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ABSTRACT
Amid the wave of globalization, the phenomenon of cultural amalgamation has surged
in frequency, bringing to the fore the heightened prominence of challenges inherent in
cross-cultural communication. To address these challenges, contemporary research has
shifted its focus to human–computer dialogue. Especially in the educational paradigm
of human–computer dialogue, analysing emotion recognition in user dialogues is
particularly important. Accurately identify and understand users’ emotional tendencies
and the efficiency and experience of human–computer interaction and play. This
study aims to improve the capability of language emotion recognition in human–
computer dialogue. It proposes a hybrid model (BCBA) based on bidirectional encoder
representations from transformers (BERT), convolutional neural networks (CNN),
bidirectional gated recurrent units (BiGRU), and the attention mechanism. This
model leverages the BERT model to extract semantic and syntactic features from the
text. Simultaneously, it integrates CNN and BiGRU networks to delve deeper into
textual features, enhancing the model’s proficiency in nuanced sentiment recognition.
Furthermore, by introducing the attention mechanism, the model can assign different
weights to words based on their emotional tendencies. This enables it to prioritize
words with discernible emotional inclinations for more precise sentiment analysis. The
BCBAmodel has achieved remarkable results in emotion recognition and classification
tasks through experimental validation on two datasets. The model has significantly
improved both accuracy and F1 scores, with an average accuracy of 0.84 and an average
F1 score of 0.8. The confusion matrix analysis reveals a minimal classification error
rate for this model. Additionally, as the number of iterations increases, the model’s
recall rate stabilizes at approximately 0.7. This accomplishment demonstrates the
model’s robust capabilities in semantic understanding and sentiment analysis and
showcases its advantages in handling emotional characteristics in language expressions
within a cross-cultural context. The BCBA model proposed in this study provides
effective technical support for emotion recognition in human–computer dialogue,
which is of great significance for building more intelligent and user-friendly human–
computer interaction systems. In the future, we will continue to optimize the model’s
structure, improve its capability in handling complex emotions and cross-lingual
emotion recognition, and explore applying the model to more practical scenarios
to further promote the development and application of human–computer dialogue
technology.
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INTRODUCTION
With the rapid pace of globalization and the proliferating tapestry of cultural diversity,
cross-cultural communicationhas emerged as an indispensable aspect of daily life.However,
the intricate web of linguistic and cultural disparities frequently poses formidable barriers
to effective communication. These disparities, often rooted in differences in language,
customs, and societal norms, can lead to misunderstandings, misinterpretations, and even
conflicts in cross-cultural exchanges. Fortunately, the advent of deep neural networks
(DNN) has provided novel solutions for overcoming these challenges in cross-cultural
communication. In particular, DNNs have played a pivotal role in enhancing linguistic
emotion recognition within human–computer dialogue. By leveraging the vast amounts of
data available in today’s digital world, DNNs can learn complex patterns and relationships
in human language, enabling them to recognize and interpret emotional expressions with
unprecedented accuracy. In the context of cross-cultural communication, integrating
DNNs in human–computer dialogue systems significantly elevates the efficacy of these
interactions. By accurately recognizing and analyzing emotional expressions, DNNs enable
computers to comprehend and adeptly manage human emotions, thereby mitigating the
risk of misinterpretation and conflict in cross-cultural exchanges. This, in turn, fosters a
more harmonious and effective environment for cross-cultural communication, allowing
individuals from different cultural backgrounds to communicate and collaborate more
effectively. It can be substitutedwith a relevant scholarly source that supports the integration
of DNNs in linguistic emotion recognition for cross-cultural communication (Lu et al.,
2018).

In the instructional framework of human–computer dialogue, implicit emotion
is a crucial component of human mental activity and a pivotal element in language
communication. The nuanced expression and interpretive nuances of implicit emotions
often exhibit cultural variations. For instance, certain culturesmay endorse direct emotional
expression, while others may favor implicit or euphemistic expressions. Consequently, the
accurate identification and comprehension of implicit emotions in teaching human–
computer dialogue are paramount for fostering effective intercultural communication.

Most contemporary deep learning-based models for instructing human-machine
dialogue engage in meticulous text analysis of dialogue content, discerning the nuanced
meanings and intentions embedded within each word. Subsequently, the language
comprehension component extracts pertinent information, facilitating knowledge
representation that is intelligible and amenable to machine processing (Lv et al., 2022).
Therefore, the educational model’s foundational component necessitates swift and precise
recognition of the emotional connotations and intentions underlying words. Presently,
prevalent methods predominantly rely onmodels such asWord2Vec andGloVe to generate
text word vectors, despite their limitations in effectively addressing text data’s polysemous
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nature. This simplification compromises the distinctive characteristics of textual data.
Concurrently, within human–computer dialogue instruction, textual language often
manifests as implicit sentiment sentences—phrases devoid of explicit sentiment words
articulating facts. The absence of sentiment cues in such sentences challenges sentiment
classification. Regrettably, existing sentiment classification methods predominantly falter
in adequately exploring the profound semantic features inherent in implicit sentiment
sentences, failing to harness the full spectrum of contextual information. Implicit affective
text, characterized by a shortage of overt affective signals within the sentence, concentrates
the bulk of affective information within the contextual fabric.

To address the challenges above, this study delves into two dimensions: the intrinsic
nature of implicit sentiment sentences and the contextual context information. Departing
from traditional word vector generation techniques, the article employs the bidirectional
encoder representations from transformers (BERT) model to extract both semantic and
syntactic features from the text. The BERT model dynamically generates representations
of textual word vectors during the fine-tuning process for downstream classification tasks.
Within this framework, a sophisticated sentiment recognition and analysis model, BERT-
CNN-BiGRU-Attention (BCBA), is crafted using DNN, facilitating nuanced sentiment
recognition and analysis within the human–computer dialogue education model. The
primary contributions of this article encompass:

1. Generating word embeddings based on the BERT model: We adopt the BERT model
to replace traditional word embedding generation techniques for extracting text semantic
and syntactic features. The BERTmodel generates dynamic representations of textual word
embeddings during the fine-tuning process for downstream classification tasks.

2. Constructing a dual-channel model based on convolutional neural network (CNN)
and BiGRU: We improve the CNN model and build a dual-channel model using CNN
and BiGRU. Word embeddings are input into this dual-channel model constructed by
CNN and BiGRU for feature extraction, concurrently capturing local and global emotional
features embedded in the text.

3. Establishing an attention weight allocation mechanism: In the attention mechanism,
corresponding weight scores are assigned to the output features to highlight the emotional
polarity of the text. Finally, the output features from both channels are fused for sentiment
classification.

This article unfolds the current state-of-the-art DNNs and sentiment analysis models
derived from DNNs in ‘Related works’. ‘Model design’ delineates the analytical model
for sentiment recognition, intricately weaving together BERT, CNN, BiGRU, and an
attention mechanism as crafted within the confines of this study. ‘Experiments and
analysis’ elaborates on experimental results, engaging in a comprehensive discourse
on scheme performance. This involves a meticulous comparison and analysis vis-à-vis
classical schemes, coupled with ablation experiments that dissect the role of each module
within the model. Additionally, ‘Experiments and analysis’ delves into the implications
of the heightened performance of the sentiment analysis model on human–computer
dialogue teaching. Finally, ‘Conclusion’ draws the curtains with a conclusive summary. It
encapsulates a discussion on the performance of the recognition model instantiated in this
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article for teaching human–computer dialogue. The model, intricately woven with BERT,
CNN, BiGRU, and an attention mechanism, is scrutinized for its impact and revelations
stemming from the advancements made in sentiment analysis within the context of
human–computer dialogue instruction.

RELATED WORKS
Before formulating a human–computer dialogue teaching model, it is imperative
to translate computer-recognized text content into linguistically or mathematically
representable vectors, optimizing computer recognition and processing. Natural language
text possesses inherent grammatical structure, categorizable into articles, paragraphs,
sentences, phrases, words, and characters, contingent upon the granularity of the text.
Presently, predominant text representation models include the Boolean Model (Yulianto,
Budiharto & Kartowisastro, 2017), Statistical Language Model (Schomacker & Tropmann-
Frick, 2021), One-Hot Representation (Yao, Mao & Luo, 2019), Word Embedding (Egger,
2022), and the Vector Space Model (Amensisa, Patil & Agrawal, 2018) for natural language
text representation. In subsequent developments, researchers and scholars have pioneered
natural language processing (NLP) (Raina & Krishnamurthy, 2022) techniques grounded
in these text representation models. These innovations aim to facilitate human–computer
interaction, enhance interpersonal communication, and adeptly process textual and speech
information.

While human–computer interaction can be effectively realized through natural language
processing, emotion emerges as a fundamental psychological state during verbal expressions
in human–computer dialogues. It is also a pivotal factor influencing human cognition,
behavior, and overall health. Sentiment analysis (Taboada, 2016), an amalgamation of
natural language processing and machine learning techniques, is employed to discern
diverse languages on the web. In the contemporary landscape, the ascendancy of DNNs has
witnessed their widespread integration into natural language processing. Various studies
leverage neural networks to train word vectors, efficiently capturing semantic information
and overcoming data sparsity issues. For instance, in Li & Gong (2021), word vectors are
employed for text representation, enhancing text recognition and classification within deep
learning models. Exploring aspect-level sentiment analysis, Phan, Nguyen & Hwang (2022)
advocates for CNN models, demonstrating superior classification performance over SVM
models. The simplicity of TextCNN, a CNN-based text sentiment classification model
proposed in Guo et al. (2019), contributes to its efficacy in transforming text into a vector
matrix and achieving commendable results in sentence-level sentiment classification.

Incorporating a nonlinear gating mechanism between convolutional and pooling layers
(Zeng et al., 2019) introduces a model based on aspect embedding, significantly improving
performance according to relevant datasets. Additionally, Onan (2021) proposes a CNN-
based model for document-level sentiment analysis, enhancing pre-trained Word2vec and
GloVe embeddings with lexical, positional, and syntactic features. This model sequentially
applies three different CNN modules to extract crucial features from the text selectively.

Recognizing the contextual dependencies inherent in some text recognition scenarios,
traditional neural network models face limitations. Researchers introduced recurrent
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neural network (Wang et al., 2022) to address this, leveraging its capability to handle
lengthy sequences. However, the multiplicative nature of neural networks in the traditional
RNN model often leads to challenges such as gradient disappearance or explosion during
sequential information transmission. In response, scholars proposed long short-term
memory (LSTM) (Van Houdt, Mosquera & Nápoles, 2020) to enhance traditional RNN.
LSTM replaces modules in the hidden layer of RNN with memory cells, incorporating both
input and output gates for selective information passage. Introducing forgetting gates on
top of LSTM, as described in Bendali et al. (2020), enables LSTM to memorize and update
information over extended distances. Alternatively, Toma & Choi (2023) advocates for a
two-channel bidirectional LSTM (BiLSTM), surpassing LSTM in learning bidirectional
semantic information and acquiring deeper-level text features.

Zulqarnain et al. (2020) proposes a unique bistatic GRU and encoder approach for
sentiment analysis, outperforming GRU and LSTM networks in sentiment analysis
performance. Another model, presented in Jang et al. (2020), combines bidirectional GRU
(Ji, Ye & Yang, 2024), Word2vec (Rakshit & Sarkar, 2024), and an attention mechanism
(Qin et al., 2024), demonstrating superior overall performance compared to other
sentiment analysis models. Subsequently, a BiLSTM+Attention model is constructed by
incorporating the attentionmechanism into the BiLSTMmodel, allowing focused attention
on feature vectors with sentiment tendencies, thereby enhancing the model’s classification
performance. In the context of human–computer teaching models, the identified text
often exhibits implicit affective expressions, where the text’s meaning is elusive and
challenging to decipher. Consequently, effectively extracting semantic, syntactic, and word
vector features from such text becomes a formidable task. Scholars have introduced BERT
(Bidirectional Encoder Representations from Transformers), a model that leverages the
multi-head attention mechanism. BERT has demonstrated remarkable success in diverse
domains, including question-and-answer systems, reading comprehension, and short-text
information retrieval.

This article adopts the BERT model, eschewing traditional word vector generation
techniques, to extract semantic and syntactic features from the text more effectively. The
BERT model is integrated with CNN and BiGRU networks to extract in-depth features
from the text. Furthermore, the attention mechanism is introduced to assign greater
weight to words exhibiting emotional tendencies, thereby performing weight calculations.
This amalgamation constructs an implicit human-machine analysis of implicit sentiment
based on the BERT model and the attention mechanism. The resultant human–computer
dialogue teaching model, grounded in the BERT model and attention mechanism, is
tailored for implicit sentiment analysis.

MODEL DESIGN
Figure 1 illustrates the proposed BCBA-based model for instructing human–computer
dialogue formulated in this manuscript. We employ the BERT pre-training model within
the word embedding stratum to generate dynamic word vectors for textual sequences.
The feature extraction tier incorporates CNN for local feature extraction from the text,
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Figure 1 Framework of BCBA.
Full-size DOI: 10.7717/peerjcs.2166/fig-1

while BiGRU captures the contextual semantics of the text sequence to constitute global
features. As a consequence, a hybrid dual-channel model integrating CNN and BiGRU
architectures is engineered to achieve this aim. The attention mechanism assumes a crucial
role by assigning weights to the feature matrix produced by the feature extraction module
to emphasize salient keywords within the textual sequence. This attention mechanism is
applied independently to the local and global feature matrices. We amalgamate the feature
vectors outputted from the attention layer into the output stratum. Employing the dropout
regularization technique guards against overfitting. Ultimately, through computation with
a fully connected neural network and classification via the softmax function, we proficiently
devise a DNN-based model for instructing human–computer dialogue.

BERT-based word embedding layer
To train word vectors, BERT employs the Masked Language Model (MLM) and Next
Sentence Prediction (NSP). MLM randomly designates a portion of linguistic elements
as masked lexical elements for prediction during training, allowing the model to acquire
knowledge of these masked lexical elements using global contextual information. While
MLM effectively encodes bidirectional contextual information for representing lexical
elements, it doesn’t explicitly convey logical relationships between text pairs. On the other
hand, NSP can be perceived as a sentence-level binary classification problem, addressing the
logical relationships between sentences by determining the plausibility of the latter sentence
as a continuation of the preceding one. To address the problem, the BERTmodel integrates
both MLM and NSP approaches, achieving an effective representation of word vectors
and successfully extracting semantic features from the text. This amalgamation furnishes
the model with abundant contextual information and inter-textual logical relations.
The structure of the BERT model, as depicted in Fig. 2, comprises multiple transformer
layers, each encompassing both self-attention and cross-attention mechanisms. This
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Figure 2 Framework of BERT.
Full-size DOI: 10.7717/peerjcs.2166/fig-2

architecture empowers BERT to capture long-distance dependencies in the text, enhancing
its comprehension of textual content.

Figure 2, e1,e2,...,en is the input sequence of the BERT model, Trm is the Encoder
model of Transformer; and x1,x2,...,xn is the output word vector sequence of the BERT
model. The input sequence of the BERT is the sum of the lexical meta-entry, fragment
embedding, and positional embedding information, in which the lexical meta-embedded
text sequence needs to use lexeme <cls>as the start tag.

Two-channel model based on CNN and BiGRU
This approach of combining CNN and the attention mechanism leverages the advantages
of CNN in feature extraction while preserving the temporal sequence of text through the
attention mechanism, thus enhancing the model’s performance. Additionally, integrating
the feature matrices extracted by CNN with the outputs of BiGRU (Bidirectional Gated
Recurrent Unit) can further capture global and local information in the text, improving
the model’s ability to comprehend deep-level textual features. The model’s structure
is illustrated in Fig. 3, demonstrating how CNN, the attention layer, and BiGRU work
together to process the input text and complete the language analysis task.

In Fig. 3, x1,x2,...,xn is the word embedding vector of the text, and feature extraction
is carried out by three convolution kernels with different window sizes, each with
dimensionality dim = 768, number of channels M = 256, and the step size is set to 1.
The local feature ci is obtained by the i th convolution of the convolution kernel with a
window size of k:

ci= f (Wx[i,i+k−1]+b) (1)

where f is the nonlinear activation function ReLu, W is a parameter in the convolution
kernel matrix, x[i,k+i−1] denotes the vector between row i and (i+k-1) of the word vector
matrix, and b is a bias term. A convolution kernel with a window size k undergoes
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Full-size DOI: 10.7717/peerjcs.2166/fig-4

convolution (n-k+1) times, yielding the local feature vector.

cki = [c1,c2,...,cn−k+1] (2)

where cki the convolutional outputs of each convolutional kernel, resulting in the local
feature matrix R:

R= [r1,r2,...,rm] (3)

The GRU has evolved from LSTM, addressing to some extent the challenges of distance
dependence and gradient vanishing encountered in RNN. GRU not only effectively handles
the issue of distance dependence but also simplifies the model structure. The specific model
configuration is depicted in Fig. 4.

GRU incorporates only two sigmoid functions, resulting in two gates: the update gate
and the reset gate. Specifically, the update gate dictates how much state information from
the previous time step should be transferred. A higher value of the update gate signifies a
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greater need to transfer state information. The calculation formula for the update gate is
expressed as follows:

zi= σ (Ws · [ht−1,xt ]+bz) (4)

The reset gate plays a pivotal role in deciding how much information from the previous
time step should be forgotten. A smaller reset gate implies a greater need to discard
information. The expression for the reset gate is analogous to that of the update gate,
differing only in the parameters of the linear transformation. Let ht−1 be the state
information at moment t-1, and xt denote the input vector at moment t. Put them
through a linear transformation first, and then use the sigmoid activation function to get
the output activation value. The new memory content can be stored using the reset gate to
store past-related information, which is calculated below.

ri = σ (Wr · [ht−1,xt ]+br ) (5)

h̃t = tanh(Wh · [rt ∗ht−1,xt ]+bh) (6)

The formula for the final memory of the current moment is as follows:

ht = (1−zt )∗ht−1+zt ∗ h̃t (7)

Given that the gated loop cell efficiently conveys information from the preceding cell to
the subsequent one and is computationally more streamlined due to its simpler structure
compared to the LSTM model.

The BiGRU is a bidirectional extension rooted in the fundamental gated recurrent unit
structure. In this configuration, each input word vector undergoes processing in both a
forward-facing GRU unit and a backward-facing GRU unit. The outputs of these two GRU
units are then combined computationally. The bidirectional model captures both forward
and backward information, endowing it with greater potency than its unidirectional
counterpart. It yields two output values for the hidden layer—one for the forward output
and the other for the backward output. The calculation is presented below:

→

h t =GRUforword(ht ,ht+1) (8)

←

h t =GRUbackword(ht ,ht−1) (9)

where
→

h t denotes the text features before position t computed by the GRU,
←

h t denotes the

text features after position t computed by the GRU, and ht = [
→

h t ,
←

h t ] denotes the features
of the context of the word vectors at position t as the outputs of the bi-directionally gated
recurrent unit layer. Each word vector corresponds to a bi-directionally gated recurrent
unit, contributing to the collective representation.
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Attention layer
The attention mechanism prioritizes information with significant importance while
disregarding irrelevant details. The attention mechanism adeptly filters out irrelevant text
information by assigning distinct weight values to text features exhibiting varying degrees of
emotional tendency. This selective focus allows for more efficient learning of crucial textual
emotional features, thereby enhancing the performance of implicit sentiment classification.
Typically, textual information incorporates words with emotional tendencies, and these
words frequently exert a pivotal influence on the overall emotional tone of the text.
Consequently, this article introduces the attention mechanism to spotlight text features
associated with emotional tendencies in implicit sentiment sentences. In this article, the
attention mechanism is used to enhance the text sentiment polarity for the local feature
matrix R= [r1,r2,...,rm] and the global feature matrix H = [h1,h2,...,hm], respectively,
and the computational formula deduced after the study is:

uri = tanh(Wr ri+br ) (10)

uhi = tanh(Whrj+bh) (11)

where Wr and Wh are the weight parameter matrices, br and bh are the bias terms, tanh
is the nonlinear activation function. By normalising the weight vectors uri and urh , the
attention scores ai and aj on the local feature ri and the global feature hi are obtained as
follows:

ai =
exp(uri)∑m
i=1exp(uri)

(12)

aj =
exp(urj)∑m
j=1exp(urj)

(13)

To calculate the weighted sum of the attention scores ai and the corresponding sub-
vectors of the local feature matrix R= [r1,r2,...,rm] , the local feature vector of the text
optimised by the attention mechanism can be obtained si , and the weights of the global
feature matrix H are similarly optimized to obtain the global feature vector of the text sh.
The specific calculation formula is as follows:

si =
m∑
i=1

airi (14)

sh =
m∑
j=1

ajrj (15)
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The dual-channel attention mechanism layer allocates suitable attention weights to
pivotal emotion word vectors within the text, thereby enhancing the performance of the
BCBA model. This improvement, in turn, elevates the accuracy of the emotion recognition
and analysis module within the human–computer dialogue teaching model. Furthermore,
the output layer of the BCBA model formulated in this article is structured as a fully
connected neural network with a softmax function. Firstly, the local feature vector si
optimized by the attention mechanism is fused with the global feature vector sh to obtain
the final feature representation of the text s:

s= [sr ,sh] (16)

The dropout method is introduced before the fully connected neural network layer to
mitigate model overfitting. The output of the fully connected layer is obtained through the
softmax function for classification calculation:

o= f (Ws+b) (17)

g = softmax(o) (18)

where o is the output vector of the fully connected layer, W is the weight matrix, b is the
bias term, and g is the final output vector of the model.

EXPERIMENTS AND ANALYSIS
In this section, a comparative analysis of the proposed BCBAmodel is undertaken, focusing
primarily on the model’s performance in sentiment recognition and classification. The
comparison involves assessing TextCNN (Guo et al., 2019), BiLSTM (Toma & Choi, 2023),
and BiLSTM+Attention in conjunction with this article’s model across datasets from STS
and Amazon. Various performance metrics are employed for the evaluation, followed by
ablation experiments to validate the performance of each module within the proposed
model.

Parameter settings
The main parameters of the experimental environment in this article include a CPU with
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz, 8 GB of CPU Memory (RAM), and an
Operating System of Windows 10 (64-bit operating system based on x64 processor). The
experimental platform is Python 3.6. Before model training, it is crucial to preprocess the
raw data appropriately. This article primarily focuses on cleaning text and removing noise
from the text, such as HTML tags, special characters, URLs, etc. Given that the deep neural
network architecture designed in this article combines the BERTmodel, CNN, BiGRU, and
attention mechanism, the hidden layer consists of 180 neurons, with Leaky-ReLU serving
as the activation function. The output layer comprises 60 neurons, employing Leaky-ReLU
as the activation function. Typically, a softmax layer follows the output layer for multi-class
classification tasks.We introduce several hyperparameters, as shown in Table 1, to optimize
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Table 1 Hyperparameter settings.

Parameters Value

Dimension of a word vector 300
Maximum sentence length 120
Number of texts processed in a batch 32
Number of hidden layer neurons 384
Neuron layer 2
Convolutional neural network filter size (2, 3, 4)
Number of filters 256

the model’s performance. Among them, the word embedding dimension is set to 300, the
maximum length of a sentence is 120, the batch size for text processing is 32, the number
of hidden layer neurons in BiLSTM is 384, the number of neuron layers is 2, the filter sizes
for the convolutional neural network are (2, 3, 4), and the number of filters is 256. To
mitigate overfitting during the experiment, we adopted the Dropout method. The Dropout
method randomly ‘‘turns off’’ a portion of the neurons in the network during training,
thus preventing overfitting.

Evaluation indicators
In the task of sentiment analysis, the key metrics for evaluating the classification model’s
performance are TP (true positive), TN (true negative), FP (false positive), and FN (false
negative). TP represents the number of samples correctly identified as having positive
sentiments among all true positive sentiment samples. TN denotes the number of samples
correctly identified as having negative sentiments among all true negative sentiment
samples. FP signifies the number of samples incorrectly classified as positive sentiments
among all true negative emotion samples. Finally, FN indicates the number of samples
incorrectly categorized as negative emotions among all true positive emotion samples.

Thesemetrics offer a comprehensive assessment of themodel’s performance in sentiment
analysis tasks, allowing for optimization and improvement tailored to specific requirements.
As the sentiment analysis in this article focuses on binary classification into positive and
negative sentiments, the evaluation metrics employed are accuracy and F1 value. These
metrics are calculated as follows:

Acc =
TP+TN

TP+FP+FN +TN
(19)

Pre =
TP

TP+FP
(20)

Rec =
TP

TP+FN
(21)

F1=
2∗Pre ∗Rec
Pre+Rec

(22)
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Table 2 The recognition results on the STS dataset.

Performance indicators Accurency Precision Recall F1

Models Positive Negative Positive Negative Positive Negative Positive Negative

TextCNN 0.623 0.633 0.603 0.719 0.554 0.718 0.577 0.719
BiLSTM 0.637 0.645 0.625 0.737 0.575 0.714 0.599 0.725
BiLSTM+Attention 0.721 0.742 0.632 0.738 0.612 0.696 0.622 0.716
Ours 0.823 0.859 0.725 0.839 0.695 0.788 0.71 0.808

The accuracy rate signifies the model’s ability to classify correctly; the precision rate
denotes the proportion of positive samples correctly classified among all samples classified
as positive, and the recall rate indicates the proportion of positive samples correctly classified
among all actual positive samples. Higher precision and recall rates are typically desired
in evaluation, but these two metrics often exhibit a trade-off in emotion classification
tasks. The F1 value is employed to reconcile this, providing a balanced consideration
of precision and recall. Hence, this article adopts the accuracy rate and F1 value as the
primary evaluation indices for the sentiment analysis task in the human–computer dialogue
teaching model.

In addition, we adopt the confusion matrix as an evaluation criterion to observe the
model’s performance in various categories. Also known as an error matrix, it is a standard
format for accuracy evaluation, represented as an n-row and n-column matrix. The
confusion matrix is a visualization tool in artificial intelligence, especially for supervised
learning. Specifically, each column of the confusion matrix represents the predicted
category, and the total number in each column indicates the number of data points
predicted for that category. Each row represents the true category of the data, and the total
number of data points in each row indicates the number of data instances belonging to
that category.

Model comparison under different datasets
Table 2 and Fig. 5 present eachmodel’s performancemetrics on the STS dataset. As depicted
in Tab. 2 and Fig. 5, the model proposed in this article achieves an accuracy of 0.859 and
an F1 value of 0.808 in classifying negative emotions, surpassing the performance of other
models in classifying both positive and negative emotions. Notably, the performance of the
TextCNN and BiLSTM models exhibits a similar trend. BiLSTM and BiLSTM+Attention
demonstrate comparable performance due to their shared model structure. However,
introducing the attention mechanism in BiLSTM+Attention improves accuracies of 0.721
and 0.742 for positive and negative emotion classification, with corresponding F1 values of
0.808 and 0.622, respectively. Despite this, there remains a significant gap with the model
constructed in this article.

The proposed model integrates the strengths of BERT, CNN, BiGRU, and the attention
mechanism, enabling a more comprehensive utilization of semantic information from
both sides of the word than traditional word vector generation techniques. This facilitates
a deeper understanding of implicit sentiment sentences’ lexical, syntactic, and semantic
features. Consequently, the proposed model proves effective in textual sentiment analysis,
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Figure 5 The recognition results on the STS dataset.
Full-size DOI: 10.7717/peerjcs.2166/fig-5

achieving precision rates of 0.725 and 0.839 and recall rates of 0.695 and 0.788 for positive
and negative sentiment classification on the STS dataset, respectively.

Simultaneously, experimental analyses are conducted on the Amazon dataset to validate
the model’s efficacy and simplicity further; the results are illustrated in Table 3. To show
the performance comparison more directly, we draw the bar chart in Fig. 6 according
to the data in Table 3. The performance of each model exhibits a similar pattern, with
TextCNN demonstrating comparable performance to BiLSTM due to the prevalence of
short text data in the Amazon dataset. The multi-scale convolution in TextCNN allows it
to effectively capture feature information between words in short text sequences, aligning
its performance with BiLSTM.

A comparison between BiLSTM and BiLSTM+Attention reveals that incorporating
the attention mechanism boosts the accuracy of the BiLSTM+Attention model by
approximately 2.7% and the F1 value by about 1.8%. This indicates that the attention
mechanism effectively enhances the model’s accuracy. During this analysis, the proposed
model in this article achieved an average accuracy, precision, recall, and F1 value of 0.837,
0.782, 0.742, and 0.753, respectively, for sentiment classification on the Amazon dataset,
affirming the effectiveness of the proposed model.
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Table 3 The recognition results on the Amazon dataset.

Performance indicators Accurency Precision Recall F1

Models Positive Negative Positive Negative Positive Negative Positive Negative

TextCNN 0.607 0.729 0.633 0.739 0.564 0.721 0.607 0.729
BiLSTM 0.609 0.728 0.635 0.737 0.565 0.719 0.609 0.728
BiLSTM+Attention 0.652 0.746 0.652 0.749 0.632 0.736 0.652 0.746
Ours 0.751 0.838 0.633 0.739 0.715 0.798 0.751 0.838

Figure 6 The recognition results on the Amazon dataset.
Full-size DOI: 10.7717/peerjcs.2166/fig-6

The two sets of experiments revealed subpar performance in classifying positive
emotions. To comprehend the reasons behind the inadequate recognition of positive
emotion categories by each classification model, an investigation was conducted into the
confusionmatrices of the predicted results. The confusionmatrices for the four comparison
models are presented in Fig. 7.

Figure 7 shows that all models tend to incorrectly predict statements with the
actual emotion category of positive as negative emotion sentences. The probability of
misclassification for negative emotions is significantly higher than for positive ones.
Additionally, there are variations in the number of mispredicted emotion sentences among
different models. Still, they share a commonality—the proportion of mispredicted emotion
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Figure 7 The confusionmatrix of each model.
Full-size DOI: 10.7717/peerjcs.2166/fig-7

sentences with a positive emotion category classified as negative is roughly consistent.
Further exploration into implicit texts with positive sentiment categories reveals that the
positive sentiment features in these texts are not very prominent. This lack of distinct
positive sentiment features contributes to the suboptimal performance of all classification
models in this category.

Ablation experiments
Ablation experiments were conducted to assess the performance of each module in
the proposed model; the results are shown in Fig. 8 and Table 4. The model denoted
as BERT+CNN+BiGRU+AT was compared with models created by removing either
the BERT model or the pre-attention mechanism, resulting in CNN+BiGRU+AT and
BERT+CNN+BiGRU models, respectively. The change curves of the recall rate under
different iteration numbers for these three models were plotted.

When considering the presence or absence of the attention mechanism, it becomes
apparent that the sentiment classificationmodel with an attentionmechanism outperforms
the model without one. The experimental effectiveness of BERT+CNN+BiGRU+AT and
CNN+BiGRU+AT can reach recall rates of 0.701 and 0.682, respectively. However, the
recall of the CNN+BiGRU+AT model fluctuates downward with the number of iterations.
Whether the BERT pre-training model is included or not, it has been observed that
BERT+CNN+BiGRU+AT and BERT+CNN+BiGRU achieve the best recall at the fastest
iteration number. Additionally, the recall curve becomes smoother due to the utilization
of more data for model training. The recall of the BERT+CNN+BiGRU model stabilizes at
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Figure 8 Results of ablation experiments.
Full-size DOI: 10.7717/peerjcs.2166/fig-8

Table 4 The recognition results on the STS dataset.

Models BERT+CNN+BiGRU+AT CNN+BiGRU+AT BERT+CNN+BiGRU

0 0 0 0
25 0.211 0.089 0.103
50 0.413 0.148 0.196
75 0.492 0.239 0.281
100 0.556 0.321 0.319
125 0.589 0.382 0.392
150 0.609 0.436 0.437
175 0.638 0.505 0.493
200 0.661 0.558 0.521
225 0.687 0.592 0.562
250 0.693 0.643 0.580
275 0.697 0.682 0.592
300 0.694 0.648 0.632
325 0.703 0.625 0.645
350 0.701 0.635 0.666
375 0.701 0.601 0.667
400 0.699 0.582 0.667

0.667, while the recall of the BERT+CNN+BiGRU+AT model remains stable at the same
value.

In summary, the BERT+CNN+BiGRU+AT model constructed in this article exhibits
minimal fluctuations with the increase in iteration times attributed to implementing the
Dropout method, which mitigates the occurrence of overfitting.

DISCUSSION
The experimental analyses conducted in ‘Model comparison under different datasets’ and
‘Ablation experiments’ highlight the construction of a BCBA model in this article. The
BERT model is leveraged to extract semantic and syntactic features from the text. The
fusion of CNN and BiGRU networks is achieved through improvements to CNN and
BiGRU, facilitating further deep feature extraction from the text. Finally, the attention
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mechanism is introduced to assign more weight to words with emotional tendencies,
performing weight calculations. This results in the design of an implicit sentiment analysis
model based on the BERT model and the attention mechanism, specifically tailored for a
human–computer dialogue teaching model.

The BCBA model exhibits outstanding performance in linguistic sentiment recognition
analysis. By combining the deep semantic understanding of BERT, the image feature
extraction capabilities of CNN, the sequence modeling of BiGRU, and the attention
mechanism, the model achieves breakthrough results in implicit sentiment analysis. In
human–computer dialogues, the BCBA model identifies linguistic features and contextual
information, enabling the inference of the speaker’s emotional tendencies without
explicit emotional words or expressions. It further integrates contextual information
and background knowledge to comprehend the meaning and intention within the
dialogue, facilitating the inference of the speaker’s emotional tendencies. The feedback
from sentiment analysis empowers the human–computer dialogue teaching model to
optimize its interaction. By analyzing students’ emotional states, the model can adapt its
communication tone, vocabulary, and expressions to better engage with students.

However, the model exhibits certain limitations, particularly in regard to the prolonged
training time. This is attributed to the BERT model’s numerous parameters and deep
architecture, necessitating the backpropagation process to update many parameters during
fine-tuning downstream tasks, leading to increased time consumption. Future research
endeavors are proposed to address this issue, aiming to enhance the model’s efficiency and
effectiveness in education. This improvement could contribute significantly to advancing
the quality of teaching and learning experiences.

CONCLUSION
This article delves into the research on human–computer dialogue in cross-cultural
communication. It constructs a dual-channel neural network model based on BERT to
achieve sentiment recognition and analysis for intelligent human–computer dialogue
systems. Firstly, we utilize the BERT model to vectorize textual representations and
incorporate CNN and BiGRU to build a dual-channel model that simultaneously extracts
the text’s local and global sentiment features. We introduce an attention weight allocation
mechanism to enhance the model’s performance further. Experimental results on two
representative datasets, STS and Amazon, demonstrate that our model exhibits high
accuracy in sentiment classification tasks, fully validating its effectiveness. Additionally,
we conducted ablation experiments to evaluate the contributions of each component
of the model. The findings indicate that our model exhibits a sustained recall rate of
approximately 0.7, showcasing robust stability. This validation not only corroborates the
superiority of our model in sentiment analysis but also furnishes compelling evidence
for its extensive deployment in real-world contexts. With the continuous development
of technology, future human–computer dialogue systems will increasingly emphasize
integrating multimodal data, including text, speech, and images. We will explore how to
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extend the current model to multimodal sentiment recognition, aiming to enhance the
intelligence and interactivity of human–computer dialogue systems.
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