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ABSTRACT
In recent years, the growing importance of accurate semantic segmentation in ultra-
sound images has led to numerous advances in deep learning-based techniques. In this
article, we introduce a novel hybrid network that synergistically combines convolutional
neural networks (CNN) and Vision Transformers (ViT) for ultrasound image semantic
segmentation. Our primary contribution is the incorporation of multi-scale CNN in
both the encoder and decoder stages, enhancing feature learning capabilities across
multiple scales. Further, the bottleneck of the network leverages the ViT to capture
long-range high-dimension spatial dependencies, a critical factor often overlooked in
conventional CNN-based approaches. We conducted extensive experiments using a
public benchmark ultrasound nerve segmentation dataset. Our proposed method was
benchmarked against 17 existing baseline methods, and the results underscored its
superiority, as it outperformed all competing methods including a 4.6% improvement
of Dice compared against TransUNet, 13.0% improvement of Dice against Attention
UNet, 10.5% improvement of precision compared against UNet. This research offers
significant potential for real-world applications in medical imaging, demonstrating the
power of blending CNN and ViT in a unified framework.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Ultrasound imaging, Vision transformer, Image semantic segmentation,
Convolutional neural network

INTRODUCTION
Persistent postsurgical pain, defined as pain lasting more than 3–6 months after
surgery (Merskey, 1986), presents a significant challenge in patient care. Management
strategies for postsurgical pain typically encompass symptom control and disease
modification (Kehlet, Jensen & Woolf, 2006). In clinical practice, the focus often shifts
toward symptom control, which primarily relies on the use of narcotics and inhibitors (Baby
& Jereesh, 2017). The frequent use of narcotics is associated with a range of unwanted side
effects, including respiratory depression, nausea, vomiting, and other opioid-related
adverse events (Bajwa & Haldar, 2015). Moreover, increased narcotic usage has been
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linked to extended hospital stays and heightened risk of depression (Armaghani et al.,
2016). Some studies have suggested that indwelling catheters represent an alternative, safe,
and effective method for postsurgical pain management (Wijayasinghe et al., 2016; Sola et
al., 2012; Pacik, Nelson & Werner, 2008). However, the accurate placement of catheters is
crucial, as incorrect placement can lead to unanticipated pain, opioid use, and potential
complications, such as readmission or delayed hospital discharge (Hauritz et al., 2019). To
address these challenges, various methods have been explored to enhance the precision of
catheter placement and nerve location identification.

Nerve stimulation (NS) techniques have emerged to enhance the safety and precision
of medical procedures, particularly in situations where traditional anatomic landmark
techniques may lead to unintended punctures or cannulations (Pham-Dang et al., 2003;
Kick et al., 1999; Copeland & Laxton, 2001). NS involves the stimulation of sensory nerves,
inducing non-noxious sensations that effectively compete with and attenuate pain signals,
thereby reducing pain perception. Additionally, NS has the potential to trigger the release
of endorphins, natural pain-relieving chemicals, and modulate nerve activity implicated in
pain signaling. Ultrasound technology has gained recognition as an alternative method to
elevate the safety and quality of catheter placements in medical practice (Chan et al., 2003).
Ultrasound techniques offer multifaceted advantages by enabling the visualization of nerve
structures before injection, guiding the needle precisely to target nerves, and providing
real-time visualization of the local anesthetic’s dispersion pattern. Numerous studies have
demonstrated the superior performance of ultrasound-guided techniques over traditional
anatomic landmarks and NS methods (Brass et al., 2015; Schnabel et al., 2013). In response
to the ongoing pursuit of enhanced nerve identification and catheter placement precision,
more advanced techniques have been proposed to further optimize these procedures.

Deep learning-based networks for ultrasound segmentation have emerged as
the predominant choice, delivering remarkable segmentation performance at the
pixel level. Convolutional neural networks (CNNs) have demonstrated the efficient
capacity for extracting intricate features from grid-like data (Long, Shelhamer & Darrell,
2015; Ronneberger, Fischer & Brox, 2015; Huang et al., 2020; Oktay et al., 2018; Li et
al., 2022). The UNet architecture revolutionized CNN-based segmentation with its
symmetric encoder–decoder design, enabling impressive results even with limited
datasets (Ronneberger, Fischer & Brox, 2015; Wang, Zhang & Voiculescu, 2021). However,
CNNs have inherent limitations due to the localized nature of their convolutional
operations, which can lead to under- or over-segmentation in complex ultrasound
images. Addressing this challenge, the Attention UNet was introduced, showcasing
its efficacy in handling variable small-sized organs by incorporating attention gates
(AGs) within the UNet (Oktay et al., 2018). Further advancements by researchers like
Chen, Yao & Zhang (2020) involved the fusion of the ResNet architecture (He et al.,
2016) with attention mechanisms, thereby enhancing feature extraction and generating
high-quality segmentation results for complex features. Another innovative approach,
the AAUNet, adaptively selects receptive fields of varying scales from channel and
spatial dimensions, leading to substantial improvements in breast lesion segmentation
in ultrasound images (Chen et al., 2022).
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Ultrasound images inherently incorporate non local features, resulting in ambiguous
boundaries between target regions and backgrounds. Traditional UNet-based models
face challenges in capturing long-range semantic dependencies within ultrasound
images (Fang et al., 2023). Atrous or dilated convolution methods were introduced in
these scenarios (Chen et al., 2017b; Chen et al., 2018). These methods expand the receptive
field of convolutions without increasing the parameter count, allowing them to effectively
aggregate multiscale contextual information. Atrous CNN have proven instrumental
in achieving more accurate segmentation, particularly in scenarios involving intricate
spatial structures and scales (Yu, Koltun & Funkhouser, 2017). For instance, Zhou, He &
Jia (2020) applied atrous convolution to preserve resolution information in feature maps
when segmenting brain tumor ultrasound images (Zhou, He & Jia, 2020), showcasing the
versatility of these techniques in addressing segmentation challenges.

Recent advancements have seen the successful integration of CNN and transformer
blocks to preserve global semantic information, with transformers demonstrating
exceptional prowess in capturing intricate patterns and relationships in both natural
language processing (Devlin et al., 2018; Vaswani et al., 2023) and computer vision
domains (Parmar et al., 2018; Liu et al., 2021). A novel adaptation of the Transformer
for computer vision, known as the ViT, eliminates the need for convolutions to extract
features from images (Dosovitskiy et al., 2020). The ViT segments images into discrete
non-overlapping patches. Spatial positioning information is then introduced to these
patches through position encodings, and they are subsequently passed through standard
transformer layers. This allows the ViT to effectively model both local and global semantic
dependencies. Further augmenting this progress, the Segformer incorporates a Bilinear
Fusion mechanism to efficiently merge multi-level feature maps, enhancing both receptive
field and resolution for optimized segmentation results (Xie et al., 2021). The TransUNet
offers a compelling solution with remarkable segmentation performance, effectively
marrying high-resolution spatial details from CNN features with the contextual breadth
of transformers to address inherent locality limitations and mitigate feature resolution
loss, typically associated with pure transformers (Chen et al., 2021). The Swin-UNet, by
combining a symmetric encoder–decoder structure with skip connections and integrating
local-to-global self-attention, marks a significant advancement in image segmentation,
optimizing transformer computations and enhancing segmentation efficiency (Cao et al.,
2022). Lin and collaborators have integrated Swin Transformers and Multi-scale Vision
Transformers (Chen, Fan & Panda, 2021) into the UNet, fostering excellent long-range
dependencies between features of different scales (Lin et al., 2022). Additionally, CSwin-
PNet was proposed to further enhance long-range dependency modeling, particularly
tailored for ultrasound breast segmentation (Yang & Yang, 2023).

Given the considerations highlighted, we recognized the significance of global modeling
within CNN. Drawing inspiration from TransUNet and atrous convolutions, we introduce
our novel approach, referred to as the Modified CNN & ViT hybrid Encoder-Decoder
segmentation network with multi-scale information fusion approach (MCV-UNet). To
our knowledge, this marks the first endeavor to integrate CNN and ViT explicitly for
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ultrasound nerve segmentation. Our contributions in this study can be delineated as
follows:
1. Inspired by the burgeoning success of the Vision Transformer in the domain of

computer vision, we have further integrated the ViT-layer within the Encoder-Decoder
segmentation paradigm, enhancing its feature extraction prowess.

2. Recognizing the importance of capturing intricate details that span from local nuances
to broader patterns, we introduce various atrous CNN layers. These layers augment
the network’s receptive field, bolstering its ability to discern and process multi-scale
spatial hierarchies.

3. To validate the efficacy of our approach, we compared MCV-UNet against an array
of established baseline methods. The empirical evaluations underscored our network’s
superior capabilities on a public dataset, yielding competitive results against 15 baseline
methods.
The remainder of this article is structured as follows: ‘Related work’ reviews the relevant

literature, highlighting key developments in CNN and ViT utilized to medical image
segmentation. ‘Approach’ details the proposed approach, MCV-UNet, including the
network framework, analytical techniques, and related equations. ‘Results’ discusses the
results obtained with MCV-UNet, covering data sources, implementation details, and
evaluation criteria. It also provides an in-depth discussion of these results from different
perspectives. ‘Conclusion’ is the conclusion including remarks, summarizing the superior
performance of MCV-UNet and suggesting ideas for future research in this field. To aid in
the clarity and readability of this article, a table of abbreviations is provided in Table 1.

RELATED WORK
Medical image segmentation with CNN
CNN has initially emerged as the predominant methods for image processing tasks
(Milletari, Navab & Ahmadi, 2016; Chen et al., 2018; Lv et al., 2020; Ali, Qureshi & Shah,
2023). In the domain of medical image processing, where the desired output extends
beyond a single class label, the need for precise segmentation of organs or tumors is
paramount. Pioneering efforts by Cireşan, Meier & Schmidhuber (2012) leveraged deep
neural network networks trained on GPUs, leading to substantial improvements in
recognition rates on medical image datasets. The introduction of the fully convolutional
network (FCN) marked a crucial development by striking a balance between capturing
global and local information through the integration of multi-resolution layers (Long,
Shelhamer & Darrell, 2015). To further enhance training efficiency with limited data,
Ronneberger introduced the symmetric UNet architecture, extending the contracting
network by incorporating successive layers with skip connections (Ronneberger, Fischer &
Brox, 2015). UNet quickly gained popularity for its remarkable ability to learn invariance
frommedical images. LinkNet innovatively directly linked the encoder to the corresponding
decoder, ensuring precise predictions without compromising network processing speed
(Chaurasia & Culurciello, 2017). Subsequent advancements in UNet-based networks, like
the Attention UNet with its AGs mechanisms, enabled networks to focus on targets
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Table 1 Abbreviation instructions.

Abbreviation Full form

CNN Convolutional neural networks
ViT Vision transformers
NS Nerve stimulation
AGs Attention gates
FCN Fully convolutional network
Dice Dice coefficient
Acc Accuracy
Pre Precision
Sen Sensitivity
Spec Specificity
Cost Computational cost
LN Layer normalization
MSA Multi-head self-attention
MLP Multilayer perceptron
TP True positive
FP False positive
TN True negative
FN False negative

of complex shape and size, expanding its applications in ultrasound image segmentation
(Oktay et al., 2018). Res-UNet was specifically designed for ultrasound nerve segmentation,
enhancing accuracy through the incorporation of dense atrous convolutions and residual
multiple posing modules compared to the traditional UNet (Wang, Shen & Zhou, 2019).
Furthermore, researchers have explored combining recurrent neural networks with
residual neural networks to achieve improved organ segmentation performance (Alom
et al., 2018). Addressing the growing demand for precise medical image segmentation,
UNet3+ maximized feature map utilization through full-scale connections (Huang et al.,
2020). Transfer Learning techniques were also incorporated with the UNet architecture,
as demonstrated by Cheng & Lam (2021) who applied their network successfully to lung
ultrasound segmentation, leveraging mechanisms for detecting edges, shapes, and textures
from ultrasound images. Additionally, the Dense-PSP-UNet introduced an innovative
Pyramid Scene Parsing (PSP) module, surpassing skip connection settings in performance
and employing Contrast Limited Adaptive Histogram Equalization (CLAHE) (Reza, 2004)
to reduce image noise levels during training (Ansari et al., 2023).

Medical image segmentation with transformers
The transformer architecture, initially pivotal in sequential processing, marked a paradigm
shift with its self-attention mechanism, enabling unprecedented performance in various
classification tasks (Vaswani et al., 2017). In computer vision, the ViT replaced traditional
convolutional layers with a novel approach of segmenting images into non-overlapping
patches, treated as linear embeddings. This method facilitated contextual relationships
between patches through self-attention, enhancing the network’s comprehension of the
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entire image (Dosovitskiy et al., 2020; Wang, Zhao & Ni, 2022; Chen et al., 2021; Liu, Hu &
Chen, 2023). ViT has set new benchmarks in object detection (Fang et al., 2021), rivaling
state-of-the-art CNN architectures, particularly when pre-trained on extensive datasets
(Dosovitskiy et al., 2020). The introduction of axial (Ho et al., 2019) and hierarchical
attention (Yang et al., 2016) further refined ViT, enabling more precise segmentation.
A significant advantage of ViT is its capacity to handle varied image sizes, crucial for
intricate ultrasound images. In medical image segmentation, where precision is critical
for diagnosis and treatment, traditional methods face challenges like varying contrasts
and subtle pathological indicators. TransUNet combined CNN’s local detail capture
with transformers’ holistic view, enhancing the understanding of medical images (Chen
et al., 2021). Swin-Unet, leveraging transformer blocks, adeptly handles high-resolution
medical scans (Liu et al., 2021; Cao et al., 2022). The hybrid CNN-Transformer network
further innovated by integrating large-kernel convolution, effectively capturing multi-scale
information (Liu, Hu & Chen, 2023). The ViT-Patch introduced a secondary task on the
patch tokens, in addition to the primary task on the class token, demonstrating superior
performance compared to the standard ViT in breast ultrasound segmentation. token
(Feng et al., 2023). HA-UNet’s introduction of local–global transformer blocks represents
a significant step in reducing computational complexity without sacrificing segmentation
efficiency (Zhang et al., 2024). The inclusion of a cross attention block in HA-UNet not
only improved feature integration but also demonstrated significant advancements in
ultrasound breast lesion segmentation.

APPROACH
Architecture overview
In the domain of deep learning applied to image segmentation, the objective is to map an
input image x to its segmented inference y . This mapping is denoted as ypred = f (x;θ),
where f is the deep learning network, θ represents the network’s parameters, and ypred is
the predicted segmentation of each pixel, where pred∈ [0,1]. The corresponding ground
truth for the input image x is represented as ygt. During the training phase, we use a dataset
consisting of batches of paired data represented as (x,ygt)∈Dtrain. Our primary aim during
training is to optimize the parameters θ tominimize the difference between ypred and ygt. For
evaluation on unseen data, we use (x,ygt)∈Dtest and assess the network’s performance by
comparing ypred to ygt. The MCV-UNet, a novel approach in medical image segmentation
for ultrasound images, is depicted in Fig. 1. The architecture, which integrates CNN and
ViT, consists of an encoder, bottleneck, decoder, and skip connections. Built upon the
foundational UNet structure (Ronneberger, Fischer & Brox, 2015), MCV-UNet innovates
with key components atrous convolutional and ViT layers. The process begins with two
3×3 atrous convolutional layers in the encoder, designed to extract multi-scale features
while expanding the network’s receptive field without significantly increasing computations
(Chen et al., 2017a). This is followed by standard convolution-based encoders and max-
pooling layers, effectively balancing spatial dimension reduction and computational
efficiency. In the symmetric design, the feature maps from the encoder aid each upsampling
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Figure 1 The proposed encoder-decoder segmentationMCV-UNet based on atrous CNN and ViT
blocks.

Full-size DOI: 10.7717/peerjcs.2146/fig-1

step in the decoder. A 2×2 deconvolution layer halves the feature channels, and these are
merged with corresponding encoder feature maps via skip connections, preserving crucial
information.

We introduce a bottleneck with two transformer blocks, leveraging ViT for its
segmentation accuracy (Dosovitskiy et al., 2020). This unique combination of atrous
convolution and ViT allows MCV-UNet to capture both local details and global context
effectively, a crucial requirement in medical image segmentation. The final expanding
layer in the decoder then maps feature vectors to the desired class numbers, ensuring
the output matches the input resolution. MCV-UNet’s design is a strategic evolution
from conventional UNet, inspired by TransUNet’s hybrid CNN-Transformer approach
(Chen et al., 2021). The specific functionalities of ViTs and atrous convolutions, crucial to
MCV-UNet’s performance, are further detailed in the subsequent sections.

Vision transformer layer
Two successive Vision Transformer blocks serves as a key element in the bottleneck
between the encoder and decoder is illustrated in Fig. 2. Within each Vision Transformer
block, we applied a layer normalization (LN), multi-head self-attention (MSA), a two-layer
multilayer perceptron (MLP) with GELU (Ba, Kiros & Hinton, 2016; Hendrycks & Gimpel,
2016). A residual connection was applied each module (He et al., 2016). The computation
within these continuous Transformer blocks is illustrated as follows:

ẑ l =MSA
(
LN(z l−1)

)
+z l−1 (1)

z l =MLP
(
LN(ẑ l)

)
+ ẑ l (2)
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Figure 2 Two successive Vision Transformer blocks.
Full-size DOI: 10.7717/peerjcs.2146/fig-2

ẑ l+1=MSA
(
LN(z l)

)
+z l (3)

z l+1=MLP
(
LN(ẑ l+1)

)
+ ẑ l+1 (4)

here, ẑ l and z l represent the outputs of the MSA module and the MLP module of the lth
block, respectively.

Drawing inspiration from previous works (Pan et al., 2022; Keles, Wijewardena &
Hegde, 2023; Wang & Ma, 2023; Qin et al., 2022; Zhang et al., 2023), our self-attention
computation strategy adheres to the principles of scaled dot-product attention (Vaswani
et al., 2023). This approach leverages the efficiency of dot-product attention, optimizing
the use of matrix multiplication (Bahdanau, Cho & Bengio, 2014). The self-attention
computation can be illustrated as:

Attention(Q,K ,V )= Softmax
(
QKT
√
d
+B

)
V (5)

where Q, K , and V are matrices representing queries, keys, and values, respectively, with
dimensions Q,K ,V ∈RM 2

×d , where M 2 denotes the number of patches in a window and
d represents the query or key dimension. The bias term B is derived from the bias matrix
B̂, with B̂∈R(2M−1)×(2M+1).

Atrous convolution layer
In the classical encoder–decoder architecture, the repeated operations of max-pooling and
striding at consecutive layers often lead to a substantial reduction in the spatial resolution
of the resulting feature maps. While skip connections and deconvolutional layers can help
recover some of this lost spatial information, MCV-UNet takes a further step to mitigate
this issue by incorporating atrous convolution within the encoder–decoder architecture.

Atrous convolution, initially introduced for the computation of the undecorated wavelet
transform in the ‘‘algorithme à trous’’ scheme (Holschneider et al., 1990), has demonstrated
high performance in various applications, including semantic segmentation (Chen et al.,
2017a). In the context of two-dimensional data, atrous convolution is defined as follows:

y[i] =
K∑
k

x[i+ rk]w[k] (6)

Xu and Wang (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2146 8/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2146/fig-2
http://dx.doi.org/10.7717/peerj-cs.2146


Figure 3 The illustration of atrous convolution-based block.
Full-size DOI: 10.7717/peerjcs.2146/fig-3

here, the rate parameter r corresponds to the stride of the sampled input signal, x[i]
represents the two-dimensional input signal, and the atrous rate r convolves the input
signal with the upsampled filter w[k] by introducing r−1 zeros between consecutive filter
values along each spatial dimension (Chen et al., 2017b; Gu et al., 2019). The parameter
K denotes the length of the filter w[k], and the standard convolution corresponds to the
special case of an atrous rate r = 1. Adjusting the atrous rate provides the network with
flexibility in terms of the field of view and enables the generation of larger outputs without
significantly increasing computational demands (Chen et al., 2017a). Previous works have
incorporated atrous convolution in various ways, including within encoder–decoder blocks
(Chen et al., 2018; Chen et al., 2017b), skip connections (Wang & Voiculescu, 2021), and the
module bridging the encoding and decoding stages to extract dense features (Lv et al., 2020;
Gu et al., 2019; Pan et al., 2019; Ma, Gu &Wang, 2024).

In the architecture of MCV-UNet, inspired by the encoder–decoder structure with
atrous convolution (Chen et al., 2018), we placed batch normalization layers before atrous
convolution operations with atrous rates r = 3 in the encoder blocks and r = 1 (standard
convolution) in the decoder blocks, as illustrated in Fig. 3. The introduction of holes
(with r = 3) in the down-sampling process facilitates the computation of responses at all
image positions while introducing zeros between filter values. This increases the size of
the filter compared to the standard convolution layer, but computations only consider
the values of non-zero filter elements, ensuring a constant number of filter parameters
and computational operations. Overall, this approach offers the advantage of controlling
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Table 2 The hyper-parameter setting for MCV-UNet and all baseline methods.

Epoch Optimizer Learning rate Batch size Dataset

50 Adam 10−4 8 5640×256×256

feature resolution, enhancing the receptive field of the network without sacrificing image
resolution.

RESULTS
Dataset
In our experiments, we employed the Nerve Segmentation database, a publicly available
resource from the Kaggle Competition platform (Anna Montoya et al., 2016). This database
is integral to medical imaging, particularly for the analysis of the brachial plexus nerve, a
critical area often studied in ultrasound imaging. This dataset comprises 5,640 256×256
ultrasound images, distinctly split into 1,128 testing and 4,512 validation samples, with
no overlap between training, validation, and testing sets. Each image encompasses a 2D
ultrasound scan of the nerve alongside ameticulouslymanually annotated 2D segmentation
mask, serving as ground truth. The images present a unique challenge due to the random
distribution of the nerve within them, demanding precise segmentation skills. To facilitate
uniform analysis, all images underwent normalization, scaling pixel values to the range [0,
1], thereby simplifying the task of differentiating the nerve from surrounding tissues. This
approach ensures accurate segmentation by leveraging expert annotations and standardized
image processing techniques.

Implementation details
The implementation of our approach was developed using Python 3 and TensorFlow
(Abadi et al., 2015). Our experiments were conducted on a robust computing setup,
featuring an Intel Xeon CPU with 2 vCPUs and 13 GB of RAM, and significantly
accelerated with an NVIDIA A100 GPU, equipped with 40 GB of VRAM, known for
its high computational efficiency in deep learning tasks. We adapted several networks
from established sources, specifically segmentation models and Keras-UNet-Collections,
applying necessary modifications to optimize them for our specific dataset. These
adaptations were crucial in handling our dataset’s unique characteristics.

During the training phase, consistency in parameters across all networks was maintained
to ensure fair comparative analysis. We employed the Adam Optimizer (Kingma & Ba,
2014), renowned for its efficiency in computing gradients, setting the learning rate to
to 10−4, batch size to 8, and the number of training epochs to 50. Batch normalization
layers (Ioffe & Szegedy, 2015) were strategically incorporated to enhance training speed
and stability. The details of the hyper-parameter setting in the experiment is illustrated in
Table 2.

The network’s performance was evaluated using the Dice coefficient-based loss, a
standard metric in image segmentation tasks, which quantifies the similarity between
predicted and ground truth segmentation. We saved the network from the epoch showing
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the best performance for testing phase segmentation. On our specified hardware, training
a single network typically required 3 to 5 h, depending on the network’s complexity and
architecture.

Metrics
To comprehensively evaluate the performance of MCV-UNet, a diverse set of evaluation
metrics are utilized. These metrics encompass a range of criteria, including the Dice
coefficient (Dice), Accuracy (Acc), Precision (Pre), Sensitivity (Sen), Specificity (Spec),
and the parameters of network as computational cost metrics (Cost). Each of these metrics
offers a unique perspective on the effectiveness of MCV-UNet in segmenting medical
images. The details of our evaluation metrics can be outlined as follows:

Dice=
2×TP

2×TP+FP+FN
(7)

Accuracy=
TP+TN

TP+TN +FP+FN
(8)

Precision=
TP

TP+FP
(9)

Sensitivity=
TP

TP+FN
(10)

Specificity=
TN

TN +FP
(11)

where, TP represents the number of true positives, TN denotes the number of true
negatives, FP signifies the number of false positives, and FN stands for the number of false
negatives.

By employing these diverse metrics, a comprehensive assessment of MCV-UNet’s
segmentation performance could be achieved. Each metric contributes valuable insights
into different aspects of the network’s performance, enabling us to evaluate the effectiveness
and accuracy of MCV-UNet in the context of medical image segmentation.

Comparison with state-of-the-arts
To evaluate the performance of MCV-UNet in the context of medical image segmentation,
we conducted an extensive comparison with 17 baseline networks, including a diverse range
of architectural designs, each with its own strengths and characteristics. To demonstrate
the effectiveness of MCV-UNet, we use ViT block bridge the encoder and decoder, with
comparisons made against classical CNN networks and their variants. Furthermore,
we evaluated the impact of the encoder and decoder design, incorporating atrous
convolution layers, by contrasting the result with existing hybrid CNN-ViT networks. The
networks compared include: UNet (Ronneberger, Fischer & Brox, 2015), UNet-ResNet34
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(Ronneberger, Fischer & Brox, 2015), UNet-MobileNet (Ronneberger, Fischer & Brox, 2015),
UNet-InceptionV3 (Ronneberger, Fischer & Brox, 2015), Linknet (Chaurasia & Culurciello,
2017), Linknet-MobileNet (Chaurasia & Culurciello, 2017), FPN-ResNet34 (Lin et al.,
2017), FPN-MobileNet (Lin et al., 2017), TransUNet (Chen et al., 2021), FPN-InceptionV3
(Lin et al., 2017), VNet (Milletari, Navab & Ahmadi, 2016), AttentionUNet (Oktay et al.,
2018), UNet3+ (Huang et al., 2020), U2-Net (Qin et al., 2020), RARUNet (Wang, Zhang
& Voiculescu, 2021), QAPNet (Wang & Voiculescu, 2021), and R2UNet (Alom et al., 2018).
This comprehensive comparison allows us to demonstrate the unique strengths and
capabilities of MCV-UNet in the context of medical image segmentation.

Qualitative results
Figure 4 displays qualitative comparison results with three randomly chosen ultrasound
medical images alongside their corresponding ground truths. The original raw images are
removed due to Kaggle Policy. For each example, predictions generated by 17 baseline
methods are compared with the results from MCV-UNet. The results of these visual
analyses yield valuable insights into the performance of each approach. Classical CNN-
based methods, including UNet (Ronneberger, Fischer & Brox, 2015), Attention UNet
(Oktay et al., 2018), and V-Net (Milletari, Navab & Ahmadi, 2016), tend to exhibit issues
of over-segmentation or under-segmentation. For instance, in the first example, UNet-
MobileNet over-segments the nerve while V-Net under-segments it. This observation
underscores the superior capability of MCV-UNet in effectively encoding global contexts
and distinguishing the semantics. In addition, in the context of existing hybrid CNN-ViT
networks, the predictions generated by TransUNet (Chen et al., 2021) demonstrate coarser
characteristics than those by MCV-UNet, particularly with regard to boundary and shape.
In the third example, MCV-UNet displays excellent alignment with nerve boundary of the
ground truth, whereas TransUNet predicts more false positives. These visual comparisons
proves the superior performance of our network, characterized by its capacity to preserve
detailed shape information, resulting in fewer false positives and false negatives compared
to the baseline methods. This superiority is attributed to the successful combination of
CNN and ViT architectures in preserving high-level global information and low-level
details, while minimizing spatial information loss with atrous convolution layers.

Quantitative results
Table 3 presents a comprehensive quantitative evaluation of ourMCV-UNet in comparison
to the 17 baseline methods in Tables 3, 4, 5. The quantitative results proved the exceptional
performance of MCV-UNet on most evaluation metrics. For the main criterion metric of
dice coefficient, MCV-UNet achieves a remarkable result of 62.51%, surpassing the second-
ranked network by 0.47%. In terms of accuracy and precision, MCV-UNet outperforms
all competitors, with a 0.18% increase in Acc and a 1.16% increase in Pre compared to
the second-best network. MCV-UNet exhibits competitive performance in sensitivity and
specificity metrics, aligning with the top-performing networks. Regarding computational
cost, MCV-UNet falls within the median range of all trained networks, showing a slight
advantage over our derived architecture, TransUNet. These quantitative results indicate
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Figure 4 The segmentation results of different networks on the brachial plexus nerve testing dataset.
Full-size DOI: 10.7717/peerjcs.2146/fig-4
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Table 3 The performance of MCVUNet with other baseline methods on ultrasound nerve segmenta-
tion test set.

Network Dice Acc Pre Sen Spec Cost

UNet 0.6217 0.9910 0.6179 0.6256 0.9953 1,967,041
UNet-ResNet34 0.6165 0.9910 0.6218 0.6130 0.9955 24,456,160
UNet-MobileNet 0.6184 0.9907 0.6038 0.6349 0.9950 8,336,343
UNet-InceptionV3 0.6173 0.9899 0.5599 0.6997 0.9934 29,933,111
LinkNet 0.6218 0.9911 0.6286 0.6168 0.9956 20,325,137
LinkNet-MobileNet 0.6067 0.9896 0.5474 0.6840 0.9932 4,546,071
FPN-ResNet34 0.6172 0.9906 0.5941 0.6435 0.9947 23,930,960
FPN-MobileNet 0.5971 0.9907 0.6099 0.5859 0.9955 6,103,111
TransUNet 0.5976 0.9888 0.5193 0.7037 0.9922 4,675,335
FPN-InceptionV3 0.6222 0.9904 0.5803 0.6745 0.9942 25,029,287
VNet 0.5955 0.9896 0.5533 0.6491 0.9937 3,690,129
AttentionUNet 0.5533 0.9887 0.5184 0.5934 0.9934 638,322
UNet3+ 0.5890 0.9899 0.5695 0.6099 0.9945 497,848
U2-Net 0.4366 0.9892 0.5738 0.3523 0.9969 3,775,677
R2UNet 0.6115 0.9910 0.6230 0.6004 0.9956 1,448,215
RARUNet 0.6219 0.9910 0.6181 0.6257 0.9953 11,793,638
QAPNet 0.6218 0.9910 0.6180 0.6257 0.9954 9,472,052
Ours 0.6251 0.9928 0.6359 0.6912 0.9960 4,675,329

Notes.
The best performance results are highlighted in bold. The second-best performance of MCV-UNet is highlighed with an un-
derline.

MCV-UNet’s competitive edge acrossmultiple evaluationmetrics relative to the 17 baseline
networks. The parameters ofMCV-UNet is 43%, 76&, 49% lower thanUNetwithmobilenet
as network backbone, LinkNet, and QAPNet. Notably, it is also slightly lower than the
current advanced ViT-based TransUNet due to the modified atrous CNN is utilized. They
also emphasize capabilities of MCV-UNet of combining the strengths of classical CNN and
hybrid CNN-ViT networks.

Sensitivity analysis & ablation study
In addition to our primary experiments, we carried out a sensitivity analysis focused on the
hyper-parameter setting related to the dilated rate in our multi-scale CNN. This analysis
is essential to determine the optimal configuration for effectively segmenting nerves in
ultrasound images. The detailed results of this analysis are presented in Table 4. These
findings validate the effectiveness of the dilated rate settings in our proposed MCV-UNet.

To study the individual and collective impact of the multi-scale modules proposed in
our network, we conducted an ablation study, the results of which are detailed in Table 5.
This study methodically explores the effects of omitting or modifying various components
of our network. These findings not only validate the efficacy of each proposed contribution
but also highlight their synergistic effect in enhancing the accuracy and robustness of the
ultrasound nerve segmentation process.
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Table 4 The sensitivity analysis of atrous CNN setting.

Dilation rate 1 2 3 4 5 6

Dice 0.5976 0.6105 0.6251 0.6248 0.6296 0.6175
Acc 0.9888 0.9894 0.9928 0.9912 0.9907 0.9910
Pre 0.5193 0.5423 0.6359 0.6323 0.5955 0.6186
Spec 0.9922 0.9929 0.9960 0.9957 0.9946 0.9954

Notes.
The best performance results are highlighted in bold. The second-best performance of MCV-UNet is highlighed with an un-
derline.

Table 5 The ablation study of MCV-UNet on ultrasound nerve segmentation test set.

Multi-Scale CNN Self-Attention Dice Acc Pre Sen Spec

0.6217 0.9910 0.6179 0.6256 0.9953
X 0.6220 0.9903 0.5780 0.6706 0.9941

X 0.5976 0.9888 0.5193 0.7037 0.9922
X X 0.6251 0.9928 0.6359 0.6912 0.9960

Notes.
The best performance results are highlighted in bold.

CONCLUSION
In this study, we studied the combination of modified CNN and ViT to address the
intricate challenge of ultrasound nerve segmentation. Recognizing the limitations inherent
in conventional CNN-based networks, especially their restricted capacity to exploit long-
range semantic dependencies in ultrasound images, we proposed the MCV-UNet. This
novel design represents a modified encoder–decoder framework that seamlessly combines
the robust capabilities of both CNN and ViT, while it integrates atrous convolution layers
to effectively recover lost spatial information. This kind of multi-scale feature information
extraction is valuable in ultrasound imaging, because the nerve structure is complex,
and the location, size of nerve can be different in each of ultrasound image. Considering
other modalities images, such as CT, MRI, and PET, the MCV-UNet is also valuable to be
explored especially when the region of interest (ROI) is complex and should be recognized
based on both of the local- and global-based features.

The qualitative and quantitative evaluations indicates that the proposed network
outperformed 17 classical baseline methods, exhibiting fewer FP and FN—a testament
to its robustness and precision. The integration of various dilated CNN layers further
amplified its feature extraction capabilities, bridging the gap between local and global
contextual understanding in the images.

Future work might consider refining the network architecture, introducing novel
attention mechanisms, or expanding the approach to other challenging medical imaging
domains. The computational burden should also be further decreased, because the current
parameters of network is still high due to the utilization of ViT. Different types of CNN,
network pruning, and knowledge distillation can also be studied to enable the efficiency of
the network.
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