
Submitted 31 January 2024
Accepted 5 June 2024
Published 28 June 2024

Corresponding author
Huige Li, 18605247081@163.com

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.2152

Copyright
2024 Mo et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An intrusion detection system based on
convolution neural network
Yanmeng Mo, Huige Li, Dongsheng Wang and Gaqiong Liu
School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China

ABSTRACT
With the rapid extensive development of the Internet, users not only enjoy great con-
venience but also face numerous serious security problems. The increasing frequency
of data breaches has made it clear that the network security situation is becoming
increasingly urgent. In the realmof cybersecurity, intrusiondetection plays a pivotal role
in monitoring network attacks. However, the efficacy of existing solutions in detecting
such intrusions remains suboptimal, perpetuating the security crisis. To address this
challenge, we propose a sparse autoencoder-Bayesian optimization-convolutional
neural network (SA-BO-CNN) system based on convolutional neural network (CNN).
Firstly, to tackle the issue of data imbalance, we employ the SMOTE resampling function
during system construction. Secondly, we enhance the system’s feature extraction
capabilities by incorporating SA. Finally, we leverage BO in conjunction with CNN
to enhance system accuracy. Additionally, a multi-round iteration approach is adopted
to further refine detection accuracy. Experimental findings demonstrate an impressive
system accuracy of 98.36%. Comparative analyses underscore the superior detection
rate of the SA-BO-CNN system.

Subjects Algorithms and Analysis of Algorithms, Security and Privacy, Neural Networks, Internet
of Things
Keywords Network intrusion detection, Convolution neural network, NSL-KDD data set,
Bayesian optimization

INTRODUCTION
In today’s digital world, the exponential growth of data presents a significant challenge
to network security. The ever-increasing complexity of network attacks has made it
increasingly difficult to develop effective detection tools (Sowmya & Anita, 2023;Ahmetoglu
& Das, 2022; Friedberg et al., 2015). Prominent incidents like the Triton malware attack,
which crippled the security system of a petrochemical plant in Saudi Arabia, endangering
lives, the Facebook information leak in 2018, and the SolarWinds supply chain attack
in 2020, have demonstrated the immense economic losses suffered by enterprises and
individuals, while highlighting the substantial threats to network security (Alladi, Chamola
& Zeadally, 2020; Kabir et al., 2018). Consequently, traditional intrusion detection systems
(IDS) are no longer sufficient in effectively combating these increasingly sophisticated
network attacks. Urgently, there is a pressing need for a more intelligent and efficient
security protection system worldwide.

The current popular intrusion detection method is to reduce the error rate by using
different machine learning techniques. Kabir et al. (2018) proposed a novel intrusion

How to cite this article Mo Y, Li H, Wang D, Liu G. 2024. An intrusion detection system based on convolution neural network. PeerJ
Comput. Sci. 10:e2152 http://doi.org/10.7717/peerj-cs.2152

https://peerj.com/computer-science
mailto:18605247081@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2152
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2152

detection method based on least squares support vector machine (LS-SVM) sampling.
This approach consists of two stages: firstly, establishing an optimal allocation scheme,
and then utilizing LS-SVM to detect the extracted samples (Rathore et al., 2017). In the
area of network intrusion detection,Htun & Khaing (2012) employed random forest as the
benchmark model and combined it with pattern recognition techniques to enhance the
effectiveness of intrusion detection (Tankard, 2011). Akhtar et al. (2023) integrated data
analysis technology with four robust machine learning ensemble algorithms, including the
voting classifier, Bagging classifier, gradient boosting classifier, and the Bagging algorithm
based on random forest, to create and test models using a network dataset. Hidayat, Ali
& Arshad (2023) proposed a hybrid feature selection technique composed of the Pearson
correlation coefficient and random forest model. For the machine learning model, decision
tree, AdaBoost, and k-nearest neighbor were trained and tested on the TON_IoT dataset.
The findings demonstrated the effectiveness of these machine learning techniques in
detecting network intrusions (Hidayat, Ali & Arshad, 2023). Turukmane & Devendiran
(2024) classified the different types of attacks by a hybrid machine learning model called
Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the
hyperparameters were tuned by the Mud Ring optimization algorithm. The proposed
M-MultiSVM model could efficiently detect intrusion in the network. The performance
metrics showed that the proposed system achieved 97.535% accuracy by using the UNSW-
NB15 dataset (Turukmane & Devendiran, 2024). Traditional machine learning methods
are effective in intrusion detection, but they also have limitations, because the traditional
machine learning technology needs to artificially construct sample features. Its performance
is dependent on its quality. In order to solve this problem, researchers have introduced deep
learning techniques. Deep learning, a sub-field of machine learning, employs multi-layer
neurons to model the learning process, thereby forming a more intricate artificial neural
network (Riyaz & Ganapathy, 2020). Deep learning offers several advantages, such as
automatic feature learning, even with large amounts of data (Kocher & Kumar, 2021).
Consequently, compared with traditional machine learning, IDS based on deep learning
typically demonstrate higher processing efficiency and detection accuracy. For instance,Gao
et al. (2014) applied deep trust network in intrusion detection and achieved better results
than other traditional machine learning methods. Raman et al. (2017) applied probabilistic
neural networks to detection techniques. Peddabachigari et al. (2007) proposed a hybrid
intrusion detection model based on deep learning and verified that the model is more
efficient than traditional machine learning methods. Similarly, Khan et al. (2023) reported
an intelligent IDS for IoT networks based on deep learning algorithms. The proposed
model consisted of a recurrent neural network and gated recurrent units (RNN-GRU),
which could classify attacks across the physical, network, and application layers. The results
showed that the proposed system achieved an accuracy of 99% for network flow datasets
and 98% for application layer datasets, superior to various traditional machine learning
techniques (Khan et al., 2023). Bakhsh et al. created a deep learning-based IDS using feed
forward neural networks (FFNN), long short-term memory (LSTM), and random neural
networks (RandNN) to protect IoT networks from cyberattacks. the FFNN can handle
complex IoT network traffic patterns, while the LSTM is good in capturing long-term

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

dependencies present in the network traffic. The proposed technique exhibits superior
performance when compared with the traditional machine learning techniques; such as
Naive Bayes, decision tree, random forest, and k nearest neighbor algorithms (Bakhsh et
al., 2023). However, the detection rate of existing solutions is not very high, which also
makes the security crisis still exist. The convolutional neural network (CNN) model is
quite often utilized for solving research problems in fields like computer vision (Gururaj,
Vinod & Vijayakumar, 2023; Javanmardi et al., 2021), image processing (Hossain et al.,
2023; Towfek & Khodadadi, 2023), etc. due to its capability to extract location invariant
features automatically. The application of CNN for IDS is not explored much.

Based on these above issues, to enhance resilience against intricate network attacks, we
propose a system model named sparse autoencoder-Bayesian optimization-convolutional
neural network (SA-BO-CNN), rooted in the CNN strategy. This article presents two
main contributions: (1) A well-established data processing pipeline comprising one-hot
encoding, resampling, and SA. SA effectively addresses the challenge of inadequate manual
feature extraction, while resampling mitigates initial data imbalances; (2) Performance
enhancement verified through experimental results, showcasing Bayesian optimization’s
significant impact on accuracy, precision, recall, and F1 score. This underscores the efficacy
of Bayesian technology in bolstering IDS effectiveness, thereby fortifying network security.
Our CNN-based IDS model, optimized with Bayesian techniques, exhibits superior
adaptability across diverse datasets, achieving a remarkable worst-case accuracy rate of
98.36%.

OVERVIEW OF INTRUSION DETECTION SYSTEM METHODS
Convolution neural network
CNN, a deep learning model, is primarily utilized for processing and analyzing data
structured in a grid format, such as images and videos. Drawing inspiration from the
biological vision system, CNN autonomously learns and extracts features from images,
rendering it a valuable asset in the realm of computer vision.

CNN comprises core components, including the convolution layer, pooling layer,
activation function, and full connection layer. The convolution layer employs convolution
operations on input data to discern features within the image, such as edges, textures,
and shapes. Concurrently, the pooling layer reduces data dimensionality, decreases
computational complexity, and extracts essential features. The Activation Function
introduces nonlinearity, enabling the model to capture more intricate patterns and
relationships. Lastly, the full connection layer maps the final feature map to the network’s
output layer for tasks such as classification or regression.

CNN boasts advantages such as parameter sharing, sparse connection, and a hierarchical
structure, which significantly enhance its efficiency in image processing tasks (Sharma et
al., 2023). Its ability to automatically learn image features sans manual extraction lends
itself well to various computer vision tasks, including image classification, object detection,
face recognition, and image generation. Furthermore, the application scope of CNN
has expanded to encompass speech processing, natural language processing, and other

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

Figure 1 Convolution neural network structure diagram.
Full-size DOI: 10.7717/peerjcs.2152/fig-1

domains, solidifying its status as a pivotal tool in the deep learning landscape. Figure 1
provides a visual depiction of its structure.

Convolution layer
Convolutional layers constitute indispensable components in deep learning, primarily
tailored for processing images, videos, and other two-dimensional data (Yamashita et al.,
2018). They serve the critical function of extracting features from input data and find
widespread application across diverse domains. Central to convolutional layers is the
convolution operation, a fundamental technique that executes local weighted summation
on input data, thereby capturing spatial structural information.

The distinctive advantage of convolutional layers lies in their efficacy at extracting
features from input data through the utilization of local connections and parameter
sharing. Local connections entail filters convolving solely with local regions of the input
data, as opposed to the entire input. Meanwhile, parameter sharing dictates that each
filter’s parameters are shared across different locations in the input, employing the same
set of weights. These strategies contribute to reducing the model’s storage requirements
while bolstering its generalization capability.

Moreover, convolutional layers have the capacity to generate multiple feature maps
by employing multiple filters, with each feature map corresponding to a specific filter.
This multi-feature map approach enables the capture of variations across different feature
directions within the input data, thereby facilitating the extraction of richer feature
representations. By stacking multiple convolutional layers, the network progressively
extracts higher-level abstract features, facilitating tasks such as classification, regression,
and more in subsequent fully connected layers (FCLs) or output layers.

In essence, convolutional layers play an indispensable role in deep learning by efficiently
extracting features from input data and exerting a pivotal influence across various domains.
Through the mechanisms of local connections, parameter sharing, and multi-channel

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 4/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-1
http://dx.doi.org/10.7717/peerj-cs.2152

outputs, convolutional layers empower deep learning models to capture spatial structural
information from input data and furnish rich feature representations.

The formula of convolution layer is as follows:

yi,j,k =
k−1∑
u=0

k−1∑
v=0

C−1∑
c=0

wu,v,c,kx(i+u),(j+v),c . (1)

In this case, yi,j,k represents the convolutional output of the k− th kernel at position(
i,j
)
, wu,v,c,k represents the weight at position (u,v) of the c− thchannel of the k− th

kernel, and x(i+u),(j+v),c represents the value of the c− th channel at position
(
i,j
)
in the

input data.

Pool layer
Pooling layers are integral components of CNNs and hold significant academic value in
image processing and computer vision domains (Nasr-Esfahani et al., 2019). Their primary
function is to reduce the spatial dimensions of feature maps through downsampling
operations, thereby diminishing the number of parameters and computational complexity.
This dimensionality reduction not only enhances computational efficiency but also
facilitates the extraction of primary features from the input data.

Within pooling layers, the most prevalent operations are max pooling and average
pooling. Max pooling retains the most significant features of input regions by selecting the
maximum value within each subregion, while average pooling calculates the average value
of features within each subregion, thereby blurring details and mitigating the influence of
noise. Both of these pooling operations contribute to extracting crucial information from
the input data, providing more robust and abstract feature representations for subsequent
layers. This article primarily adopts the max pooling method.

Furthermore, pooling layers exhibit translation invariance, meaning that irrespective
of the features’ positions in the input data, the pooling operation can still detect their
presence and effectively aggregate them. This characteristic renders pooling layers resilient
to translation, rotation, and scale changes in images, thereby enhancing the model’s
generalization ability (Mumuni & Mumuni, 2021; Zhang et al., 2019).

In summary, pooling layers play an essential role in CNNs, offering potent feature
extraction and abstraction capabilities for image processing tasks by reducing spatial
dimensions, extracting primary features, and providing translation invariance. In both
academic research and practical applications, the design and optimization of pooling layers
are crucial for enhancing model performance and efficiency. The formula for the pooling
layer is as follows:

yi,j,k =maxp−1u=0maxp−1v=0x(i×s+u),(j×s+v),k (2)

where yi,j,k represents the output of the k− th channel after pooling, s represents the step
size, and p represents the size of the pooled area.

Fully connected layer
FCLs are pivotal elements within deep neural networks, facilitating highly flexible and
expressive feature extraction and transformation (Li et al., 2023; Matsumura et al., 2023).

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

They achieve this by establishing connections between every neuron from the preceding
layer to each neuron in the subsequent layer, with each connection possessing an associated
weight that governs the impact of the previous layer’s output on the current layer’s neurons.

FCLs exhibit numerousmerits. Firstly, they boast potent expressive capabilities, enabling
them to discern complex patterns and capture nonlinear relationships within the input
data, thereby extracting essential abstract features. Secondly, FCLs offer remarkable
flexibility, allowing them to adapt to diverse complex tasks and data distributions, thereby
affording a considerable degree of model freedom. Additionally, FCL computations are
straightforward, facile to implement, and amenable to acceleration through efficient matrix
operations.

The roles of FCLs can be succinctly delineated as follows: initially, they transmute
the original input data into higher-level abstract features by learning weights and biases,
thereby extracting critical information. Subsequently, FCLs are commonly deployed in
the final layer of neural networks to map the extracted features to specific classes or value
ranges, thereby facilitating classification and regression tasks. Finally, FCLs undertake
comprehensive evaluations on the input data and formulate decisions and predictions
based on the acquired weights.

The formula for the full connection layer is as follows:

y = f (Wx+b) (3)

where y is the output vector, x is the input vector, W is the weight matrix, b is the offset
vector, and f is the activation function.

Data preparation
The NSL-KDD dataset stands as a well-known and extensively utilized resource for
network intrusion detection, serving researchers with a realistic and diverse network
traffic dataset to evaluate various network IDS (Gurung, Ghose & Subedi, 2019; Choudhary
& Kesswani, 2020). It represents an enhanced and extended iteration of the original
KDD Cup 1999 dataset, featuring additional attack types and streamlined data, thereby
enriching its complexity. Comprising authentic network traffic data, the NSL-KDD dataset
encompasses diverse attack categories such as DoS, R2L, U2R, and Probing, rendering it
more representative and pragmatic.

To bolster the dataset’s quality and usability, several preprocessing steps have been
meticulously executed. These include the removal of duplicate data, standardization of data
formats, and elimination of redundant features, effectively addressing dataset imperfections
and rendering it more conducive for network intrusion detection research and application.
Moreover, the dataset is conventionally partitioned into training and testing sets, facilitating
the development and evaluation of novel network intrusion detection techniques while
assessing algorithmic performance and generalization capabilities.

The widespread utilization of the NSL-KDD dataset in researching and evaluating
network intrusion detection algorithms underscores its significance. Researchers leverage
this dataset to gauge the effectiveness of various network IDS and explore avenues for
enhancing network security and defense capabilities. Furthermore, the NSL-KDD dataset

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

Table 1 Comparison of KDDCup 99 and NSL-KDD data sets.

Dataset name KDDCup 99 NSL-KDD

Number of training sets (articles) 4,898,431 125,973
Number of test sets (pieces) 311,029 22,544
Number of network attack features 41 42
Is the data redundant Yes No
Dataset time 1998 1999

serves as a valuable resource and reference for real-world network security concerns,
contributing substantially to the advancement and implementation of network security
technologies.

Table 1 offers a comparative analysis between the KDDCup 99 dataset and theNSL-KDD
dataset.

Sparse autoencoders
Due to the dataset’s extensive feature set, we employ feature dimensionality reduction
methods to enhance computational efficiency. One such method is the autoencoder, an
unsupervised learning algorithm utilized for both data dimensionality reduction and
feature extraction. Comprising an encoder and a decoder, it compresses input data into
a low-dimensional representation while faithfully reproducing the original data in its
output (Liu et al., 2022).

A variant of the autoencoder, the Sparse Autoencoder, aims to produce sparse
encoding representations while acquiring effective features. This variant typically generates
encoding vectors with only a small number of non-zero elements, with the remaining
elements approximating zero. Through the incorporation of a sparsity constraint, sparse
autoencoders excel in discerning meaningful features and adeptly managing noise and
redundant information within input datasets.
l∑

j=1

plog(p/µj)+ (1−p)log[(1−p)/(1−µj)] (4)

where l represents the number of neurons in the hidden layer, ‘‘µj ’’ represents the average
output value of the j-th neuron in the hidden layer, which is also known as the average
activation. ‘‘p’’ is a small value. Here, the penalty factor is a relative entropy between two
Bernoulli random variables, ‘‘p’’ and ‘‘µj ’’. Relative entropy is a measure of the difference
between two distributions. When the two distributions are equal, the relative entropy
is zero. As the difference between the distribution’s increases, the relative entropy also
increases. Therefore, during the optimization process of the loss function with the penalty
factor, the average activation of the neurons in the hidden layer of the sparse autoencoder
will approach the value of ‘‘p’’. In this study, a sparse autoencoder is primarily used for
data dimensionality reduction and feature extraction.

Bayesian optimization
Bayesian optimization, an optimization technique rooted in Bayesian statistics, constructs
a posterior probability model of the objective function to guide the selection of

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

candidate points for evaluation through sampling, thus progressively seeking the optimal
solution (Guo et al., 2023). Essentially treating the objective function as a black box, with
hyper-parameters (e.g., learning rate and regularization coefficient in machine learning
algorithms) as input and an index (e.g., cross-validation effect) as output, Bayesian
optimization iteratively updates the posterior probability distribution using historical data.
It then selects new hyper-parameter combinations for evaluation based on this distribution
and integrates them into the historical dataset, gradually converging towards the global
optimal solution (Qiao et al., 2023).

Distinguished by its ability to yield superior solutions within a relatively small number of
iterations and tackle complex optimization problems such as high-dimensional and non-
convex scenarios, Bayesian optimization stands out among other optimization methods.
Consequently, it finds widespread application across various domains, including hyper-
parameter tuning and automated machine learning. The process of Bayesian parameter
optimization typically involves three key steps:

(1) Choose a priori function to express the hypothesis about the optimized function.
The Gaussian process used in this article is a set of random variables, and any finite
random variables satisfy a joint Gaussian distribution. If X represents the training set
{x1,x2,......,xt }, f represents the unknown function value set

{
f (x1),f (x2),...,f (xt)

}
, 6

represents the covariancematrix
∏

formedby k (x,x′) and θ represents the hyperparameter,
when there is observation noise and assumes that the noise ε satisfies the independent and
identically distributed Gaussian distribution p(ε)=N

(
0,σ 2), the marginal likelihood

distribution can be obtained as follows:

P(y|X,θ)2=
∫

p(y|f)p(f |X ,θ)df =N (0,6+σ 2I) (5)

where y represents the collection of observations
{
y1,y2yt

}
.

(2) By maximizing the marginal likelihood distribution by ML maximum likelihood
estimation, the optimal hyperparameter is obtained, and the prior distribution p (θ) is
given to the hyperparameter. According to Bayesian theorem, the following results are
obtained:

P(θ |D1:t)=
p(D1:t |θ)P(θ)

p(D1:t)
(6)

(3) According θ̂t to the specific acquisition function that can be obtained:

α̂t (x)=α(x;θt). (7)

INTRUSION DETECTION SYSTEM BASED ON CONVOLUTION
NEURAL NETWORK
The article primarily utilizes CNN for prediction and intrusion detection on the NSL-KDD
dataset, chosen for its suitability in analyzing network connection features, handling high-
dimensional data, facilitating pattern recognition and feature extraction, and demonstrating
robustness and generalization capabilities.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 8/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

Figure 2 Framework diagram of CNNmodel construction.
Full-size DOI: 10.7717/peerjcs.2152/fig-2

By integrating convolutional layers and pooling layers, CNN effectively captures spatial
structures and local relationships within the NSL-KDD dataset, autonomously learning and
extracting crucial features that enable efficient classification and discrimination of various
attack types. Moreover, CNN reduces the number of model parameters, thus decreasing
computational complexity and showcasing resilience to slight variations in input data,
making it an ideal choice for addressing challenging prediction tasks in the NSL-KDD
dataset.

The model building framework diagram is depicted in Fig. 2.
The detection process mainly involves three steps:
In the first step, symbolic features of the sampled dataset are numerically encoded,

followed by SMOTE resampling of the preprocessed data. Subsequently, all preprocessed
data is normalized to obtain standardized raw data.

In the second step, a sparse autoencoder feature extractionmodel is applied to preprocess
high-dimensional and nonlinear data, aiming to reduce original data dimensionality while
preserving optimal representation.

In the third step, the optimal low-dimensional representation of the original data serves
as input for the classifier, which identifies normal network data and various types of
network attack data.

The key innovation of our SA-BO-CNN model lies in combining the Bayesian
optimization algorithm with self-supervised learning and utilizing sparse autocoded
data for model training.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 9/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-2
http://dx.doi.org/10.7717/peerj-cs.2152

Table 2 Protocol_type one-hot coding.

Characteristic of belonging character type Category After one-hot coding

TCP 1 0 0
UDP 0 1 0protocol_type

ICMP 0 0 1

Data preprocessing
One-hot coding
The NSL-KDD dataset comprises both numerical and categorical variables, yet deep
learning algorithms inherently handle only numerical data, necessitating specialized
techniques for managing categorical variables. Here, we delve into the process of
independent one-hot encoding, exemplified by the character feature ‘‘protocol_type’’
(protocol type):

One-hot encoding is a method that converts categorical variables into digital formats
amenable to machine learning algorithms. Essentially, it treats each possible value as a
distinct binary feature. For a given data point, the feature corresponding to its value is
assigned a value of 1, while features for other values are set to 0. The objective is to transform
original text-based categorical features into binary sparse vectors, enabling deep learning
algorithms to interpret and utilize them effectively.

In this context, there exist three distinct protocol types: ‘‘tcp’’, ‘‘udp’’, and ‘‘icmp.’’
After one-hot encoding, the ‘‘protocol_type’’ feature undergoes transformation into a
sparse vector with a dimension equal to the number of protocol types, which is 3. This
vector represents the protocol type utilized in each example, as illustrated in Table 2. Each
column corresponds to a specific protocol type, such as ‘‘tcp’’, ‘‘udp’’, or ‘‘icmp’’. If a
particular protocol is employed in an example, the corresponding column is marked as 1;
otherwise, it is designated as 0. This encoding methodology enables deep learning models
to comprehend and process categorical variables, thereby facilitating subsequent analysis
and modeling endeavors.

Upon examination of Table 2, it becomes evident that the character features encompass
numerous categories. Each category undergoes independent one-hot encoding, yielding a
corresponding sparse vector. For example, the ‘‘service’’ feature encompasses 70 distinct
categories, leading to the generation of 70-dimensional sparse vectors post one-hot
encoding. Similarly, the ‘‘flag’’ feature comprises 11 different categories, resulting in 11-
dimensional sparse vectors post one-hot encoding. Consequently, character-type discrete
features can be expanded to a certain extent through one-hot encoding.

Furthermore, the NSL-KDD dataset encompasses various attack features that can be
broadly categorized into four primary categories, each with its own subcategories. A
detailed breakdown of these categories is presented in Table 3.

It can be seen from the table that there are 39 sub-attack type tags in NSL-KDD data set
tags. In order to prevent dimension explosion caused by single hot coding, each sub-class is
now divided into five categories, namely DOS, Probe, U2R, R2L and Normal. The specific
division rules are shown in Table 3 above.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

Table 3 Attack characteristic division.

Attack type Attack subtype Total

DOS back, land, neptune, pod, smurf, teardrop,apache2,
mailbomb, processtable, udpstorm,worm

11

Probe ipsweep, nmap, portsweep, satan, saint, mscan 6
U2R buffer_overflow, loadmodule, perl, rootkit, sqlattack,

xterm,ps
7

R2L ftp_write, guess_passwd,httptunnel, imap, multihop,
named,phf, spy, sendmail, snmpgetattack,warezclient,
warezmaster, snmpguess,xlock,xsnoop

15

Figure 3 Data distribution. (A) Initial data; (B) resampling data.
Full-size DOI: 10.7717/peerjcs.2152/fig-3

SMOTE resampling
In deep learning, the issue of imbalanced data can result in inadequate predictive
performance of the model for certain categories. In the NSL-KDD dataset, some attack
categories have a limited number of samples, leading to insufficient attention from the
model during training. Even when the model is trained on a large-scale dataset, the
influence of dominant samples may introduce bias towards the categories they represent.
The specific scenario is illustrated in Fig. 3A.

Figure 3A and Table 4 show that the number of DOS attack samples (45927) is
significantly higher than that of the other three attack types (52 −11656), with U2R
attack having the lowest number of samples (52), making it difficult to discern even with
magnification.

To combat the issue of imbalanced data inmachine learning tasks, the SyntheticMinority
Over-sampling Technique (SMOTE) is an effective data balancing technique. Imbalanced
data refers to a scenario where there is a significant difference in the number of samples
between different classes in the training set, with one class having far more samples than the
other classes. In such cases, models tend to favor the majority class, resulting in insufficient
recognition of the minority class.

SMOTE addresses this problem by generating synthetic samples of the minority class
to balance the dataset. It interpolates the minority class samples and generates artificial
samples that are similar but not identical to the original samples. These synthetic samples

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 11/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-3
http://dx.doi.org/10.7717/peerj-cs.2152

Table 4 Distribution of attack types in the dataset before and after SMOTE resampling.

Class Count

Before SMOTE resampling After SMOTE resampling

Normal 67,343 67,342
U2R 52 67,342
Probe 11,656 67,342
DoS 45,927 67,342
R2L 995 67,342

fill the gaps in the original data, improving the balance of the dataset by increasing the
number of minority class samples.

Resampling data with SMOTE offers several benefits. Firstly, it can enhance model
performance by improving the classifier’s ability to recognize the minority class. By
increasing the number ofminority class samples, themodel can better learn the features and
patterns of the minority class during training, reducing misclassifications and improving
overall classifier performance.

Secondly, SMOTE resampling can mitigate classifier bias towards the majority class.
Due to the excessive number of majority class samples, models tend to predict the majority
class more frequently, overlooking important information from the minority class. By
generating synthetic samples, SMOTE balances the sample sizes between different classes,
reducing this bias and enabling the classifier to treat different classes more equally.

Furthermore, the synthetic samples produced by SMOTE retain the characteristics of the
original samples while introducing a certain degree of diversity. This increases the diversity
of the data, provides more training samples, and enhances the model’s generalization
ability (Shrinidhi, Kaushik Jegannathan & Jeya, 2023).

The fundamental principle of SMOTE revolves around gaining a deep understanding of a
few categories of samples and subsequently generating new samples based on these selected
ones to augment the dataset. The specific steps involved in this operation are as follows: (1)
Selection: Randomly choose a sample point, denoted as X, from the selected categories. (2)
Neighbor calculation: Determine the k nearest neighbors of the sample point in the feature
space using primarily the Euclidean distance algorithm. (3) Generation of new samples:
For each neighbor, create one or more composite samples based on their dissimilarities.
The attributes of the new sample are obtained through linear interpolation between the
attributes of the original sample and those of the neighbor sample. (4) Repetition: Repeat
the above process until a sufficient number of synthetic samples have been generated.

The primary objective of the SMOTE algorithm is to enhance the performance and
accuracy of the model by rebalancing the class distribution within the dataset through the
iterative execution of the aforementioned steps. The key functions of the SMOTE algorithm
are as follows:

Xnew= x+ rand(0,1)∗|x−xn|. (8)

Figure 3B demonstrates the outcome after applying SMOTE resampling, and it appears
that the sample quantities among different classes have achieved a relatively balanced

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

distribution. It can be seen that an equilibrium state has been reached between the classes,
and the number of samples has increased from 125,973 to 336,710.

Finally, after resampling the data, the data is normalized. Normalization of features is
to scale the range of different features to the same scale or range in order to eliminate the
deviation or adverse effects caused by the difference of eigenvalues. In this article, min-max
normalization is adopted, and its specific formula is as follows

ymin−max=
x−min(x)

max(x)−min(x)
. (9)

The normalized results are all positive numbers and the data is scaled or mapped to the
interval (0,1). The final results are stored in Excel table to facilitate subsequent operation
and analysis. This series of steps helps to improve model performance, especially when
dealing with uneven data.

Construction of intrusion detection system model
In this article, we employ a deep learning model evaluation technique known as ‘‘5% cross-
validation’’ (Yu et al., 2014) to assess the performance of the SA-BO-CNN model and
determine suitable parameters for classification training. This method involves processing
Excel table data and adjusting the input data format to match the SA-BO-CNN model’s
requirements. Additionally, we introduce an objective function named ‘‘cnn_evaluate’’
to gauge the SA-BO-CNN model’s performance and derive the average accuracy from
cross-validation.

During the five-fold cross-validation process, we randomly partition the NSL-KDD
dataset into five segments, utilizing four segments for training and one for validation in
each iteration. Subsequently, we train the model with the training data and evaluate its
performance on the validation set, measuring metrics such as accuracy and precision. This
procedure iterates five times to ensure each segment serves as the validation set, and the
results from these validations are averaged to derive the final model evaluation metric.

This approach offers several advantages, including comprehensive data utilization,
mitigating bias in model evaluation, and precise estimation of model performance.
Consequently, it aids researchers in accurately selecting deep learning model parameters,
thereby enhancing model performance and generalization capability.

In this study, we construct a model comprising two convolutional layers, employing
ReLU as the activation function for both convolutional and fully connected layers. ReLU,
widely utilized in deep learning, excels in capturing complex nonlinear relationships
within data, providing efficient representation, reducing redundancy in computations
and parameters, and addressing overfitting concerns. Despite drawbacks such as dead
neurons and non-centered output, ReLU remains popular in deep learning tasks due to its
effectiveness and practical utility.

For the output layer, given our multi-classification problem, we utilize the
Softmax activation function. Softmax offers advantages such as transforming raw
outputs into a probability distribution, handling multi-class scenarios by normalizing
outputs across classes, complementing cross-entropy loss, and simplifying gradient
computations (Banerjee et al., 2020; Zhu et al., 2020). Additionally, we incorporate L2

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

regularization to manage model complexity, mitigate overfitting risks, and enhance model
performance and generalization by gradually reducing less significant feature weights and
sometimes setting them to zero, facilitating feature selection and interpretability while
limiting parameter magnitudes and enhancing model stability.

Furthermore, we define a hyperparameter search space termed ‘‘pbounds’’,
encompassing ranges for five parameters: convolutional kernel count and size, pooling
size, fully connected layer node count, and learning rate. Subsequently, we instantiate a
‘‘BayesianOptimization’’ object, passing the objective function and search space, to identify
optimal hyperparameters through the Bayesian optimization process. This approach aids
in determining the most suitable hyperparameter configuration, thereby bolstering model
performance and generalization.

Experiments and results
Parameter tuning
The experimental environment configuration is shown in Table 5.

The SA-BO-CNN model improves its performance and generalization ability by
adjusting various parameters, including hyperparameters, network structure, and data
augmentation. The goal of parameter adjustment is to enhance accuracy and effectiveness
in specific tasks, prevent overfitting, and optimize the training process and generalization
capability of the model. It is an iterative process that requires repeated experiments and
adjustments based on the actual situation to find the best configuration.

There are two commonly used methods for parameter tuning: grid search and
Bayesian optimization. Grid search exhaustively searches through a finite set of parameter
combinations, but it can be time-consuming and prone to the curse of dimensionality.
Therefore, this article primarily utilizes the Bayesian optimization method to adjust
parameters such as the number and size of convolution kernels, pooling size, number of
nodes in the fully connected layer, and learning rate.

The first parameter being tuned is the learning rate. If the learning rate is too high, the
model’s parameters may oscillate or diverge along the gradient direction, whereas if it is
too low, the training convergence will be slow and may even get trapped in local optima.
In the tuning process, the learning rate is adjusted within the range of (0.001, 0.01), and
cross-validation is employed to evaluate the model’s performance under different learning
rates. The debugging process is illustrated in Fig. 4.

The second parameter being tuned is the size of the convolution kernel. In this article,
the adjustment range is set to (3, 5). The size of the convolution kernel affects the degree
of abstraction of features and the receptive field size of the neural network. If the selected
convolution kernel is too small, the neural network may not effectively capture large-scale
features in the image. Conversely, if the selected convolution kernel is too large, the neural
network may become too sensitive to detail information, which can lead to overfitting
problems. The debugging process is illustrated in Fig. 5.

The third parameter being tuned is the number of convolution kernels. The feature
extraction ability of the neural network can be adjusted by changing the number of
convolution kernels. A lower number of convolution kernelsmay limit the neural network’s

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 14/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

Table 5 Experimental environment.

Name Configuration information

Operating system Win 11
Development language Python 3.9.13
Framework TensorFlow + Keras
CPU 12th Gen Intel(R) Core(TM) i7-12700H
GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU

Figure 4 Learning rate debugging process.
Full-size DOI: 10.7717/peerjcs.2152/fig-4

ability to learn complex features, resulting in underfitting. On the other hand, a higher
number of convolution kernels may increase the neural network’s expressive power, but it
also increases the risk of overfitting. The debugging process is illustrated in Fig. 6.

The fourth parameter being tuned is the pooling window size of the Pooling Layer.
Selecting a pooled window size that is too large can result in losing critical information and
important features. On the other hand, if it is too small, the model may become susceptible
to noise or overfitting. In this article, the adjustment range is set to (2, 4). The debugging
process is illustrated in Fig. 7.

The fifth parameter being tuned is the number of nodes in the fully connected layer.
The fully connected layer is typically used to flatten the output features from the preceding
convolution or pooling layers and perform tasks like classification or regression. Modifying

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 15/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-4
http://dx.doi.org/10.7717/peerj-cs.2152

Figure 5 Kernel size debugging process.
Full-size DOI: 10.7717/peerjcs.2152/fig-5

Figure 6 Filters debugging process.
Full-size DOI: 10.7717/peerjcs.2152/fig-6

the number of nodes in the fully connected layer can influence the model’s complexity.
The debugging process is depicted in Fig. 8.

The change of accuracy and loss rate of the model after 10 iterations of Bayesian
optimization is shown in Fig. 9.

The model tuning results are presented in Table 6. Based on the table, it is evident that
this CNN-based model achieves an impressive accuracy of 98.36%. This accomplishment

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 16/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-5
https://doi.org/10.7717/peerjcs.2152/fig-6
http://dx.doi.org/10.7717/peerj-cs.2152

Figure 7 Pool size debugging process.
Full-size DOI: 10.7717/peerjcs.2152/fig-7

Figure 8 Dense units debugging process.
Full-size DOI: 10.7717/peerjcs.2152/fig-8

is attributed to the utilization of a 3×3 convolutional kernel with a count of 40, a 3×3
convolution kernel with a count of 61, pooling windows of size 3×3 and 3×3, a learning
rate of 0.000553, along with fully connected layer nodes of 41, respectively.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 17/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-7
https://doi.org/10.7717/peerjcs.2152/fig-8
http://dx.doi.org/10.7717/peerj-cs.2152

Figure 9 Changes of accuracy and loss rate.
Full-size DOI: 10.7717/peerjcs.2152/fig-9

Table 6 Results of optimal parameters.

Accuracy Convolution
kernel size

Filters Pooled
window size

Learning rate Number of nodes in
full connection layer

98.36% 3×3 40 3×3 0.000553 41
/ 3×3 61 3×3 / /

Model validation and analysis
In this article, we mainly use Precision, Recall and F1-score to evaluate the performance of
the model.

For a multi-classification problem, it is often necessary to number the categories, have
K different categories, and express the i-th category as Ci. At the same time, suppose there
are Nj samples with the true class label of Cj , among which j ∈ [1,k]. The classifier assigns
Mi samples to class Ci, of which, i∈ [1,k].

Then the formulas of accuracy rate, recall rate and F1 score under multi-classification
problem are as follows:

Precision rate:

Precision=
Mi∑k
i=1Mi

. (10)

Accuracy rate measures the proportion of the samples correctly classified by the classifier
in all the samples classified into this category.

Recall rate (Recall):

Recall =
Mi

Nj
. (11)

The recall rate measures the proportion of samples that the classifier can correctly
classify in the real category.

F1 score:

F1=
2×Precision×Recall
Precision+Recall

. (12)

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 18/23

https://peerj.com
https://doi.org/10.7717/peerjcs.2152/fig-9
http://dx.doi.org/10.7717/peerj-cs.2152

Table 7 Evaluation effect under different algorithms.

Algorithm name Accuracy F1 score Precision rate Recall rate

SA-BO-CNN 0.9836 0.9900 0.9906 0.9900
CNN-BiLSTM
(Shrinidhi, Kaushik Jegannathan & Jeya, 2023)

0.8358 0.8114 0.7965 0.8039

Naive Bayes (Yu et al., 2014) 0.8885 0.906 0.913 0.899
CNN-IDMDI (Banerjee et al., 2020) 0.9873 0.9874 0.9875 0.9873

F1 score is a comprehensive index of precision rate and recall rate, which weights and
averages precision rate and recall rate, and obtains the maximum value when precision rate
and recall rate are equal.

Under the condition of optimal parameters, the corresponding evaluation results of this
article are shown in Table 7.

Based on Table 7, our SA-BO-CNN model demonstrates superior performance
compared to other models. The model reported by Jiang et al. (2020) lacks a parameter
tuning function, leading to an over-reliance on parameter selection and subsequently
yielding a low precision rate. In addition, the study by Oluwakemi, Muhammad &
Anyachebelu (2023) has undertaken more comprehensive efforts. They evaluate the efficacy
of three distinct machine learning algorithms—CNN, recurrent neural networks (RNN),
and Naive Bayes—in identifying diverse attack categories. The result indicates that CNN
and RNN slightly outperform the naive Bayesian algorithms. The moderate performance
is attributed to inherent limitations such as sensitivity to data noise and inability to
process missing data. In Gan et al. (2022), a method combining a gradient coordination
mechanism and focus loss is proposed exhibiting high accuracy. Nevertheless, it demands
extensive parameter adjustments, posing a challenge in parameter tuning. Therefore,
achieving improved results entails conducting numerous experiments to ascertain the
optimal parameter configuration.

CONCLUSION
This article introduces a CNN-based intrusion detection system model, which aims to
address the growing significance of network security issues. The model framework consists
of three main components: feature selection, feature transformation, and classifier. To
effectively handle features, various techniques are employed, such as one-hot coding,
SMOTE resampling, and feature normalization. Through experimental results on the
NSL-KDD sample set, the proposed CNN model demonstrates exceptional performance
in detecting intrusions.

Notably, this CNN model exhibits high accuracy in monitoring different types of
intrusions in network traffic. It particularly excels in handling the challenges of uneven
and multi-type problems encountered in network intrusion monitoring. This outstanding
capability positions it with great potential for practical applications in the field of network
security. This deep learning model is expected to effectively combat network threats,
enhance network security, reduce false positives, and play a pivotal role in today’s complex

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152

network environment. Future endeavors will center on crafting algorithms capable of not
only detecting attacks but also implementing suitable protectivemeasures, minimizing code
runtime, enhancing transparency, aiding cybersecurity professionals in comprehending
and addressing emerging threats, and effectively deploying them in real-world scenarios.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (Nos.
62072127, 62002076, and 61702234), and the Open Fund for Innovative Research on
Ship Overall Performance (No. 25422217). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Natural Science Foundation of China: 62072127, 62002076, 61702234.
The Open Fund for Innovative Research on Ship Overall Performance: No. 25422217.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yanmeng Mo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Huige Li conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Dongsheng Wang performed the experiments, prepared figures and/or tables, and
approved the final draft.
• Gaqiong Liu performed the experiments, prepared figures and/or tables, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2152#supplemental-information.

REFERENCES
Ahmetoglu H, Das R. 2022. A comprehensive review on detection of cyber-attacks:

data sets, methods, challenges, and future research directions. Internet of Things
20:100615 DOI 10.1016/j.iot.2022.100615.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2152#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2152#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2152#supplemental-information
http://dx.doi.org/10.1016/j.iot.2022.100615
http://dx.doi.org/10.7717/peerj-cs.2152

Akhtar MA, Qadri SMO, Siddiqui MA, Mustafa SMN, Javaid S, Ali SA. 2023. Robust
genetic machine learning ensemble model for intrusion detection in network traffic.
Scientific Reports 13:17227 DOI 10.1038/s41598-023-43816-1.

Alladi T, Chamola V, Zeadally S. 2020. Industrial control systems: cyberattack trends
and countermeasures. Computer Communications 155:1–8
DOI 10.1016/j.comcom.2020.03.007.

Bakhsh SA, KhanMA, Ahmed F, Alshehri MS, Ali H, Ahmad J. 2023. Enhancing IoT
network security through deep learning-powered Intrusion Detection System.
Internet of Things 24:100936 DOI 10.1016/j.iot.2023.100936.

Banerjee K, Gupta RR, Vyas K, Mishra B. 2020. Exploring alternatives to softmax
function. ArXiv arXiv:2011.11538.

Choudhary S, Kesswani N. 2020. Analysis of KDD-Cup’99, NSL-KDD and UNSW-
NB15 datasets using deep learning in IoT. Procedia Computer Science 167:1561–1573
DOI 10.1016/j.procs.2020.03.367.

Friedberg I, Skopik F, Settanni G, Fiedler R. 2015. Combating advanced persistent
threats: from network event correlation to incident detection. Computers & Security
48:35–57 DOI 10.1016/j.cose.2014.09.006.

Gan B, Chen Y, Dong Q, Guo J, Wang R. 2022. A convolutional neural network
intrusion detection method based on data imbalance. The Journal of Supercomputing
78(18):19401–19434 DOI 10.1007/s11227-022-04633-x.

Gao N, Gao L, Gao Q,Wang H. 2014. An intrusion detection model based on deep belief
networks. In: 2014 Second international conference on advanced cloud and big data.
Piscataway: IEEE, 247–252.

Guo J, Zan X,Wang L, Lei L, Ou C, Bai S. 2023. A random forest regression with
Bayesian optimization-based method for fatigue strength prediction of ferrous alloys.
Engineering Fracture Mechanics 293:109714 DOI 10.1016/j.engfracmech.2023.109714.

Gurung S, Ghose MK, Subedi A. 2019. Deep learning approach on network intrusion
detection system using NSL-KDD dataset. International Journal of Computer Network
and Information Security 11(3):8–14 DOI 10.5815/ijcnis.2019.03.02.

Gururaj N, Vinod V, Vijayakumar K. 2023. Deep grading of mangoes using convo-
lutional neural network and computer vision.Multimedia Tools and Applications
82(25):39525–39550 DOI 10.1007/s11042-021-11616-2.

Hidayat I, Ali MZ, Arshad A. 2023.Machine learning-based intrusion detection system:
an experimental comparison. Journal of Computational and Cognitive Engineering
2(2):88–97 DOI 10.47852/bonviewJCCE2202270.

Hossain S, Umer S, Rout RK, Tanveer M. 2023. Fine-grained image analysis for facial
expression recognition using deep convolutional neural networks with bilinear
pooling. Applied Soft Computing 134:109997 DOI 10.1016/j.asoc.2023.109997.

Htun PT, Khaing KT. 2012. Anomaly intrusion detection system using random forests
and k-nearest neighbor. Probe 41102(4107):2377.

Javanmardi S, Ashtiani SHM, Verbeek FJ, Martynenko A. 2021. Computer-vision
classification of corn seed varieties using deep convolutional neural network. Journal
of Stored Products Research 92:101800 DOI 10.1016/j.jspr.2021.101800.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 21/23

https://peerj.com
http://dx.doi.org/10.1038/s41598-023-43816-1
http://dx.doi.org/10.1016/j.comcom.2020.03.007
http://dx.doi.org/10.1016/j.iot.2023.100936
http://arXiv.org/abs/2011.11538
http://dx.doi.org/10.1016/j.procs.2020.03.367
http://dx.doi.org/10.1016/j.cose.2014.09.006
http://dx.doi.org/10.1007/s11227-022-04633-x
http://dx.doi.org/10.1016/j.engfracmech.2023.109714
http://dx.doi.org/10.5815/ijcnis.2019.03.02
http://dx.doi.org/10.1007/s11042-021-11616-2
http://dx.doi.org/10.47852/bonviewJCCE2202270
http://dx.doi.org/10.1016/j.asoc.2023.109997
http://dx.doi.org/10.1016/j.jspr.2021.101800
http://dx.doi.org/10.7717/peerj-cs.2152

Jiang K,WangW,Wang A,WuH. 2020. Network intrusion detection combined
hybrid sampling with deep hierarchical network. IEEE Access 8:32464–32476
DOI 10.1109/ACCESS.2020.2973730.

Kabir E, Hu J, Wang H, Zhuo G. 2018. A novel statistical technique for intru-
sion detection systems. Future Generation Computer Systems 79:303–318
DOI 10.1016/j.future.2017.01.029.

Khan NW, Alshehri MS, KhanMA, Almakdi S, Moradpoor N, Alazeb A, Ullah S,
Naz N, Ahmad J. 2023. A hybrid deep learning-based intrusion detection system
for IoT networks.Mathematical Biosciences and Engineering 20(8):13491–13520
DOI 10.3934/mbe.2023602.

Kocher G, Kumar G. 2021.Machine learning and deep learning methods for intru-
sion detection systems: recent developments and challenges. Soft Computing
25(15):9731–9763 DOI 10.1007/s00500-021-05893-0.

Li M, Jiang Y, Li X, Yin S, Luo H. 2023. Ensemble of convolutional neural networks
and multilayer perceptron for the diagnosis of mild cognitive impairment and
Alzheimer’s disease.Medical Physics 50(1):209–225 DOI 10.1002/mp.15985.

Liu J, Wu J, Xie Y, JieW, Xu P, Tang Z, Yin H. 2022. Toward robust process monitoring
of complex process industries based on denoising sparse auto-encoder. Journal of
Industrial Information Integration 30:100410 DOI 10.1016/j.jii.2022.100410.

Matsumura N, Ito Y, Nakano K, Kasagi A, Tabaru T. 2023. A novel structured sparse
fully connected layer in convolutional neural networks. Concurrency and Computa-
tion: Practice and Experience 35(11):e6213 DOI 10.1002/cpe.6213.

Mumuni A, Mumuni F. 2021. CNN architectures for geometric transformation-invariant
feature representation in computer vision: a review. SN Computer Science 2:1–23
DOI 10.1007/s42979-020-00382-x.

Nasr-Esfahani E, Rafiei S, Jafari MH, Karimi N,Wrobel JS, Samavi S, Soroush-
mehr SR. 2019. Dense pooling layers in fully convolutional network for skin
lesion segmentation. Computerized Medical Imaging and Graphics 78:101658
DOI 10.1016/j.compmedimag.2019.101658.

Oluwakemi OO,Muhammad UA, Anyachebelu KT. 2023. Comparative evaluation of
machine learning algorithms for intrusion detection. Asian Journal of Research in
Computer Science 16(4):8–22 DOI 10.9734/ajrcos/2023/v16i4366.

Peddabachigari S, Abraham A, Grosan C, Thomas J. 2007.Modeling intrusion detection
system using hybrid intelligent systems. Journal of Network and Computer Applica-
tions 30(1):114–132 DOI 10.1016/j.jnca.2005.06.003.

Qiao L, Dong J, Zhang K, Chen X, Yang Z, Liu H, AnM. 2023. Experimental study
on condensate heat transfer coefficient of multi-channel cylinder dryer inte-
grated with Bayesian-optimized machine learning prediction. Drying Technology
41(14):2309–2322 DOI 10.1080/07373937.2023.2236197.

RamanMG, SomuN, Kirthivasan K, Sriram VS. 2017. A hypergraph and arithmetic
residue-based probabilistic neural network for classification in intrusion detection
systems. Neural Networks 92:89–97 DOI 10.1016/j.neunet.2017.01.012.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 22/23

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2020.2973730
http://dx.doi.org/10.1016/j.future.2017.01.029
http://dx.doi.org/10.3934/mbe.2023602
http://dx.doi.org/10.1007/s00500-021-05893-0
http://dx.doi.org/10.1002/mp.15985
http://dx.doi.org/10.1016/j.jii.2022.100410
http://dx.doi.org/10.1002/cpe.6213
http://dx.doi.org/10.1007/s42979-020-00382-x
http://dx.doi.org/10.1016/j.compmedimag.2019.101658
http://dx.doi.org/10.9734/ajrcos/2023/v16i4366
http://dx.doi.org/10.1016/j.jnca.2005.06.003
http://dx.doi.org/10.1080/07373937.2023.2236197
http://dx.doi.org/10.1016/j.neunet.2017.01.012
http://dx.doi.org/10.7717/peerj-cs.2152

Rathore S, Sharma PK, Loia V, Jeong YS, Park JH. 2017. Social network secu-
rity: issues, challenges, threats, and solutions. Information Sciences 421:43–69
DOI 10.1016/j.ins.2017.08.063.

Riyaz B, Ganapathy S. 2020. A deep learning approach for effective intrusion de-
tection in wireless networks using CNN. Soft Computing 24:17265–17278
DOI 10.1007/s00500-020-05017-0.

Sharma P, Nayak DR, Balabantaray BK, Tanveer M, Nayak R. 2023. A survey on
cancer detection via convolutional neural networks: current challenges and future
directions. Neural Networks 169:637–659 DOI 10.1016/j.neunet.2023.11.006.

Shrinidhi M, Kaushik Jegannathan TK, Jeya R. 2023. Classification of imbalanced
datasets using various techniques along with variants of SMOTE oversampling and
ANN. Advances in Science and Technology 124:504–511 DOI 10.4028/p-338i7w.

Sowmya T, Anita EM. 2023. A comprehensive review of AI based intrusion detection
system.Measurement: Sensors 28:100827 DOI 10.1016/j.measen.2023.100827.

Tankard C. 2011. Advanced persistent threats and how to monitor and deter them.
Network Security 2011(8):16–19 DOI 10.1016/S1353-4858(11)70086-1.

Towfek SK, Khodadadi N. 2023. Deep convolutional neural network and metaheuristic
optimization for disease detection in plant leaves. Journal of Intelligent Systems and
Internet of Things 10(1):66–75 DOI 10.54216/JISIoT.100105.

Turukmane AV, Devendiran R. 2024.M-MultiSVM: an efficient feature selection
assisted network intrusion detection system using machine learning. Computers &
Security 137:103587 DOI 10.1016/j.cose.2023.103587.

Yamashita R, Nishio M, Do RKG, Togashi K. 2018. Convolutional neural networks:
an overview and application in radiology. Insights Into Imaging 9:611–629
DOI 10.1007/s13244-018-0639-9.

YuW, RuiboW, Huichen J, Jihong L. 2014. Blocked 3× 2 cross-validated t -test for
comparing supervised classification learning algorithms. Neural Computation
26(1):208–235 DOI 10.1162/NECO_a_00532.

Zhang S, Zhang S, Zhang C,Wang X, Shi Y. 2019. Cucumber leaf disease identification
with global pooling dilated convolutional neural network. Computers and Electronics
in Agriculture 162:422–430 DOI 10.1016/j.compag.2019.03.012.

Zhu D, Lu S,WangM, Lin J, Wang Z. 2020. Efficient precision-adjustable architecture
for softmax function in deep learning. IEEE Transactions on Circuits and Systems II:
Express Briefs 67(12):3382–3386 DOI 10.1109/TCSII.2020.3002564.

Mo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2152 23/23

https://peerj.com
http://dx.doi.org/10.1016/j.ins.2017.08.063
http://dx.doi.org/10.1007/s00500-020-05017-0
http://dx.doi.org/10.1016/j.neunet.2023.11.006
http://dx.doi.org/10.4028/p-338i7w
http://dx.doi.org/10.1016/j.measen.2023.100827
http://dx.doi.org/10.1016/S1353-4858(11)70086-1
http://dx.doi.org/10.54216/JISIoT.100105
http://dx.doi.org/10.1016/j.cose.2023.103587
http://dx.doi.org/10.1007/s13244-018-0639-9
http://dx.doi.org/10.1162/NECO_a_00532
http://dx.doi.org/10.1016/j.compag.2019.03.012
http://dx.doi.org/10.1109/TCSII.2020.3002564
http://dx.doi.org/10.7717/peerj-cs.2152

