
Emerging trends in gait recognition based
on deep learning: a survey
Vaishnavi Munusamy* and Sudha Senthilkumar*

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore,
Tamilnadu, India

* These authors contributed equally to this work.

ABSTRACT
Gait recognition, a biometric identification method, has garnered significant
attention due to its unique attributes, including non-invasiveness, long-distance
capture, and resistance to impersonation. Gait recognition has undergone a
revolution driven by the remarkable capacity of deep learning to extract complicated
features from data. An overview of the current developments in deep learning-based
gait identification methods is provided in this work. We explore and analyze the
development of gait recognition and highlight its uses in forensics, security, and
criminal investigations. The article delves into the challenges associated with gait
recognition, such as variations in walking conditions, viewing angles, and clothing as
well. We discuss about the effectiveness of deep neural networks in addressing these
challenges by providing a comprehensive analysis of state-of-the-art architectures,
including convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and attention mechanisms. Diverse neural network-based gait recognition
models, such as Gate Controlled and Shared Attention ICDNet (GA-ICDNet),
Multi-Scale Temporal Feature Extractor (MSTFE), GaitNet, and various CNN-based
approaches, demonstrate impressive accuracy across different walking conditions,
showcasing the effectiveness of these models in capturing unique gait patterns.
GaitNet achieved an exceptional identification accuracy of 99.7%, whereas GA-
ICDNet showed high precision with an equal error rate of 0.67% in verification tasks.
GaitGraph (ResGCN+2D CNN) achieved rank-1 accuracies ranging from 66.3% to
87.7%, whereas a Fully Connected Network with Koopman Operator achieved an
average rank-1 accuracy of 74.7% for OU-MVLP across various conditions.
However, GCPFP (GCN with Graph Convolution-Based Part Feature Polling)
utilizing graph convolutional network (GCN) and GaitSet achieves the lowest
average rank-1 accuracy of 62.4% for CASIA-B, while MFINet (Multiple Factor
Inference Network) exhibits the lowest accuracy range of 11.72% to 19.32% under
clothing variation conditions on CASIA-B. In addition to an across-the-board
analysis of recent breakthroughs in gait recognition, the scope for potential future
research direction is also assessed.
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INTRODUCTION
Measuring the biological characteristics of an individual based on their unique physical or
behavioral traits is a biometric. Throughout history, people have used various non-
automated biometric methods (Chaudhari, Pawar & Deore, 2013; Connor & Ross, 2018;
Cutting & Kozlowski, 1977). The earliest known reference to such methods dates back to
prehistoric times, with hand ridge patterns discovered in Nova Scotia. Fingerprint
recognition is among the oldest biometric methods, with records of its use dating back to
6000 B.C. by ancient civilizations, such as the Assyrians, Babylonians, Japanese, and
Chinese. The study of fingerprints was formalized in the 19th century, leading to
classification systems. Anthropologist Alphonse Bertillon developed body measurement
methods for identification, followed by the development of automated fingerprint systems
in the late 20th century. Other modalities, like iris and facial recognition, have contributed
to the biometric evolution. By the mid-20th century, advancements in signature and retinal
scanning had emerged. Biometric industry organizations, such as IBA and IBIA, further
propelled the growth of biometrics. Over the 20th and 21st centuries, biometrics has
expanded across sectors, including law enforcement, commercial, and governmental
applications.

Modern biometrics like gait recognition use analysis of distinctive walking patterns of
individuals to identify them (Cai et al., 2021; Aung & Pluempitiwiriyawej, 2020; Ding et al.,
2022; Jin et al., 2022). Unlike other biometric methods like face recognition, fingerprint
recognition, and iris scanning, gait recognition operates from a distance and requires no
direct interaction with the person being identified (Su, Zhao & Li, 2021; Zhang et al., 2022;
Mu et al., 2020; Ding et al., 2022). Research has shown that even from poor-quality gait
demonstrations, individuals can be recognized, highlighting the distinctiveness of gait as
an identity marker. There are numerous applications of this technology, including person
identification, criminal investigation, social security and surveillance, law enforcement,
video monitoring authentication, healthcare, airport security, access control, pedestrian
traffic monitoring in smart cities, sports, fitness tracking, and human-computer
interaction (Liu et al., 2021; Lin et al., 2021). Its unique advantages include long-distance
capture, non-invasiveness, and resistance to imitation, making it a reliable and secure
identification method (Aung & Pluempitiwiriyawej, 2020).

In an era of growing identity theft concerns, individuals can employ strategies to evade
traditional biometric systems, such as covering their faces or wearing gloves, masking one’s
gait proves to be more challenging. Gait recognition technology offers a promising solution
to address these concerns and a non-intrusive means of identifying individuals.
Researchers have been actively working on improving gait recognition techniques over the
past three decades, and their potential applications in crime investigation, forensic
identification, and enhancing traditional biometric identification systems, making it a
valuable and increasingly relevant field of study.

In this article, the fundamentals section describes the basic methods, advantages, gaps,
and challenges of GAIT recognition technology, along with its utility in criminal
investigations. The survey methodology elaborates on the strategy adopted to conduct the
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survey, followed by the steps involved in recognizing human gait using deep learning
techniques. The literature review focuses on recent advancements in person identification
by employing various gait recognition techniques. The technical details of the different
datasets used in gait recognition are discussed along with their respective frequencies in
gait analysis. The outcomes of various techniques, as reported in recent research, are
appraised in the experimental results & analysis section. The conclusion outlines the
substantial advances in recent years and directions for future research on gait recognition.

This study reviews recent advancements in gait recognition and examine the technical
aspects and effectiveness of authentication techniques using walking patterns. The main
contribution of this article:

. To provide readers with an in-depth theoretical understanding of gait recognition,
tracing its roots in biometric recognition and outlining the most widely used tools in
recent years for extracting gait features and architectures that address related constraints.

. To provide an illustrative, classified, and annotated list of publicly accessible datasets for
gait recognition.

. To illustrate how gait recognition performs better in person identification tasks than face
recognition.

. To provide a thorough analysis of the latest developments in gait recognition for person
identification in the early 2020s, including a comparative review of experimental
analyses.

. Discuss and highlight the advantages, limitations, methods, datasets, and significant
results in the field, while also offering suggestions for future research directions.

FUNDAMENTALS
This section enumerates the prerequisites of Gait Recognition Technology, highlighting its
advantages, such as long-distance capture, non-cooperation requirement, and difficulty to
imitate, making it a reliable identification method. Furthermore, the key applications of
Gait Technology, including criminal investigations, healthcare, sports, biomechanics
research, security, and robotics are examined.

Advantages of gait recognition technology
When compared to other biometric identification systems Gait identification system has
several advantages.

Long-distance capture: Gait recognition technology can accurately capture walking
pattern of an individual from a distance, making it suitable for surveillance and large-scale
video analysis (Su, Zhao & Li, 2021; Zhang et al., 2022;Mu et al., 2020; Han et al., 2022; Jin
et al., 2022).

Non-cooperation requirement: Unlike other biometric recognition technologies that
require active participation from the individual, gait recognition can be applied
unobtrusively, without the cooperation of the person (Su, Zhao & Li, 2021; Zhang et al.,
2022; Mu et al., 2020).
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Difficulty in imitation: Gait recognition is difficult to fake or manipulate, making it a
reliable means of identification (Cai et al., 2021; Aung & Pluempitiwiriyawej, 2020).
Additionally, gait recognition has proven useful in crime investigation, forensic
identification, and social security applications (Liu et al., 2021; Lin et al., 2021).

Usefulness of gait recognition technology
The utilization of gait recognition technology has transformed a number of industries,
including robotics, sports, law enforcement, and healthcare. This modern technology has
unmatched potential for improving forensic investigations, reviving cold case inquiries,
and validating testimonies and alibis. Gait analysis is essential for fall detection, injury
prevention, and rehabilitation monitoring in medical settings. It also helps athletes and
sportspeople perform better and avoid injuries. Its applications include wearable
technology, biometric identification, human-computer interfaces, vehicle safety, and
robotics, which makes it a multipurpose tool with enormous promise in a variety of fields.
This in-depth study explored the various ways in which gait recognition technology is
reshaping industries and advancing human endeavors.

Cross-checking alibis and testimonies (Liu et al., 2021; Lin et al., 2021)
Utilizing spatiotemporal methods, gait recognition serves as a crucial tool for verifying or
contradicting alibis and testimonies. Surveillance footage that captures unique gait
patterns provides evidence of regarding the presence of an individual at a crime scene. By
comparing these patterns with claimed alibis or witness descriptions, it verifies or
contradicts the presence of individuals at specific locations and times. This objective
evidence enhances the reliability of alibi verification and witness testimonies, strengthens
the investigative process and contributes to the accuracy and fairness of legal proceedings.

Criminal profiling (Liu et al., 2021; Lin et al., 2021)
Gait analysis in criminal profiling harnesses the unique walking styles of individuals, akin
to fingerprints or DNA, to create suspect profiles. This process involves scrutinizing factors
like stride length, speed, posture, and foot placement. By scrutinizing surveillance footage,
law enforcement can extract valuable information on the gait patterns of a suspect, aiding
in narrowing down the potential leads. In cases where traditional identification methods
are inconclusive, gait analysis offers an additional means of pinpointing suspects by
comparing observed patterns with databases. This technique not only facilitates the
identification of potential suspects, but also aids in prioritizing investigative resources
more effectively, increasing the likelihood of apprehending perpetrators.

Forensic evidence (Liu et al., 2021; Lin et al., 2021)
Gait recognition technology enhances forensic investigations by analyzing distinctive
walking patterns of individuals captured in surveillance footage. By correlating these
patterns with specific locations and times, the presence or movement of individuals during
critical events can be confirmed. These empirical data reinforce other case materials, such
as DNA analysis or fingerprinting, by corroborating timelines and establishing
connections between individuals and crime scenes. Moreover, gait recognition fills the
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gaps in traditional forensic evidence, particularly in cases of obscured visual identification.
Overall, it strengthens the integrity of legal proceedings and contributes to more robust
outcomes in the criminal justice system.

Investigation of unsolved cases (Liu et al., 2021; Lin et al., 2021)
Gait recognition technology is instrumental in reinvigorating investigations of unsolved
cases, particularly cold criminal cases that have stalled traditional methods. By analyzing
unique walking patterns, it introduces a new approach that offers new leads and avenues
for investigation. It allows investigators to revisit existing evidence, focusing on the
movement of individuals and behaviors, potentially uncovering overlooked details or
connections. Moreover, gait recognition overcomes the limitations of traditional methods
by providing alternative means of identification, even in cases of obscured faces.

Enhancement of witness testimonies (Liu et al., 2021; Lin et al., 2021)
Corroborating witness descriptions: By analyzing surveillance footage to match the gait
pattern of an individual with witness-provided physical descriptions, gait recognition adds
credibility to the testimonies.

Verifying movements: Gait analysis ensures alignment between witnessed movements
and those observed in surveillance footage, thereby substantiating the accuracy of
testimonies regarding suspect actions.

Challenging inconsistencies: Gait recognition identifies disparities between witness
accounts and observed gait patterns, prompting critical examination of testimonies and
potential further investigation.

Providing objective evidence: Gait analysis furnishes impartial evidence grounded in
unique walking patterns, augmenting the reliability of testimonies with scientific rigor.

Healthcare and rehabilitation (Sethi, Bharti & Prakash, 2022; Connor &
Ross, 2018; Kumar et al., 2021)
Rehabilitation monitoring: To track and evaluate the progress of patients during
rehabilitation programs, physical therapy settings make extensive use of gait technology.
Through consistent gait analysis, therapists can objectively monitor the advancements or
modifications over time. Therapists can customize treatments and therapy regimens
according to the unique requirements and advancements of each patient using this data-
driven approach. For example, therapists can modify exercises or therapies to address areas
of weakness or imbalance, if gait analysis indicates abnormalities or uneven movement
patterns. Ultimately, this customized strategy improves rehabilitation programs efficacy
and aids patients in achieving the best possible recovery.

Fall detection: Defects in walking patterns can also be a sign of an elevated fall risk,
especially in the senior population, where gait analysis is useful. Before a fall occurs, gait
recognition technology can detect people who may be at risk of falling by examining minor
changes or departures from typical gait patterns. By taking a proactive stance, healthcare
professionals can reduce the likelihood of falls by implementing interventions or
preventive measures, such as proposing assistive technology, making environmental
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modifications to eliminate dangers, or prescribing exercises to enhance balance and
stability. By encouraging safety and independence, the early identification of fall risk
through gait analysis of an individual improves the overall quality of life and reduces the
likelihood of accidents and hospital stays.

Sports and athletics (Sethi, Bharti & Prakash, 2022; Marsico & Mecca,
2019; Kumar et al., 2021)
Performance optimization: Athletes use gait analysis to refine their walking or running
form and increase effectiveness. Gait recognition technology delves into the biomechanical
elements that examine the gait pattern of an athlete under various factors such as posture,
foot placement, cadence, and stride length. With these data, athletes can modify their
technique to optimize energy use, minimize extraneous motions, and enhance overall
efficiency. For instance, an athlete overstriding or excessive lateral movement, may be
identified by gait analysis as inefficiencies in their running form. This can be corrected
using focused training and technical modifications. Athletes can enhance their athletic
prowess and perform better in competitions by fine-tuning their walking patterns.

Injury prevention: Coaches and sports medicine professionals use gait technology to
identify biomechanical issues that may contribute to injuries, allowing for targeted
interventions.

Biomechanics research (Liu et al., 2021; Lin et al., 2021; Sethi, Bharti &
Prakash, 2022; Kumar et al., 2021)
Human movement studies: Researchers use gait analysis to understand the mechanics of
human movement, which is valuable for designing prosthetics, orthotics, and ergonomic
products.

Clinical studies: Gait technology assists in clinical studies related to neurological
disorders, musculoskeletal conditions, and other health-related research.

Security and surveillance (Liu et al., 2021; Lin et al., 2021; Sethi, Bharti
& Prakash, 2022)
Biometric identification: Gait analysis leverages distinctive walking patterns as a biometric
identifier for authentication and identification. Similar to fingerprints or facial features,
gait patterns are also unique and can be used as reliable markers for distinguishing one
individual from another.

Human-computer interaction (Sethi, Bharti & Prakash, 2022; Sun, Su &
Fan, 2022)
Natural interaction: Integrating gait analysis into gesture recognition systems enables fluid,
and instinctive interactions without traditional input devices. Users control virtual
environments with subtle movements, and enhance immersion by eliminating the need for
controllers.
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VR immersion: Gait recognition allows users to navigate virtual worlds naturally using
body movements to interact with digital content. This deepens immersion as users can
walk, run, and gesture to manipulate objects and explore virtual spaces.

Gesture-based gameplay: Gait technology introduces gesture-based gameplay,
translating walking patterns into in-game actions. Users can jump, crouch, or interact with
objects by performing specific gestures while walking, adding physicality, and engaging in
gaming.

Accessibility: Gait-based gestures enhance accessibility by offering alternative input
methods to users with mobility limitations. By leveraging natural body movements, these
systems are inclusive, allowing a wider range of users to participate in VR and gaming
activities equally.

Wearable technology (Sethi, Bharti & Prakash, 2022;Marsico & Mecca,
2019; Connor & Ross, 2018)
Fitness tracking: Users who wear wearable technology with gait analysis capabilities can
obtain comprehensive insights into their jogging or walking habits. These gadgets provide
useful information for evaluating the overall fitness and health of an individual. Users can
set fitness goals, monitor their progress over time, and modify their routines, as necessary.

Assistive devices: Gait recognition technology in assistive devices like smart shoes or
insoles, offers immediate feedback and aids for people with mobility impairments. These
devices analyze gait patterns to deliver personalized assistance, and enhance stability,
balance, and mobility. For instance, smart shoes with gait sensors can detect irregular
walking patterns and provide feedback to correct the posture or stride.

Automotive safety (Sethi, Bharti & Prakash, 2022; Marsico & Mecca,
2019)
Driver monitoring systems utilize gait analysis to evaluate driver behavior and conditions,
identifying slight alterations in walking patterns that could signify fatigue or alertness. This
approach enables the ongoing monitoring of driver alertness, facilitating prompt action to
avert accidents. Gait analysis is particularly adept at detecting fatigue indicators, which is a
notable hazard for road safety. Immediate alerts and interventions can be provided to
drivers, suggesting breaks or activating automated driving modes to ensure safe vehicle
operation until alertness is restored.

Robotics (Sethi, Bharti & Prakash, 2022; Sun, Su & Fan, 2022)
Humanoid robots: Gait technology can be integrated into humanoid robot designs to
facilitate lifelike walking patterns and improve the overall interaction between humans and
robots. Anthropomorphic robots are machines that act more like humans. This helps
people to better utilize and accept them. This also makes people feel more connected to
machines, which is important for rehabilitation. Machines with human-like traits can
communicate seamlessly with users. By incorporating findings from gait research, robot
designers can replicate human movements, such as stride length, cadence, and posture,
thereby enhancing the authenticity of the walking motion. This makes it possible for
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humanoid robots to engage with people in a more natural, move more adaptably through
different contexts, and offer individualized physical assistance, especially in healthcare
settings. Robots with gait recognition technology can predict and react to human motions
by analyzing human gait patterns in real-time. This capability broadens the range of
applications of robots and fosters cooperation between people and robots under a variety
of circumstances.

DIFFERENT APPROACHES FOR HUMAN IDENTIFICATION
USING GAIT RECOGNITION TECHNOLOGY
Various gait recognition methodologies are addressed in this section; each methodology
offers unique insights into analyzing and identifying individuals based on their walking
patterns, and Fig. 1 represents the same.

Appearance-based methods
Silhouette-based gait analysis: (Han & Bhanu, 2006; Lam, Cheung & Liu, 2011; Tao et al.,
2007). This method extracts the silhouette of a person while walking and analyses the
shape and motion of the silhouette. Features such as the aspect ratio, area, and height were
used for recognition.

Image and video-based gait recognition: (Işık & Ekenel, 2021; Wang et al., 2010; Han
et al., 2022; Mowbray & Nixon, 2003). These methods use images or videos of a person
walking, and then extract features from these images or frames. This includes traditional
computer vision techniques and deep learning methods.

Model-based methods
Dynamic time warping (DTW): (Zhang et al., 2019; Bashir, Xiang & Gong, 2010). It is
appropriate for gait identification because it calculates the similarity between two temporal
sequences. The algorithm aligns the sequences and calculates the distance metric.

Hidden Markov models (HMMs): (Kale et al., 2004; Chen, Wu & Li, 2020; Zhang et al.,
2021) HMMs model the temporal dynamics of gait patterns. Each gait sequence is
represented as a sequence of states, and the model can be trained to recognize individuals
based on these sequences.

Principal component analysis (PCA): (Zhang et al., 2019; Ariyanto & Nixon, 2012;
Bobick & Johnson, 2001; Cunado, Nixon & Carter, 2003) PCA was used for dimensionality
reduction of the gait data. It can be applied to feature extraction to reduce the complexity
of the gait patterns.

Sensor-based methods (Sethi, Bharti & Prakash 2022)
Inertial sensors: These methods use accelerometers and gyroscopes to capture motion data
while walking. Machine learning algorithms can then process these data for gait
recognition.

Pressure sensors: Pressure sensors embedded in the floor or insoles of shoes can capture
foot pressure patterns during walking that are unique to individuals.
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Deep learning methods (Chen, Wu & Li, 2020; Zhang, Wang & Li, 2021;
Ghosh, 2022)
Convolutional neural networks (CNNs): CNNs can be used for gait recognition by
processing images and video data. They automatically learn relevant features from raw
image data.

Recurrent neural networks (RNNs): play a role in gait identification problems because
they can be used to model temporal dependencies in gait sequences.

Siamese networks: By learning to distinguish gait pattern among various people, these
networks, which are made for one-shot learning tasks, can be utilized for gait recognition.

Fusion methods (Zhang et al., 2021; Zhang et al., 2022; Cai et al., 2021;
Cosma & Radoi, 2020; Teepe et al., 2021; Ghosh, 2022)
Multimodal fusion: This approach combines information from multiple sources such as
video, depth sensors, and other biometric modalities (such as face or voice recognition) to
improve gait recognition accuracy.

Score-level fusion: Different recognition methods, such as appearance-based and
model-based, can produce scores for each individual. These scores can be fused to make a
final recognition decision.

3D gait recognition (Sethi, Bharti & Prakash 2022)
Depth cameras: Depth cameras like Microsoft Kinect or LiDAR sensors capture three-
dimensional information of a person during walking, which can be used for gait
recognition.

Spatiotemporal method (Su, Zhao & Li, 2021; Khan, Farid &
Grzegorzek, 2023)
Spatiotemporal template: This method captures both spatial and temporal information
regarding the movement of a person to create templates for gait recognition.

Figure 1 Various approaches of gait recognition technology.
Full-size DOI: 10.7717/peerj-cs.2158/fig-1
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Gait energy image (GEI): GEI is a representation that combines multiple frames of
silhouette into a single image, thereby emphasizing the energy distribution of the gait cycle.

. In relation to the gait recognition research in previous studies, there was a preference for
model-based approaches initially (Zhang et al., 2021; Kale et al., 2004; Wagg & Nixon,
2004; Yam, Nixon & Carter, 2004; Yamauchi, Bhanu & Saito, 2010; Liao et al., 2017;
Ariyanto & Nixon, 2012; Bobick & Johnson, 2001; Cunado, Nixon & Carter, 2003).
However, there has been a shift towards the appearance-based methods owing to their
increased popularity (Işık & Ekenel, 2021; Wang et al., 2010; Han & Bhanu, 2006;
Makihara et al., 2006; Tao et al., 2007; Lam, Cheung & Liu, 2011; Wang et al., 2012;
Bashir, Xiang & Gong, 2010; Mowbray & Nixon, 2003; Liu & Sarkar, 2006; Zhang et al.,
2019). This shift has been driven by the ability of appearance-based methods to
overcome the limitations associated with the former, such as high computational
complexity, limited robustness to variations, sensitivity to environmental conditions,
privacy concerns, and complex implementation.

. Appearance-based approaches offer advantages, such as reduced data requirements,
lower computational complexity, robustness to variations, simplicity of implementation,
and faster processing speed, making them practical for real-world applications.
However, these methods have limitations, including sensitivity to environmental
conditions, limited discriminative power, susceptibility to clothing variations, and
privacy concerns.

. Deep learning has revolutionized gait identification by addressing these challenges
through automatic feature learning, robustness to variations, transfer learning, and
temporal modelling. Despite its impressive accuracy, deep learning requires a substantial
amount of labelled data and can be computationally intensive, leading to ongoing
research for improvement.

. Gait recognition researchers commonly employ a combination of techniques, including
deep learning and spatiotemporal methods to enhance the accuracy and robustness.
Sensor-based models require wearable devices, whereas appearance-based and 3D gait
recognition primarily rely on visual data, with method choice influenced by the
application, data accessibility, and accuracy requirements.

Researchers continue to explore and integrate various techniques to advance gait
recognition. In this article, we mainly focused on the deep learning techniques and their
combinations.

SURVEY METHODOLOGY
Search strategy analysis
This research article draws from various databases, including SCOPUS, IEEE Xplore,
Google Scholar, Web of Science, Springer, and Science Direct, covering top-indexed
journals and high-impact research articles in the field from 2020 to 2023. The primary aim
of the survey was to provide a comprehensive analysis of the latest developments in gait
recognition for person identification, thus setting the timeframe since 2020. Relevant
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articles containing the keywords “gait recognition using deep learning” and “person
identification” were identified without the need for additional refinement using wildcards.
The focus is solely on identifying individuals based on gait recognition techniques without
requiring cooperation. Consequently, the consideration of wearable devices, such as smart
devices, and non-wearable devices, like sensor-based models, is excluded. Table 1
represents the keywords used to identify the research articles in their database.

Inclusion and exclusion criteria
The inclusion and exclusion criteria while searching the research articles in their respective
databases and PRISMA analysis diagrams were also framed. Figure 2 shows a PRISMA
analysis diagram for the selection of articles. Table 2 shows the inclusion criteria for fine-
tuning the selection process and the exclusion criteria to eliminate irrelevant topics. Of the
1,391 records, 22 were included in the qualitative synthesis after screening, eligibility
assessment, and removal of duplicates and exclusions, resulting in a final selection of 22
articles.

Selection of research data
The selection of research data can be explained using a step-by-step approach, which is
also represented in Fig. 3.

Stage 1: Collect research articles from various databases such as SCOPUS, IEEE Xplore,
Google Scholar, Web of Science, Springer, and Science Direct using the keywords “Gait
recognition using deep learning” and “Person Identification”.

Stage 2: Filter articles published between 2020 and 2023, excluding wearable and non-
wearable sensor-based hybrid models.

Stage 3: Select articles based on title/abstract relevance and eliminate irrelevant articles.
Stage 4: Articles with incomplete data, deviation from the topic, or improper content

were excluded.
Stage 5: Remove reviews/survey articles and include highly related abstracts and full-text

articles.

GENERAL STEPS FOR HUMAN GAIT RECOGNITION
SYSTEM USING DEEP LEARNING TECHNIQUES
Human gait recognition typically involves several steps. These steps can vary in complexity
depending on the specific approach and technology used; however, here are the
fundamental stages of human gait recognition in deep learning techniques which are
shown in Fig. 4.

Table 1 The keywords used in databases.

Journals SCOPUS, IEEE xplore, google scholar, web of science, springer and science direct

Keywords “Gait recognition using deep learning” AND “person identification”
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Gait recognition is a multi-step process that commences with
1. Data acquisition: involved the collection of video footage or sensor data to capture the

walking or running patterns of an individual. Common data sources encompass
surveillance cameras, depth sensors, or inertial sensors in wearable devices. Subsequently,
the acquired data underwent preprocessing to enhance quality, including tasks like
background subtraction and noise reduction.

Figure 2 PRISMA analysis. Full-size DOI: 10.7717/peerj-cs.2158/fig-2
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Table 2 The inclusion and exclusion criteria used while searching the research article.

Inclusion
criteria

Description Exclusion
criteria

Description

I1 Includes keyword as gait recognition using deep
learning

E1 Exclude the wearable or nonwearable sensor-based
model

I2 Studies that applied for person identification E2 Publications which are not related to human
identification

I3 Include the article between 2020 to 2023 E3 Removing the duplicates articles

I4 Include full-text articles E4 Exclude the review and survey article

I5 Include the articles which is published in English E5 Publication which contains incomplete data

Note:
Represents the inclusion and exclusion criteria while searching the research article. The criteria include recent (2020–2023) articles on gait recognition using deep learning
for person identification to ensure a relevant and accurate article. Furthermore, we exclude irrelevant articles like sensor-based models, non-human identification,
duplicates, reviews, and incomplete data.

Figure 3 Step-by-step approaches of selection of research data.
Full-size DOI: 10.7717/peerj-cs.2158/fig-3
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2. Feature extraction: Relevant gait features are identified, such as limb motion or
spatial-temporal characteristics. For feature extraction, the system may employ deep
learning techniques or machine learning techniques like CNN (Chai et al., 2021; Su, Zhao
& Li, 2021; Liu et al., 2021; Mu et al., 2020; Nixon, Tan & Chellappa, 2010), RNN (Ghosh,
2022), Mask R-CNN (Zhang et al., 2021, 2022), ResNet (Cosma & Radoi, 2020), long short-
term memory (LSTM) (Cosma & Radoi, 2020; Zhang et al., 2022), and other techniques
like the Baum-Welch Algorithm or GEI (Chai et al., 2021; Inui et al., 2020), which aid in
extracting discriminative features.

3. Normalization: The discriminative features are then normalized using techniques like
batch normalization to account for variations in speed and size.

4. Model training: The core of the process is model training, during which machine
learning or deep learning models learn to recognize unique gait patterns from a labeled
dataset.

5. Classification: Once trained, these models were employed for the recognition or
classification of new gait data. Various loss functions, such as reconstruction loss (Chai
et al., 2021; Zhang et al., 2022), triplet loss (Zhang et al., 2022; Su, Zhao & Li, 2021; Schroff,
Kalenichenko & Philbin, 2015; Fan et al., 2020; Chao et al., 2019; Hermans, Beyer & Leibe,
2017), identity similarity loss (Chai et al., 2021), cross-entropy loss (Li et al., 2020), softmax
function (Ghosh, 2022), cosine similarity loss (Chaudhari, Pawar & Deore, 2013; Connor &
Ross, 2018; Hinton, Vinyals & Dean, 2014), and angular loss functions (Kumar et al., 2021;
Marsico & Mecca, 2019) are used for classification, either individually or in combination.

6. Post-processing: This step refines the results, and gait patterns are frequently used for
authentication or verification in real-world applications. The system performance is
evaluated, and continuous learning may be implemented to adapt to changing gait patterns
over time, rendering gait recognition a dynamic and evolving field in biometrics and
security.

LITERATURE REVIEW ON HUMAN ACTIVITY RECOGNITION
In this section, we discuss, various deep learning models such as CNN, Mask R-CNN,
CNN-LSTM, LSTM-ResNet, GCN, CNN-LSTM-GCN hybrid, silhouette-skeleton-based

Figure 4 General steps for human gait recognition system using deep learning techniques. Full-size DOI: 10.7717/peerj-cs.2158/fig-4
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Table 3 Comparative analysis of various gait recognition approaches.

Methods used Limitations Advantages Dataset used Loss function Reference

(1.1) Gate controlled
and shared
attention ICDNet
(GA-ICDNet)

. It may not be robust to
illumination and background
changes.

. Proposed modules improve
recognition accuracy in gait
recognition.

. Shared attention module and
covariate feature control gate
module address over-
disentanglement.

. The model provides a more
fine-grained representation at
spatial and channel aspects.

OU-LP Bag,
OU-Lp
Bag-β

Reconstruction
loss, triplet
loss, identity
similarity loss
and cross
entropy error
loss.

Chai et al. (2021)

(1.2) Spatio-temporal
representation
model

. It might not be resilient to
alterations in clothing and
perspectives, potentially
impacting how gait appears
and moves.

. Refines spatial features to
extract more discriminative
features

. Deals with variations caused by
walking speed, carrying,
dressing condition, and
viewpoint

. Provides solutions for gait
recognition in real-world
scenarios

CASIA-B Triplet loss
function

Su, Zhao & Li (2021)

. It does not consider the effects
of clothing variations,
occlusions, and noise on gait
recognition, which may reduce
its robustness and
generalization.

. SelfGait utilizes massive,
diverse, unlabeled gait data for
pre-training.

. It improves the representation
abilities of spatiotemporal
backbones.

. It is effective for subjects with
coat or jacket.

CASIA-B
OU-MVLP

Cousine
similarity Loss

Liu et al. (2021)

(1.3) iLGaCo model . It relies on a limited set of past
samples to preserve prior
knowledge, which might be
lacking or inadequate in certain
situations, and only accounts
for two covariate factors:
viewpoints and walking
conditions.

. iLGaCo allows for incremental
learning of covariate factors for
gait recognition.

. It addresses catastrophic
forgetting by using a small
memory for previous samples.

. The approach achieves
competitive performance and
can be applied to add new
information.

. It has limited storage
requirements and low
computational cost.

CASIA-B Cross-entropy
loss and
hinton loss

Mu et al. (2020)

(Continued)
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Table 3 (continued)

Methods used Limitations Advantages Dataset used Loss function Reference

(1.4) Multi-temporal-
scale feature
extractor (MSTFE)
model

. It overlooks the spatial details
of gait, like global and local
body features, potentially
compromising its resilience to
variations in clothing, carrying
conditions, or viewing angles.

. Extracts gait features from
multiple temporal scales

. Integrates slowly changing and
rapidly changing gait
information

. Improves performance in
complex carrying conditions

CASIA-B,
outdoor
gait

Triplet loss
function and
cross entropy
loss

Lin et al. (2021)

(1.5) Cross-view gait
recognition model

. It may not perform well on
low-quality silhouettes.

. Global features focus on the
subject's shape, while local
features extract fine-grained
information.

CASIA-B Triplet loss
function

Hong et al. (2021)

(1.6) Deep
convolutional
neural network
model

. It may not cover all the possible
variations and challenges in
gait recognition, such as
different clothing, lighting, and
background conditions.

. Enables recognition from long
distance and low-resolution
images

. Fine-tuning of pre-trained
model improves gait
recognition performance

CASIA-B,
OU-ISIR

– Işık & Ekenel (2021)

. The proposed CNN model is
only evaluated on the CASIA-B
gait dataset, which may not be
representative of real-world
scenarios or other gait dataset
and does not consider the
effects of other factors that may
affect gait recognition, such as
occlusion.

. Gait Energy Images (GEI)
capture spatiotemporal gait
information for identification.

. Proposed method shows
effectiveness in environments
with clothes changes and
viewing angles variation.

CASIA-B Cross entropy
loss and
softmax loss

Aung &
Pluempitiwiriyawej
(2020)

(1.7) Global and local
feature extraction
model

. It does not address the
challenges of cross-view, noise,
occlusion, or low resolution in
real-world scenarios.

. Utilizes both global visual
information and local region
details.

. Introduces Local Temporal
Aggregation to preserve spatial
information.

. Improves discriminativeness of
visual features for better gait
recognition performance.

CASIA-B,
OU-MVLP

Triplet loss
function and
cross entropy
loss

Lin, Zhang & Yu
(2021)

(1.8) Combination of
mask R-CNN and
CNN model

. It might not be resistant to
variations in lighting and
background conditions.

. Gait recognition based on gait
features can be collected under
long-distance and contactless
conditions.

CASIA-B Triplet loss
function and
softmax
function

Zhang et al. (2021)
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Table 3 (continued)

Methods used Limitations Advantages Dataset used Loss function Reference

. The number of subjects is small
(only four people) and the gait
data is not collected in a
specified place or condition,
which may affect the
generalization and robustness
of the proposed method.

. It only tested on two patterns
of gait (with nothing and with a
bag).

. It improves the accuracy and
robustness of gait recognition
in real environments, where
the background and the
foreground are often complex
and dynamic.

. It can also reduce the
computational cost and storage
requirement of gait
recognition, as only one GEI
image is needed for each
person.

CASIA-B – Inui et al. (2020)

(1.9) Combination of
mask R-CNN,
CNN and LSTM
model

. It might struggle with extreme
changes like occlusion,
lighting, and pose, and might
not adequately capture the
dynamic aspects of gait crucial
for distinguishing individuals.

. GaitNet disentangles
appearance, canonical, and
pose features for better
recognition.

. Gait biometrics identification
has advantages in long-
distance and lower resolution
scenarios.

Front-view
gait (FVG)

Cross
reconstruction
loss, pose
similarity loss,
canonical
similarity loss,
incremental
identity loss

Zhang et al. (2022)

(1.10) Combination
of LSTM and
ResNet model

. It may not be robust to clothing
changes and view changes,
which can affect the
appearance and motion of gait.

. MFINet method incorporates
confounding factors in the
decision process.

. MFINet achieves an accuracy
of over 85% in scenarios with
the same angle.

. MFINet uses a skeleton image
representation to capture
temporal dynamics.

CASIA-B Triplet loss
function and
cross entropy
loss

Cosma & Radoi
(2020)

(2.1) GCN model . Recognizing gait in UAVs is
challenging due to pitch
rotations, and data quality can
be affected by factors like
clothing changes and carrying
objects.

. Gait recognition using UAVs
provides extended operational
ranges and adaptability,
requiring minimal data quality
and no cooperation.

UAV-gait – Ding et al. (2022)

(2.2) Combination of
ResGCN and CNN
model

. It does not analyze the
robustness or generalization of
the proposed method to
different pose estimation
errors, occlusions, or variations
in gait speed, stride length, or
style. The article does not
provide any qualitative or
visual results to illustrate the
learned gait features or the
effect of the spatial and
temporal modeling.

. Skeleton poses from RGB
images offer robustness and
accuracy, particularly in
complex scenes.

. Representing poses as a graph
captures spatial and temporal
relations between joints and
limbs.

. GCNs handle variable-length
sequences and incorporate
global and local information
effectively.

CASIA-B – Teepe et al. (2021)

(Continued)

Munusamy and Senthilkumar (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2158 17/41

http://dx.doi.org/10.7717/peerj-cs.2158
https://peerj.com/computer-science/


Table 3 (continued)

Methods used Limitations Advantages Dataset used Loss function Reference

(2.3) Combination of
CNN, LSTM and
GCN model

. Effectiveness hinges on pose
estimation accuracy, which
may falter in certain situations,
particularly when capturing
overlapped body structures
during walking, necessitating
intricate model and fusion
approaches for optimal
integration of silhouette and
skeleton data.

. Heatmap for joints achieves
better performance than other
skeleton representations.

. Proposed approach boosts
performance of both set-based
and sequence-based gait
recognition.

CASIA-B Triplet loss
function and
cross entropy
loss

Cai et al. (2021)

(3) Fully connected
network model

. It overlooks the changes in gait
appearance caused by clothing,
carrying conditions, or
different speeds, potentially
impacting recognition
accuracy.

. Solid physical interpretability
for gait recognition system.

. Effective method for cross-
view gait recognition on large
dataset.

OU-MVLP Autoencoder,
triplet loss and
softmax loss
function

Zhang et al. (2021)

. The method requires a large
amount of training data to
learn the angular softmax loss
and the triplet loss, which may
not be available in some
scenarios. The method does
not consider the temporal
dynamics of gait, which may
contain useful information for
cross-view recognition.

. A-Softmax loss helps in
learning a separable feature
representation in the angular
space.

. BA triple loss makes the
learned feature representations
more discriminative.

CASIA-B,
TUM
GAID
database

Angular loss and
triplet loss
function

Han et al. (2022)

(4) Temporal part-
based GaitPart
model

. It may not perform well on
low-quality silhouettes.

. GaitPart model enhances fine-
grained learning of spatial
features.

. Micro-motion Capture Module
(MCM) focuses on short-range
temporal features.

. GaitPart achieves state-of-the-
art performance on multiple
standard benchmarks.

CASIA-B,
OU-MVLP

Triplet loss
function

Fan et al. (2020)

(5) Hidden markov
model

. It does not consider the
appearance variations of gait
due to clothing, carrying
condition, or varying pace,
which may affect the
recognition performance.

. Gait recognition based on
GFHI provides a compact
representation of human
motion.

. Increasing the number of views
in the training data improves
recognition accuracy.

USF, CMU
MoBo,
CASIA,
self-built
gait
datasets

– Chen, Wu & Li
(2020)
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gait representation, fully connected network, hidden Markov model, GI-ReID, and Faster
R-CNN-RNN combination. Additionally, a comparison table (Table 3) is provided to
illustrate various gait recognition approaches.

CNN based models
A CNN is a deep learning model that specializes in handling visual data, such as images
and videos, with exceptional effectiveness. This section provides an overview of several
models based on CNNs that are used for human gait recognition, which is the process of
recognizing people based on the way they walk. The distinct methodologies of each
subsection are explained, including the disentangled framework of GA-ICDNet (Chai
et al., 2021), the incremental learning technique of iLGaCo (Mu et al., 2020), and the many
ways in which CNN, LSTM, and Mask R-CNN are combined to process and extract
features. These models enhance the gait identification performance on a variety of datasets
and in practical applications by employing distinct loss functions and feature extraction
methods.

GA-ICDNet based model
Gate Controlled and Shared Attention ICDNet (GA-ICDNet) was introduced in the work
published by Chai et al. (2021). The proposed system was based on the disentangled
framework representation proposed in the work published by Li et al. (2020). GA-ICDNet
has an encoder that differentiates the image into identity and covariate parts, a shared
attention model-introduced semantic label that helps identify the covariate position at the
spatial aspects, a control gate generation model that provides detailed information of the
covariate, and a decoder that recovers the GEIs with and without covariates. The study
proposed by Chai et al. (2021), used four types of loss functions to compute the distance

Table 3 (continued)

Methods used Limitations Advantages Dataset used Loss function Reference

(6) GI-ReID model . Imperfect gait predictions due
to occlusion and multi-person
scenarios.

. Challenges in capturing perfect
gait results due to
environmental differences.

. Gait-stream captures cloth-
invariant biometric
characteristics, reduces
computing costs, and excels in
cloth-independent gait
recognition

Real28, VC-
Clothes,
LTCC,
PRCC

Classification
loss and triplet
loss

Jin et al. (2022)

(7) Combination of
faster R-CNN and
RNN

. Gait recognition systems
struggle with various walking
patterns due to COs.

. Challenges include object
characteristics, moving objects,
and view angles.

. Faster R-CNN outperforms
YOLOv3 and Cascade R-CNN
in pedestrian detection.

. Bayesian optimization
technique used for optimal
hyperparameter selection.

. Novel method for gait
recognition with and without
carried objects.

OU-LP-Bag
OUTD-B
OULP-Age
CASIA-B

Classification
loss and
regression loss

Ghosh (2022)
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between the current output and the expected output of the algorithm, including
reconstruction loss, triplet loss, identity similarity loss, and cross-entropy error loss.

Spatio-temporal representation model
Su, Zhao & Li (2021) proposed, multiple spatiotemporal feature extraction, temporal
pooling, and horizontal pooling. Three modules make up each spatiotemporal feature
extraction: The Micro Information Integration (MII) module additionally incorporates
temporal information and amplifies the receptive field in the time dimension. A CNN
extracts features frame-by-frame. Temporal Information Passing (TIP) assists in
identifying the temporal and spatial features between different frames extracted from the
CNN. The average gait image period, or temporal pooling, represents both the spatial and
temporal information. The feature map is uniformly divided into horizontal stripes by a
horizontal pooling module, which also normalizes each column vector inside a stripe to a
single column vector to provide fine-grained information. Su, Zhao & Li (2021) exclusively
employed the triplet loss function.

The pretraining pipeline of SelfGait (Liu et al., 2021) adopts two major networks: an
online network and a target network, which act as a backbone for extracting features in
spatiotemporal techniques. An online network consists of an online encoder, transition
model, online projection, and prediction. The online encoder has Horizontal Pyramid
Mapping (HPM), which converts all feature frames into patches for tracing multi-scale
spatial features. Then, it undergoes a transition model that acquires knowledge about
temporal features. Online projection and prediction were allocated to the identity feature,
and output of the online network. The pipeline of the target network has a target encoder
and target projection, which are similar to the online encoder and online projection.

iLGaCo model
Mu et al. (2020) developed iLGaCo, which combines a method to prevent catastrophic
forgetting with an incremental learning strategy for covariates used in gait identification.
The algorithm uses CNN and the GaitSet model (Chao et al., 2019) as an incremental
learning end-to-end approach. The model undergoes a streamlined training procedure
using fresh data and a limited fraction of samples from the past. The training procedure, as
well as the selection and memory updates, comprised the two primary components of
iLGaCo. First, samples from memory and fresh samples were combined to train a CNN
model. In the second stage, the samples stored in memory are updated by the selection
algorithm. It has two loss functions in its architecture, the Hinton, Vinyals & Dean (2014),
integrated for network compression, and cross-entropy loss for classification.

Multitemporal-scale feature extractor model

The proposed method for gait recognition uses a spatial-temporal feature extraction
process, incorporating a multi-scale temporal feature extractor (MSTFE) (Lin et al., 2021),
and subsequent operations for temporal aggregation and spatial mapping. The model
extracts spatial features from the inputs using 2D and 3D convolutions and aggregates
temporal information using a multi-scale temporal feature extractor (MSTFE). The
method then performs temporal aggregation (Lin, Zhang & Bao, 2020; Lin et al., 2020) and
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feature mapping, integrating temporal information across the entire sequence and splitting
feature maps into horizontal strips (Fan et al., 2020; Chao et al., 2019). The training stage
involves a combined loss function for optimization, whereas the test stage evaluates
accuracy using a gallery-probe matching approach. This method effectively recognizes gait
patterns in video sequences.

Cross-view recognition model
Hong et al. (2021) introduced cross-view gait recognition based on feature fusion.
Multiscale fusion extracts the features from different receptive fields. Subsequently, it
undergoes a dual-path structure. The global feature module identifies the characteristics of
color, texture, and shape features; here, it is mainly concentrated on shape features. In the
case of aliasing and flawed pictures, local features are more stable. The proposed method
utilizes an attention-based Temporal Feature Aggregator to capture both the intricate local
micro-motion features and the overarching description of the complete gait sequence,
aiming to enhance temporal feature extraction (Fan et al., 2020). To assess the training
progress, the triplet loss function (Schroff, Kalenichenko & Philbin, 2015) was introduced,
which ensures that instances from the same class are positioned closer to each other in the
feature space than instances from different classes.

Deep convolutional neural network model

The approach outlined by Işık & Ekenel (2021) encompassed multiple stages. During the
preprocessing stage, the positions of the silhouettes in the frames were selected. It uses
cropped and centered silhouettes. The aspect ratio of the cropped silhouettes was
preserved by zero-paging all photos to 128 × 88 size. The deep convolutional neural
network can handle RGB full-body human images and binary human silhouettes. The first
phase uses several convolution layers, and then pooling layers are used to remove the
characteristics of the image. The feature representation from the first phase, which is fed
into the next phase of the network, acts as the classifier. Updating the fully linked layers
using the new classification aim and pre-trained feature extraction component in its
existing configuration are alternatives for transfer learning. The feature vectors for a gait
sequence were extracted from each frame, and element-wise max pooling was performed
on each feature vector. The cosine similarity measure was used by the algorithm to assess
the degree of similarity between the gallery and probing feature vectors.

CNNs (Nixon, Tan & Chellappa, 2010) are among the most widely used and prominent
deep learning techniques. It is mostly used in computer vision techniques, such as object
detection, image processing, and video processing. It has the fewest possible layers and
parameters as well as a very short training period. In the model proposed by Aung &
Pluempitiwiriyawej (2020), deep convolutional neural networks were employed to
determine the essential gait characteristics for human identification. Both the cross-
entropy and softmax loss functions were used in the network. The error between the
predicted classification and the actual value was measured using cross-entropy loss as the
loss function in softmax.
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Global and local feature extraction model
In the work published by Lin, Zhang & Yu (2021) exploited, the integration of global-local
feature representation (GLFA) and local temporal aggregation (LTA). LTA can preserve
spatial details by reducing temporal precision to achieve a heightened spatial level of detail.
The GLConv layer, which includes both global and local feature extractors, allows
implementation of the GLFE module. The local feature extractor is used to extract more
information from localized feature maps, whereas the global feature extractor can extract
all gait-related data. Owing to various combinations, GLConv has two distinct structures:
GLConvA and GLConvB. “GLConvA-SP-GLConvA-GLConvB” are the four layers that
make up the GLFE module. In this study, generalized-mean pooling was used to
incorporate the spatial information. Cross-entropy loss can be used to identify Human IDs
using triplet loss (Fan et al., 2020; Chao et al., 2019; Hermans, Beyer & Leibe, 2017) by
increasing the inter-class distance and decreasing the intra-class distance.

Combination of mask R-CNN and CNN model
V-HPM is a combination of horizontal pyramid mapping (HPM) and vertical pyramid
pooling (VPP) and was proposed in a previous study by Zhang et al. (2021) for feature
extraction. Initially, Mask R-CNN extracts the human gait silhouettes and has a feature
extraction network, region proposal network (RPN), region of interest (RoI) align part,
and segmentation part, which can be carried out using a two-stage detection and
segmentation model. Subsequently, an improved Gaitset algorithm was introduced with
V-HPM, which helps identify the relationship between the image sequences by itself
without any time frames. The softmax and triplet loss functions were used for joint
training of the loss function.

A CNN is composed of a convolutional layer, pooling layer, normalization layer, two
successive triples, and two fully connected layers. Inui et al. (2020) combined GEI and
CNN approaches for gait recognition. The GEI approach was used to obtain significant
results. The GEI of CASIA Dataset B was trained and classified using a deep CNN
constructed by the researchers. Batch normalization is used to address network purchase
loss, speed up learning, simplify parameter adjustment, and stabilize the distribution of
each layer of data in the network. It also helps to enhance the optimization efficiency. The
suggested model consists of eight feature maps, four convolutional layers, four pooling
layers, and batch normalization applied after each convolutional layer.

Combination of mask R-CNN, CNN, and LSTM model
The output of the disentanglement was proposed by Zhang et al. (2022) and made possible
by GaitNet. GaitNet is an autoencoder implemented based on a CNN with distinctive loss
functions. The encoder estimates three latent representations for each video frame:
posture, which highlights the placement of the body parts, canonical, which describes the
interesting characteristics of each particular body component; and appearance features,
which depict the attire of the subject. (1) Cross reconstruction loss implies that the final
option outline may be decoded from the accepted additionally, appearance highlights of
one casing combined with the posture element of another edge; (2) Canonical consistency
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loss favors movies of the same subject taken under varied conditions that have the same
canonical qualities; and (3) Pose similarity loss causes a succession of pose features derived
from a video of the same subject to appear identically regardless of the situation. The
sequence-based dynamic gait feature was created by feeding the pose characteristics from
the sequence into a multi-layer LSTM with the expected gradual identity loss.

Combination of LSTM and ResNet model
The method for gait recognition proposed by Cosma & Radoi (2020) was MFINet
(Multiple Factor Inference Network) which is based on skeletal sequences derived using
posture estimation methods (Insafutdinov et al., 2016). Confounding elements (such as
angle and movement fluctuations) are learned by MFINet while performing other tasks,
which adds more details to the recognition process. It has several phases. Extracting 2D
skeletons from monocular photos is the initial step. This was performed using DeeperCut,
which is a well-known open-source framework created by Insafutdinov et al. (2016). The
model, which was trained using Microsoft COCO (Lin et al., 2014), performed well on
benchmarks for 2D posture estimation, and was represented by a list of skeletons in
chronological order. The Stacked Dilated Convolution Blocks in the feature extractor
network, which represent skeletons and maintain both the temporal and spatial structure
of human walking, traverse the TSSI images. Concatenating the generated feature maps
yields a single block. Residual connections are used to speed up the gradient propagation
and incorporate more low-level characteristics. This method of creating skeletons
safeguards the temporal and spatial structures of a person walking.

GCN based models
Neural networks with graph convolutional networks (GCNs) have been specifically
engineered to handle graph-structured input. In gait recognition, GCNs play a key role in
analyzing walking patterns expressed as graphs, where nodes correspond to component
features (e.g., joint positions) and edges denote the relationships between these features. By
aggregating information from neighboring nodes and edges, GCNs enable the extraction of
meaningful gait features that capture both the spatial and temporal characteristics of
walking patterns. In this section, research has explored gait recognition from UAVs at
altitudes of 10, 20, and 30 m using innovative models: one integrates graph convolution
with traditional CNNs, another combines skeleton poses with a GCN, and a third merges
CNN, LSTM, and GCN for hybrid silhouette-skeleton gait representation. These
approaches enhance feature extraction and spatiotemporal representation, and improve
gait recognition accuracy.

GCN model

In general, research has focused on identifying gaits using only data from cameras
positioned from 1 to 5 m above the ground. The initial approach of this research aims to
address the absence of gait recognition data for Unmanned Aerial Vehicles (UAVs) by
compiling ground-level and UAV-based gait data to create a UAV-Gait dataset. This
dataset includes data captured at altitudes of 10, 20, and 30 m during flight. The system
proposed by Ding et al. (2022) consists of two pipelines, the main pipeline (MP) and
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multilayer global pipeline (MGP), to extract gait features. While MGP uses Set Pooling
(SP) to extract global characteristics from the entire sequence, MP uses 2D convolution to
obtain spatial data from each frame. To better capture the local form detail and alleviate
feature misalignment, innovate by using graph convolution-based part feature pooling.
Subsequently, a discriminative space is created from these characteristics using completely
connected layers and Horizontal Pyramid Mapping (HPP). Using graph convolution, they
aggregated neighboring part features either spatially or temporally in their proposed graph
convolution-based part feature pooling. It builds a graph in which nodes represent
component features, and edges are defined by how similar features are to one another. The
graph was then subjected to graph convolution, and max pooling was used to extract the
final component features.

Combination of ResGCN and CNN model

A novel technique called GaitGraph was introduced in the work published by Teepe et al.
(2021). GaitGraph is a modern model-based approach, used to recognize gait features. This
method seamlessly combines skeleton poses with GCN. GaitGraph uses the original image
and employs a pose estimator to calculate the human pose in each frame. It utilizes HRNet
(Sun et al., 2019) to accurately estimate and localize a 2D human pose, relying on the state-
of-the-art approach proposed by Cheng et al. (2020) to create a heatmap with 17 key
points. The ResGCN (Song et al., 2020) block is a composite structure of a residual
connection with a potential bottleneck structure, followed by a traditional 2D temporal
convolution and a graph convolution to enhance the extraction of refined gait information.

Combination of CNN, LSTM, and GCN model
A hybrid silhouette-skeleton-based gait representation was implemented by Cai et al.
(2021). The input of the RGB-colored image extracts two features, the silhouette and
skeleton heatmap for each frame based on pose estimation. These two extracted features
were integrated into a single silhouette-skeleton image during the fusion process for gait
recognition. The single compact silhouette-skeleton image was then subjected to a Gait
embedding network, which adopts the GaitPart (Fan et al., 2020) and consists of two main
components: Frame-level Part Feature Extraction (FPFE) and Micro-motion Capture
Module (MCM). The extraction of the part-educated spatial elements for each frame is the
responsibility of the FPFE. The MCM, which is also known as the Micro-motion Capture
Module, as its name suggests, focuses on spatiotemporal representations of the related
portion. The system uses a combination of triplet and entropy losses as the loss function.

Fully connected network model
Zhang et al. (2021) introduced a model which is composed of three primary components:
the initial component is an Observation Function Approximating module or OFA,
followed by a Koopman Matrix Memory or KMM, and finally, the system includes a
Discriminative Feature Extractor module or DFE. The OFA (Kingma &Welling, 2013) fed
the input image to an encoder, and the encoder used a non-linear deep network
transformation to convert the original input data into Koopman space. To prevent the
code in the Koopman space from converging on outliers, such as zeros, and to maintain the
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majority of useful information in the original images, a decoder is used. Koopman Matrix
Memory (KMM) (Rowley et al., 2009;Williams, Kevrekidis & Rowley, 2015) can be used for
system state analysis by expressing a nonlinear dynamical system in a linear space using
the Koopman operator. Finally, the committed Koopman matrix was transformed into a
fresh feature within a discriminative space using a simple fully connected network. The
DFE module uses softmax loss and triplet loss with hard mining (Hermans, Beyer & Leibe,
2017) as its two identity identification methods.

GaitSet employed by Han et al. (2022), is composed of a combination of different losses
and has two stages: the training stage and the testing stage. Alignment and network
training are the two key stages of the training process. The testing procedure consisted of
three steps: feature extraction, feature alignment, and gallery search. Similar to the training
stage, the silhouettes were first set to a predetermined size. The trained network was then
probed with walking silhouettes to extract gait features. For verification, the closest
neighbor was measured against a predefined threshold. The identification of the nearest
neighbor is the outcome of the recognition if the distance is less than the threshold. A-
Softmax loss (Liu et al., 2017) and triplet loss were used to train the suggested model
simultaneously. While the A-Softmax loss applies a decrease in intra-class distance and an
increase in inter-class distance to capture discriminative traits, the triplet loss of Hermans,
Beyer & Leibe (2017) imposes an angular margin to extract separable features. A batch-
normalization layer (Luo et al., 2019) was used to enable the training process once the
features were extracted.

Temporal part-based GaitPart model
In the work published by Fan et al. (2020), the integration of FPFE, which stands for
Frame-level Part Feature Extractor, and TFA, which stands for the Temporal Feature
Aggregator was carried out. The FPFE extracts spatial features that consider specific body
parts for each frame. This is achieved through a convolutional network comprising three
blocks, where each block comprises a pair of FConv or Focal Convolution Layer. The
feature map undergoes horizontal division into n segments using the Horizontal Pooling
(HP) module, which is designed to capture distinctive part-specific features of human body
segments. The work of modeling the short-range spatiotemporal properties of each
corresponding body segment was divided across n parallel MCMs within the TFA. The loss
function employed here is a Separate TripletLoss.

Hidden markov model
The HMM is an easy-to-understand model that can effectively categorize data and
appropriately describe a dynamic time series. In the work published by Chen, Wu & Li
(2020), a combined HMM and GFHI or Hidden Markov Model and Gait Optical Flow
History Image were used. The Motion History Image (MHI) and the optical flow grayscale
image serve as the foundation for the GFHI (Horn & Schunck, 1980). The optical flow can
be used to calculate the local movement speed of the target. Because the MHI is a grayscale
image containing temporal information, the pixel value for the most recent motion is

Munusamy and Senthilkumar (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2158 25/41

http://dx.doi.org/10.7717/peerj-cs.2158
https://peerj.com/computer-science/


higher. The network uses Hu Invariant Moment Feature Extraction (Hu, 1962) to identify
the local details in the image.

GI-ReID model
The main goal of Jin et al. (2022) was to recognize the same individual repeatedly in
different contexts. CC-ReID represents cloth-changing person re-identification whereas
the GI-ReID system makes every effort to fully utilize the characteristic human gait to
resolve the cloth-changing challenge of ReID by using solely one image. The GI-ReID
system utilizes a dual-stream framework that consists of an image ReID-Stream and an
extra stream designed for gait recognition, referred to as Gait-Stream. These two streams,
ReID-Stream and Gait-Stream, were trained simultaneously while adhering to a high-level
semantic consistency (SC) constraint. The learning of cloth-independent feature sets is
regulated by the gait characteristics in the ReID-Stream. The gait stream consisted of two
components: a pre-trained gait recognition network, GaitSet (Chao et al., 2019), and a gait
sequence prediction module. The purpose of the GSP or gait sequence prediction module
is to enhance the gait data. The training of ReID-Stream is then guided by GaitSet using
augmented gait features that are both independent of clothing and discriminative in terms
of motion signals.

Combination of faster R-CNN and RNN
Implementing a modified Faster R-CNN architecture, the proposed method by Ghosh
(2022) first determines whether a human is present in any of the frames of the walking
activity video. Instead of the five convolutional layers of the classic Faster R-CNNs, nine
distinct convolutional layers were used in this enhanced version. The aspect ratios of the
anchor boxes were modified to accommodate walkers with various widths and heights. The
RPN uses a tiny network to create region suggestions. The feature matrix resulting from
the final convolutional layer is slid over by using a single window. A 256-D network was
mapped to each sliding window to acquire spatial information for each site. The number of
region proposals projected for each location depended on the number of anchors in a
single sliding window. Nine anchor boxes were used for each site in this work, which
employing three scales and three aspect ratios. The RPN creates region proposals with five-
tuple values (index, x, y, w, h) of different sizes. The RoI or Region of Interest pooling layer
projects the feature matrix generated from the final convolutional layer onto it. Among the
positive suggestions labeled by the RPN, this layer selects 100 RoI proposals that exhibit
higher Intersection over Union (IoU) values for this specific inquiry. Furthermore, the RoI
pooling layer employs max-pooling on the feature matrix corresponding to each proposal.
The proposed architecture simultaneously accomplishes two tasks: it assesses whether a
pedestrian is present in the frame and it establishes a bounding box around the detected
individual. Every region of interest (RoI) obtained from the RoI pooling layer undergoes
individual processing by the fully connected (FC) layers. The output layer employs the
softmax function to forecast the existence of a human, and a regressor to generate
coordinates for a rectangular box enclosing the identified individual. The detection
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network calculated the classification and regression losses in the output layer. These losses
must be calculated to identify the presence of a person and establish a bounding box.

DATASETS
This section offers a comprehensive overview of the various gait recognition datasets used
in the research, including details such as dataset sizes, sources, and characteristics. These
datasets vary in terms of subjects, recording conditions, and privacy considerations,
providing diverse resources for gait analysis studies. Table 4 explains the number of
subjects utilized in GAIT datasets, along with their corresponding counts. Figure 5
illustrates the Percentage Distribution of Gait Recognition Datasets across Studies and
Publications. The CASIA-B dataset was the most commonly used, accounting for 57% of
the total dataset. It includes the gait sequences of 124 subjects from 11 different angles and
meets the needs of most models. The OU-MVLP dataset had a 15% usage rate. Other
datasets, including the OU-LP Bag, OU-LP Bag-β, OU-ISIR, FVG, USF, CMU MoBo, and
TUM GAID, each constituted 4% of the usage. These less frequently used datasets can be
selected based on the specific system requirements.

OU-MVLP: Takemura et al. (2018)
Data source: A science museum protracted video-based gait analysis presentation yielded
the data. All participants willingly consented to participate in the study.

Dataset size and diversity: The dataset encompasses 10,307 individuals, including 5,114
males and 5,193 females, covering a broad age spectrum from 2 to 87 years.

Multiple viewing angles: Gait images were captured from 14 distinct viewing angles,
spanning from 0° to 90° and 180° to 270°, providing comprehensive coverage for gait
analysis.

Image quality and frame rate: Image resolution: 1,280 × 980 pixels and Frame rate: 25
frames/seconds.

Camera configuration: Seven network cameras were strategically placed at 15-degree
intervals along a quarter-circle path, with their centers coinciding with the walking area.
This path had a radius of approximately 8 m and a height of approximately 5 m, enabling
varied gait perspectives of the subjects.

OU-LP-Bag: Makihara et al. (2017)
This dataset was generated during a hands-on exhibition on video-based gait analysis at
the Miraikan Science Museum, where visitors electronically provided consent for research.
It included 62,528 subjects with ages spanning from 2 to 95 years. The camera setup
ensured clear and detailed images, which allowed for comprehensive gait analysis with an
image resolution of 1,280 × 980 pixels and a frame rate of 25 frames/second.

OU-LP-Bag β: Makihara et al. (2017)
Training set: This includes 2,068 sequences representing 1,034 individuals, with each
person having two sequences, one with and one without carried objects.
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Probe set: Comprising 1,036 subjects, this set features individuals who carry objects that
are distinct from the training set.

Gallery set: The gallery set mirrors the probe set subjects, but shows them without
carrying objects.

Table 4 Commonly employed subjects in GAIT datasets and their numbers.

No. Datasets name No. of subjects Reference

1 OU-MVLP 10,307 Takemura et al. (2018)

2 OU-LP Bag 62,528 Makihara et al. (2017)

3 OU-Lp Bag-β 2,070 Makihara et al. (2017)

4 OU-ISIR 1. Treadmill: 168 Makihara et al. (2012)

2. Large population: 4,007

5 Front-View Gait (FVG) 226 Zhang et al. (2019)

6 USF 122 Sarkar et al. (2005)

7 CMU MoBo 25 Gross & Shi (2001)

8 TUM GAID database 305 Hofmann et al. (2014)

9 CASIA 124 Zheng et al. (2011)

Figure 5 Percentage distribution of gait recognition datasets across different studies.
Full-size DOI: 10.7717/peerj-cs.2158/fig-5
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Front-view gait: Zhang et al. (2019)
Database creation: This database was assembled during the years 2017 and 2018 to support
research in the field of gait recognition.

Privacy enhancement: To protect subject privacy, a modified version called front-view
gait (FGV)-B was created, which blur facial features to a level where even advanced face
recognition algorithms fail to identify individuals.

Challenging frontal view: Frontal-view walking is considered more challenging in gait
recognition because it provides limited gait cues compared with other view angles.

Diverse conditions: FVG-B encompasses diverse conditions, including variations in
walking speed, carried items, and clothing, all captured from a frontal perspective.

Database details: FVG-B included frontal walking videos from 226 subjects, with 12
subjects being recorded in both 2017 and 2018, resulting in a total of 2,856 videos. A tripod
at a height of 1.5 m was used to hold either a GoPro Hero 5 or Logitech C920 Pro webcam
to record the movies. They had a resolution of 1,080 × 1,920 pixels and an average duration
of 10 s.

USF: Sarkar et al. (2005)
The USF Human ID Gait Challenge Dataset is a collection of video data designed for gait
recognition research. It contains videos of 122 subjects, and these subjects can be observed
in up to 32 different combinations of variations in various factors.

CMU MoBo: Gross & Shi (2001)
The treadmill in the CMU 3D room was used by 25 people, who were represented in the
database. The individuals engaged in four distinct walking patterns: slow walking, fast
walking, walking on an incline, and walking while holding a ball. The entire set of subjects
was recorded using six high-resolution color cameras evenly positioned around the
treadmill.

TUM GAID: Hofmann et al. (2014)
The TUM-GAID dataset comprises data from 305 individuals walking along two distinct
indoor paths, and TUM-GAIT stands for TUM Gait from Audio, Image, and Depth. The
initial trajectory proceeds from left to right, as the second trajectory progresses from right
to left. These recordings were made throughout two sessions, one in January when the
subjects were clothed in bulky winter boots and jackets, and the other in April when they
were wearing lighter attire. These activities were recorded using a Microsoft Kinect sensor
with an image resolution of 640 × 480 pixels and frame rate of 30 frames/s.

CASIA-B: Zheng et al. (2011)
CASIA-B established in January 2005, is an extensive collection of gait information
captured from 124 individuals recorded at 25 frames per second with a resolution of 320 ×
240 pixels. It included 13,640 video sequences with 11 different viewpoints (ranging from
0° to 180° in 18° increments). This dataset meticulously accounts for three distinct
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variables: alterations in view angle, clothing, and carrying conditions. In additional, it
includes human silhouettes extracted from the corresponding video files.

EXPERIMENTAL RESULTS AND ANALYSIS
Various state-of-the-art neural network-based algorithms have been utilized for gait
recognition, showcasing different methods and impressive results in Table 5. The CNN-
based model, GA-ICDNet, achieved a verification error rate of 0.67% and strong Rank-1
accuracy of 97.6%. Another approach, multiple spatiotemporal feature extraction, had an
average Rank-1 accuracy of 72.9% under normal conditions. Incremental learning with
covariate components resulted in an average Rank-1 accuracy of 82.2%. MSTFE exhibited
robust performance with average Rank-1 accuracies of 97.6%, 94.1%, and 81.2% for
normal, brisk, and casual walking, respectively. Feature fusion with a dual-path structure
achieved average Rank-1 accuracies of 97.04%, 92.72%, and 80.48% under different
walking conditions. Deep Convolutional Feature-based Gait Recognition surpassed 86%
accuracy in challenging scenarios. Deep convolutional neural networks achieved accuracy
levels above 97% on the CASIA-B dataset. GFLA and LTA demonstrated gait recognition
accuracies of 97.4%, 94.5%, and 83.6% respectively, with an average rank-1 accuracy of
89.7% excluding identical-view cases on the OU-MVLP dataset with 14 probes. The Mask
R-CNN and enhanced GaitSet Algorithm with the V-HPM feature mapping module
(Zhang et al., 2021) displayed strong accuracy, reaching 95.26% for normal walking (NM),
89.28% for carrying a bag (BG), and 72.48% for wearing a coat cloth (CL). Leveraging the
GEI generated by Mask R-CNN and CNN with Batch normalization (Inui et al., 2020)
achieved over 90% accuracy when subjects carried objects/bags and 50–60% accuracy
without. GaitNet, which incorporates Mask R-CNN, CNN, and LSTM (Zhang et al., 2022),
achieved an exceptional identification accuracy of 99.7%. The Hybrid silhouette-skeleton-
based gait representation by Cai et al. (2021), combining CNN, LSTM, and GCN, showed
an average Rank-1 accuracy of 97.4% for NM, 92.1% for BG, and 81.5% for CL. The
Temporal Part-based GaitPart model with Focal convolutional layer and Micro-motion
Capture Module (MCM) (Fan et al., 2020) achieved an average rank-1 accuracy of 88.7%
on the OU-MVLP dataset. MFINet+TSSI (Cosma & Radoi, 2020), using LSTM and
ResNet, demonstrated an accuracy rate of 85% under normal walking conditions on
CASIA-B. GaitGraph, using ResGCN and 2D CNN (Teepe et al., 2021), presented an
average Rank-1 accuracy of 87.7% for NM, 74.8% for BG, and 66.3% for CL. Other models,
such as the Koopman Operator with Fully Connected Network (Zhang et al., 2021),
GaitSet Batch and Normalization Neck (Han et al., 2022), and GCN with Graph
Convolution-Based Part Feature Polling (GCPFP) (Ding et al., 2022), exhibited diverse
accuracies, highlighting the variety of approaches and their effectiveness in gait
recognition.

Table 6 provides a comprehensive comparative analysis of various gait recognition
models, assessing their performance across different walking states (0° to 180°). Each
model was evaluated based on the mean accuracy, along with specific recognition rates for
normal walking (NM), carrying a bag (BG), and wearing a coat cloth (CL). Table 6,
highlights the remarkable results for each degree of NM (normal walking), BG (walking
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Table 5 The method and experimental results of various state-of-the-art gait recognition techniques.

Neural
network-
based
algorithms

Method Experimental results References

CNN based
Model

Gate controlled and shared attention ICDNet (GA-
ICDNet)

(OU-LP Bag dataset is not fine-grained labels,
acted as a pre-trained model)
Equal Error Rate (verification task): 0.67%
Rank -1(identification task): 97.6%

Chai et al. (2021)

Multiple spatio-temporal feature extraction Averaged rank-1 accuracy under NM (Normal)
condition: 72.9%

Su, Zhao & Li (2021)

Integrating covariate component incremental learning with
gait recognition

The overall test data for an incremental step have
an average Rank-1 accuracy: 82.2%

Mu et al. (2020)

Multi-temporal-scale feature extractor (MSTFE) Averaged Rank-1 Accuracy:
NM = 97.6%
BG = 94.1%
CL = 81.2%

Lin et al. (2021)

Feature fusion with dual-path structure (local and global
feature extraction) is used to build an improved cross-
view gait identification system.

Averaged Rank-1 Accuracy for LT (74):
NM = 97.04%
BG = 92.72%
CL = 80.48%

Hong et al. (2021)

Using binary human silhouettes, deep convolutional
feature-based gait recognition

Reached more than 86% in three more challenging
scenarios where angle variances are significant
in the cross-view experiment setting, and
achieved 92% among eight out of eleven angles
(using RGB photos directly without computing
the gait cycles).

Işık & Ekenel (2021)

Deep convolutional neural network On the CASIA-B dataset, various viewing angles
and environments can result in accuracy levels
of above 97%.

Aung &
Pluempitiwiriyawej
(2020)

GFLA and LTA Gait recognition accuracy (%) in CASIA-B under
LT (74 individuals) varied angles, settings, and
situations is 97.4%, 94.5%, and 83.6%.
With identical-view cases excluded, the average
rank-1 accuracy for OU-MVLP (14 probes) is
89.7%.

Lin, Zhang & Yu
(2021)

Mask R-
CNN
+CNN

Mask R-CNN and improved GaitSet algorithm with V-
HPM feature mapping module

Gait Recognition Accuracy:
NM = 95.26%
BG = 89.28%
CL = 72.48%

Zhang et al. (2021)

Utilizing GEI produced by Mask R-CNN and CNN with
reinforcement from Batch normalization

Achieved more than 90% of accuracy (with subject
carrying object/bag) and 50% to 60% of accuracy
(without subject carrying object/bag)

Inui et al. (2020)

Mask R-
CNN
+CNN
+LSTM

GaitNet (autoencoder + LSTM) Identification Accuracy: 99.7% Zhang et al. (2022)

CNN+LSTM
+GCN

Hybrid silhouette-skeleton-based gait representation
(FPFE and MCM)

Average Rank-1 Accuracy:
NM = 97.4%
BG = 92.1%
CL = 81.5%

Cai et al. (2021)

(Continued)
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with a bag), and CL (walking with clothing variations). For example, at 0°, the Multi-
Temporal-Scale Feature Extractor yielded valuable results in NM and BG with accuracies
of 96.7% and 93.7%, respectively, as published by Lin et al. (2021). Additionally, the Spatio-
Temporal Representation Model proposed by Liu et al. (2021) showed good performance
in CL with an accuracy of 76.7%. Likewise, the remarkable results for all 11 degrees in NM,
BG, and CL are highlighted.

Multiple spatio-temporal feature extraction (Su, Zhao & Li, 2021) demonstrate high
recognition rates, especially for NM and BG, achieving a mean accuracy of 95.4%. Mask R-
CNN and the improved GaitSet Algorithm (Zhang et al., 2021) showed strong overall
performance with a mean accuracy of 95.3%, which is particularly effective for NM and
BG. The spatio-temporal representation model by Liu et al. (2021) yields competitive
results, securing a mean accuracy of 93.5%, which is particularly effective for NM and BG.
GaitNet (Autoencoder + LSTM + Loss function) (Zhang et al., 2022) exhibit varying
performance across walking states, with a mean accuracy of 62.3%, showing particular
strength in NM and BG. Hybrid silhouette FPFE and (Cai et al., 2021) performed well, with

Table 5 (continued)

Neural
network-
based
algorithms

Method Experimental results References

Fconv Temporal part-based GaitPart model (focal convolutional
layer and micro-motion capture module-MCM)

On the OU-MVLP, the average rank-1 accuracy is
88.7%.

Fan et al. (2020)

LSTM
+ResNet

MFINet and TSSI Accuracy Rate 85%
Accuracy results of normal walking condition on
CASIA-B:
MFINet - concat = 85.81%
MFINet - sum = 85.09%
Accuracy results of clothing variations condition
on CASIA-B:
MFINet - concat = 11.72%
MFINet - sum = 14.29%
Accuracy results of different carrying conditions
on CASIA-B:
MFINet - concat = 18.74%
MFINet - sum = 19.32%

Cosma & Radoi
(2020)

ResGCN+2D
CNN

GaitGraph uses graph convolutional network (GCN) and
skeletal poses to provide a cutting-edge model-based
technique for gait identification.

Averaged Rank-1 accuracy:
NM = 87.7%
BG = 74.8%
CL = 66.3%

Teepe et al. (2021)

Fully
connected
network

Koopman operator With identical-view cases excluded, the average
rank-1 accuracy for OU-MVLP = 74.7%.

Zhang et al. (2021)

GaitSet batch and normalization neck With identical-view cases excluded, the average
rank-1 accuracy for CASIA-B = 87.5%.

Han et al. (2022)

GCN This approach utilizes GaitSet as its core framework and
addresses the challenge of feature misalignment by
incorporating a technique known as graph convolution-
based part feature polling (GCPFP).

With identical-view cases excluded, the average
rank-1 accuracy for CASIA-B = 62.4%.

Ding et al. (2022)
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a mean accuracy of 81.5%, which is especially effective for NM and BG. The Temporal
Part-based GaitPart model (Fan et al., 2020) demonstrates good recognition rates,
particularly for NM and BG, with a mean accuracy of 78.7%. The Multi-Temporal-Scale
Feature Extractor (Lin et al., 2021) showcases strong overall performance with a mean
accuracy of 97.6%, particularly effective for NM and BG. The Cross-view recognition

Table 6 Accuracy (%) of gait recognition under different angles, settings, and conditions excluding identical-view cases in CASIA-B. Bold
values refers to the best result of different models.

Method used Walking
states

0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean References

Multiple spatio-temporal feature extraction NM 93.3 97.1 98.6 97.1 93.6 91.5 95.2 97.7 99.0 97.0 89.0 95.4 Su, Zhao &
Li (2021)BG 84.4 91.0 93.3 92.2 83.6 80.0 83.6 91.7 95.1 92.3 81.7 88.1

CL 64.9 78.6 81.3 78.1 75.0 71.1 74.2 76.0 76.3 75.4 59.0 73.6

Mask R-CNN and improved GaitSet algorithm
with V-HPM feature mapping module

NM 92.9 97.4 99.0 97.3 93.0 91.7 94.8 98.0 98.6 97.3 87.8 95.3 Zhang et al.
(2021)BG 86.0 91.6 93.3 90.8 88.1 82.5 86.4 92.8 94.8 92.5 83.2 89.3

CL 65.4 79.4 82.6 77.0 72.2 68.5 72.3 75.4 74.4 72.9 57.2 72.5

Spatio-temporal representation model NM SG-6 90.4 93.8 96.8 96.7 92.0 92.2 92.2 94.6 96.8 94.8 88.6 93.5 Liu et al.
(2021)BG SG-6 90.6 91.9 94.1 91.2 87.9 84.5 86.4 90.6 90.6 93.3 90.0 90.1

CL SG-6 76.7 82.7 88.3 84.2 80.4 78.5 84.6 83.9 83.5 80.6 71.5 81.3

GaitNet (autoencoder + LSTM + loss function) NM 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3 Zhang et al.
(2022)BG 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9

CL 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3

Hybrid silhouette FPFE and MCM NM 96.4 98.7 99.8 98.9 96.1 94.1 96.6 98.9 99.8 99.1 93.2 97.4 Cai et al.
(2021)BG 89.1 96.0 94.9 93.8 89.4 85.8 91.1 94.8 95.6 94.4 88.1 92.1

CL 75.4 88.2 89.1 86.2 79.0 75.0 79.7 84.0 84.3 85.2 71.2 81.5

Temporal part-based GaitPart model NM #5-6 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2 Fan et al.
(2020)BG #1-2 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5

CL #1-2 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

Multi-temporal-scale feature extractor NM #5-6 96.7 99.0 99.1 97.9 96.6 95.5 97.6 98.9 99.1 98.7 94.3 97.6 Lin et al.
(2021)BG #1-2 93.7 96.6 96.9 94.7 92.8 88.8 91.8 95.6 98.0 97.0 90.0 94.1

CL #1-2 73.5 86.9 88.6 85.1 80.8 76.4 80.4 83.7 85.8 83.7 69.0 81.2

Cross view recognition model NM - LT
(74)

95.1 98.9 99.6 98.3 96.2 93.7 96.3 98.8 99.6 98.6 92.5 97.0 Hong et al.
(2021)

BG - LT
(74)

90.7 96.1 97.5 95.8 89.2 84.4 90.3 94.8 97.9 94.6 88.6 92.7

CL - LT
(74)

75.6 84.9 89.3 84.0 80.8 76.2 76.8 83.3 83.6 82.7 68.2 80.5

GFLA and LTA NM - LT
(74)

96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4 Lin, Zhang &
Yu (2021)

BG - LT
(74)

92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

CL - LT
(74)

76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

ResGCN and 2D CNN NM #5-6 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7 Teepe et al.
(2021)BG #1-2 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

CL #1-2 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3
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model (Hong et al., 2021) achieves high recognition rates across walking states, with a
mean accuracy of 97.0%, particularly effective for NM and BG. GFLA and LTA (Lin et al.,
2021) exhibited a strong recognition performance with a mean accuracy of 97.4%, which is
particularly effective for NM and BG. ResGCN and 2D CNN (Teepe et al., 2021) exhibited
varying performances across walking states, with a mean accuracy of 87.7%, showing
particular strength in NM and BG.

Figure 6 represents the mean walking states across various studies as referenced.
Walking states are categorized into three conditions: normal (NM), carrying a bag (BG),
and wearing a coat cloth (CL). Each reference (indicated by the reference number) shows
the mean values of various studies, with NM generally having the highest mean value,
followed by BG, and CL.

Figure 6 Mean accuracy of the different walking conditions (NM, BG and CL) across various techniques.
Full-size DOI: 10.7717/peerj-cs.2158/fig-6
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CONCLUSIONS
This survey explores extensive applications and technological advancements in gait
recognition, an emerging field in biometrics. Gait recognition, which analyzes distinctive
walking patterns, offers unique advantages such as long-distance capture, non-cooperation
requirement, and difficulty in imitation, making it a reliable identification method
applicable in various domains including criminal investigation, healthcare, sports, security,
and robotics.

This research highlights the significance of gait recognition in criminal investigations,
where it can serve to cross-check alibis, aid in criminal profiling, act as forensic evidence,
and enhance witness testimonies. Moreover, the technology finds utility in healthcare for
rehabilitation monitoring and fall detection, in sports for performance optimization and
injury prevention, and in security for biometric identification and surveillance.

The article meticulously examines different approaches for human identification using
gait recognition technology, including appearance-based methods, model-based methods,
sensor-based methods, deep learning methods, fusion methods, 3D gait recognition, and
spatiotemporal methods, each with its advantages and applications. Notably, the
integration of deep learning has revolutionized gait identification by addressing challenges
such as automatic feature learning, robustness to variations, and transfer learning, leading
to remarkable accuracy and real-world practicality.

Moreover, this article outlines the general steps involved in human gait recognition
systems utilizing deep learning techniques, encompassing data acquisition, preprocessing,
feature extraction, model training, recognition, and post-processing. The research
discusses various neural network-based algorithms and experimental results, showcasing
the effectiveness of different approaches in accurately identifying individuals under diverse
conditions and angles. Noteworthy results include high accuracy rates achieved by hybrid
approaches combining silhouette-skeleton-based representations with deep learning
techniques, as well as the integration of sophisticated models such as Mask R-CNN, LSTM,
ResNet, and GCN, which have significantly advanced the field.

Despite challenges such as sensitivity to environmental conditions, limited data
availability, and computational intensity, ongoing research focuses on refining techniques,
improving accuracy, and adapting to evolving gait patterns, thus ensuring gait recognition
remains a dynamic and promising avenue in biometrics and security.

This study provides a comprehensive analysis of recent advancements in gait
recognition using deep learning techniques and consolidates the latest findings and results
from various gait recognition models, offering a holistic view of recent advancements in
the field. To strengthen this article, it includes a detailed comparative review of
experimental analyses from the existing literature to offer unique insights into previous
work, along with discussing the advantages, limitations, methods, datasets, and significant
results in the field. Additionally, we focus on developments after 2020 to guide researchers
and readers, with the potential for future extensions. The mean accuracy values reported in
recent studies ranged from 62.3% to 97.6%, highlighting the variability in performance
across different conditions and datasets. Most of the gait recognition approaches used OU-
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MVLP, OU-LP Bag, OU-Lp Bag-β, OU-ISIR, Front-View Gait (FVG), USF, CMU MoBo,
TUM GAID and CASIA-B as their datasets. Among these CASIA -B yielded desirable
results and was used more frequently across different models. The Multi-Scale Temporal
Feature Extractor (MSTFE) model was proposed by Lin et al. (2021) gave a better mean
accuracy in NM of 97.6% when compared to other models, followed by the (GFLA and
LTA) method implemented by Lin, Zhang & Yu (2021) yielding a good mean accuracy
value in BG and CL of 94.5% and 83.6%, respectively. These findings underscore the varied
strengths of different gait recognition models, emphasizing the importance of selecting
models based on specific application requirements, and the need to recognize different
walking states.

Future research could focus on improving the accuracy of gait recognition models
across diverse environments, lighting conditions, and clothing variations, by utilizing real-
world datasets to validate these improvements. Furthermore, formulating methods to
ensure that factors such as clothing variations, bags, or other carried items do not affect the
identification of individuals would be crucial. Developing anti-spoofing techniques to
detect and prevent attacks on gait recognition systems enhancing their security and
robustness holds significant research potential.
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