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ABSTRACT
The Internet of Things (IoT) is becoming more prevalent in our daily lives. A recent
industry report projected the global IoTmarket to be worthmore thanUSD 4 trillion by
2032. To cope with the ever-increasing IoT devices in use, identifying and securing IoT
devices has become highly crucial for network administrators. In that regard, network
traffic classification offers a promising solution by precisely identifying IoT devices
to enhance network visibility, allowing better network security. Currently, most IoT
device identification solutions revolve around machine learning, outperforming prior
solutions like port and behavioural-based. Although performant, these solutions often
experience performance degradation over time due to statistical changes in the data. As a
result, they require frequent retraining, which is computationally expensive. Therefore,
this article aims to improve the model performance through a robust alternative
feature set. The improved feature set leverages payload lengths to model the unique
characteristics of IoT devices and remains stable over time. Besides that, this article
utilizes the proposed feature set with Random Forest and OneVSRest to optimize
the learning process, particularly concerning the easier addition of new IoT devices.
On the other hand, this article introduces weekly dataset segmentation to ensure fair
evaluation over different time frames. Evaluation on two datasets, a public dataset,
IoT Traffic Traces, and a self-collected dataset, IoT-FSCIT, show that the proposed
feature set maintained above 80% accuracy throughout all weeks on the IoT Traffic
Traces dataset, outperforming selected benchmark studies while improving accuracy
over time by +10.13% on the IoT-FSCIT dataset.

Subjects Computer Networks and Communications, Cryptography,
Data Mining and Machine Learning, Security and Privacy, Internet of Things
Keywords Internet of Things, Device identification, Accuracy degradation, Machine learning,
Network traffic classification, Traffic analysis, IoT security

INTRODUCTION
The Internet of Things (IoT) is a collection of electronic devices with sensors and software
that aims to connect and exchange data, such as voice assistants, smart doorbells, and
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smart locks. The extensive IoT systems present an opportunity to produce, collect, and
process a tremendous amount of data for monitoring and decision-making purposes. The
IoT data handling and processing capabilities benefit various industries, such as financial,
healthcare, and automotive. For example, the financial sector implements IoT in contactless
payment. Contactless payment allows consumers to complete payment without physical
touch, which is especially beneficial during the COVID-19 pandemic when people need
to minimize physical contact. Furthermore, Fortune Business Insights recently reported
that the global IoT market is set to surpass USD 4 trillion by 2032, reflecting a Compound
Annual Growth Rate (CAGR) of 24.3% over the forecasted period spanning from 2024 to
2032 (Fortune Business Insights, 2024).

Although set to soar in the near future, IoT’s extensive systems present security
vulnerabilities that require immediate attention, including malware attacks, Distributed
Denial of Services (DDoS), and data theft. For example, Mirai, a malware attack designed
to exploit IoT devices, caused a large-scale DDoS attack and successfully compromised
over 600,000 connected IoT devices as of 2016 (Tahaei et al., 2020). With these security
vulnerabilities, cyber attackers can mount attacks against the user’s network through the
exploited IoT devices. Potential solutions include IoT device identification, which maps
network traffic to its originating IoT devices. Accurate and reliable IoT device identification
allows IoT system administrators to identify IoT devices connected to their network and
determine their vulnerability status, making it easier to address security concerns and
prevent potential cyber-attacks. The absence of IoT device identification reduces the
potential to identify network vulnerabilities accurately.

In recent years, there are various efforts from the research community to address
IoT device identification. Based on the latest literature, there are at least three primary
techniques in IoT device identification:
(a) Signature-based. It utilizes predefined rules or strings that allow highly accurate and

granular device identification (Zaki et al., 2021). In addition to building the rules from
scratch, existing works have also explored rule extraction from open-source tools like
Nmap (Wan et al., 2023).

(b) Traditional machine learning. It is the most widely explored technique due to its
effectiveness and the abundance of IoT data available for training. Among common
algorithms include the k-nearest neighbour (k-NN), support vector machine (SVM)
and Random Forest (Almotairi et al., 2024).

(c) Deep learning. The current state-of-the-art with advanced capabilities, such as
automated feature representation and complex inferences through deep hidden layers.
Well-known algorithms include transformer-based and convolutional neural networks
(CNN) (He et al., 2022; Luo et al., 2023).
Implementing deep learning has emerged as an effective approach to identifying IoT

devices. For instance, He et al. (2022) explored the integration of CNN with federated
learning to process network traffic data efficiently, yielding significant improvements
in device identification accuracy. Similarly, Li et al. (2023) demonstrated using CNN
models to analyze channel state information (CSI), further substantiating the model’s
utility in identifying subtle patterns that distinguish devices. The research outlined in
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Liu et al. (2021b) also delved into using CNNs for IoT security, highlighting their capacity
to identify devices by analyzing temporal and spatial features within network signals. Li
et al. (2022) further corroborated these findings by employing CNN to extract features
from CSI data, providing a robust framework for IoT security. These studies collectively
underscore the critical role of CNN in extracting intricate features from IoT network traffic,
paving the way for more secure and reliable device identification strategies.

However, this article opted for Random Forest over the more advanced deep learning
algorithms, which is justified by the results of two significant studies. The efficacy and
relevance of conventional machine learning methods such as Random Forest in this area
are underscored by the findings in Hamad et al. (2019) and Kostas, Just & Lones (2022).
These studies emphasized the algorithm’s superiority in effectively recognizing devices by
processing feature-rich network data, leveraging Random Forest’s resistance to overfitting
and its inherent ability to handle high-dimensional data without extensive computational
resources. Furthermore, the meticulous features analysis and selection are in accordance
with the strengths of RandomForest, underscoring the significance of a systematic approach
to feature selection that improves model precision and generalizability. This article’s choice
for utilizing Random Forest is further supported by its established success in efficiently
managing IoT devices’ diverse characteristics and communication patterns. It provides
a strong argument against the resource-heavy demands associated with deploying deep
learning models in the IoT security domain.

Despite encouraging results of existing studies, existing machine learning-based IoT
device identification systems face a common limitation: accuracy degradation over time.
Accuracy degradation over time is a phenomenon in machine learning that occurs when
the model’s performance degrades due to the statistical properties between the training
and testing data diverging over time, reducing the meaning and relationship between the
data and making the model less suitable over time (Iwashita & Papa, 2019). The authors
in Kolcun et al. (2021) highlighted that the model’s accuracy decreased by up to 40% after
a few weeks. Similarly, we extended the study in Kolcun et al. (2021) through empirical
evaluation on the effect of different feature representations against the magnitude of
accuracy degradation over time in our previous work (Aqil et al., 2022). One way to
address the accuracy degradation over time in machine learning is by repeatedly retraining
the model (Kolcun et al., 2020), a computationally expensive process requiring extensive
human efforts. Despite its critical accuracy degradation, it remains an open research
problem in the IoT domain.

To address the accuracy degradation in the IoT device identification system, this article
proposes a flexible and robust feature set based on the statistical values of the payload
length. The statistical values, such as average payload length and payload range, are unique
per device, thus helping identify and differentiate one IoT device from another. This article
incorporates the Random Forest algorithm and the OneVSRest strategy. OneVSRest is a
strategy that fits one classifier per class, and each classifier is fitted against all other classes.
The OneVSRest strategy is efficient for IoT systems by simplifying the data labeling process
for a newly connected IoT device. In summary, the contributions of this article are as
follows:
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Figure 1 IoT device identification phases.
Full-size DOI: 10.7717/peerjcs.2145/fig-1

(a) This article offers a robust and lightweight feature set based on statistical values of
payload length to identify and discriminate IoT devices while also addressing accuracy
degradation over time to cater to IoT systems’ complexity.

(b) This article provides a new and publicly available dataset as a new benchmark for IoT
device identification.
This article also proposed an alternative evaluation strategy in which we split the dataset

on a weekly basis to evaluate the accuracy degradation over time. The first week of the
dataset was used for training purposes, and the following weeks were used for testing.
The article used the public dataset, IoT Traffic Traces, from UNSW for benchmarking
purposes with the benchmark article (Kolcun et al., 2021). The evaluation of the proposed
feature set showed only a 6.8% accuracy degradation and 6.22% F1 score degradation while
maintaining the accuracy rate at 83%. Compared to Kolcun et al. (2021), the accuracy rate
dropped as low as 78.37% in the sixth week, with slightly minimal degradation at 4.4%.
In addition, this article collected a dataset, IoT-FSCIT (IoT Faculty Science Computer
& Information Technology), over six weeks in a controlled lab environment, which
includes five different IoT devices and contains bidirectional network traffic in packet
captured format files (PCAP) format. Using a similar approach, the accuracy and F1 score
degradation for the proposed feature set on this dataset are 10.81% and 12.81 respectively.
Meanwhile, the benchmark article (Kolcun et al., 2021) demonstrated a larger percentage,
at 20.94% for accuracy and 20.97 for the F1 score. In conclusion, the article showed that
the proposed feature set maintains a higher performance level over time, even in different
network environments.

Our article is organized as follows: ‘Materials & Methods’ presents the architecture of
the proposed approach. ‘Results’ outlines the experimental analysis. ‘Discussion’ discusses
the article’s limitations and the current issue in the domain before concluding the article.

MATERIALS & METHODS
This article identifies IoT devices using machine learning techniques and divides the
process into four phases. Figure 1 illustrates the overall architecture of the approach, and
the following subsections provide more details on each phase.

Data collection phase
The data collection phase involves gathering relevant data to create a comprehensive
dataset for analysis and modeling. Our article employs two datasets from different sources,
as shown in Table 1, with their details as follows:
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Table 1 Details on the datasets used.

Dataset (Year) Type No. of devices Devices

IoT Traffic Traces (2018) Public 23 IoT devices, seven non-IoT devices Amazon Echo, Android Phone 1, Android Phone 2, Belkin
Wemo Motion Sensor, Belkin Wemo Switch, Blipcare
Blood Pressure Meter, Dropcam, HP Printer, iHome Power
Plug, Insteon Camera, IoT Camera 1, iPhone, Laptop, Light
Bulbs LiFX Smart Bulb, Macbook, iPhone, Nest Dropcam,
Nest Protect Smoke Alarm, Netatmo Weather Station,
Netatmo Welcome, PIX-STAR Photo Frame, Samsung
Galaxy Tab, Samsung SmartCam, Smart Things, TP-Link
Day Night Cloud Camera, TP-Link Smart Plug, Triby
Speaker, Withings Aura Smart Sleep Sensor, Withings
Smart Baby Monitor, Withings Smart Scale

IoT-FCSIT (2022) Private Five IoT devices Alexa Echo Dot, Mi Air Purifier, Mi Box 3, Mi Home
Security Camera, Smart Plug

(a) IoT Traffic Traces: A publicly available dataset from the University of New SouthWales
(UNSW) (Sivanathan et al., 2019). The IoT Traffic Traces includes network traffic from
23 IoT devices and seven non-IoT devices, collected over 60 days. The PCAP files are
segregated based on each day.

(b) IoT-FCSIT: Our dataset was collected over six weeks explicitly for this article’s purpose
of assessing the proposed feature set’s robustness across various network environments.
This dataset simulates the average consumer’s typical usage, such as the Smart Plug
being turned on when entering the lab and off when leaving. It was gathered over
six weeks in the research lab at the Faculty of Computer Science and Information
Technology (FCSIT), Universiti Malaya (UM), and is available to access through DOI:
10.6084/m9.figshare.25143581.v1.

Data processing phase
The data processing phase involves preparing raw data for model training. The outcome
is a processed dataset that is error-free, contains relevant features, and is appropriately
structured for machine learning algorithms. The data processing phase encompasses four
essential processes: data cleaning, feature selection, data transformation, and data splitting.

Figure 2 shows the data cleaning step where the raw data in a PCAP file is processed
using the Pyshark library to transform it into a dataframe, which is then saved as a CSV file.
Then, any data points with incomplete information are removed from the dataset to handle
missing data. Additionally, non-IoT traffic, irrelevant to the current analysis, is eliminated
from the dataset. Our article filters out non-IoT traffic based on MAC and IP addresses
for the public dataset, IoT Traffic Traces. Meanwhile, for the private dataset, IoT-FSCIT,
we configured our setup exclusively to ensure our dataset is free from any non-IoT traffic
from the start, thereby eliminating the need for post-collection filtering.

The features implemented in this article were originally employed in our previous
work on granular network traffic classification (Zaki et al., 2022). Our previous article
aimed to classify network traffic based on inter-application and intra-application services.
Inter-application services are similar services associated with different parent applications,
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Figure 2 Data processing.
Full-size DOI: 10.7717/peerjcs.2145/fig-2

Table 2 52 initial features.

No. Feature Description

1–20 paylod_mov_stat 5, 10, 20, 40, and 100-moving statistics (i.e., sum, average,
variance, and standard deviation) of payload length.
Each statistic is calculated on five different packet sliding
windows.

21 max_avg_payload The maximum average payload length in either traffic
direction.

22 min_avg_payload The minimum average payload length in either traffic
direction.

23–25 avg_payload_per_second Average payload length per 1, 5, and 10 s.
26–30 Range The payload length range for the first 5, 10, 20, 40 and 100

packets, i.e maximum–minimum.
31–45 payload_first_stat The statistic of payload length for the first 5, 10, 20, 40, and

100 packets (i.e., sum, average, and standard deviation.
46–50 mss_count The count of packets in the first 5, 10, 20, 40, and 100

packets have payload lengths equaling the maximum
segment size.

51 ma_40_avg_50 The average of the first five entries of the 40-packet moving
average for payload length.

52 Protocol The protocol of layer 4.

like Facebook-comment and YouTube-comment. On the other hand, intra-application
services encompass different services within the same parent application, for instance,
YouTube-comment and YouTube-post. We introduced 52 initial payload-length-based
features in the previous work, as documented in Table 2. We have extended the previous
work by implementing these same features to effectively reduce accuracy degradation over
time in IoT device identification systems.

Next, we compute Pearson’s correlation coefficient (r) to determine the most relevant
features. Pearson’s correlation coefficient measures the statistical relationship and
magnitude of the correlation between continuous variables. Features with low correlation
values are less dependent on other variables and are thus more effective in diverse network
environments. For this article, we selected features with only low degree (−0.29≤ r ≤ 0.29)
and moderate degree (ranging from −0.49≤ r ≤−0.30 and 0.30≤ r ≤ 0.49) correlation
values to boost their adaptability to different network environments. Considering the
reliability of correlation values, we found that the feature max_payload consistently
exhibits the lowest correlation values in both the public (IoT Traffic Traces) and our
(IoT-FCSIT) datasets, which indicates its robustness in the context of Pearson correlation.
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Table 3 The seven selected features with Pearson correlation coefficient.

No. Feature Description Pearson correlation coefficient

Public Private

1 avg_payload_1_second The average payload length in 1 s duration. −0.08192188 −0.10889866
2 fma5_sum The sum of the 5-moving of payload length. −0.0444108 −0.09048064
3 fma5_mean The mean of the 5-moving of payload length. −0.04437536 −0.09047919
4 fma5_variance The variance of the 5-moving of payload length. −0.19901667 −0.08384815
5 fma5_std The standard deviation of the 5-moving of payload length. −0.16614413 −0.08440375
6 range_5 The payload length range for the first five packets, i.e.,

maximum–minimum.
−0.16258816 −0.08955199

7 max_payload The maximum payload length in either traffic direction. −0.33862645 −0.41554773

Additionally, instead of using 10, 20, 40, and 100 packets to enhance efficiency, we opt
for a more efficient window size of five packets. A smaller window size allows quicker
updates to the statistical feature values, making the feature set more responsive to changes
in network traffic patterns. These findings contribute to developing an efficient IoT device
identification model while reducing accuracy degradation over time. Table 3 lists the seven
selected features, including each feature’s description and correlation coefficients.

The following equations describe all the selected features using statistical measures from
the payload length. These measures help us gain insights into the characteristics of the
network traffic.

Average payload length within a 1-second duration (avg_payload_1_sec)
The first feature, avg_payload_1_sec, quantifies the average payload length across a

discrete 1-second interval. It entails aggregating the payload lengths of all packets within
this temporal window and subsequently dividing this sum by the total count of packets
(denoted as n) within this interval. Equation (1) shows the definition:

avgpayload1sec =
1
n

n∑
j=1

Pj (1)

where, n signifies the total number of packets within the 1-second interval, and Pj
corresponds to the payload length of the j-th packet. Utilizing the 1-second duration
is preferred due to its minimal time frame, as opposed to five or 10-second intervals.
This choice ensures a more rapid response to changes in network traffic and expedites the
feature extraction process.

Statistical measures employing a 5-moving sliding window.
This suite of features (i.e., sum, mean, variance, and standard deviation) leverages a

5-moving sliding window technique to analyze the payload lengths. Let Pi denote the
payload length of the i-th packet and the 5-moving sliding window is computed for each
packet from the current packet, i, to the four subsequent packets (i+4). Equation (2)
shows the summation of payload lengths within a 5-moving sliding window:

fma5sum=
5∑

j=1

Pi. (2)
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The mean payload length within this window is calculated by dividing the sum of the
payload lengths by the window size, as shown in Eq. (3):

fma5mean=
1
5
fma5sumi. (3)

The variance, indicative of data dispersion, is ascertained by computing the average
squared difference between each payload length and the mean within the window, denoted
in Eq. (4) as fma5_variance:

fma5variance=
1
5

5∑
j=1

(
Pi+j− fma5meani

)2
. (4)

Then, the standard deviation, reflecting data scatter, is the square root of the computed
variance, as shown in Eq. (5):

fma5std=
√
fma5variancei. (5)

Payload length range for the initial five packets (range_5)
This feature gauges the range between the maximum and minimum payload lengths

among the first five packets of a traffic flow:

range5=max

( 5∑
i=1

Pi

)
−min

( 5∑
i=1

Pi

)
. (6)

Maximum payload length in either traffic direction (max_payload)
The last feature evaluates the maximal payload length between two traffic directions:

source to destination (maxa) and destination to source (maxb). The formulation is as
follows:

maxpayload=maximum(maxa,maxb). (7)

where maxa signifies the average payload length computed from the source to the
destination within a given traffic flow, and maxb represents the average payload length
calculated from the destination to the source for the same traffic flow.

After completing the feature preparation, the processed dataset includes the necessary
labels for classification. To make the labels suitable for machine learning algorithms,
they are transformed into an appropriate categorical representation using the Label
Encoder provided by the Scikit-learn library. This transformation process is essential as it
converts categorical features into a suitable numerical representation, ensuring the data is
well-prepared for machine learning algorithms.

Furthermore, unlike other existing studies (Charyyev & Gunes, 2021; Liu et al., 2021a;
Najari et al., 2020) that divide their dataset into training and testing data, this article follows
the partitioning strategy as in (Kolcun et al., 2021) to evaluate accuracy degradation over
time, which partitioned its datasets into several weeks intervals. However, we partitioned
the datasets into one-week intervals due to the duration covered by the datasets utilized in
our article—spanning six and eight weeks. The training set comprises data from the initial
week (Week 1), while the testing set consists of data from subsequent weeks (Week 2 to
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Table 4 Parameters value for the Random Forest strategy.

No. Parameters Description Value

1. n_estimators The number of trees in the forest 100
2. max_depth The maximum number of trees None
3. min_samples_split The minimum number of samples required to split an

internal node
10

4. min_samples_leaf The minimum number of samples required to be at a leaf
node

2

5. max_features The number of features to consider when looking for the
best split

Auto

6. max_leaf_nodes Grow trees None
7. random_state Controls both the randomness of the bootstrapping of

the samples used when building trees and the sampling of
features to consider when looking for the best split each
node

0

Week 8). This strategic division of datasets allows for a comprehensive assessment of the
model’s performance over an extended period, ensuring its efficacy in handling IoT device
identification with improved accuracy.

Identification phase
This article introduces a hybrid identification technique that combines the following
approaches as follows:
(a) Random Forest algorithm. Widely adopted in IoT device identificationmodels, Random

Forest is a supervised machine learning method renowned for its high accuracy and
efficiency (Hamad et al., 2019). It achieves its accuracy and effectiveness by aggregating
predictions from multiple decision trees, effectively reducing the risk of overfitting.

(b) OneVsRest strategy. This strategy constructs individual classifiers for each class and
trains them against all other classes (Miettinen et al., 2017). Doing so simplifies the
labelling process for new IoT devices and enables a detailed analysis of each class by
examining its respective classifiers.
The hybrid approach leverages the strength of the Random Forest algorithm’s ensemble

method and the versatility of the OneVsRest strategy to achieve accurate and efficient IoT
device identification. The parameters listed in Table 4 play a crucial role in optimizing
the Random Forest algorithm’s performance, ensuring its robustness and effectiveness in
handling diverse IoT environments.

Evaluation phase
The evaluation phase involves evaluating the machine learning model’s performance
using various metrics. This evaluation process yields valuable insights into the model’s
effectiveness. The metrics employed in this article are as follows:

(a) Accuracy. The accuracy gauges the overall correctness of the model’s predictions. It
quantifies the proportion of correctly classified instances out of the total instances in the
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dataset. The accuracy is calculated using the formula in Eq. (8):

Accuracy=
TP+TN

TP+FP+TN+FN
. (8)

(b) F1 score. The F1 score offers a comprehensive evaluation, especially in imbalanced
datasets, ensuring a more reliable assessment of the IoT device identification system’s
performance. The F1 score is calculated using the formula in Eq. (9):

F1score= 2×
Precision×Recall
Precision+Recall

. (9)

The definitions for the components of these formulas are as follows:

• True positive (TP). The instances where the model correctly identifies device A as device
A and device B as device B.
• True negative (TN). The instances where the model correctly identifies data that is not
device A as not device A and data that is not device B as not device B.
• False positive (FP). Represents false alarms or incorrect positive predictions.
• False negative (FN). Represents missed positive predictions.
• Precision. Measures the proportion of actual positive instances the model correctly
identifies.
• Recall. Measures the proportion of instances the model correctly identified as positive
out of all predicted instances.

Thesemetrics enable a comprehensive evaluation of themodel’s performance, facilitating
a robust analysis of the IoT device identification system’s capabilities.

RESULTS
Our article conducted multiple experiments to evaluate the proposed approach’s capability
to reduce accuracy degradation over time. We implemented the proposed approach on the
public dataset (IoT Traffic Traces) to facilitate benchmarking with existing approaches.
Additionally, we applied the proposed approach to our dataset (IoT-FCSIT), which
simulates the daily routine of an average user, to showcase its robustness in different
network environments. Three key aspects explored are accuracy and F1 score degradation
and technical analysis on the cause of accuracy degradation.

Accuracy & F1 scores degradation over time
In this section, we present the accuracy and F1 scores degradation analysis for both
the proposed feature set and the flow-based feature set on the IoT Traffic Traces and
IoT-FSCIT datasets in Tables 5 and 6, respectively. The experimental results for each
dataset are summarised below:

Accuracy scores on public dataset (IoT Traffic Traces):
(a) The proposed feature set initially achieved an accuracy of 89.13%, gradually declining

over eight weeks to its lowest point of 83.05%.
(b) Throughout the two-month testing period, the proposed feature set consistently

maintained an accuracy level above 80%, with an overall degradation of 6.8%.

Aqil et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2145 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2145


Table 5 The accuracy scores on the public dataset.

Week Accuracy (%)

Proposed features Flow-based

1 89.13 82.44
2 84.62 80.98
3 86.41 79.90
4 83.33 78.77
5 84.71 82.69
6 83.67 78.01
7 85.24 78.47
8 83.05 79.53
Average 85.02 80.10

Table 6 The accuracy scores on the private dataset.

Week Accuracy (%)

Proposed features Flow-based

1 99.50 99.83
2 95.96 96.45
3 97.81 88.72
4 96.73 79.28
5 97.06 89.25
6 89.69 78.89
Average 96.13 88.73

(c) In contrast, the flow-based feature set exhibited lower accuracy scores compared to the
proposed feature set throughout the testing period.

(d) The flow-based feature set consistently dropped below 80% accuracy on most weeks,
indicating a less reliable performance.

(e) Despite the lower degradation observed in the flow-based feature set, the proposed
feature set outperformed it in terms of overall accuracy scores, maintaining above 80%
accuracy on all weeks.

(f) Moreover, the proposed feature set achieved higher accuracy while utilising less than
half of the features proposed in a previous article, aligning with the objective of
proposing a robust feature set against accuracy degradation over time.
Accuracy scores on our dataset (IoT-FCSIT):

(a) Proposed feature set: Initial accuracy of 99.5%, final accuracy of 89.69%, and
degradation of 10.81% over the evaluation period.

(b) Flow-based feature set: Initial accuracy of 99.83%, lowest accuracy of 78.89% (Week
4), and degradation of 20.94% over the evaluation period.

(c) The proposed feature set consistently outperformed the flow-based feature set in
accurately classifying devices within the IoT-FSCIT dataset.
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Figure 3 The F1 scores degradation over weeks on the public dataset.
Full-size DOI: 10.7717/peerjcs.2145/fig-3

(d) The results of the comparison show that the proposed feature set is superior in terms
of accuracy degradation, demonstrating its robustness against accuracy deterioration
in different network environments.

(e) Additionally, the proposed feature set achieved higher accuracy while utilising fewer
features than in a previous article, highlighting the efficiency and effectiveness of the
selected features.

(f) Both approaches achieved higher accuracy scores in the IoT-FSCIT dataset compared
to the IoT Traffic Traces dataset, attributed to the reduced complexity and smaller
number of IoT devices in the IoT-FSCIT dataset.
In conclusion, the accuracy degradation analysis on both datasets demonstrates the

superior performance of the proposed feature set over the flow-based feature set. The
proposed feature set showcases robustness against accuracy degradation, highlighting its
potential for real-world applications in diverse IoT environments. The findings are further
analysed in the next section.

F1 scores on public dataset (IoT Traffic Traces):
We notice distinct trends in the performance of both the proposed feature set and the

flow-based feature set when evaluating the IoT Traffic Traces dataset over an eight-week
testing period, as shown in Fig. 3, as follows:
(a) During the first week of testing, both methods exhibited remarkable performance,

with the proposed feature set reaching an F1 score peak of 88.90% compared to the
flow-based feature set’s lower score of 82.77%.

(b) Week 2 saw a slight dip in the F1 scores of both methods. The proposed feature set
came in at 83.85%, and the flow-based feature set wasn’t far behind at 81.17%.

(c) From Week 3 through Week 6, the proposed feature set displayed a competitive edge,
consistently scoring higher F1 scores than the flow-based method.

(d) The gap between the two methods widened significantly during Week 6, with the
proposed feature set achieving an F1 score of 83.60%, overshadowing the flow-based
feature set’s score of 78.37%.

(e) In the final weeks, we see both models improving but maintaining the performance
gap. This observation hints at the robustness of the proposed feature set.
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Figure 4 The F1 scores degradation over weeks on the private dataset.
Full-size DOI: 10.7717/peerjcs.2145/fig-4

(f) The proposed feature set holds its lead with an average F1 score of 84.90%, while the
flow-based feature set trails with an average of 80.48%.
F1 scores on our dataset (IoT-FCSIT):
Following are the trends of the proposed features set and flow-based feature set over a

six-week testing period, as shown in Fig. 4:
(a) In the initial week, both feature sets demonstrate impressive performance. The proposed

feature set achieves a near-perfect F1 score of 99.5%, while the flow-based feature set
surpasses it slightly with an F1 score of 99.83%.

(b) The second week sees a minor performance drop in both feature sets. Despite this dip,
the flow-based feature set continues to hold a slight edge.

(c) From Week 3 onwards, a dramatic shift occurs. The proposed feature set consistently
outperforms the flow-based feature set up until Week 6. The disparity between the two
feature sets is most pronounced in Week 4.

(d) Over the entire period, the proposed feature set outshines the flow-based feature set
with an average F1 score of 96.09% compared to the flow-based feature set’s average
of 88.17%.

(e) This substantial difference of approximately 7.92% in favour of the proposed feature
set is not trivial. It highlights the superior predictive capability and stability of the
proposed feature set over time, even when faced with datasets extracted from different
network environments.
In conclusion, the F1 score degradation analysis on both datasets reiterates the robustness

and superiority of the proposed feature set over the flow-based feature set. The findings
highlight the effectiveness and stability of the proposed features in accurately classifying
IoT devices over time, contributing to enhanced IoT traffic analysis in various network
environments. Additionally, evaluating the IoT-FSCIT dataset showcases the adaptability
of the proposed features, yielding improved accuracy and performance in a reduced
complexity setting. These results further underscore the importance of selecting and
refining features to address accuracy degradation and concept drift challenges in machine
learning applications.
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DISCUSSION
This section presents a comprehensive analysis of accuracy degradation on both IoT
Traffic Traces and IoT-FSCIT datasets using the proposed feature set. We evaluate
their performance using several tools, such as a confusion matrix, plotting the same
feature’s values of the same devices, and the Kolgomorov-Smirnov test. We split our
technical analyses into two categories: misclassification among streaming devices and
misclassification among devices of the same brand.

Misclassification among streaming devices
We ran the confusion matrix to provide better visualisation of misclassifications in both
approaches on both datasets. The confusion matrix is a performance evaluation tool in
machine learning to summarise the predictions made by the classification model and
gain insights into its performance. The confusion matrix analysis on both the IoT Traffic
Traces and IoT-FSCIT datasets revealed notable misclassifications among streaming
devices. Complex data transmission processes and diverse network behaviours characterise
streaming devices.

On the IoT Traffic Traces dataset, we ran the confusion matrix on Week 8 of the
flow-based features set, as depicted in Table 7. The findings are as follows:
(a) Amazon Echo: Misclassified as Belkin Wemo Switch 2.25%, Belkin Wemo Motion

Sensor 2.52%, and HP Printer 1.75%.
(b) HP Printer: Misclassified as Amazon Echo 0.41%, as Belkin Wemo Switch 5.58%,

Belkin Wemo Motion Sensor 0.75%, Insteon Camera 2.01%, Samsung SmartCam
0.76%, and as Triby Speaker 0.93%.

(c) Insteon Camera: Misclassified as Belkin Wemo Switch 0.42%, Belkin Wemo Motion
Sensor 3.33%, and Samsung SmartCam 0.20%.

(d) Samsung SmartCam: Misclassified as Belkin Wemo Switch 0.01% and Insteon Camera
0.15%.

(e) Triby Speaker: Misclassified as BelkinWemo Switch 0.06% and Insteon Camera 0.10%.
Table 8, the confusion matrix onWeek 6 for proposed features set on IoT-FSCIT dataset

also reveals misclassifications among streaming devices, which include Alexa Echo Dot, Mi
Box 3, and Mi Home Security Camera. The findings are as follows:
(a) Alexa Echo Dot: Misclassified as Mi Box 3 3.6% and as Mi Home Security Camera

0.7%
(b) Mi Box 3: Misclassified as Alexa Echo Dot 6.42% and as Mi Home Security Camera

2.55%.
(c) Mi Home Security Camera: Misclassified as Alexa Echo Dot 0.51% and as Mi Box 3

0.43%.
The confusion matrix analysis on both the IoT Traffic Traces and IoT-FSCIT datasets

revealed significant misclassifications among streaming devices, indicating challenges in
accurately identifying such devices. On the IoT Traffic Traces dataset, the flow-based
features set displayed misclassifications primarily among Amazon Echo, HP Printer,
Insteon Camera, Samsung SmartCam, and Triby Speaker. These devices were frequently
misclassified as other streaming devices, suggesting similar network traffic patterns.
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Table 7 The confusionmatrix of week eight for the flow-based features set.

Device Amazon
echo

Belkin
wemo
switch

Belkin
Wemo
Motion
Sensor

HP
printer

Insteon
camera

Lifx
smart
bulb

Nest
protect
smoke
alarm

Netatmo
weather
station

Samsung
smartcam

Smart
things

Triby
speaker

Withings
smart
scale

Amazon Echo 243276 480 6132 4296 5 0 0 0 344 0 0 0
Belkin Wemo Switch 0 255469 39335 3 763 0 0 0 4995 0 9071 0
Belkin Wemo Motion
Sensor

0 124643 414730 53 56662 0 0 0 37398 0 36935 0

HP Printer 335 4574 6194 16261 2053 0 0 0 7615 0 9293 0
Insteon Camera 0 1095 8626 38 256230 0 0 0 2512 0 486 0
Lifx Smart Bulb 0 0 0 1 3 75760 1 0 31 0 1 0
Nest Protect Smoke
Alarm

0 0 0 0 0 2 1323 0 0 0 0 0

Netatmo Weather
Station

0 0 0 0 0 0 0 49142 0 0 0 0

Samsung Smartcam 0 21 2079 5 427 0 0 0 291657 0 307 0
Smart Things 0 0 0 0 0 0 0 0 0 177137 0 0
Triby Speaker 0 135 234 1 96 0 0 0 330 0 40105 0
Withings Smart Scale 0 0 0 0 13 0 0 0 0 0 0 1776

Aqiletal.(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2145

15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2145


Table 8 The confusionmatrix of week six for the proposed feature set.

Device Alexa echo
dot

Mi air
purifier

Mi box 3 Mi home security
camera

Smart
plug

Alexa Echo Dot 302731 0 11382 2173 0
Mi Air Purifier 0 87266 0 0 0
Mi Box 3 35050 0 496600 13915 0
Mi Home Security Camera 2430 0 2041 474913 0
Smart Plug 22449 61137 20848 8559 203470

Similarly, the proposed feature set on the IoT-FSCIT dataset exhibited misclassifications
among streaming devices, including Alexa Echo Dot, Mi Box 3, and Mi Home Security
Camera.

Additionally, we can observe the accurate and high scores achieved for devices like LiFX
Smart Bulb, NEST Protect Smoke Alarm, NETATMO Weather Stations, Smart Things,
and Withings Smart Scale on the IoT Traffic Traces dataset and Mi Air Purifier on the
IoT-FSCIT dataset. These findings emphasize the relative ease of correctly identifying
non-streaming devices with straightforward network traffic patterns.

As the confusionmatrix in Table 7 shows, HP Printer, categorised as one of the streaming
devices, exhibited the lowest accuracy score of 35.1%. To investigate the underlying cause
of this degradation, we conducted a Kolgomorov-Smirnov (KS) test on the ‘Bidirectional
Mean of Packet Size’ and ‘Source to Destination Bytes’ features for HP Printer between
Week 1 and subsequent weeks (Weeks 2 to 8) in the flow-based approach. The KS test
results for both features are visualised in Figs. 5 and 6, respectively. The KS Test assesses the
similarity between two distributions, with a small p-value indicating a significant difference
and a larger p-value suggesting similarity, where the significance level is set to 0.05. The
findings revealed the following:
(a) Bidirectional Mean of Packet Size feature:

◦ Week 2 vs. Week 1: The p-value is 0.0529, relatively close to significance. The
distributions are considered the same, as the p-value is insignificant

◦ Weeks 3 to 8 vs.Week 1: The p-values for Weeks 3 to 8 are extremely small, ranging
from 1.347e−16 to 1.124e−78. This indicates the distributions of the ’Bidirectional
Mean of Packet Size’ feature for HP Printer significantly differ from Week 1 in all
subsequent weeks.

(b) Source to Destination Bytes feature:
◦ Week 2 to Week 8 vs. Week 1: The p-values for all testing weeks, Weeks 2 to

8, are extremely small, ranging from 1.69e−4 to 2.11e−81. This indicates the
distributions of the ‘Source to Destination’ feature for the HP Printer in all testings
weeks differ from its training data, Week 1.

The confusion matrix in Table 8 shows that Smart Plug has big misclassifications, with
only 64.3%.We again ran the KS Test on all seven features of the proposed features set. The
results consistently show a p-value of 0.0 between Week 1 and subsequent weeks (Week 2
to 6), indicating that the distributions of these features for the Smart Plug are significantly
different from Week 1. These significant differences in data distribution suggest that the
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Figure 5 Kolmogorov-Smirnov test of Bidirectional Mean of Packet Size feature over weeks.
Full-size DOI: 10.7717/peerjcs.2145/fig-5

Figure 6 Kolmogorov-Smirnov test of Source to Destination Bytes feature over weeks.
Full-size DOI: 10.7717/peerjcs.2145/fig-6

network behaviour of the Smart Plug has undergone substantial changes over time, which
explain the big misclassifications observed in Table 8. Figures 7 and 8 illustrate two of the
seven proposed features.

In summary, the statistical changes observed over time in the feature further corroborate
the accuracy degradation findings, as the differences in distributions become more
pronounced as time progresses. The model performance’s degradation is observed as early
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Figure 7 Kolmogorov-Smirnov test for maximum payload over weeks.
Full-size DOI: 10.7717/peerjcs.2145/fig-7

Figure 8 Kolmogorov-Smirnov test for average payload in 1 second over weeks.
Full-size DOI: 10.7717/peerjcs.2145/fig-8

as Week 2, as (Wan et al., 2023) suggests. This degradation highlights a common problem
in machine learning: the performance of a model degrades when there are significant
changes in the data distribution over time. Maintaining model accuracy and reliability
becomes particularly challenging in IoT environments, where device behaviour and
network conditions evolve dynamically. Addressing these statistical changes accordingly is
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Figure 9 Top five most used destination ports for BelkinWemoMotion Sensor.
Full-size DOI: 10.7717/peerjcs.2145/fig-9

the main objective of this article, in which our proposed feature set managed to maintain
above 80% accuracy scores on all weeks on both datasets.

Misclassification among devices of the same brand
The confusion matrix also showcases the misclassification between devices from the same
manufacturer or brand, such as the Belkin Wemo Switch and the Belkin Wemo Motion
Sensor. This article found similar network signatures causing incorrect classifications.
(a) We plot the pie charts showing the top fivemost used destination ports for both devices,

further demonstrating the similarity in their network traffic patterns, as shown in Figs.
9 and 10.

(b) The findings highlight the superior performance of the proposed approach,maintaining
above 80% accuracy despite also getting caught up in confusion between Belkin devices.

Experimental analysis and technical findings summary
This section provides a comprehensive analysis of accuracy degradation on the IoT
Traffic Traces and IoT-FSCIT datasets by evaluating the performance of the proposed
feature set using various tools, including confusion matrix, feature value plotting, and the
Kolgomorov-Smirnov test. The findings summarisation are as follows:
(a) Confusion matrix analysis revealed significant misclassifications among streaming

devices on both datasets, indicating difficulties in accurately identifying such devices.
(b) Non-streaming devices like LiFX Smart Bulb and NEST Protect Smoke Alarm

achieved high and accurate scores on the IoT Traffic Traces dataset, suggesting their
straightforward network traffic patterns were easier to classify.
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Figure 10 Top five most used destination ports for BelkinWemo Switch.
Full-size DOI: 10.7717/peerjcs.2145/fig-10

(c) HPPrinter, classified as a streaming device, exhibited the lowest accuracy score of 35.1%
on the IoT Traffic Traces dataset, pointing to challenges in maintaining accuracy in
dynamic IoT environments.

(d) The Kolgomorov-Smirnov test showed substantial changes in data distribution over
time for HP Printer’s features, further highlighting the impact of dynamic IoT
conditions on model performance.

(e) Despite misclassifications between devices from the same brand, such as Belkin Wemo
Switch and Belkin Wemo Motion Sensor, the proposed feature set maintained an
overall accuracy above 80%.
The technical analysis underscored the significant challenges in accurately classifying

streaming devices, particularly due to their complex data transmission processes and diverse
network behaviours. However, the proposed feature set demonstrated promising results,
maintaining accuracy above 80% on both datasets. To enhance classification performance
further, addressing statistical changes in data distribution over time and refining the
model’s ability to distinguish between devices from the same brand are crucial areas of
focus in dynamic IoT environments.

CONCLUSIONS
This article aimed to devise an approach that can reduce the accuracy degradation over
time in IoT device identification while providing a more lightweight yet reliable solution.
Our methodology and proposed feature set have been rigorously tested on two separate
datasets. Our findings demonstrated that the proposed approach consistently maintained
high accuracy levels, surpassing 80% on the IoT Traffic Traces dataset and nearing 90%
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on the IoT-FCSIT dataset, even when utilizing a smaller feature set. This performance
notably exceeded (Kolcun et al., 2021), which struggled to maintain similar thresholds.
Nonetheless, our article’s limitations include the ongoing issue with classifying streaming
devices. To address this issue, we aim to refine the model further in our future work and
explore additional features that can better capture their unique characteristics. Additionally,
encompassing a broader range of devices is a viable path to enhance our approach’s overall
performance and applicability. We also acknowledge existing open issues, such as the
significant challenge of developing and adapting models to new devices, changing device
behaviour, and eliminating extensive retraining. However, our proposed approach, which
utilized the OneVsRest strategy, is a step in the right direction to address such issues while
exploring future novel approaches. In conclusion, our work has made notable strides in
addressing the key limitations in IoT device identification, delivering a more robust feature
set. We successfully demonstrated that maintaining high accuracy over time is indeed
possible. We also successfully demonstrated that features from our previous work (Zaki
et al., 2022) remain relevant and robust against accuracy degradation over time in the IoT
device identification domain. Hence, the findings suggest that our methodology holds
potential for applications in other domains beyond IoT device identification.
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