and higher top-1 accuracy on each
image classification task.

Experiments on AlexNet
AlexNet (Krizhevsky, Sutskever & Hinton, 2012) won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012 by a large margin. It is considered to be the first
modern CNN which uses GPU to boost performance. AlexNet represents a significant
evolutionary improvement over LeNet-5, yet there are also notable differences between
the two architectures. Concretely, AlexNet is much deeper than LeNet-5, and it consists
of eight layers: five convolutional layers, two fully connected hidden layers, and one fully
connected output layer. In addition, AlexNet changes the sigmoid activation function

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

()a Loss of onLeNet CIFAR 10-

()b Loss of LeNet on CIFAR 100-

()c Accuracy of LeNet on CIFAR 10-

()d Accuracy of LeNet on CIFAR 100-

Figure 2 (A–D) Train loss and top-1 accuracy of LeNet-5 trained by five different optimizers on
CIFAR-10 and CIFAR-100.

Full-size DOI: 10.7717/peerjcs.2167/fig-2

to a simpler Rectified Linear Unit (ReLU) activation function. In this work, AlexNet is
trained by using NALA, Lookahead and Adam respectively for image classification on the
CIFAR-10 and CIFAR-100 datasets.

Similarly to the experiments on LeNet-5 above, the experiments on AlexNet are
conducted with the cross-entropy loss. The default setting of the initial learning rate of the
standard Adam optimizer, which is also a good setting for NALA and Lookahead, is set to
0.001 and applied to implement the three optimization algorithms. And the synchronization
period k is set to 5 for both NALA and Lookahead. Additionally, the dropout stochastic
regularization (Hinton et al., 2012) is applied into the two fully connected hidden layers to
prevent over-fitting with probability of 0.5. The training curves of loss value on CIFAR-10

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 10/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2167/fig-2
http://dx.doi.org/10.7717/peerj-cs.2167

Table 1 The best records of LeNet-5 train loss and top-1 accuracy on CIFAR-10 and CIFAR-100 during
the 230 epochs training.

LeNet-5 CIFAR-10 CIFAR-100

Loss value Top-1 accuracy Loss value Top-1 accuracy
NALA 0.182860419 0.94531250 0.961694419 0.73828125
NAG 0.296762913 0.90625000 1.071134210 0.72265625
Lookahead 0.270459294 0.92968750 1.263267040 0.66015625
Adam 0.201464713 0.94140625 0.986573994 0.72265625
SGD 0.327933371 0.89453125 1.057244420 0.71875000

Table 2 The number of timesteps these optimization algorithms require to achieve 70% top-1 accu-
racy and 90% or 50% top-1 accuracy during the 230 epochs training.

LeNet-5 CIFAR-10 CIFAR-100

70% accuracy 90% accuracy 50% accuracy 70% accuracy
NALA 12,00 12,100 3,200 25,400
NAG 1,900 25,700 4,800 25,400
Lookahead 2,200 16,500 6,100 –
Adam 1,00 12,500 3,500 27,400
SGD 1900 – 5200 28400

and CIFAR-100 are shown in Figs. 3A and 3B, and the curves of top-1 accuracy rate are
shown in Figs. 3C and 3D.

As shown in Figs. 3A and 3C, NALA achieves slightly better train loss and top-1 accuracy
than Lookahead on CIFAR-10, and both NALA and Lookahead exhibit a significant
advantage over Adam. In the CIFAR-100 experiment, NALA also outperforms Adam and
achieves similar performance with Lookahead, as shown in Figs. 3B and 3D. The clear
advantage of NALA and Lookahead in optimizing the AlexNet model is perhaps due to the
fact that the parameter averaging of the fast and slow weights smooths out the oscillation in
high curvature directions, thus pushing the optimization towards an area with a lower loss
value. Table 3 gives the lowest loss value and the highest top-1 accuracy rate achieved by
the three optimizers during the 230 epochs training. Table 4 gives the number of timesteps
the three optimization algorithms require to achieve 60% top-1 accuracy and 80% or 50%
top-1 accuracy during training.

As shown in Tables 3 and 4, NALA exhibits comparable performance to Lookahead,
and the two algorithms converge to higher top-1 accuracy than Adam with faster learning
speeds on both the CIFAR-10 and CIFAR-100 datasets. These demonstrate the advantage
of the parameter averaging method in optimizing the weights of DNNs.

Experiments on ResNet-18
Residual Networks (ResNets) learn residual functions with reference to the layer inputs,
rather than learning unreferenced functions. Instead of hoping that each few stacked
layers directly fit a desired underlying mapping, ResNets let these layers fit a residual
mapping. Resnet models have 5 different versions, which contain 18, 34, 50, 101 and 152

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

()a Loss of onAlexNet CIFAR 10-

()b Loss of AlexNet on CIFAR 100-

()c Accuracy of AlexNet on CIFAR 10-

()d Accuracy of AlexNet on CIFAR 100-

Figure 3 (A–D) Train loss and top-1 accuracy of AlexNet trained by three different optimizers on
CIFAR-10 and CIFAR-100.

Full-size DOI: 10.7717/peerjcs.2167/fig-3

layers respectively. The 18-layer ResNet (ResNet-18), which is considered to have a faster
convergence speed (He et al., 2015), is applied for the CIFAR-10 and Fashion-MNIST
experiments in this work. Three optimization algorithms, NALA, Lookahead, and Adam,
are used for training the ResNet-18 model.

The standard cross-entropy objective function is used for these experiments on ResNet-
18. The initial learning rate is set to 0.0002 for both NALA, Lookahead, and Adam.
For NALA and Lookahead, the synchronization period k is set to 5. Training curves
of these experiments are shown in Figs. 4A and 4C for CIFAR-10, Figs. 4B and 4D for
Fashion-MNIST. Table 5 shows the loss value and the top-1 accuracy rate of the ResNet-18
models trained with the three optimizers on the CIFAR-10 and Fashion-MNIST datasets.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 12/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2167/fig-3
http://dx.doi.org/10.7717/peerj-cs.2167

Table 3 The best records of AlexNet train loss and top-1 accuracy on CIFAR-10 and CIFAR-100 during
the 230 epochs training.

AlexNet CIFAR-10 CIFAR-100

Loss value Top-1 accuracy Loss value Top-1 accuracy
NALA 0.265425265 0.91796875 1.098710179 0.69531250
Lookahead 0.324133724 0.89453125 1.132630944 0.69921875
Adam 0.527983427 0.82031250 1.887291193 0.50390625

Table 4 The number of timesteps these optimization algorithms require to achieve 60% top-1 accu-
racy and 80% or 50% top-1 accuracy during the 230 epochs training.

AlexNet CIFAR-10 CIFAR-100

60% accuracy 80% accuracy 50% accuracy 60% accuracy
NALA 2,800 9,900 9,500 17,000
Lookahead 2,400 10,500 9,600 16,700
Adam 6,000 36,600 25,600 –

Table 6 gives the number of timesteps the three optimization algorithms require to achieve
70% and 90% top-1 accuracy during training.

As shown in Fig. 4 and Table 5, the ResNet-18 models trained with NALA and Adam
exhibit almost the same performance by achieving very close loss values and the same
top-1 accuracy on both CIFAR-10 and Fashion-MNIST datasets. The two algorithms have
a significant advantage over Lookahead not only in accuracy but also in learning speed;
see Table 6. Although Lookahead also applies the parameter averaging method to update
its outer loop weights, its exploration trajectories may converge to suboptimal weights on
ResNet models. The Nesterov momentum used by NALA may lead to a faster convergence
direction for the optimization.

In general, NALA exhibits superior or comparable performance to the other popular
optimization algorithms for the image classification tasks on the CIFAR-10, CIFAR-
100 and Fashion-MNIST datasets, except when training AlexNet on CIFAR-100, where
Lookahead achieves a slightly higher accuracy rate. The results of these experiments reveal
the exceptional ability of employing the Nesterov accelerated gradient and the exponential
moving average of weights in inner and outer loops to enhance deep learning. Our
experiments demonstrate that NALA can effectively solve practical deep learning problems
on the classical CNN models and public image datasets.

ROBUSTNESS TO THE HYPERPARAMETERS
The hyperparameters of NALA are searched over to find good settings with which the
algorithm can achieve satisfied optimization performance on the image classification tasks.
Interestingly, the results show the robustness of NALA to its hyperparameters (i.e., the
synchronization period k, the step size of slow weights α, and the decay factor µ). This
work evaluates the algorithm robustness to its hyperparameters by implementing NALA
with varied settings of k, α, µ and an initial learning rate of 0.001 for Adam optimizer in

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

()a Loss of onResNet CIFAR 10-

()b Loss of ResNet on Fashion-MINIST

()c Accuracy of ResNet on CIFAR 10-

()d Accuracy of ResNet on Fashion-MINIST

Figure 4 (A–D) Train loss and top-1 accuracy of ResNet-18 trained by three different optimizers on
CIFAR-10 and Fashion-MINIST.

Full-size DOI: 10.7717/peerjcs.2167/fig-4

the inner loop. The classification tasks on CIFAR-10, CIFAR-100, and Fashion-MNIST are
performed to observe the optimization with different settings of the three hyperparameters.

The experimental results show that, NALA is robust to a wide range of hyperparameter
settings, as shown in Tables 7, 8 and 9. For the image classification tasks involving different
models and datasets, NALA consistently achieves fast convergence and acceptable accuracy
across different settings of the hyperparameters, including the synchronization period k,
the step size of slow weights α and the decay factor µ. These experiments demonstrate
that NALA is less sensitive to suboptimal hyperparameters, thereby reducing the need for
extensive hyperparameter tuning.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 14/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2167/fig-4
http://dx.doi.org/10.7717/peerj-cs.2167

Table 5 The records of ResNet-18 train loss and top-1 accuracy on CIFAR-10 and Fashion-MNIST
during the 230 epochs training.

ResNet-18 CIFAR-10 Fashion-MNIST

Loss value Top-1 accuracy Loss value Top-1 accuracy
NALA 1.525221467 0.93750000 1.479115725 0.98046875
Lookahead 1.762263298 0.70703125 1.526486874 0.93359375
Adam 1.521514177 0.93750000 1.48304069 0.98046875

Table 6 The number of timesteps these optimization algorithms require to achieve 70% and 90% top-
1 accuracy during the 230 epochs training.

ResNet-18 CIFAR-10 Fashion-MNIST

70% accuracy 90% accuracy 70% accuracy 90% accuracy
NALA 2,800 18,700 400 3,000
Lookahead 22,400 – 1,500 9,700
Adam 3,900 17,500 300 2,300

Table 7 The records of train loss and top-1 accuracy during training the classification models withµ = −0.5 and α = 0.001 across different
synchronization period k settings.

Period k LeNet-5 & CIFAR-100 AlexNet & CIFAR-10 ResNet-18 & Fashion-MNIST

Loss value Top-1 accuracy Loss value Top-1 accuracy Loss value Top-1 accuracy
3 0.891243339 0.73828125 0.257579595 0.91406250 1.469873652 0.98106825
4 1.072080374 0.71484375 0.270872831 0.91015625 1.501279878 0.97956500
5 0.958603263 0.72656250 0.265425265 0.91796875 1.479115725 0.98046875
6 1.004980326 0.73046875 0.307197988 0.91406250 1.616237893 0.97228245
7 0.925782800 0.73437500 0.330697894 0.89843750 1.653237660 0.96428785

CONCLUSION
This article presents NALA, an optimization algorithm combining NAG with the Adam
optimizer. NALA adopts a modified look-ahead scheme with parameter averaging to derive
its extrapolation point for computing the accelerated gradient and Nesterov momentum.
Although NALA has a marginal improvement over Lookahead, it updates parameters along
the direction of Nesterov accelerated gradient instead of only by parameter averaging as in
Lookahead. That makes the algorithm see a slight future on the loss surface, so as to avoid
missing the global optimum. Additionally, NALA only requires first-order gradients with
minimal memory and computation overhead. The experimental results show that NALA
works well in practice and compares favorably to other popular optimizers, regardless of
different hyperparameter settings.

Future work could aim to test different inner loop optimizers and find a more efficient
one to be combined with the modified look-ahead scheme. Our NALA algorithm integrates
the standard Adam optimizer, which is one of the most widely used optimizers in
deep learning, into inner loops in order to take advantage of its adaptive learning rate.
Current optimization algorithms based on Adam (e.g., RAdam (Liu et al., 2020), Adan

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

Table 8 The records of train loss and top-1 accuracy during training the classification models with k = 5 and α = 0.001 across different decay
factorµ settings.

Decay
factorµ

LeNet-5 & CIFAR-100 AlexNet & CIFAR-10 ResNet-18 & Fashion-MNIST

Loss value Top-1 accuracy Loss value Top-1 accuracy Loss value Top-1 accuracy
−0.3 0.951563597 0.73437500 0.322865337 0.88281250 1.683645686 0.95457450
−0.4 0.954275727 0.75000000 0.358601660 0.88671875 1.699346565 0.94953465
−0.5 0.958603263 0.72656250 0.265425265 0.91796875 1.479115725 0.98046875
−0.6 0.961694419 0.73828125 0.277541548 0.91015625 1.530345548 0.97365450
−0.7 0.912176311 0.72656250 0.276719004 0.91406250 1.525757385 0.97457385

Table 9 The records of train loss and top-1 accuracy during training the classification models with k = 5 andµ=−0.5 across different step size
α settings.

Step
size α

LeNet-5 & CIFAR-100 AlexNet & CIFAR-10 ResNet-18 & Fashion-MNIST

Loss value Top-1 accuracy Loss value Top-1 accuracy Loss value Top-1 accuracy
0.0001 0.982763350 0.74609375 0.278902113 0.91015625 1.514573346 0.97834645
0.001 0.961694419 0.73828125 0.265425265 0.91796875 1.479115725 0.98046875
0.01 1.003419161 0.71875000 0.317181528 0.90625000 1.593457834 0.96557850

(Xie et al., 2022), and AdaXod (Liu & Li, 2023)) have achieved numerous advancements in
the field of machine learning. We believe that the combination of state-of-the-art adaptive
optimizers and our Nesterov accelerated look-ahead scheme could be meaningful work for
improving optimization algorithms. We leave this work to future research.

ACKNOWLEDGEMENTS
The authors would like to thank Professor Zhun-Ga Liu for his helpful discussions and
guidance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• XuanZuo conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Hui-Yan Li analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2167

• Shan Gao performed the experiments, prepared figures and/or tables, and approved the
final draft.
• Pu Zhang conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Wan-Ru Du performed the computation work, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code for the NALA optimizer and the classification experiments is available at
GitHub and Zenodo:

- https://github.com/guanzhongzx/Nesterov-Look-ahead
- xuanzuo. (2024). guanzhongzx/Nesterov-Look-ahead: NALA optimizer algorithm

(v1.0). Zenodo. https://doi.org/10.5281/zenodo.11296853
The experimental data of LeNet-5, AlexNet and ResNet-18 trained by NALA is available

at GitHub and Zenodo:
- https://github.com/guanzhongzx/OptimizerPerformance
- xuanzuo. (2024). guanzhongzx/OptimizerPerformance: NALA experimental results

v1.0 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.11296354.

REFERENCES
Anderson DG. 1965. Iterative procedures for nonlinear integral equations. Journal of the

ACM (JACM) 12(4):547–560 DOI 10.1145/321296.321305.
Bottou L. 1991. Stochastic gradient learning in neural networks. In: Proceedings of Neuro-

Nîmes 91. Nimes, France: EC2.
Brendan O, Emmanuel C. 2015. Adaptive restart for accelerated gradient schemes. Foun-

dations of Computational Mathematics 15:715–732 DOI 10.1007/s10208-013-9150-3.
Chen C,Wang Z, Fan Y, Zhang X, Li D, Lu Q. 2022. Nesterov adam iterative fast

gradient method for adversarial attacks. In: Artificial neural networks and ma-
chine learning –ICANN 2022: 31st international conference on artificial neural
networks, proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 586–598
DOI 10.1007/978-3-031-15919-0_49.

Dozat T. 2016. Incorporating Nesterov momentum into adam. In: 4th International
conference on learning representations, ICLR 2016 workshop, San Juan, Puerto Rico.

Duchi J, Hazan E, Singer Y. 2011. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research 12(7):2121–2159.

He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. ArXiv
DOI 10.48550/arXiv.1512.03385.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In:
2016 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway:
IEEE, 770–778 DOI 10.1109/CVPR.2016.90.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 17/19

https://peerj.com
https://github.com/guanzhongzx/Nesterov-Look-ahead
https://doi.org/10.5281/zenodo.11296853
https://github.com/guanzhongzx/OptimizerPerformance
https://doi.org/10.5281/zenodo.11296354
http://dx.doi.org/10.1145/321296.321305
http://dx.doi.org/10.1007/s10208-013-9150-3
http://dx.doi.org/10.1007/978-3-031-15919-0_49
http://dx.doi.org/10.48550/arXiv.1512.03385
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.7717/peerj-cs.2167

Heo B, Chun S, Oh SJ, Han D, Yun S, Kim G, Uh Y, Ha J. 2021. AdamP: slowing
down the slowdown for momentum optimizers on scale-invariant weights. In: 9th
International conference on learning representations.

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R. 2012. Im-
proving neural networks by preventing co-adaptation of feature detectors. ArXiv
DOI 10.48550/arXiv.1207.0580.

Izmailov P, Podoprikhin D, Garipov T, Vetrov DP,Wilson AG. 2018. Averaging weights
leads to wider optima and better generalization. ArXiv DOI 10.48550/arXiv.1803.05407.

Jean S, Cho K, Memisevic R, Bengio Y. 2014. On using very large target vocabulary for
neural machine translation. ArXiv DOI 10.48550/arXiv.1412.2007.

Kingma DP, Ba J. 2015. Adam: a method for stochastic optimization. In: 3rd Interna-
tional conference on learning representations. San Diego, CA, USA.

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolu-
tional neural networks. In: Advances in neural information processing systems, volume
25, NIPS’12. Red Hook, NY, USA: Curran Associates Inc., 1097–1105.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86:2278–2324 DOI 10.1109/5.726791.

Li S, Li D, Zhang Y. 2021. Incorporating Nesterov’s momentum into distributed
adaptive gradient method for online optimization. In: Proceedings of the 2021 China
automation congress (CAC). 7338–7343 DOI 10.1109/CAC53003.2021.9727247.

Lin J, Song C, He K,Wang L, Hopcroft JE. 2019. Nesterov accelerated gradient and
scale invariance for improving transferability of adversarial examples. ArXiv
DOI 10.48550/arXiv.1908.06281.

Lin J, Song C, He K,Wang L, Hopcroft JE. 2020. Nesterov accelerated gradient and
scale invariance for adversarial attacks. In: 8th International conference on learning
representations.

Liu L, Jiang H, He P, ChenW, Liu X, Gao J, Han J. 2020. On the variance of the adaptive
learning rate and beyond. In: 8th International conference on learning representations.

Liu Y, Li D. 2023. AdaXod: a new adaptive and momental bound algorithm for train-
ing deep neural networks. The Journal of Supercomputing 79(15):17691–17715
DOI 10.1007/s11227-023-05338-5.

Loshchilov I, Hutter F. 2019. Decoupled weight decay regularization. In: 7th Interna-
tional conference on learning representations.

Martens J. 2014. New perspectives on the natural gradient method. ArXiv
DOI 10.48550/arXiv.1412.1193.

Merity S, Keskar NS, Socher R. 2017. Regularizing and optimizing LSTM language
models. ArXiv DOI 10.48550/arXiv.1708.02182.

Nesterov Y. 1983. A method for solving the convex programming problem with
convergence rate O(1/k2). Proceedings of the USSR Academy of Sciences 269:543–547.

Nichol A, Achiam J, Schulman J. 2018. On first-order meta-learning algorithms. ArXiv
DOI 10.48550/arXiv.1803.02999.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 18/19

https://peerj.com
http://dx.doi.org/10.48550/arXiv.1207.0580
http://dx.doi.org/10.48550/arXiv.1803.05407
http://dx.doi.org/10.48550/arXiv.1412.2007
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CAC53003.2021.9727247
http://dx.doi.org/10.48550/arXiv.1908.06281
http://dx.doi.org/10.1007/s11227-023-05338-5
http://dx.doi.org/10.48550/arXiv.1412.1193
http://dx.doi.org/10.48550/arXiv.1708.02182
http://dx.doi.org/10.48550/arXiv.1803.02999
http://dx.doi.org/10.7717/peerj-cs.2167

Polyak BT. 1964. Some methods of speeding up the convergence of iteration meth-
ods. USSR Computational Mathematics and Mathematical Physics 4(5):1–17
DOI 10.1016/0041-5553(64)90137-5.

Reddi SJ, Kale S, Kumar S. 2018. On the convergence of Adam and beyond. In: Interna-
tional conference on learning representations.

Robbins HE, Monro S. 1951. A stochastic approximation method. Annals of Mathemati-
cal Statistics 22:400–407.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla
A, BernsteinM, Berg AC, Fei-Fei L. 2015. ImageNet large scale visual recogni-
tion challenge. International Journal of Computer Vision (IJCV) 115(3):211–252
DOI 10.1007/s11263-015-0816-y.

Sutskever I, Martens J, Dahl G, Hinton G. 2013. On the importance of initialization and
momentum in deep learning. In: Proceedings of the 30th international conference on
international conference on machine learning - Volume 28, ICML’13. 1139–1147.

Tieleman T, Hinton G. 2012. Lecture 6.5-rmsprop: divide the gradient by a run- ning
average of its recent magnitude. Mountain View: COURSERA’s: Neural Networks
for Machine Learning.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. In: Proceedings of the 31st international
conference on neural information processing systems. Red Hook, NY, USA: Curran
Associates Inc., 6000–6010.

Wright L, Demeure N. 2021. Ranger21: a synergistic deep learning optimizer. ArXiv
DOI 10.48550/arXiv.2106.13731.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. ArXiv DOI 10.48550/arXiv.1708.07747.

Xie X, Zhou P, Li H, Lin Z, Yan S. 2022. Adan: adaptive Nesterov momentum algorithm
for faster optimizing deep models. ArXiv DOI 10.48550/arXiv.2208.06677.

Yazici Y, Foo C-S, Winkler S, Yap K-H, Piliouras G, Chandrasekhar VR. 2018. The un-
usual effectiveness of averaging in GAN training. ArXiv DOI 10.48550/arXiv.1806.04498.

Yong H, Huang J, Hua X, Zhang L. 2020. Gradient centralization: a new optimization
technique for deep neural networks. In: Computer vision –ECCV 2020. Cham:
Springer International Publishing, 635–652.

Zeiler MD. 2012. ADADELTA: an adaptive learning rate method. ArXiv
DOI 10.48550/arXiv.1212.5701.

ZhangMR, Lucas J, Hinton GE, Ba J. 2019. Lookahead Optimizer: k steps forward, 1 step
back. ArXiv DOI 10.48550/arXiv.1907.08610.

Zuo X, Zhang P, Gao S, Li H-Y, DuW-R. 2023. NALA: a nesterov accelerated look-ahead
optimizer for deep neural networks. Research Square DOI 10.21203/rs.3.rs-3605836/v1.

Zuo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2167 19/19

https://peerj.com
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.48550/arXiv.2106.13731
http://dx.doi.org/10.48550/arXiv.1708.07747
http://dx.doi.org/10.48550/arXiv.2208.06677
http://dx.doi.org/10.48550/arXiv.1806.04498
http://dx.doi.org/10.48550/arXiv.1212.5701
http://dx.doi.org/10.48550/arXiv.1907.08610
http://dx.doi.org/10.21203/rs.3.rs-3605836/v1
http://dx.doi.org/10.7717/peerj-cs.2167

