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ABSTRACT
Long reads generated by third-generation sequencing (3GS) technologies are involved
in many biological analyses and play a vital role due to their ultra-long read length.
However, the high error rate affects the downstream process. DeepCorr, a novel error
correction algorithm for data from both PacBio and ONT platforms based on deep
learning is proposed. The core algorithm adopts a recurrent neural network to capture
the long-term dependencies in the long reads to convert the problem of long-read
error correction to a multi-classification task. It first aligns the high-precision short
reads to long reads to generate the corresponding feature vectors and labels, then feeds
these vectors to the neural network, and finally trains the model for prediction and
error correction. DeepCorr produces untrimmed corrected long reads and improves
the alignment identity while maintaining the length advantage. It can capture andmake
full use of the dependencies to polish those bases that are not aligned by any short read.
DeepCorr achieves better performance than that of the state-of-the-art error correction
methods on real-world PacBio and ONT benchmark data sets and consumes fewer
computing resources. It is a comprehensive deep learning-based tool that enables one
to correct long reads accurately.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Long read, Recurrent neural network, Deep learning, Hybrid error correction

INTRODUCTION
Next generation sequencing technologies produce accurate but short reads, with a
maximum read length of approximately 600 bases, which makes it very complicated in
subsequent reconstruction and analysis (Treangen & Salzberg, 2012). The third-generation
sequencing technologies represented by PacBio and Nanopore platforms can produce long
reads up to 10∼15 kbp, which provides a chance to solve challenging downstream problems
such as de novo assembly (Roux et al., 2019), variant calling (Zojer et al., 2017; Wang &
Chen, 2023). Among them, the error rates of PacBio reads are high (∼13%). Although this
technology has been improved greatly in recent years due to the new sequencing chemistries
and the sequencer, the error rates of ‘‘single-pass’’ reads also known as continuous long
reads (CLR, with length >25k) are remained the same as the beginning∼13% (Quail et al.,
2012). Then PacBio releases a circular consensus sequencing (CCS, with length 10∼20k)
template in 2021 allowing to sequence molecules around several times to maximize read
accuracy (99.99%) (Foord et al., 2023). Nanopore technology cannot sequence the same
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molecule multiple times as PacBio, and the error rates of Nanopore reads are ∼15% (Li et
al., 2016). Although the error rate is not satisfactory, the two platforms have accumulated a
large amount of long-read data in the past ten years. Thus, there is still a great commercial
advantage to algorithmically manage the high error rates of the accumulated longer,
‘‘single-pass’’ reads from both mainstream platforms. Therefore, combining cost-effective
homologous high-precision short reads to polish and correct long reads is an economical
way, which has successfully aroused the interest of many researchers (Ye & Ma, 2016).

As mentioned in the research survey, the long-read error correction algorithm is
divided into self-correction algorithms and hybrid correction algorithms (Morisse, Lecroq
& Lefebvre, 2020). Self-correction algorithms, such as CONSENT (Morisse et al., 2021)
and the latest VeChat (Luo, Kang & Schönhuth, 2022) are purely based on the information
contained in the long reads. As a result, deeper long read coverages are usually required, and
self-correction can thus prove to be inefficient when dealing with datasets displaying low
coverages (Sedlazeck et al., 2018). In contrast, hybrid correction utilizes complementary,
high-quality short reads for correction. A key advantage of hybrid correction is that error
correction is primarily guided by the short-read data. Therefore, the sequencing depth
of the long reads does not affect this strategy in any way. The hybrid error correction
algorithm can be further categorized into four types: short-read alignment-based, short-
read assembly based, De Bruijn graph (DBG)-based, and hidden Markov model (HMM)-
based. PacBioToCA (Au et al., 2012), Proovread (Hackl et al., 2014), Nanocorr (Goodwin
et al., 2015), ColorMap (Haghshenas et al., 2016), etc., are short-read alignment-based
methods. These methods try to get the consensus between short reads and the aligned
fragments of a long read with different strategies. Short-read assembly-based methods,
such as ECTools (Lee et al., 2014), HALC (Bao & Lan, 2017), and MiRCA (Kchouk &
Elloumi, 2016), assemble short reads into longer contigs in advance. In this way, the
assembled contigs can be effectively aligned to repetitive and noisy regions in long reads.
LoRDEC (Salmela & Rivals, 2014), Jabba (Miclotte et al., 2016), and FMLRC (Wang et al.,
2018) are based on another strategy referred as DBG. These methods construct DBG with
high frequency short-read k-mers, then anchor the long reads to the DBG and traverse the
graph to obtain an optimal path. Most of the above methods are designed based on the
error profile of the reads from different platforms. For example, PacBioToCA, Proovread
and LorDEC, etc., are for PacBio data, and Nanocorr is for Nanopore data. This means that
such an algorithm is sequencing-technology-dependent. At the same time, many methods
such as Jabba and Proovread report trimmed corrected reads, which leads to a certain
degree of loss of the length advantage of original long reads. Therefore, it would be perfect
if the method can ensure the corrected long reads are untrimmed and available to reads
from both platforms.

Machine learning is widely used in genome sequence analysis due to its ability to make
objective automated decisions (Javed et al., 2023). Based on these, Hercules (Firtina et
al., 2018) models each complete long read as an HMM, and refine the parameters based
on the error profile of any other error-prone sequencing technology, including PacBio
and Nanopore. Hercules is the only machine learning-based method and is very good
at attaining the short-term dependencies among neighboring regions in a sequence
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(Cao et al., 2024). However, HMM has certain limitations in capturing long-term
dependencies because it is usually based on the assumption of a finite state space and its
ability is limited by the number of orders and parameters of the model (Durbin et al., 1998).
As a result, the short-term dependencies trained by high-precision short reads in Hercules
can only repair the regions aligned with short reads, which is almost ineffective for the
remaining unaligned regions. In addition, the training of HMMs is quite time-consuming.

At the same time, artificial neural network algorithms have been found to be able
to effectively capture and process long-term dependencies between sequences than
HMM (Durbin et al., 1998; Salaün, Petetin & Desbouvries, 2019), and have already been
applied to improve the HMM-solved genomics research such as prediction of nucleosome
positioning (Gòdia et al., 2023), base calling (Boza, Brejova & Vinar, 2017), and gene
expression inference (Machado et al., 2023).

DeepCorr, a hybrid error correction method based on RNNs is proposed. In this work:
(1) each complete long-read sequence is treated as a time series, and no trimming is
applied to this sequence; (2) the recurrent neural network is adopted for the first time in
error correction to capture the dependencies between bases. This innovative approach not
only corrects the aligned regions of long reads but also take good care of those bases in
the uncovered regions (called gaps), which rarely handled by previous alignment-based
error correction methods. (3) the method is sequencing-technology-independent and
can ignore the error profile of different sequencing platforms. The model consists of a
bidirectional gated recurrent unit (Bi-GRU) (Chung et al., 2014) layer and a softmax layer.
The homologous high-precision short reads are aligned to the long reads to generate the
features and labels for model training. The cross-entropy function is the loss function for
back-propagation (Zou et al., 2019). In the final step, the long reads to be corrected are fed
into the well-trained model to predict the most probable base at each position. In this way,
the task of long-read error correction is transformed into a base classification challenge at
each genomic position.

We evaluate the method on benchmark datasets proposed by LRECE (Zhang, Jain &
Aluru, 2020), and the experimental results show that compared with the only machine
learning-based method Hercules, DeepCorr has a higher alignment identity and more
aligned bases, indicating that the unaligned bases are taken into consideration carefully. In
addition, DeepCorr gets the highest alignment identity while maintaining the read lengths
and performs better than other non-machine learning-based error correction methods. In
addition, the no-trimming policy can ensure that the N50 indicator and length advantages
not be affected, which will facilitate the downstream de novo assembly. In conclusion, it is
a comprehensive and balanced deep learning-based method for long-read correction.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint (Wang & Chen, 2023).

The proposed algorithm includes absolute position generation, feature vectors and label
generation, model training and base prediction steps. Assuming that the length of the long
read to be corrected is T , the input of the network should be the feature vector of each
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Figure 1 Generation of absolute positions. ‘‘Position’’ is the original position of the long-read base, and
‘‘Absolute Position’’ is the position in the sequence after taking into consideration of inserted bases. The
gray blocks indicate the short-read bases are the same as those in the long read, where mismatched bases
are specifically marked. The dash in the long read indicates an insertion at that position, and the dash in
the aligned short reads means a deletion at that position. In the example, there are five short reads aligned
with the current long read from position 1 to position 31. Because a base ‘‘T’’ is inserted behind posi-
tion 3 for all five short reads, one position is added for the inserted base. Two bases ‘‘GC’’ are inserted be-
hind position 10 for all five short reads and two positions are added in the long read. Except for the corre-
sponding number of positions added to the inserted base, the positions of the following bases are updated
accordingly. After the absolute position is generated, the feature vector and label of each position will be
generated based on these absolute positions.

Full-size DOI: 10.7717/peerjcs.2160/fig-1

position X1,X2,...,XT . The model predicts the target value Y1,Y2,...,YT of each position
according to the feature vector, and the base sequence can be obtained according to the
predicted target value to finish the correction.

Absolute position generation
The basic RNN-based classification framework requires that the input sequence and the
output sequence have the same length, that is, the number of feature vectors and the
number of labels are the same, and they should be in one-to-one correspondence. To
find and fix this correspondence during error correction, the alignment tool Minimap2
(Li, 2018) is used to align the short reads to the long reads to be corrected to generate
the alignment information. From the alignment information, not only can we count the
number of times the current base in the long read is covered by all kinds of bases in the
aligned short reads but also the details of insertions or deletions. However, after observing
the alignment information, it is found that if the feature vector of each long-read base
is directly generated when insertions or deletions occur in any position of the long read,
the one-to-one correspondence between a feature vector and a label will be damaged.
To overcome the obstacle, one position for each inserted base will be reserved, and
the absolute position information of each base in the sequence is updated. In fact, the
alignment information of each base in the long read is browsed first to find the positions
where insertions occur, and then the positions in proper numbers are reserved for each of
these positions. If only deletion occurs, the position of the current base is kept as it is. With
the absolute position information of the bases, the corresponding relationships between
feature vectors and labels can be constructed and kept. The absolute position generation is
shown in Fig. 1.
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Figure 2 Long read coverage. The transparent bars represent the regions on the long reads that are not
covered by the short reads, which are surrounded by aligned regions both forward and backward.

Full-size DOI: 10.7717/peerjcs.2160/fig-2

Table 1 Percentage of long reads aligned by short reads.

Dataset E. coli PB E. coliONT Yeast PB Yeast ONT Fruit fly PB Fruit fly ONT

Covered 6.38% 3.36% 2.86% 13.94% 24.94% 9.79%

Feature vectors and label generation
By observing the coverage of long reads after alignment, it is found that the regions on the
long read that are not aligned with any short read are generally short and discontinuous,
that means each unaligned region is surrounded by aligned regions, as shown in Fig. 2.

Therefore, we attempted to obtain the proportion of bases in long reads that are aligned
with short reads, as shown in Table 1. Specifically, we use long reads as the target sequences
and short reads as the query sequences. Minimap2 is employed to align the query to the
target, and the commonly recognized third-party statistical tool pysam is used to retrieve
the coverage data. The tool pysam.AlignmentFile.pileupnsegments is used to obtain the
number of short-read coverages at each position on the long reads from the SAM (Li et al.,
2009) files. We calculate the proportion of the number of positions with coverage>0 to the
total number of long-read bases. After statistics, most of the positions on the long reads of
the six benchmark datasets from LRECE (Zhang, Jain & Aluru, 2020) are not covered by
any short reads.

These uncovered positions are considered to have lost the basis for error correction
due to the lack of short-read coverage, and the previous alignment-based error correction
algorithms such as PacBioToCA, cannot handle these positions well. On the other hand,
Proovread cuts each uncovered region in half iteratively until it could be queried reversely
to find short-read fragments that could be aligned with this uncovered small fragment,
which will produce too many false positive anchor points and destroy the continuity of
long reads (Brudno et al., 2003). The regions that still cannot be aligned with any short read
will be directly discarded, which would compromise the length advantage of long reads.
Different from the splitting and trimming strategy, the processing of the HMM-based
algorithm is to construct an HMM for an entire long read, update parameters in areas
covered by short reads, andmaintain parameters previously set based on prior knowledge in
areas without short-read coverage. Since HMM cannot capture the long-term dependence
between sequences, those uncovered positions are not corrected obviously during the actual
error correction process. We hope to be able to capture the correlation between adjacent
aligned areas and non-aligned areas and execute reasonable corrections for those uncovered
positions. Therefore, RNN, which is good at capturing the correlation between sequences,
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Figure 3 The uncovered areas are corrected by long-term dependencies. Blue squares represent bases
covered by short reads, and transparent squares represent bases that are not covered. The correlation
among bases ‘‘AATT’’ in the first aligned regions are captured to correct the unaligned bases ‘‘AAGT’’.

Full-size DOI: 10.7717/peerjcs.2160/fig-3

is used for error correction, converting the error correction problem into a classification
problem in deep learning. How to use the captured long-term dependencies to correct the
uncovered long-read regions is shown in Fig. 3. The primary task of classification is the
generation of feature vectors and labels.

The generation of feature vectors is according to the principle of majority vote, the
more times the current long-read position is covered by a certain type of short-read bases,
the greater the probability of that base appearing at that position. Hence, the number
of short-read bases aligned to each position is counted based on the generated absolute
position, that is, how many times the current long-read position has been aligned by
each kind of short-read bases, and then the statistical information is encoded into the
feature vector with 11 fields. In the feature vector, fields 1–8 are set as the number of times
that the long-read base at the current position is matched with the eight types of bases
′′A,T ,G,C,a,t ,g ,c ′′ in aligned short reads. If deletions occur at the current position, then
at least one short read has no base matched with the base in the current position, and the
9th fieldmarked as ‘‘# ’’ isset to 1 to represent deletions occurred at that position; otherwise,
this field is set to 0. If the numbers of ambiguous alignment at the current position is greater
than the total numbers of short-read alignment, then the 10th field marked by ‘‘*’’ is set to
1 to represent that the position is an ambiguous alignment. The same case can be found at
position 21 in Fig. 4. As for the uncovered positions in the long read, there is no auxiliary
information for error correction, so the 11th field marked as ‘‘SR’’ represents whether the
current position has short-read coverage to assist classification. In this way, the alignment
characteristics of each position are encoded into a feature vector composed of 11 fields,
and the alignment information is fully utilized. According to the short-read fragments and
their alignment relationship with the long-read fragment in Fig. 1, the generation process
of several typical pairs of feature vectors and labels is described in Fig. 4.

As for the generation of the label, the base in the short reads that is aligned with a specific
position of the long readmost frequently is chosen as the ground truth to make the label for
that position. That means if a position is covered by short reads, the label is set as the base
in the short reads that is the most frequently occurring base at that position. If a long-read
position is not covered by any short read the label of the position can only be set to the
long-read base itself, and the correction of the uncovered position can only be achieved
by the neural network capturing the dependencies between the bases before and after it.
Thus, the label character representing the base is mapped to a numerical value according
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Figure 4 The various correspondences between feature vectors and labels. Several typical examples of
the generation of feature vectors and their corresponding labels. At position 1, the long-read base ‘‘C’’ is
aligned with short-read base ‘‘C’’ five times, which means the position is covered by short reads (SR field
should be set to 1), then the feature vector is encoded as [0, 0, 0, 5, 0, 0, 0, 0, 0, 0,1], and the label is set as
‘‘C’’. The base ‘‘T’’ is inserted five times after position 3, the feature vector for position 4 is encoded as [0,
5, 0, 0, 0, 0, 0, 0, 0, 0, 1], and the label is ‘‘T’’. The bases ‘‘GCC’’ are inserted twice and bases ‘‘GC’’ are in-
serted three times at position 19, which means base ‘‘G’’ is aligned at position 19 five times, base ‘‘C’’ is
aligned at position 20 five times, base ‘‘C’’ is aligned at position 21 twice, base ‘‘N’’ is aligned at position 21
three times. Thus, the feature vector at position 20 is set to [0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 1], and the label is C.
Next, the feature vector at position 21 is set to [0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 1], and the 10th field is set to 1, in-
dicating that the position is ambiguous alignment, thus the label is set to *. It should be noted, bases ‘‘AA’’
are deleted at positions 28 and 29 five times, thus, the 9th field ‘‘#’’ of the feature vectors is set to 1. There
is no short read aligned with position 43, thus, the 11th field ‘‘SR’’ is set to 0, the 10th field is set to 1 to in-
dicate an ambiguous alignment occurred, and the field ‘‘A’’ should be set to 1 to indicate the original base
is ‘‘A’’.

Full-size DOI: 10.7717/peerjcs.2160/fig-4

to the rules {‘‘A’’:0,‘‘T ’’:1,‘‘G’’:2,‘‘C ’’:3,‘‘∗’’:4}, where ‘‘∗’’ represents an unrecognizable
base. The feature vector of each position is a one-dimensional vector of 11 fields, and its
corresponding label is a number in {0,1,2,3,4}. The various correspondences between
feature vectors and labels are shown in Fig. 4.

Model training and base prediction
The error correction task is essentially to modify insertions, deletions, and mismatches in
long reads according to the information for the alignment of long reads with high-precision
short reads. It can be modeled as an RNN-based multi-class task, and the connection
between the feature vector and the target value at each position is obtained by training the
neural network to achieve predictive classification. In addition, a long read can be regarded
as a time series in which adjacent bases are correlated. Bidirectional RNN (Bi-RNN) is
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good at processing sequences with this kind of correlation because of its strong ability to
memorize and exploit these pieces of timing information in the sequences and is chosen to
perform the correction task in our work. However, the classical Bi-RNNmodel often suffers
from gradient explosion and gradient vanishing in long-range learning. Therefore, as an
efficient variant of RNN, bidirectional GRU (Bi-GRU) is selected as the network’s input
layer to avoid the above problems, and the fully connected layer with a softmax activation
function is selected as the output layer. The input of the model is the feature vector and
its corresponding label for each position. The purpose of model training is to memorize
the correspondence between feature vectors and labels and capture the correlation among
adjacent bases in the sequences. Error correction is the process of classifying the features
of each position through the captured relationships. Bi-GRU cannot only process data
from two directions, but each unit in the GRU layer has an update gate and a reset gate,
which will capture the dependencies among input vectors in different ranges. Finally, the
dependencies and the features are sent to the next softmax layer together to calculate for
the classification. Our model cannot only capture the correlations among the bases over
a long range but also make use of the captured relationships between the feature vector
and label pairs to perform classification. This is important for numerous bases with no
alignment information available.

In the compilation of the model, the cross-entropy function in multi-class problems is
chosen as the loss function, and the back-propagation algorithm is used to update themodel
parameters. Adaptive moment estimation (Adam) (Attrapadung et al., 2021) with an initial
learning rate of 0.001 is chosen as the optimizer because it can automatically obtain the step
size that needs to be updated by calculating the first- and the second-moment estimates
without tuning parameters. During the training of the model, the datasets of feature vectors
and labels are split into 80% training data, 10% test data, and 10% validation data. In the
prediction of the target values with the model, the feature vectors obtained by encoding the
alignment information of the short reads to the long reads to be corrected are sent into the
well-trained model for prediction, and the predicted target value representing the base at
each position is output. The base sequences are restored according to the mapping between
the bases and the target values, and the post corrected reads are restored by concatenating
the base sequences according to the corresponding long-read sequence numbers which are
saved in the data preprocessing step.

Network parameter setting
The structure of the Bi-RNN is shown in Fig. 5, X1X2 ...XT−1XT are the feature vectors that
are sequentially input to the network, and Y1Y2 ...YT−1YT are the corresponding predicted
target values. H1H2 ...HT−1HT and H

′

1H
′

2 ...H
′

T−1H
′

T are the hidden nodes for forward
and reverse connections respectively. If the hidden nodes in the Bi-RNN are replaced by
GRU units, a Bi-GRU network can be constructed.

In the internal calculation process of each GRU, it is assumed that the input is Xt ∈Rn×d

the hidden state of previous time step is Ht−1 ∈Rn×h, where n is the number of input
samples, and d is the number of input features. Then the update gate Zt ∈Rn×h andreset
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Figure 5 The structure of the Bi-GRU. The hidden state information and the output of the current time
step depends on the hidden state of its previous and subsequent time steps.

Full-size DOI: 10.7717/peerjcs.2160/fig-5

gate Rt ∈Rn×h is calculated with Eqs. (1) and (2):

Zt = σ (XtWxz+Ht−1Whz+bz) (1)

Rt = σ (XtWxr+Ht−1Whr+br ) (2)

where, Wxz ,Wxr ∈Rd×h and Whz ,Whr ∈Rd×h are weighting parameters to be updated,
bz and br ∈R1×h are bias parameter vectors, h is the number of hidden units. σ is the
activation function sigmoid , which is used to map the input value into interval (0,1). Then,

Eq. (3) is used to calculate the candidate hidden state
∼

H t in time step t
∼

H t = tanh(XtWxh+ (Rt �Ht−1)Whh+bh) (3)

where, Wxh ∈Rd×h and Whh ∈Rh×h are weighting parameters to be updated, bh ∈R1×h

is a bias parameter vector. Here, the non-linear activation function tanh isused to ensure
that the values of the candidate hidden states are in interval (−1, 1). Then, the obtained

candidate state
∼

H t andupdate gate Zt are combined to calculate the hidden state of the
current time step Ht with Eq. (4)

Ht =Zt �Ht−1+ (1−Zt )�
∼

H t (4)

.
Finally, the predicted value Ŷt iscalculated with Eq. (5).

Ŷt = softmax(Wyh[Ht ,
∼

H t ]+by) (5)
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Figure 6 Internal calculation process of a GRU unit.
Full-size DOI: 10.7717/peerjcs.2160/fig-6

where Wvh ∈Rh×v are weighting parameters, bv ∈Rh×1 isa bias parameter vector, v is the
number of types of output data. The internal calculation process of each GRU unit is shown
in Fig. 6.

Meanwhile, the number of hidden units in each layer is a key parameter. Too many
hidden units would lead to overfitting during training, while too few hidden units would
miss important features. Based on this consideration, the number of hidden units in
the Bi-GRU layer is set to 128*2, and the output of these hidden units will be sent to the
following softmax layer for classification. There are 5 types of output values at each absolute
position. Thus, the number of hidden units in the softmax layer is set to 5. The size of the
input and output data for each layer of the model is shown in Fig. 7.

Dataset segmentation
Compared with complex multidimensional data such as image and video data, fewer
kinds of features can be extracted for each base position in the long-read sequence, and
most of the information that can be extracted is located in the adjacent bases. Therefore,
the correlation between adjacent bases in the sequence needs to be carefully preserved
for the network when segmenting the training, validation, and test sets. In general, the
segmentation of datasets is to randomly split the dataset into disjoint parts according to
a certain proportion. However, in our experiments, there are strong correlations among
the adjacent bases in each long-read sequence, and the closer the distance, the stronger the
correlation. If the training set is randomly segmented as usual, the model will be unable to
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Figure 7 The size of the input data in each layer. The size of the input and output data between differ-
ent layers in the model, where the output of a layer is the input of the next layer. The dimension of the
output data of the input layer is represented with (?, 1,000, 12), where ‘‘?’’ is a hyper-parameter referred
to as batch-size, which represents the number of samples selected for one training batch. 1,000 represents
the length of the current input sequence segment, and 12 is the dimension of each feature vector. The in-
put data dimension for the Bi-GRU layer is (?, 1,000, 256) because the unidirectional GRU has 128 hid-
den units, and the Bi-GRU layer has a total of 256 hidden units. The output data dimension for the fully
connected layer is (?, 1,000, 5), which means that the feature vectors from the input will be classified into 5
categories.

Full-size DOI: 10.7717/peerjcs.2160/fig-7

capture the correlation information of distant positions to predict the target value for the
current position, which makes the model difficult to fit. The segmentation of training and
test datasets should be done on a smaller scale so that the local correlation can benefit the
local target prediction. In fact, to make the most use of the correlations among adjacent
bases, the specific segmentation consists of two steps: first, the datasets are split into many
subsets with a length of 1,000, then the first 80% tensors of each subset are used as the
training data, the next 10% are used as the validation data, and the last 10% are used as the
test data. The training process of the model with the segmented datasets is shown in Fig. 8.

In the first segmentation step, it should be noted that cutting the sequence data arbitrarily
would destroy the continuity of the sequence, resulting in no adjacent relationships available
for forward and reverse prediction on the cutting point. Therefore, except for the first subset
sequence, the last 200 positions of the previous subset sequence are reserved as the first
200 positions of the current subset sequence. These overlapping regions preserve the
continuity of the subset sequences and will be removed according to the same rules during
the restoration of the base sequences after the prediction is completed. The training data
are used to find the optimal weights of the model, the test data are used to find the best
parameters of the optimization algorithm, and the validation data are used to evaluate
the trained model. The training process is performed in up to 200 iterations by taking
into account the computing power of our computer, and the loss in the back-propagation
algorithm, represented as ‘‘Train_loss’’, is selected as the indicator to evaluate if the training
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Figure 8 The training process of the model with the segmented datasets. The feature vectors are sent to
the neural network in batches for prediction, and the weights of the model are updated by calculating the
loss with the predicted values and their corresponding labels. The model is saved for correction until the
ideal loss and accuracy of the model are attained.

Full-size DOI: 10.7717/peerjcs.2160/fig-8

Figure 9 The change in the accuracy and loss of the model in training and validation.
Full-size DOI: 10.7717/peerjcs.2160/fig-9

should stop. The validation data is used to test the accuracy and loss of the model after
each epoch. If the training accuracy is high but the validation accuracy is low, it means that
overfitting has occurred and the hyper parameters should be tuned again. The training
will stop if the ‘‘Train_loss’’ does not decrease within five epochs. Such an early stopping
mechanism can effectively prevent the model from overfitting (Caruana, Lawrence &
Giles Ainips, 2000). If the training loss does not meet the requirements when the iteration
stops, the encoding method of the feature vectors should be modified. When the loss and
accuracy no longer change and both reach the ideal value, the iteration will be stopped and
the model will be saved for prediction. Finally, the test loss of the model is 0.06026, and
the test accuracy is 0.99934. The changes in loss and accuracy of the model along with the
increasing of epochs during training and validation are shown in Fig. 9.
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Table 2 Information on the selected datasets.

Sequencing specification Sequencing NCBI
accession

Sequencing
depth

Number of
reads

Reference
genome

Genome
length(Mbp)

Reference
NCBI accession

Illumina Miseq _a 373x 2× 5,729,470
PacBio P6C4 _b 161x 87,217
MinION R9 1D _c 319x 164,472

E. coli K-12
MG1655

4.6 NC_000913.3

Illumina ERR1938683 81x 2× 3,318,467
PacBio P6C4 PRJEB7245 120x 239,408
MinION R9 2D ERP016443 59x 119,955

S. cerevisiae
S288c

12.2 GCF_000146045.2

Illumina SRX3676782 44x 2× 20,619,401
Pacbio P5C3 SRR1204085 204x 6,864,972
MinION R9.5 1D SRX3676783 32x 663,784

Drosophila
melanogaster
ISO1

143.7 GCF_000001215.4

Notes.
aDownloaded from Illumina at Wang, Rongshu (2024). MiSeq_Ecoli_MG1655_110721_PF_R1.fastq. figshare. Dataset. https://doi.org/10.6084/m9.figshare.26021230.v1 and
Wang, Rongshu (2024). MiSeq_Ecoli_MG1655_110721_PF_R2.fastq. figshare. Dataset. https://doi.org/10.6084/m9.figshare.26021290.v1.

bDownloaded from PacBio at https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
cDownloaded from Loman Labs at https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta

Dealing with GPU overflow
In addition to the huge amount of long-read data itself, the datasets of feature vectors
and labels generated in preprocessing are also huge. As an example, a 730 MB long-read
dataset can generate 76 GB datasets of feature vectors and labels after alignment and
data preprocessing. Since the neural network is deployed on the Graphic Processing Unit
(GPU) for training and prediction, GPU not only needs to save many model parameters
and training data but also needs to perform many nonlinear computations. If all feature
vectors and labels are fed into the network, the memory of the GPU would overflow; thus,
it is necessary to build a suitable data generator to send the data to the GPU in batches for
processing. In this experiment, the Sequential class in the library of Keras is inherited to
build our own data generator. When generating data in batches, the initially segmented
subset of feature vectors and labels will be further split into training data and test data.
Finally, batches of generated training data, test data, and validation data are fed into the
network for training and prediction. In this way, memory overflow of the GPU can be
effectively avoided.

RESULTS AND DISCUSSION
Datasets and experiment setup
The six datasets used in our experiments are sequenced from three species, Escherichia
coli K-12 MG1655 (E. coli), Saccharomyces cerevisiae S288C (yeast), and Drosophila
melanogaster ISO1 (fruit fly). For each genome, the long reads to be corrected are from the
PacBio and Nanopore platforms, and the high-quality short reads that are used to correct
long reads are from the Illumina platform. E. coli K-12 MG1655, S. cerevisiae S288c, and
Drosophila melanogaster ISO1 are the reference genomes for evaluating the correction
quality, and they are sequenced and assembled carefully by Sanger and other institutions.
The details of the datasets are listed in Table 2.
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DeepCorr and five other typical short reads-involving error correction algorithms are
used to correct the above datasets To provide research insights in the absence of short
reads, we also included the latest self-correction algorithm VeChat for comparison. All
experiments in this work are run on a server (dual Intel Xeon Gold 6240 @ 2.60 GHz)
with 72 cores, 256 GB Central Processing Unit (CPU) memory, and 2 GPUs (Quadro
RTX 6000, Compute Capability 7.5). The two GPUs are combined to construct one GPU
with larger memory. The compared algorithms LoRDEC, Jabba, ColorMap, Proovread,
and Hercules are run with the default parameters on the CPU cores of the server using
multithread processing. The command line parameters of algorithms involved in this work
are based on the manual provided by respective authors, and the details are recorded in
supplementary file. For DeepCorr, the process of alignment and the generation of feature
vectors and labels are implemented on the CPU, and the training and prediction of the
RNN model are implemented on the GPU. All source codes are based on Python 3.6 and
TensorFlow-gpu 2.3.

Accuracy metrics
As described by LRECE (Zhang, Jain & Aluru, 2020), although the error correction
algorithm lacks the ground truth, differences between the corrected long reads and
the reference genome mean uncorrected errors. The reference genome is the homologous
high-precision genome sequence obtained by authoritative institutions combining various
high-quality sequencing methods at a great cost. In this way, the quality of error correction
can be obtained by evaluating the quality of the alignment of the corrected sequence to
the reference genome. In practice, Minimap2 is used to align both the original and the
corrected long reads to their reference genome. Finally, various performance indicators
of these alignments are calculated to evaluate the error correction performance of the
algorithms. The raw experimental results are calculated by LRECE. The original results on
six benchmark datasets are shown in Tables S1–S6.

In the experimental results, ‘‘Total bases’’ is the total number of bases of the long read
after correction, the difference on this indicator between the corrected long read and the
original one should not be too large. ‘‘Aligned bases’’ is the number of corrected bases that
can be aligned to the reference genome. ‘‘Alignment identity’’ represents the consistency
of the segments in the long reads and the corresponding aligned fragments in the reference
genome, which is calculated by dividing ‘‘Aligned bases’’ by the ‘‘Total bases’’. Obviously,
increasing total bases will lead to a decrease in alignment identity under the same aligned
bases. In terms of DNA data processing, if the read is long enough, there is no need for
polymerase chain reaction (PCR) amplification, which can avoid base bias and simplify
genome assembly. Thus, we also compared the length of long reads after correction.
‘‘Maximum length (bp)’’ and ‘‘Average length (bp)’’ are the maximum and average lengths
of regions where long reads can be aligned to the reference genome respectively. ‘‘N50′′is
a length indicator. All long reads are sorted in the order of their lengths and concatenated
into a sequence, and then, the midpoint of this sequence is found. The length of the long
read where this midpoint is located is the N50 indicator. ‘‘Genome fraction (%)’’ is the
ratio of the number of bases covered by the long-read assembly in the genome divided by
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Figure 10 Normalized metrics on the E. coli PacBio dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-10

the total length of the reference genome. N50 and genome fraction are both metrics that
reflect sequence continuity from an assembly perspective. ‘‘Memory usage (GiB)’’ is the
peak CPU memory occupied by each algorithm during the correction.

The evaluation metrics for error correction tasks encompass multiple aspects, often
requiring considerations of trade-offs and compromises. Therefore, making a direct
judgment on the superiority or inferiority of a certain method is often challenging. To
visually present the performance of each method on the same chart, we have employed
Min-Max normalization to process the metrics except for the time and the memory
requirement, aiming to eliminate the scale differences among various indicators. The
formula for this normalization process is as follows:

Xnormalized =
X−Xmin

Xmax−Xmin
(6)

Where, XNormalized is the normalized value, X is the original data value, Xmin is the
minimum value of the original data, Xmax is the maximum value of the original data.
According to the normalization principle, algorithms with better performance in various
metrics will have markers concentrated near 1, while algorithms with poor performance
will have markers clustered near 0.

It is worth noting that if a certainmetric of the algorithm deviates from 1, it indicates that
the algorithm involves significant trade-offs on this metric. Finally, the data presentation of
the raw results based on six benchmark data sets of data is provided in the supplementary
file, and the intuitively normalized display results are shown in Figs. 10–15.
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Figure 11 Normalized metrics on the E. coliONT dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-11

DISCUSSION
Analysis of the results
Enhancing the alignment consistency between long reads and the reference genome is a
fundamental objective in error correction. However, achieving this goal needs to consider
a comprehensive array of metrics. Figures 10, 11, 12, 13, 14 and 15 illustrate the normalized
metrics across each benchmark dataset. The graphical representation reveals that DeepCorr
demonstrates a notably tighter clustering around 1 across five of the six datasets except the
fruit fly PacBio dataset. This observation suggests its superior performance with minimal
discernible weaknesses. The following discussion delves into the comparative outcomes
between DeepCorr and the remaining six methods.

Trimming consideration
During error correction, there should be no significant loss of bases. Therefore, we
first assess the feasibility of algorithms with trimming strategies. Jabba demonstrates
a remarkable alignment identity metric ranging from 0.99 to 1.00 in most instances,
primarily attributed to its trimming approach. Specifically, Jabba trims the extended
extremities of long reads that extend beyond the paths in the constructed De Bruijn
graph, thus enhancing alignment identity metrics. However, this trimming strategy leads
to substantially smaller values for metrics such as lengths and N50 compared with other
algorithms, resulting in the loss of global information and the inherent length advantages
of long reads. Additionally, the long-read file corrected by Jabba is reduced to one-third
of its original size. Coincidentally, a similar situation also observed with Proovread

Wang and Chen (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2160 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.2160/fig-11
http://dx.doi.org/10.7717/peerj-cs.2160


Figure 12 Normalized metrics on the Yeast PacBio dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-12

Figure 13 Normalized metrics on the Yeast ONT dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-13
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Figure 14 Normalized metrics on fruit fly PacBio dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-14

Figure 15 Normalized metrics on fruit fly ONT dataset.
Full-size DOI: 10.7717/peerjcs.2160/fig-15
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and VeChat. Apart from Fig. 13, the number of corrected long-read bases by VeChat
significantly decreases, attributed to its selection of the most frequent nodes (i.e., highest
accuracy paths) during path planning, thereby sacrificing the longest paths. Long-read
fragments and reads that cannot be mapped to the partial order alignment (POA) graph
are disregarded. Therefore, while the three algorithms mentioned above demonstrate high
accuracy, they sacrifice other metrics such as total base count and the maximum length.
Consequently, they exhibit increased alignment identity but noticeable trade-offs in other
metrics, shown as more dispersed metrics of total bases and the maximum read length on
the normalized figure. Researchers conducting subsequent analyses should exercise caution
when employing these methods.

DBG-based and alignment-based algorithms
Figs. 11 and 13 illustrate LoRDEC’s superior performance in metrics such as aligned
base count and alignment identity, as well as its advantages in length indicators and
N50. However, Figs. 10, 12, 14 and 8 demonstrate DeepCorr’s superiority over LoRDEC
from more compact metrics’ layout. The discrepancy in each metric between these two
methods is less than 5%. Thus, it can be inferred that both methods exhibit similar
error correction performance. Similar to other algorithms relying on k-mer frequencies,
LoRDEC’s performance is heavily influenced by parameter configurations. Hence, selecting
appropriate parameters and optimal paths based on experience is crucial for data obtained
from diverse sequencing platforms and species. When the value of k is too small, it may lead
to an excessive number of optimal paths, increasing computational resources. Conversely,
when the value of k is too large, it may miss the optimal path. This requires researchers to
have sufficient experience of the error characteristics in the sequencing data in order to set
the optimal parameters. Figures 14 and 15 showcase DeepCorr’s exceptional performance
in terms of aligned base count and alignment identity, indicating its ability to handle data
with more intricate structures, such as fruit fly data. Alignment information is the sole
requirement for generating feature vectors and labels, irrespective of the complexity of the
structure. However, DeepCorr consumes less user time compared with LoRDEC.

For the alignment-based method, DeepCorr not only performs better than ColorMap
in terms of the total number of bases after correction and alignment identity, but also
performs well in length indicators in Figs. 10–14. Looking at the overall situation, DeepCorr
outperforms both alignment-based methods in all indicators.

The only machine learning-based algorithm
Based on observations of corrected long reads fromHercules, it is found that it only corrects
regions with short read alignments, while regions without short read alignments receive
no change. There are two benefits to this approach: (1) preserving the length advantages
and global information of long reads, and (2) automatically adjusting regions covered by
short reads appropriately ignoring the different error profiles from the two mainstream
sequencing platforms. The only weakness is that Hercules is subjected to the limitation of
the order of the HMM, which assumes that the current base is only related to the previous
base, which prevents the model from capturing longer-term dependencies between bases
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in each long read for error correction of unaligned bases. Therefore, RNNs are utilized as
a novel model for time-series data in DeepCorr, which assumes that the current base is
correlated with all previously occurred bases, enabling it to capture longer dependencies.
Experimental results demonstrate that, in addition to achieving the two breakthroughs
accomplished by Hercules, DeepCorr also increases the number of bases aligned to the
reference genome after error correction and the alignment identity, indicating that its
correction process automatically converges towards the expected direction (the reference
genome) without human intervention.

A set of special data
For the fruit fly dataset from PacBio platform, as shown in Fig. 14, since there is an
obvious difference between the original long-read data and the reference genome, the
alignment identity is quite low. Although all methods try their best to correct errors, the
results are unsatisfactory. In this set of results, Jabba, Proovread and VeChat exhibit a
peculiar doubling of average length, despite a significant decreasing in total bases and
maximum length. The reason for this anomaly is that many shorter and low-quality long
reads that failed to align to high-accuracy short reads or to the De Bruijn graph (DBG)
constructed from these short reads have been removed by these two methods. However,
other algorithms retain these regions, which result in suboptimal alignment identity.
Nonetheless, DeepCorr reports the highest alignment identity among the other methods
while preserving the total base count and the maximum length.

Resource consumption statistics
Memory usage
For resource consumption statistics, the training and prediction processes of DeepCorr
are executed on the GPU, and the processes of alignment and feature generation are run
on the CPU. The generated feature and label datasets are efficiently stored in the CPU
in the form of HDF5, waiting to be sent into the GPU in batches for training. In terms
of memory usage, both GPU memory and main memory are used. Although DeepCorr
only consumes 3.4 GiB of main memory, the training and prediction process of the model
consumes 23190 MiB of GPU memory. Other compared algorithms only consume main
memory, and their memory consumption is shown in the Supplementary files. VeChat
consumes the most amount of memory (more than 50GiB in the smallest dataset).

Time complexity
Since the core layer of the model is a single RNN layer, the time complexity of a single time
step in an RNNmodel is typically denoted as O (N), where N represents the dimensionality
of the input data. This complexity arises from the computations performed at each time
step, including matrix multiplications, element-wise operations, and activation functions
applied to the input and hidden states. The computational complexity for every time step
remains constant regardless of the sequence length. However, when considering the entire
genome sequence, the time complexity is proportional to the sequence length due to the
sequential nature of RNN processing, resulting in a total time complexity of O (T), where
T is the length of the sequence.
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To evaluate the computational power of the algorithms, The Unix ‘‘time’’ command
is used to record the computational power of each method, then the command line will
output ‘‘real time’’, ‘‘sys time’’ and ‘‘user time’’, where ‘‘user time’’ is all the time spent in
user space during program execution, and it does not change with the number of cores
in the CPU. ‘‘User time’’ is chosen as the indicator in the results. In Tables S2–S7 of the
supplementary file, Jabba is the fastest, but this is obtained by sacrificing the length of
long reads seriously. Moreover, DeepCorr still consumes less user time even if dealing
with fruit fly data with more complex structures, which can be seen in Tables S6–S7 of
supplementary file. It is worth noting that before the model starts training and prediction,
those long reads uncovered by any short read will not be processed further, and only the
long reads covered by at least one short read will be encoded and input for training and
prediction. In fact, it takes 124 min of user time to align 2.1 GiB short reads to 0.7 GiB E.
coli long reads and 526 min to train and predict the result, and 569,261 k bases involved
in training and prediction, thus the training and prediction time used for every 1,000 k
bases is 55.44 s. It takes 267 min of user time to align 1 GiB short reads to 5.5 GiB yeast
long reads and 1,926 min to train and predict the result, and 2,451,999 k bases involved
in training and prediction, so the training and prediction time required for every 1,000 k
bases is 47.13 s. It takes 4,760 min user time to align 4 GiB short reads to 4.5 GiB fruit fly
long reads and 2,871 min to train and predict, and 3,375,564 k bases involved in training
and prediction, and it takes 50.02 s for every 1,000 k bases, which is almost the same as
the previous two results. It can be concluded that computational complexity of DeepCorr
during the training and prediction is only related to the number of bases involved, which
is roughly linearly related to the number of long reads bases, and which is not related to
the complexity of the structure of long reads.

CONCLUSIONS
The length advantage of long read data sequenced by third-generation sequencing
techniques is limited by the high error rate. Generally, homologous high-precision short
reads are effective for long-read error correction. However, the uncovered long-read
regions cannot be corrected easily by the previous methods. In this work, a sequencing
technology-independent error correctionmethod is transformed into amulti-class problem
in neural network to capture the long-term dependencies among bases, which not only
performs accurate error correction on aligned regions, but also takes good care of the rest
unaligned regions, which can be inferred from its maximum number of aligned bases and
highest alignment identity.

In conclusion, the major advantage of DeepCorr is the highest alignment identity and
number of aligned bases, even on the more complex structure datasets such as fruit fly
datasets, so that it can produce more accurate and longer reads. The best part is that
DeepCorr can correct bases that do not have any coverage by the captured long-term
dependencies. Moreover, none of the bases is trimmed off from the long reads to maintain
the read length advantage. In terms of computing resource consumption, DeepCorr
consumes significantly less user time and is suitable for long reads from both PacBio and
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ONTplatforms. This is the only GPU-based algorithm.With the rapid development of GPU
computing power, the speed of this algorithm will also increase, which can provide a new
perspective for solving long-read error correction with deep learning. In the future, how
to build a generative pretrained model to automatically extract features from alignment
information for producing accurate long reads will be studied.
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