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ABSTRACT
Arbitrage trading is a common quantitative trading strategy that leverages the long-
term cointegration relationships between multiple related assets to conduct spread
trading for profit. Specifically, when the cointegration relationship between two or
more related series holds, it utilizes the stability and mean-reverting characteristics of
their cointegration relationship for spread trading. However, in real quantitative
trading, determining the cointegration relationship based on the Engle-Granger two-
step method imposes stringent conditions for the cointegration to hold, which can
easily be disrupted by price fluctuations or trend characteristics presented by the
linear combination, leading to the failure of the arbitrage strategy and significant
losses. To address this issue, this article proposes an optimized strategy based on
long-short-term memory (LSTM), termed Dynamic-LSTM Arb (DLA), which can
classify the trend movements of linear combinations between multiple assets. It
assists the Engle-Granger two-step method in determining cointegration
relationships when clear upward or downward non-stationary trend characteristics
emerge, avoiding frequent strategy switches that lead to losses and the invalidation of
arbitrage strategies due to obvious trend characteristics. Additionally, in mean-
reversion arbitrage trading, to determine the optimal trading boundary, we have
designed an optimized algorithm that dynamically updates the trading boundaries.
Training results indicate that our proposed optimization model can successfully filter
out unprofitable trades. Through trading tests on a backtesting platform, a theoretical
return of 23% was achieved over a 10-day futures trading period at a 1-min level,
significantly outperforming the benchmark strategy and the returns of the CSI 300
Index during the same period.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords LSTM model, Arbitrage trading, Optimizing algorithm

INTRODUCTION
Quantitative trading, utilizing computer programs and mathematical models to execute
trading strategies, represents an intelligent computational technique in the field of finance
(Chan, 2021; Liu et al., 2020; Yang et al., 2021). Arbitrage strategy is a commonly used
financial quantitative strategy, based on the fundamental principle that the price trends of
multiple related financial assets are influenced by the same risk factors, thereby exhibiting a
long-term equilibrium relationship (e.g., stock price trends of companies like Intel and
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AMD, or the price trends of futures contracts for iron ore and rebar steel) (Dolado,
Jenkinson & Sosvilla-Rivero, 1990; Enders & Siklos, 2001). This long-term equilibrium
relationship is known as a cointegration relationship and can be described by the
stationarity of linear combinations of multiple price sequences. As the linear combinations
of price sequences exhibit stationarity, they possess stable statistical properties
characterized by mean-reversion features. Arbitrage strategies leverage this mean-
reversion characteristic by executing a trade when the trend of their linear combination
deviates from the equilibrium value, i.e., buying undervalued assets and selling overvalued
assets. When the trend of the linear combination reverts to the equilibrium value, the
opposite action is taken, thereby generating profits.

With the advancement of quantitative trading technology, the prevalence of
quantitative trading in various financial markets has increased significantly, making it
increasingly challenging for trades based on the same strategy to be profitable in the
market. On one hand, the cointegration relationship between price sequences of multiple
assets is sensitive to price fluctuations, and even minor fluctuations in the market can
disrupt the cointegration relationship, leading to frequent exits from trades and
subsequent losses. On the other hand, traders employing the same arbitrage strategy often
conduct numerous trades on the same assets, which can impact the cointegration
relationship between multiple related assets, causing the trend of their linear combination
to exhibit certain directional characteristics. In such cases, many strategies tend to trigger
stop-loss actions, resulting in losses. This issue has become a challenging problem in
quantitative trading (Sezer, Gudelek & Ozbayoglu, 2020).

Some studies have attempted to address this issue by incorporating trend identification
strategies into traditional arbitrage trading strategies. They determine whether to
temporarily exit trades when the cointegration relationship is disrupted based on whether
a definite upward or downward trend appears in the linear combination of multiple assets
(Cao, Li & Li, 2019; Mbiti, 2021). These studies employ conventional trend identification
methods, such as the use of multiple moving average methods (Hansun, 2013), Bollinger
Bands method (Lauguico et al., 2019), relative strength index method (Panigrahi,
Vachhani & Chaudhury, 2021), among others. However, these conventional trend
identification methods are not sufficiently accurate and are not well-suited for different
types of assets.

Recent research has also explored alternative approaches to tackle this problem. For
example, many researchers have proposed various methods based on transfer learning or
deep learning to optimize basic arbitrage strategies (Zhang et al., 2023; Nikoo, Khanagha &
Mirzaei, 2023; Zhang, Zohren & Roberts, 2020; Chen et al., 2019; Jansen, 2020). These
optimization methods demonstrate greater robustness compared to traditional trend
identification methods.

The article contributes to the field of quantitative trading by introducing a novel
arbitrage strategy optimization model using long short-term memory (LSTM) networks.
Key contributions include:

1. Developed a dynamic LSTM arbitrage (DLA) algorithm. Traditional arbitrage
strategies, when using the Engle-Granger two-step method to determine cointegration
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relationships, have strict conditions and are not sensitive enough to trends, leading to
frequent stop-loss exits and losses, as well as difficulties in achieving profits through mean
reversion when clear trends emerge. The new algorithm, by classifying price movements,
assists the Engle-Granger two-step method in intervening with trading signals,
overcoming the shortcomings of traditional methods and preventing arbitrage strategy
failures.

2. The new algorithm optimizes trading boundaries based on the maximum value of
trading frequency and single trade profit, effectively enhancing overall trading profits.

3. The effectiveness of the model has been demonstrated through backtesting, showing a
significant improvement in theoretical returns compared to benchmark strategies and the
CSI 300 Index.

The remaining sections of this article are organized as follows: “Related Works”
discusses some works that are closely related to this study. “Problem Statement”
describes the basic arbitrage strategy we designed, “The New Method” presents the new
optimization algorithm we propose, “Experimental and Results Analysis” validates the
effectiveness of our proposed algorithm by comparing it with benchmark strategy
investment results through back testing historical data. Finally, “Conclusions” concludes
the article.

RELATED WORKS
In 2004, Vidyamurthy (2004) first proposed pair trading based on cointegration tests,
laying the theoretical foundation for arbitrage trading. This method involves three key
steps: selecting target assets, usually two correlated assets influenced by the same risk
factors; using the optimized Engle-Granger two-step method for cointegration testing; and
employing non-parametric methods to optimize entry and exit thresholds. Subsequent
studies have proposed various optimization methods for arbitrage based on cointegration
tests. Lin, McCrae & Gulati (2006) selected two Australian bank stocks for empirical
analysis, adding a minimum profit constraint to the cointegration test method. Caldeira &
Moura (2013) conducted a study using Brazilian stock market data, showing promising
returns with low correlation to the stock market. Clegg & Krauss (2018) proposed the
concept of “partial cointegration” and conducted empirical analysis, finding improved
model characteristics.

Different from the cointegration method, another approach uses time series processing
techniques to optimize arbitrage trading. Elliott, Van Der Hoek * & Malcolm (2005) built a
basic theoretical framework for arbitrage trading using time series methods, employing a
mean-reverting Markov chain to describe the spread process. Further improvements to
Elliott’s model were made, like Do, Faff & Hamza (2006) assuming log differences of stock
prices follow an O-U process. Chen, Chen & Chen (2014) used regression GARCH time
series principles for arbitrage trading models and conducted empirical analysis, surpassing
previous models in terms of returns and feasibility. In 2019, Huang & Martin (2019)
developed the ECM-DCC-GARCH model, showing better performance compared to the
singular GARCH model.
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In recent years, with the widespread application of machine learning methods, many
scholars have also studied arbitrage trading optimization strategies based on neural
networks and reinforcement learning.

Sarmento & Horta (2020) presents a novel approach to pairs trading using machine
learning techniques. The study introduces a framework that combines principal
component analysis (PCA) and the OPTICS clustering algorithm for efficient pair
selection. Additionally, it explores a forecasting-based trading model using ARMA, LSTM,
and LSTM Encoder-Decoder algorithms. The research demonstrates the effectiveness of
these machine learning strategies in pairs trading, highlighting their potential to
outperform traditional methods. The study utilizes a dataset of commodity-linked ETFs,
emphasizing improved profitability and risk-adjusted returns.

Kim & Kim (2019) explores enhancing pairs-trading strategy using Deep Q-Network
(DQN), a deep reinforcement learning method. This approach incorporates dynamic
trading and stop-loss boundaries, optimizing the traditional pairs trading strategy which
usually employs constant boundaries. The study tests the effectiveness of this optimized
strategy against traditional methods, using stock pairs from the S&P 500 Index and
demonstrating improved performance. The research suggests that deep reinforcement
learning can significantly enhance financial trading strategies like pairs trading.

Brim (2020) explores the application of a deep reinforcement learning technique,
specifically the Double Deep Q-Network (DDQN), in stock market pairs trading. The
study focuses on using the DDQN to learn and predict the mean reversion patterns of
cointegrated stock pairs, thereby facilitating profitable trading decisions. It introduces a
negative rewards multiplier to adjust the system’s risk-taking behavior during training.
The research demonstrates the potential of reinforcement learning systems to effectively
execute pairs trading strategies in the stock market and suggests future applications in
other financial markets and trading strategies.

The effectiveness of methods based on traditional financial indicators is gradually
diminishing due to their increasing use in quantitative trading, making it difficult to
achieve sustained profits with trend judgment strategies that employ traditional financial
indicators. Moreover, traditional methods treat the importance of long-term and short-
term historical data equally, failing to flexibly handle the relationship between long-term
and short-term data, such as increasing the weight of recent data in trend judgment. With
the popularity of deep learning and reinforcement learning methods, LSTM networks have
gradually achieved significant results in other fields due to their ability to automatically
handle the relationship between long-term and short-term data. In the field of quantitative
trading, existing research often directly uses trend prediction results as the standard for
trading, which can easily fall into the trap of overfitting due to the complexity of market
fluctuations. A better approach is to use LSTM networks as an auxiliary basis for trend
judgment, while still obtaining trading signals using statistical arbitrage methods.

In summary, various methods exist to implement arbitrage trading strategies with
differing effectiveness. While many optimization methods for arbitrage trading exist, few
utilize LSTM models for trend classification and judgment, followed by optimization and
filtering.
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PROBLEM STATEMENT
Here we explicitly state the assumptions and limitations of this study. The assumption
involves two financial assets with strong correlations, including but not limited to stocks,
futures, etc., such as the stock price movements of Nvidia and AMD, or commodity futures
of the same kind but with different delivery months, which are influenced by the same risk
factors (such as supply and demand relationships), thus exhibiting strong correlations in
their price movements. Statistically, a linear combination of the two prices exhibits
characteristics of stationarity, known as the time series of the two prices satisfying a
cointegration relationship (Enders, 2015; Engle & Granger, 2015). When a cointegration
relationship exists, their price movements are closely aligned. If a significant deviation
occurs, it may indicate that one asset is overvalued while the other is undervalued. At this
point, arbitrage trading involves selling the overvalued asset and buying the undervalued
asset to achieve a profit. This strategy is described in detail below.

Taking the price sequences of two assets influenced by the same risk factor as an
example, let the price sequences of two strongly correlated financial assets be denoted as
xt ¼ x1; x2; . . . ; xnð Þ and yt ¼ y1; y2; . . . ; ynð Þ, then there must exist a linear
combination of their prices:

zt ¼ xt � cyt (1)

that satisfies the stationarity condition. Here, γ is the parameter of the linear combination.
In this case, the linear combination has stationary lower-order moments (variance and
mean) and exhibits mean-reverting behavior, meaning the variance and mean remain
basically unchanged, as shown in Fig. 1.

In Fig. 2, the linear combination zt of the price time series xt and yt of the two assets
demonstrates mean-reversion characteristics, causing the value of zt to fluctuate around its
mean μ. Based on the characteristics of the assets, the upper and lower volatility limits are
set as represented by Formulas (2) and (3) respectively:

Supper ¼ lþ kr (2)

Slower ¼ l� kr (3)

Here, k is asset-specific and can be set according to the volatility characteristics of
its price time series. In this article, we employ a discrete dynamic approach for setting
k values, which automatically obtains and updates the optimized k value based on the
characteristics of the trading targets. The optimization method is detailed in “The New
Method”.

In Fig. 2, when the value of zt reaches or exceeds Supper (represented by the upper blue
solid line in Fig. 2), it indicates that in the current market, the price of xt is overvalued,
while the price of yt is undervalued. At this point, we sell asset x, and buy asset y. When zt
reverts to the mean l (represented by the blue dashed line in Fig. 2), we close the position
to realize profits. Conversely, when the value of zt reaches or falls below Slower (represented
by the lower blue solid line in Fig. 2), it implies that in the current market, the price of xt is
undervalued, while the price of yt is overvalued. In this scenario, we buy asset x and sell
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asset y. Upon zt reverting to the mean l, we close the position to realize profits. The trading
process diagram for the aforementioned benchmark strategy is illustrated in Fig. 3.

To clearly define our problem, the definition of trend in this article is as follows
(Schwager, 1999): An upward trend consists of a series of higher highs and a series of
higher lows. That is, in the actual price series or moving average price series of a financial
instrument, if a series of consecutive local maximum points gradually increase, and a series
of consecutive local minimum points also gradually increase, then the price series is
considered to be in an upward trend. Conversely, a downward trend consists of a series of
lower highs and a series of lower lows. That is, in the actual price series or moving average
price series of a financial instrument, if a series of consecutive local maximum points

Figure 1 The stationarity of the linear combination of the prices of two assets. The trend of the linear combination after cointegration fitting of
cross-period rebar futures RB1901 and RB1902 of the same variety. Full-size DOI: 10.7717/peerj-cs.2164/fig-1
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gradually decrease, and a series of consecutive local minimum points also gradually
decrease, then the price series is in a downward trend. Movements outside of these trends
are referred to as consolidation or fluctuation.

When the price sequences of two assets satisfy a strict cointegration relationship,
meaning that the linear combination of their price sequences exhibits stationarity
characteristics, the above-mentioned strategy can generate profits. However, when there is
significant volatility in the futures market, for example due to the influence of supply and
demand relationships in the spot market, one of the futures prices of the two assets may
exhibit distinct volatility characteristics. In such cases, the cointegration relationship may
be disrupted, and the linear combination of the prices of the two assets may exhibit clear
upward or downward trends, no longer conforming to a Gaussian distribution. At this
point, the above-mentioned strategy becomes ineffective.

To address this issue, we have trained a neural network model based on LSTM that can
classify the trend of the linear combination of the two assets in advance. By doing so, it
enables exiting the trade before the trend arrives, thereby avoiding losses.

THE NEW METHOD
Method overview
Based on the analysis in the previous section, the reason for the difficulty in sustaining
profitability with the above strategy lies in the fact that the linear combination zt of price
sequences of multiple assets exhibits certain trend characteristics, leading to slow or non-
reverting mean reversion and triggering stop-loss actions, resulting in losses. There are
multiple reasons for this phenomenon. For instance, the price of a certain futures asset may
be influenced by short-term supply fluctuations in the spot market. When short-term

Figure 2 Schematic diagram of utilizing cointegration relationships in arbitrage trading strategy.
The principle strategy of arbitrage trading based on cointegration relationships. When the price differ-
ence between two cointegrated assets reaches the upper limit (Supper, possibly referring to the upper
threshold), traders will sell the higher-priced asset and buy the lower-priced one, anticipating that the
future price difference will narrow back to long-term equilibrium. Conversely, when the price difference
reaches the lower limit (Slower, possibly referring to the lower threshold), the trading strategy is to buy
back the previously sold assets and sell the previously bought assets, thus profiting from changes in the
price difference. Full-size DOI: 10.7717/peerj-cs.2164/fig-2
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supply is restricted, it can cause significant increases in the futures price. Additionally, an
excess of arbitrage trading in the market can also lead to significant fluctuations in futures
prices. Quantitative strategies generally struggle to capture and handle market fluctuations

Strategy start

Initialize the 

trading 

environment

Trading cycle 

begins

Data 

preprocessing

Get 

transaction 

data

Satisfy 

cointegration 

relationship?

Yes

Calculate trading 

signal thresholds

Generated a 

trading signal?

Yes

Execute trading 

order

Strategy end

No

No

Figure 3 Flowchart of the benchmark arbitrage strategy. The arbitrage trading process based on the
cointegration strategy, including data acquisition and preprocessing, determination of cointegration
relationships, judgment of trading conditions, and execution of trades.

Full-size DOI: 10.7717/peerj-cs.2164/fig-3
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caused by macro factors, thereby leading to frequent losses in the benchmark arbitrage
strategy.

To address this issue, we introduce the LSTM neural network method for trend
classification of zt . The LSTMmodel is a type of recurrent neural network model capable of
handling time series data. Our proposed model can forecast the trend of zt in advance. If it
is in a stable trend, arbitrage trading proceeds normally. When zt exhibits trend
characteristics (clear upward or downward trends), we strategically exit the trade to filter
out unfavorable trades and avoid larger losses. This forms the fundamental principle of the
optimization algorithm proposed in this article.

The LSTM-based neural network model we constructed is capable of categorizing price
movements based on historical data into upward trends, downward trends, and non-trend
movements. The general workflow of the algorithm is as follows: First, we collect historical
data for two futures and manually label segments of the data with upward and downward
trends as well as consolidation (fluctuation) trends, dividing the labeled data into training
and testing sets to train the neural network model for trend classification. In the strategy,
the neural network model assists the cointegration judgment results to intervene in the
trading signals. As previously mentioned, when determining cointegration relationships
using the Engle-Granger two-step method, this method has strict conditions for the
establishment of cointegration, often leading to the invalidation of arbitrage trading due to
minor price fluctuations.

On the other hand, the cointegration relationship is not sensitive enough to trends, so if
the Engle-Granger method concludes that the cointegration relationship still holds while
prices are in an upward or downward trend, this can also lead to losses. Therefore, the
LSTM-based neural network model can assist the Engle-Granger two-step method to
intervene in trading signals. Specifically, when the Engle-Granger two-step method
identifies a valid cointegration relationship, but the neural network model detects a trend,
it is difficult to achieve mean reversion, making profitable arbitrage trading challenging
and potentially leading to significant losses. In this case, trading is suspended and exited;
when the Engle-Granger two-step method believes the cointegration relationship is
disrupted, but the neural network model does not detect a significant trend, trading is
maintained and awaits the appearance of a selling point.

The reason for this approach is that being overly sensitive to disruptions in
cointegration relationships as per the Engle-Granger two-step method can lead to frequent
exits from trades, causing losses. Meanwhile, in the presence of a trend, even if a short-
term cointegration relationship exists, the absence of mean reversion characteristics can
still result in losses.

On the other hand, existing arbitrage trading often uses fixed trading boundaries,
SUPPER or SLOWER, as shown in Fig. 2. Their typical values are often a fixed multiple of
the variance of the linear combination of the two assets’ prices. This article proposes a
dynamically optimized trading boundary algorithm that determines the trading
boundaries dynamically based on the maximum value of the product of historical trading
frequency and single trade profit.
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Data collection and preprocessing
There are many ways to collect historical futures trading data, and many quantitative
trading platforms also provide corresponding data access interfaces or download methods,
which can be found in the descriptions of the quantitative trading platforms. This article
uses the futures quantitative data interface provided by JoinQuant (2024). In the JoinQuant
quantitative trading platform, by providing the corresponding futures instrument codes
and time range, one can obtain the relevant data for saving or direct use in the program.

In order to enable the LSTM model to accurately classify the trend characteristics of zt ,
we have selected several trading attributes. Table 1 lists some of the attributes we have
used.

Firstly, the data is manually calibrated. We identify prominent trend characteristics in
the time series data of zt and label them accordingly. The endpoint of six consecutive price
highs (where the next high is higher than the previous high) is established as the criterion
for an upward trend, while the endpoint of six consecutive price lows (where the next low
is lower than the previous low) is established as the criterion for a downward trend, with all
other states considered as oscillating trends. The first 100 data points before the
establishment of the trend are selected as training data. Data points indicating an upward
trend are labeled as 1, those indicating a downward trend are labeled as −1. The remaining
data is labeled as 0.

Due to the relatively short trading cycles and limited data volume for specific futures
contracts, the quantity of data exhibiting trend characteristics in the linear combination of
their prices is even scarcer. To address the issue of limited data, we augment the data by
introducing Gaussian noise and salt-and-pepper noise. The method for introducing
Gaussian noise to the closing price is illustrated in Formula (4).

Here, xclose tð Þ denotes the closing price of asset x at time t, x
0
close tð Þ represents the closing

price after the Gaussian noise processing, α is the scaling coefficient, and noise � Nð0; nÞ
denotes the noise.

x0close tð Þ ¼ xclose tð Þ þ a � noise (4)

Table 1 Some key attributes of the trading data used.

Property name Meaning

Open Opening price

Close Closing price

Volume1 Asset 1 trading volume

Volume2 Asset 2 trading volume

rsi Relative strength index

macd Moving average convergence divergence

hurst Hurst exponent

ma10 Moving average price with a period of 10

ma20 Moving average price with a period of 20

ma30 Moving average price with a period of 30
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Algorithm description
Based on the data size and empirical rules, we have designed a neural network model with
a five-layer perceptron structure. The first two layers are LSTM layers, and the time series
data of the two assets can be directly input into the first LSTM layer. After being processed
by the two LSTM layers, the data enters two linear layers (fully connected layers), giving
the data strong fitting capabilities. According to the calibration of the data in the previous
section, the data outcomes consist of three categories (−1, 0, 1), representing upward
trends, stable oscillation ranges, and downward trends, respectively. Therefore, the output
of the neural network is ultimately classified into these three categories through activation
by the softmax layer. The network model is illustrated in Fig. 4.

Using this LSTM-based neural network model, we classify the trends of the linear
combination of zt values and filter out unfavorable trades based on the classification
results. The optimization algorithm is presented in Algorithm 1.

Algorithm 1 requires historical and real-time trading data to drive its operation. Its
input is a trained LSTM model, and its output is trading signals. In Algorithm 1, the first
line of code initializes the trading environment, and the 2nd–28th lines are the trading
loop.

In the trading loop, first obtain the historical and real-time trading price sequences of
two assets and perform preprocessing and integration (lines 3–4). Preprocessing and
integration mainly involve completing missing values and converting the original trading
data into a format that the program can handle, such as filling in missing values. In line 5,

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

Dense

Dense

softmax

Inputi-1

output1

Inputi Inputi+1

output2 output3

Historical 

price time 

series data

Figure 4 Network model of dynamic-LSTM arbitrage. The constructed neural network model,
including two fully connected layers, two LSTM layers, and one softmax layer.

Full-size DOI: 10.7717/peerj-cs.2164/fig-4
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carry out the unit root test method on the time series data of the two assets’ prices to
determine whether there is cointegration relationship. If the cointegration relationship is
satisfied, the cointegration state is True; otherwise, it is False. In line 6, input the historical
data into the LSTM model to determine the current trend status. If the current trend is
ranging, the state value is 0; if the current trend is an upward trend, the state value is 1; if
the current trend is a downward trend, the state value is −1.

In line 8, calculate the linear combination z value of the two assets’ real-time prices. As
mentioned earlier, the z value is a linear combination of the two prices. When the
cointegration relationship is satisfied, the value of the time series should approximately
satisfy the Gaussian distribution and be stationary. In line 9, determine whether the
current position is empty. If it is empty, you can open positions. Lines 10–18 perform open
positions operations, and judge whether the z value meets the opening conditions. When
the z value is greater than the upper limit of volatility, sell asset X and buy asset Y. When
the z value is less than the lower limit of volatility, buy asset X and sell asset Y.

Lines 19–20 are risk control operations. When the cointegration relationship no longer
exists and the historical price sequence data of both assets has changed from ranging state
to trend state, the trading condition has no longer been met, and it is necessary to close

Algorithm 1 Dynamic-LSTM arbitrage algorithm.
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positions and exit the market to avoid risks. Here, the “AND” connection of two parallel
conditions is used because the sensitivity of the cointegration condition to small
fluctuations in prices is relatively high; while the judgment of the trend also has a certain
probability of being wrong, so by arranging the two conditions in parallel, it can avoid
frequent liquidation and loss caused by frequent closing positions.

Lines 21–27 are stop profit and close position operations. When the linear combination
z value of the two assets X and Y returns to the mean value, clear the position to get profits.

In Formulas (1) and (2), the value of λ is used to determine the trading boundary
ðSupper; SlowerÞ. Its setting is crucial. When the value is set too large, the trading
boundary is too wide, making it difficult to meet the trading conditions, leading to a lower
trading frequency and a smaller order volume. When the value is set too small, the
trading conditions are easily met, resulting in a narrower trading boundary and
increased trading frequency. However, the profit margin for each trade is low, and may
not even cover the transaction costs. Therefore, selecting an appropriate value for λ is
crucial.

Based on the optimization method for boundary values (Zhao & Palomar, 2018), for
ease of implementation in the program, we design a discrete boundary value optimization
algorithm to dynamically determine the appropriate value for λ. The principle of the
algorithm is to determine the optimal λ value from a series of discrete λ values by
maximizing the trading profit. The formula for calculating the optimized λ is shown in
Formula (5). The algorithm process is illustrated in Algorithm 2.

koptimal ¼ argmaxðki � tradetimes � transactionfeeÞ: (5)

Algorithm 2 can calculate the optimized trading boundary based on different assets. In
Algorithm 2, the first two lines set up two arrays: the lambdas array represents all possible
alternative λ values from 0.5 to 4.0, which means the fluctuation range of the current asset
linear combination is from mean ± 0.5 times the standard deviation to mean ± 4 times the
standard deviation, as shown in Formulas (2) and (3). The trading_times array has the

Algorithm 2 Transaction boundary optimization algorithm.
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same length as the lambdas array, and it is used to count the number of transactions that
each candidate λ value can trigger. When λ takes a smaller value, the conditions for
triggering transaction signals are relatively loose, so there are more transactions triggered
but less profit per transaction; conversely, when λ takes a larger value, the conditions for
triggering transaction signals are relatively strict, and fewer transactions are triggered but
more profit per transaction.

The for loop from line 3 to line 10 calculates the linear combination z value for each pair
of values in the historical trading time series data of the two assets, and determines whether
each candidate meets the trading condition based on the z value. When the trading
condition is met, the corresponding λ value’s transaction count is increased by 1. This loop
can count howmany times each candidate λ value triggers transactions in the current price
time series data.

The 11th line is a broadcast operation. It calculates the optimal λ value that
can obtain the maximum profit by multiplying the transaction count of each λ value by its
single-transaction profit and subtracting the transaction cost required for trading. This
optimized λ value is related to the specific asset, and different assets have different
optimal λ values due to their different volatility characteristics. Moreover, the calculation
of the optimal λ value is dynamic and changes over time. Once the optimal λ value is
calculated, the optimal trading boundary can be calculated according to Formulas (2)
and (3).

Through Algorithm 2, an optimized λ value can be calculated using historical
trading data when the trading strategy is initiated. This helps to achieve a balance between
the number of transactions and single-transaction profits, thereby increasing trading
profits.

EXPERIMENTAL AND RESULTS ANALYSIS
JoinQuant (2024) is a quantitative investment research platform that provides the
following functions: writing quantitative trading strategies based on Python, strategy
backtesting based on historical trading data, simulated trading based on real trading
data, etc. JoinQuant supports various financial instruments such as Chinese A-shares,
exchange-traded funds, margin trading, commodity futures, and financial futures. It also
provides a Python programming environment, data access APIs, strategy development
tools, and more. The training of neural network models can be performed locally, with the
local computer equipped with an i7-12700H processor, 32 GB of memory, and an
Nvidia A2000 GPU. Backtesting experiments were completed on the JoinQuant
platform. The specific software and hardware information of the local computer is
shown in Table 2.

Training of the LSTM neural network model
We used the RB1901 and RB1902 futures data from October 2018 to train the neural
network, using 1-min period data. The neural network model training employed a learning
rate of 0.0001, and the cross-entropy loss function was used due to the nature of the
classification problem. During the training process, 100 sets of data were randomly
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Figure 5 Change of loss under different training epochs. (A) Epochs = 50 (B) Epochs = 80 (C) Epochs = 100 (D) Epochs = 120.
Full-size DOI: 10.7717/peerj-cs.2164/fig-5

Table 2 Local computer software and hardware information.

Name Type/Version

CPU 12th Gen Intel(R) Core(TM) i7-12700H, 2.30 GHz

RAM 32 GB

GPU Nvidia A2000

Operation system Microsoft windows 10

Python 3.11

Numpy 1.24.3

Pandas 2.0.3

Pytorch 2.1.0
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selected for batch training in each iteration. To observe the model’s generalization ability
and avoid underfitting and overfitting, we used four different training epochs: 50, 80, 100,
and 120. The results of the neural network model training are shown in Fig. 5.

Figure 5 shows the changes in average loss of the model on the training set and test set
during the training process. It can be observed from the figure that the loss of the model
decreases significantly with the increase in training epochs.

Figure 6 depicts the changes in the accuracy of the LSTM-based neural network model
on the training set and the test set as the training process progresses. It can be observed
that the accuracy of the model gradually increases with the training process, indicating the
absence of overfitting. The final model achieves an accuracy of 82.5% on the training set
and 80.8% on the test set, implying that in arbitrage trading, when multiple assets exhibit
significant trend characteristics in their linear combinations, the model is expected to halt
trades with an accuracy of 80.8%, thus avoiding larger losses due to stop-loss strategies.

Figure 7 shows a partial classification result of the LSTM model. In a scenario of three
categories, the figure uses red, yellow, and green to classify uptrend, consolidation trend,
and downtrend respectively. The figure indicates that the three categories generally align
with the observed results.

Figure 6 The changes in the model’s classification accuracy on the training and testing sets during the training process. The changes in the
accuracy of the LSTM-based neural network model on the training set and the test set as the training process progresses. It can be observed that the
accuracy of the model gradually increases with the training process, indicating the absence of overfitting. The final model achieves an accuracy of
82.5% on the training set and 80.8% on the test set, implying that in arbitrage trading, when multiple assets exhibit significant trend characteristics in
their linear combinations, the model is expected to halt trades with an accuracy of 80.8%, thus avoiding larger losses due to stop-loss strategies.

Full-size DOI: 10.7717/peerj-cs.2164/fig-6
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Figure 7 Example of classification results, where red represents an uptrend, yellow indicates a consolidation trend, and green signifies a
downtrend. Full-size DOI: 10.7717/peerj-cs.2164/fig-7
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Backtesting experimental results
We utilized the JoinQuant platform (JoinQuant, 2024) for testing the profitability of the
new DLA algorithm. Additionally, we used the benchmark strategy (BA) described in
“Problem Statement” and the profit curve of the CSI 300 index during the same period for
comparison. Both strategies were backtested using the trading data of RB1901 and RB1902
from November 1, 2018, to November 10, 2018 (7 trading days in total), with a data
frequency of 1 min and an initial trading amount of 1 million RMB. The test results are
illustrated in Fig. 8. It can be observed from Fig. 8 that the strategy enhanced by the new
algorithm exhibits a significant improvement in profitability, effectively avoiding losses in
arbitrage trading caused by trends.

The results shown in Fig. 8 demonstrate the advantages of the LSTM-based algorithm.
The reason for the algorithm’s better performance is that when the benchmark algorithm
uses the Engle-Granger two-step method to judge cointegration relationships, the
conditions for establishing cointegration are quite strict, resulting in a higher frequency of
cointegration not being established, which leads to frequent stop-losses and losses in
trading. On the other hand, the new algorithm classifies trends, and when the price
movement is in an upward or downward trend, it is difficult to achieve mean reversion at
this time, so exiting the trade avoids greater losses. On the other hand, optimizing trading
boundaries also contributes to enhancing overall trading profits.

It is important to note that the trading on the JoinQuant platform and actual trading
may not be entirely consistent, as there can be differences in the execution of transactions
and the matching algorithms compared to the real environment. Therefore, while the
returns in Fig. 6 may differ from real market returns, they still reflect the difference in
profitability between the new algorithm and the benchmark strategy.

Figure 8 Cumulative return rate backtested on JoinQuant platform.
Full-size DOI: 10.7717/peerj-cs.2164/fig-8
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CONCLUSIONS
While the proposed Dynamic-LSTM Arb (DLA) strategy demonstrates promising results
in enhancing quantitative arbitrage trading, this study acknowledges several limitations
that may influence the generalizability and applicability of the findings.

Firstly, the effectiveness of the DLA strategy is tested under specific market conditions
and with a selected dataset comprising of futures trading data for hot-rolled coil and rebar
steel. Therefore, the performance of the DLA strategy in different market conditions, with
other financial instruments, or across diverse time periods may vary and requires further
investigation.

Secondly, the study assumes a strong correlation between the two financial assets under
consideration, such as the stock prices of Nvidia and AMD, or commodity futures of the
same kind but with different delivery months. This assumption may not hold in all trading
scenarios, especially in volatile or rapidly changing markets where the correlation between
assets can weaken or become unpredictable over time.

Furthermore, the implementation of the DLA strategy relies heavily on LSTM neural
networks’ ability to classify and predict trend characteristics accurately. While the model
achieves an accuracy of over 80% in trend classification, there is an inherent limitation in
using machine learning models, including the potential for overfitting to historical data
and the challenge of capturing the full complexity of market dynamics.

Lastly, the study does not fully explore the impact of transaction costs, slippage, and
market liquidity on the profitability of the arbitrage strategy. These factors can significantly
affect the net returns of trading strategies in real-world scenarios and should be considered
in future research to provide a more comprehensive assessment of the DLA strategy’s
viability.
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