
A priority experience replay actor-critic
algorithm using self-attention mechanism
for strategy optimization of discrete
problems
Yuezhongyi Sun and Boyu Yang

School of Computer Science and Technology, Harbin University of Science and Technology,
Harbin, Heilongjiang Province, China

ABSTRACT
In the dynamic field of deep reinforcement learning, the self-attention mechanism
has been increasingly recognized. Nevertheless, its application in discrete problem
domains has been relatively limited, presenting complex optimization challenges.
This article introduces a pioneering deep reinforcement learning algorithm, termed
Attention-based Actor-Critic with Priority Experience Replay (A2CPER). A2CPER
combines the strengths of self-attention mechanisms with the Actor-Critic
framework and prioritized experience replay to enhance policy formulation for
discrete problems. The algorithm’s architecture features dual networks within the
Actor-Critic model—the Actor formulates action policies and the Critic evaluates
state values to judge the quality of policies. The incorporation of target networks aids
in stabilizing network optimization. Moreover, the addition of self-attention
mechanisms bolsters the policy network’s capability to focus on critical information,
while priority experience replay promotes training stability and reduces correlation
among training samples. Empirical experiments on discrete action problems validate
A2CPER’s adeptness at policy optimization, marking significant performance
improvements across tasks. In summary, A2CPER highlights the viability of self-
attention mechanisms in reinforcement learning, presenting a robust framework for
discrete problem-solving and potential applicability in complex decision-making
scenarios.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence
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INTRODUCTION
Deep reinforcement learning (DRL) remains a central subfield within artificial intelligence,
continuously attracting research interest (Ladosz et al., 2022). Central to DRL is the goal of
empowering intelligent agents with optimal decision-making capabilities in dynamically
evolving environments (Li, 2023;Diallo & Padilla, 2018). These agents actively engage with
their surroundings, with deep neural networks guiding their decisions and actions (Osband
et al., 2016). Among the various algorithms in DRL, the Actor-Critic (AC) algorithm is
recognized as a prominent and effective approach (Kubo, Chalmers & Luczak, 2022).
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This quintessential methodology in DRL leverages the strengths of policy networks
(Actors) and value function networks (Critics), providing a robust framework for
addressing the field’s multifaceted challenges (Yang et al., 2021). In the AC algorithm, the
policy network develops action strategies, while the value function network estimates the
states or state-action pairs, guiding the iterative improvement of policies (Wei et al., 2022).
This synergy endows the AC algorithm with significant adaptability and generalization
capabilities in learning tasks (Kapoutsis et al., 2023).

However, traditional AC algorithms have encountered certain limitations, especially
when dealing with discrete problems. These limitations primarily arise from the policy
network’s insufficient modeling capacity to capture inter-state correlations and the
inherent inefficiencies of training within large state spaces (Ciosek et al., 2019). To
overcome these challenges, our study integrates the self-attention mechanism (Shaw,
Uszkoreit & Vaswani, 2018) into the AC algorithm to enhance the representational
capacity and improve the policy network’s learning efficacy.

Originally a powerful tool in natural language processing, the self-attention mechanism
has shown exceptional versatility across various data types and tasks (Gou et al., 2022). Its
core concept allows the model to dynamically prioritize different aspects of the input data,
thus facilitating a deeper understanding of essential information. By incorporating the self-
attention mechanism, our goal is to strengthen the AC algorithm, enabling it to better
adapt to discrete problems and enhance the policy’s generalization capacity (Niu, Zhong &
Yu, 2021).

In addition to the self-attention mechanism, there are many excellent algorithm ideas
worth learning from, such as COA (Catfish Optimization Algorithm), ROA (Raven
Optimization Algorithm), and DHHO (Dynamic Harris Hawks Optimization). Each of
these algorithms introduces unique strategies and mechanisms that can be synergistically
integrated with DRL approaches to tackle complex problem-solving scenarios more
effectively.

The Crayfish Optimization Algorithm (COA) (Jia et al., 2023), inspired by the hunting
behavior and dynamic grouping of crayfish, excels in exploring vast and complex search
spaces rapidly, making it particularly useful for environments where the state space
explodes in dimensionality. This algorithm enhances the efficiency of exploring new states,
potentially reducing the time required for an intelligent agent to learn optimal policies.

Similarly, the Remora Optimization Algorithm (ROA) (Jia, Peng & Lang, 2021),
drawing inspiration from the intelligence and adaptability of remoras, provides
mechanisms for dynamic adaptation to changing environments. This adaptability is
crucial for DRL applications where the environment’s dynamics are unpredictable,
requiring algorithms that can adjust their strategies in real time.

Lastly, the DHHO algorithm (Jia et al., 2019), based on the cooperative behavior and
tactical precision of Harris hawks, offers refined search capabilities and convergence
properties. Its dynamic adjustment of exploration and exploitation phases makes DHHO
exceptionally suitable for balancing between diversification and intensification strategies in
policy optimization (Heidari et al., 2019).
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By incorporating elements from these algorithms—COA’s rapid exploration, ROA’s
adaptive capabilities, and DHHO’s balanced search dynamics—into the AC framework, we
can significantly enhance the model’s performance. These integrations allow for a more
nuanced understanding and exploitation of the environment, ultimately leading to more
robust and effective policy development.

This article’s main contributions include the proposal of an AC algorithm augmented
by the self-attention mechanism for optimizing policies in discrete problem domains
(Wang et al., 2016). We empirically demonstrate its superior performance on discrete tasks
compared to traditional AC algorithms. Additionally, we explore potential applications
and future research directions of the self-attention mechanism within the realm of
reinforcement learning.

RESEARCH BACKGROUND
Actor-critic algorithm
Actor-Critic Algorithm (Konda & Tsitsiklis, 1999): In the realm of reinforcement learning,
the Actor-Critic (AC) algorithm is recognized as a fundamental methodology (Siyao et al.,
2022; Lowe et al., 2017). It divides the intelligent agent into two core components: the
Actor, which is the policy network and the Critic, which is the value function network. The
Actor’s role is to design action policies and guide decision-making. It continually refines its
parameters through ongoing interactions with the environment, aiming to enhance action
selection efficiency and maximize rewards. In contrast, the Critic estimates the values of
states or state-action pairs and evaluates the quality of the policy by striving to develop an
accurate value function.

The synergy between the Actor and the Critic is of paramount importance within the
AC algorithm (Yang et al., 2021). The Actor relies on the Critic’s value estimations to
inform its policy improvement efforts, favoring actions that are more likely to yield
significant rewards. As the training process progresses, the agent interacts with the
environment by observing states, executing actions, and collecting rewards. The Actor uses
the actions suggested by the current policy, while the Critic uses the environment’s reward
signals to evaluate state values (Wang, Zeng & Shang, 2023). In this dynamic interaction,
the Actor adjusts the policy to maximize expected cumulative rewards, and the Critic
refines the value function, aiming to minimize estimation errors. This collaborative process
drives the AC algorithm forward (Jia & Zhou, 2022), enabling iterative improvements in
policy performance that align with the environmental demands and the complexities of the
task. The update formula for the value function network (Critic) is as follows:

L uð Þ ¼ E Q s; a; uCriticð Þ � rþ gV s0; uCriticð Þð Þ2
h in o

(1)

Among them: Qs; a; uCriticð Þ: The Q-value function predicted by the Critic for the
current state-action pair s; að Þ, parameterized by u thetað Þ.

rþ gV s0; uCriticð Þ: The target value, which is the sum of:
r: The immediate reward after taking action in state s.
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gV s0; uCriticð Þ: The discounted value of the next state s, as estimated by the Critic.
g gammað Þ is the discount factor, which quantifies the difference in importance between

future rewards and immediate rewards. V s0; uCriticð Þ is the value function for the next state
s0, also parameterized by u.

The loss function L uð Þ aims to adjust the parameters u of the Critic network to
minimize the difference between the predicted Q-values and the target values (the sum of
the immediate reward and the discounted value of the next state). Minimizing this loss
results in a critique that better approximates the true Q-values of the policy being
evaluated.

The operation proceeds as follows:
For each sample (or batch of samples), compute the Critic’s Q-value prediction

Q s; a; uCriticð Þ for the current state-action pair.
Calculate the target value rþ gV s0; uCriticð Þ for the next state, combining the immediate

reward and the value of the next state discounted by the factor g.
Compute the square of the difference between the Q-value prediction and the target

value.
Take the expectation (average over a batch or samples) of the squared differences, which

gives us the value of the loss function L uð Þ.
Perform gradient descent or another optimization algorithm to adjust θ in a way that

minimizes L uð Þ.
In summary, the Actor-Critic (AC) algorithm utilizes the strengths of policy search and

value function estimation by facilitating cooperation between the Actor and Critic
networks. This cooperative dynamic allows the AC algorithm to perform robustly across
various reinforcement learning tasks, efficiently optimizing policies in complex and high-
dimensional environments.

However, AC algorithms face several challenges (Fujimoto, Hoof & Meger, 2018).
Training instability is a prime issue, especially with complex tasks and high-dimensional
state spaces, where policy updates can dramatically shift expected outcomes, introducing
volatility and potential bias. Additionally, AC algorithms often require many samples to
train the policy and value function networks effectively, making them resource-intensive
for extensive training environments. The algorithms also heavily depend on the precision
of the value function estimations; inaccuracies here can negatively affect policy
improvements. Moreover, adapting AC algorithms to discrete action spaces typically
necessitates specialized optimizations.

Our research seeks to incorporate the self-attention mechanism, a tool that has gained
prominence in deep learning, to improve the performance of the AC algorithm. This
mechanism allows models to dynamically concentrate on relevant information, thus
improving the efficiency of information utilization. Integrating self-attention into the AC
framework aims to bolster the policy network’s ability to handle high-dimensional states
and intricate tasks more effectively.

We also plan to implement priority experience replay to enhance training efficiency and
stability. Furthermore, we will apply techniques such as target network updates, gradient
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clipping, and loss function optimization to significantly boost the AC algorithm’s
generalization and robustness.

Self-attention mechanism
In the context of the A2CPER algorithm introduced in this article, the primary foundation
of the self-attention mechanism revolves around the utilization of the QKV (Query, Key,
and Value) methodology (Wang et al., 2022). This approach comprises three key elements:

Query: The Query, whether in the form of a vector or matrix, serves as a tool to identify
specific points of interest within the data. Its crucial role lies in governing the calculation of
attention weights. Essentially, the Query acts as a directive, indicating which information
deserves heightened attention in the current context (Ding, Han & Guo, 2021). Key: The
Key, similarly represented as a vector or matrix, functions as a comparative element
regarding both the Query and the Value. It plays a pivotal role in assessing the significance
and relevance of each piece of information. Value: The Value, often represented as a vector
or matrix, encapsulates the factual information, typically derived from the input or the
hidden state of the current time step. This information represents the content that is
intended to be transmitted to the output (Zhang et al., 2021).

The fundamental principle underpinning the attention mechanism is the
assignment of varying weights to the Value contingent upon the degree of matching
between the Query and the Key. In this manner, the mechanism effectively determines
which information merits heightened attention and retention within the prevailing
context. Specifically, the calculation of the attention mechanism can be expressed by
the following formula:

Attention Q;K;Vð Þ ¼ softmax
Q � KTffiffiffiffiffi

dk
p

� �
V (2)

Among them: Attention Q; K; Vð Þ: This is the attention function that takes three
inputs: Q (queries), K (keys), and V (values). The function computes a weighted sum of
the values (V), where the weight assigned to each value is determined by the query with the
corresponding key.

Q: Queries are a set of vectors that we want to compute attention for. In the context of
sequence tasks, these can be the representations of the current word or element for which
we are trying to determine context. K: Keys are another set of vectors that are paired with
the values. They are used to compute the attention weights. V: Values are the vectors that
we want to focus on. Once the weights are determined by the compatibility of Q and K,
these weights are applied to the values. Q; K; and V signify queries, keys, and values
respectively—these are vectors representing the inputs in our model. The queries embody
the current element we seek to elucidate, Keys are paired with values which contain the
actual information from the input sequence we want to draw from.

The dot product Q � KT measures similarity; here, KT is the transpose of K, facilitating
the alignment in dimensions necessary for the product operation. This similarity dictates
the degree of ‘attention’ the queries should allocate to each value.
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The resultant scores are scaled down by the factor of
ffiffiffiffiffi
dk

p
, where dk is the

dimensionality of the key vectors. This scaling counters the potential vanishing gradients
problem by mitigating the impact of large dot product values which can result from high-
dimensional spaces.

Finally, a softmax function is applied, converting the scaled scores into a probabilistic
distribution—ensuring the attention scores across the sum of the values to one. This
distribution is then utilized to compute a weighted sum of the values, thereby producing an
output that signifies the input elements’ contextual representation.

In our model development, we specifically employ Xavier initialization, an approach
demonstrably effective in optimizing the learning of neural network weights.

This method sets the stage for an enhanced learning trajectory of our attention-based
strategies. According to Xie et al. (2023). the algorithmic construct for distributing
attention weights emphasizes the amplification of operations pivotal to the core tasks of
the model. Such prioritization is crucial for magnifying the impact of operations with
measurable outcomes, enhancing model performance. Conversely, operations contributing
to less critical tasks or associated with suboptimal outcomes receive proportionally
diminished attention weights. This stratified allocation of weights is instrumental in
situating the initial parameters within a conducive range for rapid convergence, facilitating
an expedited and efficient training phase. Our attention reward formula, devised to reflect
these principles, is optimized for task-centric weight distribution:

Attention Scores ¼ QWq
� � � WkKT

� �
sqrt dkð Þ (3)

Among them: QWq
� �

: This term represents the matrix multiplication of Q (queries)
with Wq, the weight matrix associated with queries. Q encapsulates the input vectors that
the model seeks to elucidate, and Wqis a learnable parameter matrix that transforms the
queries into an appropriate space for subsequent operations.

WkKT
� �

: Similarly, Wk is the weight matrix corresponding to K (keys) and

WkKTdenotes its transpose. The keys are vectors that, in conjunction with the queries, will
determine the attention distribution over the values.

QWq
� � � WkKT

� �
: This operation signifies the dot product between the transformed

queries and the transposed transformed keys, which calculates the alignment scores
between them. In the Transformer model, these scores reflect the extent to which each
element of the queries should attend to each element of the keys.

sqrt dkð Þ: Here, dk denotes the dimensionality of the key vectors. The square root of this
value is utilized as a scaling factor to moderate the magnitude of the dot product scores,
thereby averting potential issues with gradient descent optimization such as gradient
vanishing or explosion. This scaling is particularly critical in high-dimensional spaces
common in complex models.

The formula can thus be read as: The attention scores are the result of a scaled dot
product operation between the transformed queries and keys. These scores are
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subsequently used in the softmax step to obtain the final attention weights, which are
applied to the values (V) in the attention mechanism.

The linear transformations applied to Q (queries) and K (keys) facilitate the model’s
ability to project input states into the corresponding query and key spaces. These
transformations are instrumental in capturing the correlations between states. The terms

QWq andWkKT denote the resultant vectors from the linear transformation of queries and

keys, respectively. When multiplied, they yield the attention scores. A pivotal aspect of this
optimization framework is the incorporation of learnable weight matrices Wq and Wk,
enabling the model to adaptively refine the weighting of queries and keys, thus enhancing
the calculation of attention scores. This adaptability of the weight matrices allows the
model to autonomously fine-tune attention allocations in response to task-specific
demands. The factor

ffiffiffiffiffi
dk

p
serves as a normalizing constant, scaling the attention scores to

mitigate against excessively large gradients, thereby preserving numerical stability. Both
the SelfAttention layer within the policy network and the value function network are
interfaced with a fully connected layer, designated as ‘fc1’. This layer is tasked with
transforming the input state to match the input dimensionality required by the
SelfAttention layer, enabling the model to learn an efficient mapping from states to their
self-attention representations.

Priority experience replay
Recognizing the suboptimal efficiency of the sampling mechanism in Actor-Critic (AC)
algorithms, we have integrated a Priority Experience Replay (PER) strategy to enhance
sampling efficacy, as suggested by Schaul et al. (2015). Central to the PER methodology
is the principle of preferential replay of experience tuples, whereby experiences are
assigned priority levels that influence their probability of being replayed during training.
High-priority samples, as they possess a greater probability of selection, disproportionately
inform the learning process, thereby expediting convergence and augmenting algorithmic
efficiency (Gong et al., 2022).

To refine this priority-based sampling methodology, we introduced several
optimizations:

Priority assignment: Each experience is allocated a priority score that quantifies its
perceived relevance to the learning context.

Analysis and weighting: Post initial sampling, an assessment of priority levels is
conducted. The resultant priority scores are used to adjust the weighting of
experiences within the replay buffer, prioritizing those with greater relevance to the
learning process.

Data selection: A judicious selection process is then employed, wherein data with
higher weighted priorities are preferentially chosen for training iterations. This ensures
that experiences with significant learning value are given precedence in the training
regimen.

Employing the PER approach as delineated addresses the inherent inefficiencies of
traditional sampling in AC algorithms and propels the model towards swifter convergence
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and improved performance outcomes (Wei et al., 2022). The formula for calculating
priority weights is presented as follows:

Priority ¼ TDj j þ e �W (4)

Among them: Priority: This term refers to the importance or relevance assigned to an
individual experience tuple, determining the likelihood that it will be replayed during
training. A higher priority increases the chance of an experience being selected for replay,
thereby exerting a greater influence on the model’s updates.

TDj j: The absolute value of the temporal difference TDj j error. In reinforcement
learning, the the TDj j error represents the difference between the predicted value of a
particular state-action pair and the actual reward received plus the predicted value of the
subsequent state. It is an indicator of the surprise or unexpectedness of an experience—
larger errors imply that the experience has more to teach the agent.

e: A small positive constant, often referred to as a smoothing term or ‘epsilon’. This
ensures that no experience has a zero probability of being replayed, thus maintaining
exploration and preventing the model from becoming overly deterministic in its sampling.

W: This term represents a weighting function in the priority calculation. It encapsulates
additional considerations that might influence the importance of an experience beyond the
TD error.

The formula can be explained as follows: The priority of an experience is determined
primarily by the magnitude of its TD error, which signifies how much the experience can
potentially contribute to the agent’s learning. The small constant e ensures that all
experiences have some non-zero probability of being selected. The term W indicates a
supplementary weighting strategy, which could be used to incorporate additional
considerations into the priority score.

When applied, this formula equips the learning agent with a strategy to focus on
experiences that are likely to yield the most substantial learning progress, as well as
maintain a degree of stochasticity and diversity in the experiences it revisits (Wu et al.,
2023). This balance accelerates learning and helps to ensure that the agent does not become
trapped in local optima, a common pitfall in machine learning optimization. The
weighting method uses the empirical attributes of the collected samples and weights the
error values to reduce the impact of sample randomness on the experiment.

Target network
To augment the stability and efficacy of the Actor-Critic (AC) algorithm, the A2CPER
framework has been endowed with a target network mechanism. This innovation delays
the parameter updates within both the Actor and Critic networks, fulfilling two critical
objectives: it strengthens the algorithm’s stability and reinforces the robustness of the
training dynamics (Miller, Xiang & Kesidis, 2020).

In the realm of deep reinforcement learning, the target for training is often a moving
goalpost, imbued with inherent volatility that can precipitate instability throughout the
learning process. Our strategy to counteract this challenge involves the implementation of
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staggered parameter updates. Here, the Actor and Critic networks’ parameters are
recalibrated by the gathered training data, albeit with a strategic temporal offset. While the
updates persist in alignment with the trajectory of the training, they are executed in a
manner that significantly dampens oscillations and curtails the propagation of erroneous
learning signals (Miller, Xiang & Kesidis, 2020).

The introduction of a fixed temporal window during which the target network remains
static engenders a stable and consistent training target. Such stabilization is instrumental in
diminishing the risk of instability and in reducing the prevalence of approximation errors.
Collectively, these modifications enhance the performance and dependability of the
A2CPER algorithm. The target network update formula is as follows:

utarget ¼ a � s � hcurrent þ 1� að Þ � utarget (5)

Among them: utarget: These represent the parameters of the target network, which are
used to compute the target values against which the current network’s predictions are
evaluated.

ucurrent: These are the parameters of the current network, which are being actively
updated through backpropagation in response to the learning signal.

a: This is the interpolation parameter, often a small value close to 0. It dictates the rate
at which the target network parameters are updated. A smaller value of ameans the target
parameters will change more slowly, thereby smoothing out learning and enhancing
stability.

The formula can be interpreted as follows: The updated target network parameters
(utarget) are a weighted combination of the previous target network parameters and the
current network’s parameters. The weighting is controlled by a, allowing for a controlled
rate of change. This results in a controlled progression of target values, which helps the
learning process by providing stable, slowly moving targets. This is especially important in
complex environments where the learning signal can be noisy or the optimization
landscape can be rugged.

The weighting factor we use is a value between 0 and 1. It is used to control the weight
distribution between the current network parameters (ucurrent) and the target network
parameters (utarget). Specifically: when a ¼ 0, the update in the formula only depends on
the target network parameters, the current network parameters have no effect, so the entire
update is a basic soft update. When a ¼ 1, the update in the formula only depends on the
current network parameters and the target network parameters have no effect, which is
equivalent to a complete hard update. When 0 , a , 1, the update is affected by a trade-
off between the two network parameters, that is, both the current network and the target
network participate in the update. The purpose of the improved target network update
formula in this article is to achieve more flexible parameter updates by mixing current
network parameters and target network parameters. By adjusting the value of a, you can
control the weight distribution between the current network and the target network,
thereby balancing the stability of training and the speed of learning.
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Gradient clipping
In addition to these mechanisms, gradient clipping is employed as a stabilizing technique
in deep reinforcement learning. Its primary purpose is to curtail the magnitude of the
gradient, thereby averting the detrimental impacts of gradient explosions and bolstering
training stability. Within the A2CPER framework, the estimation of the policy gradient is
computed as follows.

rJ uð Þ � 1
N

XN

i¼1
ru log p

ai
si

� �� �
� Ri (6)

Among them: rJ uð Þ: This represents the gradient of the performance measure J
concerning the policy parameters u. The performance measure J is typically the expected
cumulative reward. The gradient indicates the direction in which the parameters should be
adjusted to increase the expected reward.

1
N
: This term represents the average over N sampled episodes. Averaging across multiple

samples is crucial to reduce the variance of the gradient estimate and improve the stability
of learning.PN

i¼1ru: This is the summation of the N episodes, each contributing to the estimate of

the gradient.

ru log p
ai
si

� �� �
: The logarithm of the policy p, which outputs the probability of taking

action ai given state si, is differentiated concerning u. The log probability is used because it
is more mathematically tractable and because its gradient is more informative than the
probability itself.

Ri: This is the cumulative reward received in the i-th episode. It serves as a scalar value
that modulates the parameter update—episodes with higher rewards will have a larger
impact on the direction of the gradient.

The policy gradient formula as a whole represents an expectation over the product of
the log probability of the policy’s actions and the cumulative reward. By taking steps in the
direction of this gradient, the policy’s parameters are adjusted to increase the likelihood of
actions that lead to higher rewards.

The Critic network uses a policy gradient to calculate the gradient. The calculation
formula is as follows:

rJ uð Þ ¼
X

ru log p
a
s

� �� �
� A s; að Þ

h i
(7)

Among them: rJ uð Þ: This denotes the gradient of the performance objective J
concerning the policy parameters u. Objective J is typically defined as the expected return,
and this gradient points in the direction of increasing the expected return.

The summation symbol indicates that the calculation involves a sum over all
state-action pairs s; að Þ encountered in the environment, weighted by the gradient of the
log-probability of the policy p

a
s

� �
concerning the policy parameters u.
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ru log p
a
s

� �� �
: This is the gradient of the log probability of selecting action a in state s,

according to the current policy p. The use of the logarithm simplifies the gradient
calculation due to the log-derivative trick, and it can lead to more stable updates.

A s; að Þ: This represents the advantage function at state s and action a, which estimates
how much better it is to take a particular action in the state s compared to the average
action at that state. The advantage function is central to variance reduction techniques in
policy gradient methods.

The formula suggests that the parameter updates of the policy are proportional to the
product of the advantage function and the gradient of the log probability of the policy. By
scaling the updates with the advantage, the algorithm focuses on increasing the probability
of actions that yield higher-than-average returns, effectively guiding the policy towards
more profitable behaviors.

The function of gradient clipping is to trim the gradient of the model to ensure that the
range of the gradient is within an appropriate threshold to prevent training instability
caused by excessive gradient values. Gradient explosion may lead to large updates of
parameters, making the training process unable to converge. The purpose of adding
gradient clipping is that if the norm of the sampling calculation gradient exceeds the set
threshold (maxgradnorm), the gradient will be scaled so that its norm does not exceed the
threshold. This can avoid gradient explosion and maintain the stability of training. The
gradient clipping formula is as follows:

gclipped ¼ clip g;�maxgradnorm ;maxgradnorm
� �

(8)

Among them: gclipped: This represents the clipped gradient, which is the modified
gradient after the clipping operation has been applied.

clip: This is the clipping function that limits the value of the gradient to a defined range.
It takes the original gradient and a specified clipping threshold as inputs.

g: The original gradient computed concerning the model’s loss function.
maxgradnorm : This term defines the maximum norm allowed for the gradient. If the norm

of the gradient exceeds this value, the gradient will be scaled down to meet this threshold.
The formula indicates that if the norm of the gradient g is greater than maxgradnorm , then

the gradient is scaled back to this maximum allowable norm. The purpose of this operation
is to ensure the updated gradient does not exceed a magnitude that could destabilize the
learning process. By capping the gradient, we can maintain control over the optimization
trajectory, making it less likely to experience erratic updates, which is especially beneficial
in scenarios with highly non-linear objective functions.

Loss strategy optimization
The loss function constitutes a cornerstone in the optimization framework of Actor-Critic
(AC) algorithms, and within the scope of A2CPER, it is bifurcated into two essential
constituents: the policy loss and the value function loss. The policy loss, frequently termed
the strategy loss, is instrumental in refining the Actor’s network. It achieves this by
endeavoring to amplify the expected cumulative reward, relying fundamentally on the log
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probability of the selected actions as inferred from the policy network's probabilistic
outputs.

This log probability is juxtaposed with the advantage function, which delineates the
expected improvement of the chosen action over the baseline strategy. The discrepancy
thus evaluated serves as an indicator of the Actor’s performance, guiding the optimization
process. The computational expression for the strategy’s performance function is
delineated as follows:

J uð Þ ¼ E
XT

t¼0
st
Rt

pu

	 

(9)

Among them: J uð Þ: The performance objective function of the policy, which depends on
the policy parameters u. It represents the expected return, which the learning algorithm
aims to maximize.

E: The expectation operator, which indicates that J uð Þ is the expected value of the sum
within the brackets. This expectation is taken over the distribution of trajectories (s)
induced by the current policy pu.PT

t¼0 0: This is the summation of all timesteps from 0 to T, where T could be the

terminal timestep of an episode or an arbitrary truncation point for the calculation.
st: This term represents a discount factor raised to the power of the timestep t, which

reduces the weight of rewards received at later timesteps, encapsulating the concept of
temporal preference where immediate rewards are generally preferred over distant ones.

Rt: The reward received at timestep t. In reinforcement learning, the goal is often to
maximize the cumulative reward over time.

pu: The policy function, which gives the probability of taking an action given the current
state and policy parameters u.

The term
Rt

pu
seems to be missing the action taken at timestep t, as the policy probability

normally appears in the denominator of such an expression. Typically, this would look like
Rt

ph atjstð Þ, representing the probability of taking action at in state st according to the policy.

The objective function J uð Þ is therefore a sum over all timesteps of discounted rewards
weighted by the reciprocal of the action probabilities under the policy. This form suggests
an importance sampling approach, where returns are weighted inversely by their
probability under the policy, though the exact interpretation may vary depending on the
context provided by the accompanying text or formulation.

In the optimization landscape of Actor-Critic algorithms, our methodology enhances
the precision of action selection assessment, which is gauged against the baseline of average
scenarios. This is complemented by the value function loss, which is integral to the Critic
network’s refinement. This loss is aimed at reducing the mean squared error, thereby fine-
tuning the value function network’s accuracy.

To advance our optimization strategy for the loss function, we have implemented a
weighted loss mechanism. This mechanism is sensitive to the relative weights of successive
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loss values. When a newly computed loss value carries a weight exceeding that of its
predecessor, we meticulously document the outcome of this secondary computation. If the
scenario does not present a higher weight than the extant one, the current loss value is
retained as a benchmark for parameter adjustments. This tactic is designed to guide the
trajectory of parameter adjustments, keeping them closely aligned with the benchmarked
results and minimizing variance.

This nuanced optimization technique substantively augments the fidelity of our training
regimen, curtailing the error margins inherent in loss value computations.

EXPERIMENTAL SETUPS AND MODELS
Experimental setup for CartPole-v1
In our experimental work, we leveraged the discrete reinforcement learning model,
CartPole-v1, as documented by Kumar (2020). CartPole-v1 is a canonical testbed from the
OpenAI Gym suite, extensively adopted for the development and validation of
reinforcement learning algorithms. The environment challenges an agent to balance a pole
on a mobile cart, necessitating the application of lateral forces to preclude the pole from
tipping over. The state space of the environment is defined by four continuous variables:
the cart’s horizontal position and velocity, alongside the pole’s angle and angular velocity.
These variables provide the agent with the necessary situational awareness to make
informed decisions.

The action space in CartPole-v1 is binary, permitting the agent to exert force to either
the left or the right of the cart. The simplicity of the reward system, which assigns a positive
increment for each time step the pole remains upright within designated bounds, belies the
complexity of the task. An episode terminates, and the cumulative reward is assessed, once
the pole’s angle surpasses a critical inclination or the cart traverses beyond set spatial
limits.

CartPole-v1 distinguishes itself from its predecessor by demanding a protracted balance
duration, thereby serving as a rigorous and insightful challenge for evaluating the efficacy
of reinforcement learning algorithms.

Mathematical modeling of CartPole-v1
State Variables and Dynamics:

The state of the system at any given time t can be represented by a vector containing the
following variables:

x tð Þ: Cart position.
_x tð Þ: Cart velocity.
u tð Þ: Pole angle (concerning the vertical).
_h tð Þ: Pole angular velocity.
The equations of motion for the CartPole system are derived from the physics of an

inverted pendulum on a cart. They include gravitational forces, friction, and the force
applied by the agent. These can be formulated using the Euler-Lagrange equations or
Newtonian mechanics, leading to a set of differential equations.
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Action Space:
The agent can take one of two actions at any time t:
a tð Þ ¼ 0: Apply force to the left.
a tð Þ ¼ 1: Apply force to the right.
Reward Function:
The agent receives a reward ofþ1 for every time step that the pole remains upright, and

the episode ends if the pole falls beyond a certain angle or the cart moves out of the allowed
boundary.

In mathematical terms, the reward at time t is:
R tð Þ ¼ 1, if termination conditions are not met.
R tð Þ ¼ 0, if termination conditions are met (episode ends).
Termination Conditions:
ju tð Þj. threshold angle
jx tð Þj. boundary limit

Experimental setup for Acrobot-v1
The Acrobot-v1 is a classic control task environment in the reinforcement learning
domain, provided by the OpenAI Gym interface. The Acrobot is a two-link, two-joint
pendulum with the links connected end-to-end and only the second joint actuated.
Initially, both links point downwards. The goal is to swing the end of the lower link up to a
given height by applying torque on the second joint.

Mathematical modeling of Acrobot-v1
State Space:

The state s of the system at time t can be represented as:
s tð Þ ¼ cos u1ð Þ; sin u1ð Þ; cos u2ð Þ; sin u2ð Þ; u1;u2½ �

where u1 and u2 are the angles of the first and second joints relative to the vertical, and u1
and u2 are their respective angular velocities.

Equations of Motion:
The motion of the Acrobat is governed by a set of non-linear differential equations

derived from Lagrangian mechanics:
d
dt

� @L
@ _u

� @L
@u

¼ s where L is the Lagrangian of the system, representing the difference

between kinetic and potential energies, and s is the torque applied to the second joint.
Action Space:
The action space consists of a discrete set, A, where the agent selects the torque to

apply: A ¼ �1; 0;þ1f g.
Reward Function:
The reward function R s; að Þ gives a reward of �1 at each timestep unless the terminal

conditions are met, encouraging the agent to swing the end of the lower link to the desired
height as quickly as possible.
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Objective:
The objective is to find a policy p that maximizes the cumulative reward over an

episode.

Experimental setup for MountainCar-v0
MountainCar-v0 is a reinforcement learning environment from the OpenAI Gym library.
In this environment, an underpowered car is situated between two hills. The objective is to
drive up the mountain on the right; however, the car’s engine is not strong enough to
ascend the mountain in a direct route. Therefore, the car must learn to leverage potential
energy by driving back and forth to build up enough momentum to reach the goal at the
top of the rightmost hill.

Mathematical modeling of MountainCar-v0
State Space:

The state of the car can be described by a two-dimensional vector s tð Þ:
s tð Þ ¼ x tð Þ; _x tð Þ½ �

where x tð Þ is the position of the car on a one-dimensional track, ranging from −1.2 to 0.6,
and _x tð Þ is the velocity of the car, ranging from −0.07 to 0.07.

Dynamics equations:
The dynamics of the car are captured by the following difference equations, which

express how the position and velocity of the car change over time:
x tþ 1ð Þ ¼ x tð Þ þ _x tð Þ
_x tþ 1ð Þ ¼ _x tð Þ þ 0:001 � a tð Þ � 0:0025 � cos 3x tð Þð Þ

where a tð Þ is the action force applied at time t.
Action space:
The action space is discrete, and the agent can choose one of three actions at any time:
a tð Þ ¼ 0: Apply full throttle backward (accelerate to the left).
a tð Þ ¼ 1: Apply no throttle (zero acceleration).
a tð Þ ¼ 2: Apply full throttle forward (accelerate to the right).
Reward function:
At each time step, the reward function R s; að Þ is −1, unless the car reaches the target

position x � 0:5ð Þ, at which point the episode ends.
Objective:
The goal is to find a policy p that maximizes cumulative rewards, which equates to the

car reaching the target position as quickly as possible.

EXPERIMENTAL RESULTS AND ANALYSIS
Experiments of CartPole-v1
The experiments conducted in this study were meticulously controlled to ensure the
consistency of hyperparameters and to adhere to optimal principles across all experimental
aspects (Eberding, 2022). We evaluated a suite of reinforcement learning algorithms,
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including the DQN, Policy Gradient, AC, ACER, and the novel A2CPER algorithm, using
a comparative approach. The hyperparameters involved in the experiment are provided in
the appendix. The selection is based on extensive experience and experimental verification.

Our comparisons were carried out from three distinct perspectives: the overall number
of time steps during which the cart maintained balance, the average duration for which the
cart sustained balance, and the mean reward value acquired by the cart. To maintain rigor,
we executed 1,000 simulation experiments, each with five different random seeds, and
computed averages for comparative analysis.

Figures 1–5 in our experiments illustrates the total time steps during which the cart
successfully maintained balance. Algorithms within the AC framework reach the target
time step of 500 earlier than other algorithms as a whole. Typically, these algorithms
exhibit a peak in performance after approximately 100 to 200 iterations. In contrast, other
algorithms tend to achieve their first peak performance after around 200 iterations. This
discrepancy highlights the AC algorithm’s proficiency in initial data collection, attributed
to the superior data analysis capabilities of its Critic network. The A2CPER algorithm,
proposed in this article, can reach its first peak performance around 100 iterations. This
accelerated progress can be attributed to the priority experience replay strategy, which
effectively reduces the utilization of irrelevant sampling data and promotes learning from
high-priority data, thus expediting the attainment of peak performance.

Additionally, when inspecting the performance of each algorithm, we observed
fluctuations during experiments. The degree of fluctuation corresponds to the number of
data points in the table. Notably, the A2CPER algorithm exhibited minimal data
fluctuations due to the incorporation of the self-attention mechanism. This addition
significantly enhanced algorithm stability by prioritizing attention to data fluctuations.
Large fluctuations often result from excessive updates to neural network parameters, a
challenge effectively mitigated by the A2CPER algorithm through the introduction of
delayed parameter updates in target networks.

Figure 1 Policy chart in Experiment 1. Full-size DOI: 10.7717/peerj-cs.2161/fig-1
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Figure 2 DQN’s graph in Experiment 1. Full-size DOI: 10.7717/peerj-cs.2161/fig-2

Figure 3 The graph of AC in Experiment 1. Full-size DOI: 10.7717/peerj-cs.2161/fig-3

Figure 4 ACER's graph in Experiment 1. Full-size DOI: 10.7717/peerj-cs.2161/fig-4
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Lastly, we observed that algorithms utilizing the AC framework experienced
significantly lower training levels than other algorithms during the middle and later stages
of the experiments. Subsequently, their performance normalized after approximately 100
iterations. This phenomenon is primarily attributed to gradient-related issues within the
loss function. A2CPER optimizes the loss function by incorporating gradient clipping and
a weighted loss calculation approach, effectively addressing this challenge.

Overall, our experiments shed light on the strengths of the A2CPER algorithm,
particularly in terms of rapid convergence, stability, and enhanced training efficiency.

The numbers in the picture represent: The title represents the algorithm and
experimental environment used to experiment; the abscissa is the number of steps in the
experiment, in times; the ordinate is the time for the experimental car to maintain balance
at each step, in milliseconds.

Figure 6 presents the average duration for which the cart successfully maintained
balance. Notably, the A2CPER algorithm exhibited a significantly higher average duration

Figure 5 A2CPER’s chart in Experiment 1. Full-size DOI: 10.7717/peerj-cs.2161/fig-5

Figure 6 Comparison chart of average time values of five algorithms in Experiment 1.
Full-size DOI: 10.7717/peerj-cs.2161/fig-6

Sun and Yang (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2161 18/27

http://dx.doi.org/10.7717/peerj-cs.2161/fig-5
http://dx.doi.org/10.7717/peerj-cs.2161/fig-6
http://dx.doi.org/10.7717/peerj-cs.2161
https://peerj.com/computer-science/


compared to other algorithms, underscoring the effectiveness of the optimizations it
introduced. Conversely, other algorithms displayed varying degrees of shortcomings in
this aspect.

During the phase where the average values declined, evident fluctuations were observed
across all algorithms. It is worth noting that ACER’s average performance closely
paralleled that of the DQN algorithm, albeit still falling slightly short. The primary reason
for this variance can be attributed to ACER’s inability to effectively manage parameter
optimization delays within the target network, resulting in excessive fluctuations.

These findings emphasize the advantages conferred by the A2CPER algorithm,
particularly in terms of achieving higher average durations for maintaining balance,
demonstrating its superior performance and stability compared to alternative algorithms.

Data representation in the figure: the title is the experimental environment and
experimental objectives, the abscissa is the number of steps in the experiment, the ordinate
is the average time for the car to maintain balance, the upper left corner of the figure
represents different algorithms, which are represented by different colors. Pictures can be
drawn in a color-blind-friendly way. The algorithm for drawing pictures adopts the web
direct drawing method provided by the Data-Driven Documents website.

Figure 7 depicts the average reward value obtained by the cart. To mitigate the influence
of occasional fluctuations stemming from individual training scenarios, we have reduced
the weighting of each training’s reward value. This adjustment ensures that sporadic
fluctuations have a limited impact on the overall dataset.

As demonstrated in the figure, the A2CPER algorithm achieves an average reward value
peak of around 400 iterations and maintains this level for an extended period. This
observation underscores the effectiveness of our optimizations in addressing discrete
problems similar to the one presented in this study. Furthermore, the curve exhibits
remarkable smoothness, indicative of effective control over fluctuations. These findings
reinforce the A2CPER algorithm’s capacity for consistent and stable performance in
addressing challenging reinforcement learning tasks.

Figure 7 Comparison chart of average reward values of five algorithms in Experiment 1.
Full-size DOI: 10.7717/peerj-cs.2161/fig-7
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Data representation in the figure: the title is the experimental environment and
experimental objectives, the abscissa is the number of steps in the experiment, the ordinate
is the average reward for the car to maintain balance, the upper left corner of the figure
represents different algorithms, which are represented by different colors. Pictures can be
drawn in a color-blind-friendly way. The algorithm for drawing pictures adopts the web
direct drawing method provided by the Data-Driven Documents website.

Results of Cartpole-v1
The A2CPER algorithm’s performance gauged through both the duration of the cart’s
balance and the accumulated reward, underscores its optimization advantages within this
discrete setting compared to other algorithms. It has enhanced the Actor-Critic (AC)
algorithm by refining the data sampling process, rectified the non-prioritized data
collection in the Actor-Critic with Experience Replay (ACER) algorithm, alleviated the
prolonged data sampling duration associated with the Deep Q-Network (DQN), and
expedited the convergence velocity that typically constrains the Policy Gradient approach.

In addressing the CartPole-v1 environment, the A2CPER algorithm exhibits a time
complexity of O d � pð Þ, where d represents the dimensionality of the input data and p
denotes the number of parameters in the neural network. The algorithm’s runtime
decreases progressively with training iterations, as demonstrated in the balance duration
graph, ultimately exceeding 500 ms. The convergence rate is also depicted in the graph;
while other algorithms typically converge after about 300 iterations, the A2CPER
algorithm achieves convergence in just 100 iterations.

Specifically for the CartPole-v1 environment, the implementation of the A2CPER
algorithm significantly enhances the performance of the cart. This improvement stems
firstly from the introduction of the self-attention mechanism, which focuses on the key
objective during the cart’s strategy formulation to maintain balance. This mechanism
effectively prevents the incorporation of excessive and irrelevant factors into the learning
process. Additionally, the priority experience replay technique provides a replay space
where the cart needs only to retrieve experiences from the buffer based on priority weights
for each training session, filtering out a substantial amount of meaningless data. This
approach also includes the use of target networks to moderate parameter updates and
gradient clipping to prevent gradient explosion. Through multiple training cycles, our
model demonstrated progressively improved performance, ultimately learning the optimal
strategy to maximize cumulative rewards.

Experiments of Acrobot-v1
Following the experiments conducted in the CartPole-v1 environment, we extended our
investigation to the Acrobot-v1 environment. The core methodology of the experiments
mirrored that of the CartPole-v1, focusing on analyzing the time taken to reach the target
height and the acquisition of rewards, with comparisons based on calculated averages. The
hyperparameters used in the experiments are detailed in the appendix, selected as the most
suitable based on extensive testing.
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Figure 8 illustrates the average time taken by five algorithms—A2CPER, ACER, AC,
DQN, and Policy—to enable the Acrobot agent to reach the target height. It is evident from
the graph that, except for the A2CPER algorithm, all other algorithms exhibited various
degrees of increase in average times during their trials, indicating a regression in learning.
In contrast, the A2CPER algorithm consistently showed a decrease in average time without
any upward regression, underscoring its superior consistency over other algorithms. This
consistency is attributed to the introduction of the priority experience replay mechanism,
which prevents significant disparities in the training environment that could lead to
negative learning outcomes. This phenomenon is notably observable in ACER, where
around 300 training iterations, the algorithm is significantly impacted by ‘dirty data’ in the
experience replay buffer, resulting in negative learning.

Furthermore, the A2CPER algorithm’s average time was consistently lower compared to
the other algorithms, demonstrating its effectiveness in addressing this discrete problem.
This performance benefit is due to the incorporation of the self-attention mechanism and
the integration with target networks, which ensure that parameter updates are both
targeted and gradual.

The chart provides data on the average duration it takes for the robotic arm to reach the
target height, measured in seconds. The x-axis represents the number of experimental
steps (in iterations), while the y-axis denotes the average time in seconds. The top right
corner of the graph includes a color legend distinguishing the different algorithms. It is
essential to ensure that the chart is color-blind friendly, possibly using patterns or distinct
color contrasts that are easily distinguishable. The chart could be generated using web-
based tools like those provided by Data Driven Documents (D3.js) for direct drawing.

Figure 9 illustrates the average reward obtained by the same algorithms—A2CPER,
ACER, AC, DQN, and Policy—in the Acrobot-v1 environment (Cobbe et al., 2021). The
graph clearly shows that the A2CPER and ACER algorithms perform similarly in terms of
reward acquisition, but A2CPER consistently outperforms ACER. Both significantly
surpass the AC algorithm in efficiency, highlighting the clear benefits of implementing an

Figure 8 Comparison chart of the average time of the five algorithms in Experiment 2.
Full-size DOI: 10.7717/peerj-cs.2161/fig-8
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experience replay mechanism. Like the average time data, the average reward values for the
other four algorithms exhibit fluctuations, suggesting that the integration of the attention
mechanism and other methods in the A2CPER algorithm effectively minimizes such
variability, representing a substantial improvement.

The data displayed in the graph represents the average reward values achieved as the
robotic arm reaches the targeted height. The x-axis represents the number of experimental
steps (in iterations), and the y-axis represents the average reward value. The lower right
corner of the graph differentiates the algorithms by using distinct colors, and the chart is
designed to be color-blind friendly, using web-based direct drawing tools from the Data-
Driven Documents (D3.js) website.

Results of Acrobot-v1
The comparative analysis of average time and average reward values demonstrates the
superior optimization performance of the A2CPER algorithm in this discrete environment.
It not only addresses the stability issues, preventing negative learning but also improves the
data collection inefficiencies observed in the AC algorithm and the issues with ‘dirty data’
in ACER’s experience replay buffer. Furthermore, it enhances the stability which was
notably lacking in the DQN and Policy algorithms.

In addressing the Acrobot-v1 environment, the time complexity of the A2CPER
algorithm is represented as O d � pð Þ, where d is the dimensionality of the input data, and p
is the number of parameters in the neural network. The runtime of the algorithm decreases
with each training iteration, and performance data provided in the balance duration graph
indicate times exceeding 500 ms. The convergence rate is also depicted in the graph,
showing that A2CPER achieves effective convergence within about 200 iterations.

Regarding the Acrobot-v1 environment, the implementation of the A2CPER algorithm
has significantly enhanced the ability of the robotic arm to address challenges. Initially, the
introduction of the self-attention mechanism allows the arm to quickly identify the most
effective movement strategies to reach the target height. The priority experience replay

Figure 9 Comparison chart of average reward values of five algorithms in Experiment 2.
Full-size DOI: 10.7717/peerj-cs.2161/fig-9
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technique employed in the experiments enables the arm to select actions based on their
weighted importance and adapt based on the outcomes, effectively filtering out irrelevant
data. Additionally, the use of target networks moderates the update of parameters, and
gradient clipping is employed to prevent gradient explosions. Through multiple training
cycles, our model demonstrated progressively improved performance, ultimately learning
the optimal strategy to maximize cumulative rewards.

Experiments of MountainCar-v0
Finally, to ensure the comprehensiveness of our experiments, we conducted further tests
using the MountainCar-v0 environment. Due to the limitations of this environment,
where reward values are not effectively observable, we focused our experiments on the time
taken for the car to reach the mountaintop, comparing the averages across different
algorithms. Each of the five algorithms was trained 400 times to determine which
performed best. All hyperparameters used in this experiment are displayed in the appendix
section, selected as optimal values after extensive data analysis.

Figure 10 shows the average time it takes for the Policy, DQN, AC, ACER, and A2CPER
algorithms to get the MountainCar-v0’s car to the target point. From the graph, it is clear
that the A2CPER and ACER algorithms exhibit overall stability without significant
fluctuations. This indicates that the introduction of the experience replay mechanism
significantly enhances the stability of the algorithms. In contrast, the other three
algorithms experienced substantial fluctuations, suggesting that excessive extraction of
‘dirty data’ occurred, leading to these variations.

Furthermore, the final average time for A2CPER approaches 0 milliseconds, while the
other four algorithms are around 20 milliseconds, demonstrating the high efficiency of the
A2CPER algorithm in dealing with this discrete problem. This efficiency is attributed to
the synergy between the self-attention mechanism and multiple methods, culminating in
excellent outcomes.

Figure 10 Comparison chart of the average time of the five algorithms in experiment 3.
Full-size DOI: 10.7717/peerj-cs.2161/fig-10
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The data displayed shows the experimental environment and objectives, with the x-axis
representing the number of experimental steps (in iterations), and the y-axis indicating the
time taken for the car to reach its target, measured in milliseconds. Different algorithms
are represented by distinct colors in the top right corner of the graph. The visualization is
designed to be color-blind friendly, utilizing a web-based direct drawing method provided
by the Data-Driven Documents website.

Results of MountainCar-v0
The comparative analysis of the average time metrics shows that the A2CPER algorithm
demonstrates significant optimization advantages in this discrete environment relative to
other algorithms. Its most notable impact is the enhancement of algorithmic stability; even
in the calculation of average values, which typically do not exhibit large fluctuations, other
algorithms showed significant variability, whereas A2CPER maintained nearly zero overall
volatility and delivered excellent performance, effectively resolving the car’s uphill
challenge. It improved the slow convergence issue seen with the AC algorithm, addressed
the poor average time results of the ACER algorithm, and stabilized the unusually high
fluctuations exhibited by the DQN and policy algorithms.

In managing the MountainCar-v0 environment, the time complexity of the A2CPER
algorithm is denoted by O d � pð Þ, where d represents the dimensionality of input data and p
denotes the number of parameters in the neural network. The runtime of the algorithm
decreases with continued training iterations, achieving about 2 ms toward the end. The
convergence rate is also presented in the graph, with A2CPER achieving robust
convergence within approximately 20 iterations.

For the MountainCar-v0 environment, the A2CPER algorithm provided a highly
effective solution for navigating the car uphill. Initially, the introduction of the self-
attention mechanism in the training process allowed the system to quickly discern the
most effective movement strategies for reaching the peak. The priority experience replay
technique employed during the experiments enabled the robotic arm to select actions
based on weights and adjust based on outcomes, filtering out much irrelevant data. This
includes the use of target networks to slow down parameter updates and gradient clipping
to prevent gradient explosions. Through multiple training cycles, our model demonstrated
progressively improved performance, ultimately learning the optimal strategy to maximize
cumulative rewards.

CONCLUSIONS
In a series of experiments with robotic agents solving discrete problems in this study, the
advantages of the A2CPER algorithm are evident. First of all, this study effectively avoids
unnecessary parameters and ignores irrelevant situations through the introduction of the
self-attention mechanism, allowing the agent to quickly acquire useful methods. Secondly,
the priority experience playback technology introduced by office research eliminates a
large amount of dirty data; even if some data enters the buffer, it will be excluded due to its
priority, ensuring that each data batch used by the agent is valid and highly relevant. In
addition, this study also made some optimizations. For example, the introduction of the
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target network slowed down the speed of parameter updates and prevented large
fluctuations caused by rapid changes in parameters. The introduction of gradient clipping
ensures that the algorithm remains stable under various conditions and does not cause
gradient explosion. Finally, the optimization of the loss value calculation method enables
the most effective loss value calculation method to be used in different scenarios. Overall,
these properties of this study make the A2CPER algorithm highly effective and worthy of
further research and exploration.
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