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ABSTRACT

The automatic identification of code authors based on their programming styles—
known as authorship attribution or code stylometry—has become possible in recent
years thanks to improvements in machine learning-based techniques for author
recognition. Once feasible at scale, code stylometry can be used for well-intended or
malevolent activities, including: identifying the most expert coworker on a piece of
code (if authorship information goes missing); fingerprinting open source developers
to pitch them unsolicited job offers; de-anonymizing developers of illegal software
to pursue them. Depending on their respective goals, stakeholders have an interest
in making code stylometry either more or less effective. To inform these decisions
we investigate how the accuracy of code stylometry is impacted by two common
software development activities: code formatting and code minification. We perform
code stylometry on Python code from the Google Code Jam dataset (59 authors) usinga
code2vec-based author classifier on concrete syntax tree (CST) representations of input
source files. We conduct the experiment using both CSTs and AST's (abstract syntax
trees). We compare the respective classification accuracies on: (1) the original dataset,
(2) the dataset formatted with Black, and (3) the dataset minified with Python Minifier.
Our results show that: (1) CST-based stylometry performs better than AST-based
(51.00%— 68%), (2) code formatting makes a significant dent (15%) in code stylometry
accuracy (68%— 53%), with minification subtracting a further 3% (68%—50%). While
the accuracy reduction is significant for both code formatting and minification, neither
is enough to make developers non-recognizable via code stylometry.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering

Keywords Authorship attribution, Code stylometry, Code formatting, Minification, Source code,
Syntax tree, Code2vec

INTRODUCTION

It has become possible in recent years to automatically identify with high accuracy the
author of a given piece of software source code. Doing so is referred to as, interchangeably
in the literature (e.g., Islam et al., 20155 Wang, Ji & Wang, 2018), authorship attribution

or code stylometry—we use the two terms interchangeably in the following. Several
techniques for code stylometry exist, from pioneering ones (Oman ¢ Cook, 1989; Islam et
al., 2015; Tereszkowski-Kaminski et al., 2022) based on explicit formal rules that measure
stylistic features of source code writing, to more recent and capable approaches based
on machine learning (Alsulami et al., 2017; Kurtukova, Romanov ¢ Shelupanov, 2020) and
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embeddings (Alon et al., 2019; Bogomolov et al., 2021; Azcona et al., 2019; Kovalenko et al.,
2020). (See ‘Related Work’ for an overview of the state-of-the-art of code stylometry
techniques.)

Code stylometry has important applications in software engineering, ranging from
code clone detection (Biich & Andrzejak, 2019; Ye et al., 2020) and retrieving authorship
information that went missing (Ou ef al., 2023) to productivity enhancements (Kovalenko
et al., 20205 Azcona et al., 2019). The ability to automatically identify source code authors,
however, also comes with privacy concerns when authors did not want to be identified
in the first place (Simko, Zettlemoyer ¢ Kohno, 2018; Ucci, Aniello & Baldoni, 2017; Rocha
et al., 2017; Yang et al., 2022)—which might be so for arguably good reasons (e.g., hiding
personal involvement in the development of a censorship avoidance open source product
when living in a totalitarian state) or bad reasons (e.g., illegal or unethical activities such as
plagiarism detection evasion). This creates a typical “arms race” situation in which evaders
look for how to be less recognizable (while still distribute source code, whose availability
is the premise of code stylometry), while detectors look for how to improve detection
performances.

The state of knowledge on the impact of various kinds of source code manipulation
on authorship attribution is, however, fairly limited (Kurtukova, Romanov ¢ Shelupanov,
20205 Li et al., 2022). Adversarial machine learning scenarios have been recently considered
in Li et al. (2022), but the impact of source-to-source code transformations that are
routinely applied by software developers—such as code formatting and code minification—
on the accuracy of code stylometry remains largely unexplored. In this work we contribute
to fill this gap by benchmarking code stylometry against code formatting and code
minification, in a controlled experiment on a uniform dataset and with a common
experimental methodology. The first practice, code formatting, consists in making source
code adhere to a given coding style guide and is often implemented by delegation to an
automated tool, possibly integrated with an IDE (Integrated Development Environment).
The second practice, code minification, consists in automatically altering semantic-
meaningless parts of the code such as blanks and variable names, with the goal of reducing
code size to a bare minimum, e.g., to minimize its distribution time to a web browser.

Both practices, code formatting and minification, are source-to-source transformations
that do not alter code semantics, but modify most or all (depending on the practice) of the
surface aspects of code—lexical, layout, syntactic—that fall within common definitions of
programming style (Oman & Cook, 1989; Islam et al., 2015). Note how most (or all) of these
changes do not affect the abstract syntax tree (AST) of code. For instance, it is possible to
thoroughly re-indent a piece of code, changing its spacing, obtaining the same after-parsing
AST. The corresponding concrete syntax tree (CST), however, would be significantly altered
by the same source-to-source transformation. Please refer to Fig. 1 for a visual distinction
between an AST and a CST.
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Figure 1 Concrete Syntax Tree (CST) representation (on the left) and corresponding Abstract Syntax
Tree (AST, on the right) of the Python code snippet in Listing 1. Highlighted in bold and green on the
CST is the CST path: [=, 1, assignment, |, binary_operator, | ,a], of length 3, joining the " =" and “a”
terminals.

Full-size Gl DOL: 10.7717/peerjcs.2142/fig-1

Contributions. The first contribution of this work is an answer to the following research
question, currently unanswered in the code stylometry literature:

RQ 1 (AST vs CST) What is the impact of using CSTs (instead of ASTs) on the ability to
automatically identify authors of Python source code?

Answering this question provides quantitative insights on what makes author classifiers
(in)effective. Depending on the findings, future code stylometry work should concentrate
on AST- vs CST-based code representations.

For the next two contributions of this article we move to the impact of code formatting
and minification on code stylometry, answering the following research questions:

RQ 2 (code formatting) What is the impact of code formatting on the ability to automati-
cally identify authors of Python source code?

RQ 3 (code minification) What is the impact of code minification on the ability to
automatically identify authors of Python source code?

We address all the stated research questions by performing code stylometry using
an author classifier based on code2vec (Alon et al., 2019) to classify Python source code
authored by 59 participants from the Google Code Jam dataset (Google, 2023), one of the
most popular datasets in the literature for this task (Islam er al., 2015; Tereszkowski-
Kaminski et al., 2022; Alsulami et al., 2017; Kurtukova, Romanov & Shelupanov, 2020;
Bogomolov et al., 2021). We compare the classification accuracies obtained on (1) the
original unmodified dataset using both CSTs and ASTs, (2) the dataset formatted with
Black (Langa, 2024) using CSTs only, and (3) the dataset minified with Python Minifier
(Flook, 2024) using CSTs only. The two chosen tools, Black and Python Minifier, are
popular and state-of-the-art tools for the respective tasks (Hart et al., 2023; Flook, 2024).

Key findings. Experimental results show that:

e Moving from ASTs to CSTs leads to an improvement in code stylometry accuracy from
51%to 68%, suggesting that to maximize author recognizability CST-based approaches
are preferable.

e Code formatting negatively impacts code stylometry accuracy (68% —53%).
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e Code minification negatively impacts code stylometry accuracy, further subtracting 3%
(68% —50%). While the reduction is significant for both techniques, the developers
remain recognizable via code stylometry.

e While there are accuracy benefits in including concrete syntax features when performing
code stylometry, those benefits are neutralized in code that is subject to formatting and/or
minification.

Article structure. ‘Background’ provides the necessary background to understand the
technical details of the study; it might be skipped by readers familiar with code stylometry.
‘Related Work’ discusses related work and compares it with the contributions of this
article. The experimental methodology for this study is detailed in ‘Methodology’. Results
are presented in ‘Results’ and discussed in ‘Discussion’, also covering threats to the validity
of our experiments. Conclusion and future work are discussed in ‘Conclusion’.

Data availability. A complete replication package for the experiments described in this
article is now available on Zenodo (https:/doi.org/10.5281/zenodo.10528246).

RELATED WORK

Oman & Cook (1989) is one of the pioneering works on code stylometry. It defined a set
of formal rules for capturing stylistic features of source code and performed automated
authorship attribution using cluster analysis. This approach was expanded upon by Islam
et al. (2015), who introduced the definition of code stylometry as we understand it today,
separating lexical, layout, and syntactic features (see ‘Background’). Their methodology
incorporated the use of AST, advancing beyond the reliance of language-specific features.
Using a tree classifier, their approach yielded a 98% accuracy rate in recognizing 250
authors for full-length source code files written in C, and 53.91% for 229 authors of Python
files.

Dauber et al. (2019) observed that the efficacy of this method diminishes drastically as
the number of lines of code (SLOCs) decreases. They applied the technique of Islam et
al. (2015) to C snippets fragments with an average length of 4.9 SLOCs (versus 70 SLOCs
in Caliskan et al.’s study), obtaining an accuracy of 48.8%. Tereszkowski-Kaminski et al.
(2022) utilized a tree-based technique on ASTs of C++ source code obtained from the
Google Code Jam (GC]J) dataset and real-world open source projects from GitHub. On 100
authors from the GC]J dataset they obtained 95% accuracy; on the same amount of authors
of real-world GitHub accuracy was 60%.

In comparison with the studies described thus far our approach: (1) uses the Python
part of the GC]J dataset; (2) is based on CSTs (Concrete Syntax Trees) rather than ASTs,
which is required to appreciate changes induced by code formatting and minification; (3)
is independent from specific details of a given programming language, which are neither
used as features for recognition nor a strict implementation-level dependency (we rely
on tree-sitter, which is programming language agnostic); (4) uses machine learning (ML)
techniques for classification, as introduced by more recent works.
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Alsulami et al. (2017) introduced the use of ML for authorship attribution. Utilized a
Bi-LSTM method on Python ASTs from the GCJ dataset, authors obtained an accuracy
of 88.86% for complete Python files by 70 distinct authors. We differ from Alsulami et al.
(2017) in the fact that we also consider layout features (according to Caliskan classification),
which their approach ignores. These features are crucial by Caliskan’s definition for
quantifying the impact of code formatting and minification. Yang et al. (2017) obtained a
code stylometry accuracy of 91.1% on a Java dataset of 40 authors, leveraging all of lexical,
layout, and syntactic features. Departing from previous ML-based work they utilized
particle swarm optimization for training their ML classifier. These studies emphasize the
effectiveness of neural networks for authorship recognition, surpassing that of tree-based
methods. Li et al. (2022) considered the adversarial scenario in which authors would like
to evade recognition based on neural network techniques. In response, they introduced
RoPGen, a framework that enhances the robustness of ML-based code stylometry through
data augmentation during the training phase. Our study complements theirs, providing the
first quantification of how much commonly used software engineering techniques (code
formatting, minification) contribute to stylometry evasion.

Wang, Ji & Wang (2018) offer a distinct perspective on code style. Unlike the
conventional static understanding of it, shared by our work, which focuses solely on source
code features, they introduce the notion of dynamic style, derived from runtime execution
data. Gull, Zia & Ilyas (2017) further expand upon the conventional understanding of code
style, by incorporating code smells in their analysis.

A prominent subset of ML-based techniques for code stylometry employs the code2vec
architecture (Alon et al., 2019) to represent source code as vectors. Bogomolov et al. (2021)
utilized this approach for authorship attribution of complete source code files from the
GCJ dataset, achieving 97.9% accuracy for Java and 72.3% for Python. code2vec has also
been used to spatially represent authors based on their programming style (Azcona et
al., 2019; Kovalenko et al., 2020). Our work follows in the step of these works, by using a
code2vec-based classifier as baseline. Where we diverge is in the use of CSTs, rather than
ASTs, as input before code2vec embedding.

Kurtukova, Romanov & Shelupanov (2020) investigated the impact of specific
development practices on code stylometry using a hybrid neural network. They considered
code obfuscation of Python code using Opy and PyArmor as tools, as well as mandatory
adherence to strict coding guidelines in a project, with the notable example of the Linux
kernel. Their results show that authors from projects that adopt code obfuscation and/or
strict coding guidelines are more difficult to recognize than authors in projects that use
neither. Our results belong to the same problem space—quantifying the effect of specific
practices on author recognizability—with two main differences. First, our methodology
allows to decorrelate the effect of the practices from the context: it is the same code by the
same authors, before and after formatting and minification, that undergoes code stylometry.
Second, we explore different development practices: minification (less invasive and more
commonly used than obfuscation) and code formatting.
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BACKGROUND

In this section we briefly review some background notions upon which the rest of the

article builds.

Stylometry

Stylometry consists in the computational and statistical examination of writing style, based
on the assumption that authors consistently showcase identifiable and distinct patterns
in their writing (The Classical Review, 1897). Note that stylometry is not specific to source
code or software. Code stylometry is a specialization of stylometry to the writing of software
source code. It employs a range of techniques to discern programming styles, based on
different metrics. Our choice of metrics and techniques for code stylometry follows in
the steps of the foundational work by Islam et al. (2015), who considered three classes of
features that encapsulate programming style:

e Lexical features related to how small parts of source code, like words and characters,
are used.

e Syntactic features related to how a developer organizes grammatical structures of the
language, i.e., the shape and structure of abstract syntax trees (ASTs) obtained after code
parsing.

e Layout features related to the “graphic” layout of source code, as the result of how

spacing, indentation, and block/line lengths are used.

Code representation
In machine learning based code stylometry, many approaches, including (Alon et al.,
2018; Chen & Monperrus, 2019; Wei & Li, 2017; White et al., 2016), and those discussed in
‘Related Work’, employ ASTs for code representation. Such a choice preserves all syntax
features (by definition) and, to a lesser extent, lexical features of the original source code
before parsing, but does not capture layout features. Our research questions relate to
how layout and lexical features impact the recognizability of authors via code stylometry
techniques. As such, we cannot use code representations like ASTs that abstract over them.
Hence, deviating from the majority of existing literature on code stylometry, we use
CSTs (concrete syntax trees) as code representations. Both code formatting and minification
change concrete syntax trees in measurable ways, leading to different inputs fed to
stylometry-based author classifiers.
CST are tree representations of a context-free grammar (Wile, 1997). They are formal
representations that show how the compiler understands the code.
Definition 1 (Concrete Syntax Tree): Given a grammar, G= (NT,T,R,S), a concrete

syntax tree (or parse tree) is an ordered tree in which:

e Each node is labeled with a symbol in NTUT U{e};
e The root is labeled with S;
e Each non-leaf node is labeled with a symbol in NT;
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Listing 1: Python code snippet (badly formatted).
_.def_function(a,b):

ceooresult=a+b

N U R W N =

ceooprint(’Result:.’,__result)

e Ifanode haslabel A € NT and its children are my, ..., my labeled respectively with
Xi,..., Xk, where X; e NTUT forall i€ [1,k], then A— Xi,..., Xy is a production
of R;

e Ifanode has a label e, then that node is unique child of its parent A, and A — o isa
production in R.

Given X, the set of all possible concrete syntax tokens in the source code language, ¢ : T —>

X is a function mapping terminal nodes to concrete syntax tokens.

Intuitively a CST renders code as a hierarchical structure, where each node relates
to distinct code constructs—Iike class definitions, function definitions, or variable
assignments. These nodes precisely capture all facets of the code, ranging from overarching
syntactic elements to finer-grained stylistic, lexical, and layout specifics. This granularity
ensures that each node retains comprehensive syntactic and stylistic information from the
original code.

=,68efd4a5067b71cd72958a574638a3920307c0a623c3f3ff478938b4ba65d21d, a
(,eelebece205f4f74f66abd2bc93c4554d6c884c32ac@ddob7a7665281d635a23,Result: _
a, 20be399d2eb74dae602b9c0b09683c2cababe71c1f25c95e77a4e8ed4e39df49,b

As an example, consider the (badly formatted, on purpose) Python code snippet shown
in Listing 1. The corresponding CST is shown in Fig. 1.
Definition 2 (CST path): A CST path of length k is a sequence ny,d,, ..., nk,dk, kt1,
where ny and nyy, € T are terminals, whereas for i€ [2..k]:n; € NT are non-terminals,
and Vie[l..k]:d; e {1, ]} are movement directions (either up or down in the tree).

If d; =1, then: n; is a child of n;y;; whereas if d; =, then: #; is the parent of ;. For a
CST path p, we use start(p) to denote n; the starting terminal of p, and end(p) to denote
g1 its final terminal.

As an example look back at Fig. 1, where a CST path of length 3, joining the “ =" and
“a” terminals, is highlighted in bold and green.

Definition 3 (path context): Given a CST path p, its path context is a triplet (xs,p,x;)
where x;= ¢(start(p)) and x; = ¢(end(p)) are the values associated with the start and end
terminals of p.

That is, a path context describes two actual tokens from input source code, together
with the (CST) path joining them.
Definition 4 (bag of path contexts): Given an input source code snippet, its bag of path
contexts is the set of all its path contexts.
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=,68efd4a5067b71cd72958a574638a3920307c0a623c3£3£f£478938b4bab5d21d, a
(,eelebece205f4f74f66abd2bc93¢c4554d6c884c32ac0dd9b7a7665281d635a23, Result:_
a,20be399d2eb74dae602b9c0b09683c2cababe7lclf25c95e77a4e8ed4e39df49,b

Figure 2 Subset of the bag of path contexts for the code snippet in Listing 1. Each line corresponds to a
path context in the format (x;,sha256(p), x;). The first path in the example corresponds to the path high-
lighted in Fig. 1.

Full-size &l DOI: 10.7717/peerjcs.2142/fig-2

Intuitively, the bag of path contexts of a source code snippet is a representation of it that
adeptly retains the lexical, layout, and syntactic features inherent in the code.

For practical purposes, and following code2vec (Alon et al., 2019), the path component
of a path context (second element of the triple) is first rendered as a sequence of non-
terminal nodes and then hashed using the SHA-256 algorithm to obtain a unique identifier
for the path, effectively compressing it while retaining its uniqueness. This results in a
representation of path contexts in the format: (x;, sha256(p),x;).

As an example, Fig. 2 shows a subset of the bag of path contexts of the code snippet in
Listing 1.

Code formatting

Adherence to a common coding convention (Smiit et al., 2011) is a best practice in software
development, particularly in collaborative software development. Code formatting is the
subset of a coding convention that refers to the way the code is styled and organized.

It includes factors such as indentation, use of spaces vs tabs, placement of brackets, line
length, efc. These factors can have a profound impact on the readability, maintenance, and
even the functionality of the code (Oliveira et al., 2023).

Consistent code formatting improves code legibility and avoids distractions induced
by style inconsistencies when reading code. Code formatting is a way to ensure consistent
code formatting where formatting decisions are not taken interactively by developers, but
instead automatically enforced by tooling, often integrated into IDEs.

To provide an experimental answer to RQ 2 (code formatting) we consider the case
of the Python programming language using Black (Langa, 2024) as fully automated code
formatter. Black is a very popular code formatter for Python, which favors consistent
styling over configurability—for those reasons it is often referred to as an “opinionated”
and/or “uncompromising” code formatter.

Among the changes that Black can apply to input code to make it fit the target style
there are: indentation, spacing (addition/suppression of blank lines), string quotes, literals,
parentheses, etc. For a comprehensive description of the modifications Black can apply we
refer the reader to the tool documentation at https:/black.readthedocs.io/. Nonetheless,
Black guarantees the preservation of code execution semantics across code reformatting.

As an example, Listing 2 displays the result of formatting the code snippet of Listing 1
with Black.

Balla et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2142 8/24


https://peerj.com
https://doi.org/10.7717/peerjcs.2142/fig-2
https://black.readthedocs.io/
http://dx.doi.org/10.7717/peerj-cs.2142

PeerJ Computer Science

Listing 2: Python code snippet from Listing 1, after formatting with Black. Note how hori-

zontal and vertical blanks have been altered, as well as string quotes.

~.def_function(a,._b):
ceooresult_=_a_+_b

W N e

ceeoprint("Result:_ ", _result)

Listing 3: Python code snippet from Listing 1, after minification with Python Minifier.
Note how whitespace has been removed and the longer identifiers "function” and

"result” have been renamed to "A".
~.def_A(a,b):A=a+b;print(’Result:_’,A) 1

Code minification

Code minification is an optimization technique used to reduce the size of software that
must be distributed in source code form. It is common place in Web development, where
minimizing the amount of source code that a browser needs to download can significantly
speed up page rendering time. Minification entails the removal of semantically meaningless
elements from source code, such as white spaces, line breaks, and comments, as well as
more invasive changes such as renaming identifiers (e.g., variable and class names) to more
concise alternatives.

As per code formatting, minification must be neutral with respect to code semantics
in order to be applicable. Contrary to code formatting, code minification reduces code
legibility, which is why it is performed automatically in between software development and
execution, at code distribution/deployment time. Due to its transformative nature code
minification challenges the conventional notions of programming style, hence the interest
of exploring its impact on the ability to automatically recognize code authors.

To investigate experimentally RQ 3 we still consider Python (for consistency and
comparability with RQ 2) and use the Python Minifier library (Flook, 2024) as code
minifier. Python Minifier is a popular source code minifier for Python, capable of applying
transformations as varied as: renaming identifiers, removing white spaces, combining
import statements, removing non-executable literals (e.g., comments, docstrings), etc. For
a comprehensive description of the modifications Python Minifier can apply please refer
to the tool documentation at https:/python-minifier.com/.

As an example, Listing 3 displays the result of minifying the code snippet of Listing 1
with Python Minifier.

Author classifier

To answer the stated research questions we need a baseline author classifier. We build one
based on code2vec (Alon et al., 2019), which transforms source code into vectors, ensuring
the preservation of both its semantic and stylistic elements (due to the fact we feed CSTs,
rather than ASTs, to it as already discussed).
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The model functions independently of specific programming languages, allowing
for a broad examination of code across different languages, drawing parallels to the
language-independent nature of word2vec (Mikolov et al., 2013).

Once source code is transformed into vectors by code2vec, various tasks can be performed
on it using apt machine learning techniques. In our case the task is determining the original
author of a specific source code file. Such a task can be achieved with high accuracy, as
substantiated by previous studies (Kovalenko et al., 2020). Note that prediction accuracy
is an independent variable of this study: we are not trying to improve the state of the art
in author predictability, but only to evaluate how it is impacted by code formatting and
minification. Nonetheless, by building upon code2vec, we achieve a classification accuracy
which is well within the state-of-the-art of code stylometry (cf. ‘Results’ for details).

Our author classifier takes as input a source code file, parses it to obtain a bag of path
contexts, transforms them into vectors that represent the original file, and eventually
produces as output an author prediction. The architecture of our classifier, shown in Fig. 3,
consists of five parts:

e Embeddinglayers: each element of the input bag of path context triples undergoes
individual embedding.

e Concatenation: the three elements of each path context triples are concatenated to
obtain a unique representation, called context vector3d.

e Fully connected layer: each context vector3d is transformed to a one-dimensional
representation, called context vectorld.

e Attention layer: all context vectorld elements of a code file are consolidated into a
singular vector, called code file vector.

e Fully connected layer: this layer performs the final author prediction, based on the
code file vector and using a softmax activation function.

METHODOLOGY

Figure 4 depicts the experimental methodology followed to answer RQ 2 and RQ 3. The

general idea is to, first, apply the author classifier of Fig. 3 (re-training it from scratch each
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time) to: (1) a dataset of Python source code files equipped with an authorship ground
truth, (2) the same dataset automatically formatted with Black, (3) the same dataset
minified with Python Minifier. Second, compare accuracy results in the three cases. In the
remainder of this section we detail each phase of the experiment implementation.

Dataset

As initial dataset we started from the Google Code Jam dataset (Google, 2023) due to
its prominence in code stylometry and its adoption in preceding studies (Islam et al.,
2015; Tereszkowski-Kaminski et al., 2022; Alsulami et al., 2017; Kurtukova, Romanov ¢

Shelupanov, 2020; Bogomolov et al., 2021). Using a shared dataset eases comparing our
results and evaluation with previous works.

Google Code Jam is a coding competition where developers provide solutions to common
problems in various programming languages. In the specifications of the competition, no
instructions regarding style, guidelines or formatting are provided, thus each author is free
to employ their preferred style. We focus on the Python subset of the Google Code Jam
dataset, called gcjpy in the following. We obtained a copy of gcjpy from the replication
package of Bogomolov et al. (2021) (discussed in ‘Related Work’) whom, in turn, scraped it
from the Google Code Jam website.

gcjpy source code files are organized by authors; the organization hence implicitly
provides a ground truth for the code —author mapping. The dataset contains code
authored by 70 authors, 10 source code files per author, for a total of 700 Python files
(cf. the g¢jpy line in Table 1, which also reports average SLOC (source lines of code) and
character lengths). Each file in the dataset contains a solution to a challenge presented, and
solved, by all authors in the dataset.

The dataset is balanced both quantitatively (each author contributes 10 files) and
semantically, with each author providing solutions to the same problems. The second
aspect of balancing addresses the problem identified by Islam et al. (2015), wherein authors
could be classified based on the semantic content of their code rather than their unique
styles. In ML-based code stylometry there is indeed a significant risk that the classifier
might inadvertently learn semantic code attributes, overshadowing stylistic differences. By
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Table 1 Datasets used in the experiments. For each dataset the following measures are reported: number
of distinct authors, number of source code files (total), average SLOC (source lines of code) length, aver-
age character length.

Dataset Authors Files SLOC (avg.) Characters (avg.)
gojpy 70 700 62 1609

Pristine 59 590 62 1561

Formatted 59 590 68 1655

Minified 59 590 25 979

analyzing files with uniform semantic content across authors, our classifier is forced to
learn author stylistic differences, in order to improve its accuracy.

Data cleaning

Code formatting and minification tools generally expect input source code to be
syntactically correct; both Black and Python Minifier do. We hence applied a data cleaning
step meant to verify that each file in the dataset is syntactically-correct Python code.

Out of a total of 700 initial files in gcjpy, 63 files (9%) by 11 distinct authors (15% of the
initial 70 authors) contained at least one syntax error. Errors included misplaced blanks
and keywords, as well as misclassified C source code files shipped with a . py extension.
Differently from Li et al. (2022) we did not attempt to correct even the most obvious syntax
errors, in order to retain the dataset’s inherent integrity. This choice is consistent with what
the majority of the literature on code stylometry do.

We excluded all non-parsable files from the dataset. In order to preserve dataset
balancing we also excluded any author with less than 10 valid source code files remaining.
This decision enables consistent analysis across all authors avoiding the need of synthetic
data generation (Batista, Prati ¢ Monard, 2004) to reestablish balance.

The dataset obtained after data cleaning, called Pristine, hence consists of 590 source
code files, authored by 59 authors, 10 files each; cf. the Pristine line in Table 1.

Code formatting

We applied the Black code formatter to each file in the Pristine dataset, obtaining the
Formatted dataset. No errors were reported: Black could format all files in the Pristine
dataset.

As observable in Table 1 (line Formatted), code formatting led to an increase in the
average file length, both in terms of SLOCs (+10%) and characters (+6%). This change
can be ascribed to Black’s coding conventions which, with respect to original author styles
in g¢jpy, introduce additional white spaces, tabs, and newline characters.

Code minification
We applied Python Minifier to each file in the Pristine dataset, obtaining the Minified
dataset. Once again no error were reported.

As expected and shown in Table 1 (line Minified), minification significantly reduced the
size of files in the dataset: —60% SLOC, —37% characters. This highlights quantitatively
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the transformative nature of the minification process, already observed qualitatively by
comparing Listing 1 with Listing 3.

Path contexts extraction

To extract, prepare, and represent path contexts (see ‘Code representation’), we
implemented a language-agnostic pipeline based on the Tree-sitter parser generator
tool and incremental parsing library (Brunsfeld, 2024). Tree-sitter comes with predefined
grammars for many languages, including Python, and provides a unified API to navigate
parse results. Tree-sitter is also well suited to manipulate concrete syntax trees, which we
need, because it maintains a precise mapping from parse tree nodes to the original tokens
and positions in the input file.

For each source code file in each dataset we proceed as follows. First, we use the Python
Tree-sitter parser to parse the file and generate its CST. Then we traverse the CST to list all
terminal nodes. During the traversal we filter out comments in order to avoid recognizing
authors based on peculiar natural language content rather than programming style aspects.

We then generate all combinations without repetition of ordered terminal node pairs
(ns,n;). Each pair consists of a starting terminal #; and an ending terminal #,. Pairs are
ordered in the sense that we only generate pairs where n; occurs earlier than 7, in byte
order in the input file.

For each pair a CST path p is generated by navigating the CST upwards from #; until the
least common ancestor (LCA) node of #n; and #; is reached and then downwards from the
LCA to n,. From each obtained path p we obtain a path context (¢(n;),sha256(p),d(n;)),
where ¢ is implemented by looking up the original input token associated to a node via
Tree-sitter. The result is a path context as per Definition 3.

For practical purposes when extracting paths from a given input file we limit ourselves
to paths with a maximum length of 7, following in the steps of the original code2vec
implementation (Alon et al., 2019). The intuition behind this restriction is that code style is
better captured by reoccurring local patterns (e.g., if/then/else branches, loop bodies, etc.)
than rarer global patterns, and that short paths captures local patterns best.

All path contexts extracted from an input file form its initial bag of path contexts as per
Definition 4. To keep data size manageable during classifier training, we randomly sample
a maximum of 200 path contexts from all contexts extracted from each file. On average,
the number of path contexts extracted per file before sampling is 7,140 for the Pristine
dataset, 6,778 for the Formatted dataset, and 7,413 for the Minified dataset. Once the path
contexts have been extracted (and possibly sampled), we combine them to obtain the bag
of path contexts for each file.

Comparative analysis of AST vs CST
In order to address RQ 1, we conducted a parallel experiment replicating the methodology
of Bogomolov et al. (2021). Performing this replication with a controlled experiment on
the same dataset is crucial for comparing the effectiveness of AST- vs CST-based code
stylometry.

For this replication, we utilized the Pristine dataset derived from the gcjpy, as detailed
in ‘Data cleaning’. Note that the gcjpy version is the same as that used in Bogomolov et
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al. (2021). The architecture for this experiment, shown in Fig. 3, also mirrors that used
by Bogomolov et al., using either the ast module of the Python standard library (for
AST-based code stylometry) or Tree-sitter (for CST-based).

The AST-based experiment followed a similar procedural structure to our CST approach:
the source code files from the Pristine dataset were parsed to generate their corresponding
ASTs. Subsequently, the obtained ASTs were used to extract syntactic features which
formed the basis of the input for the code2vec model. The model, trained on these features,

was then employed to classify code authors.

Model training

For each of the three datasets (pristine, formatted, minified) we train the author classifier of
Fig. 3 from scratch and evaluate its accuracy. The model is trained on data for 59 authors,
each having authored 10 files. We distribute the 10 files of each author as follows: six to the
training set, two to the validation set, two to the testing set. This approach, with no overlap
between the sets, guarantees the robustness and generalizability of our results.

Utilizing a grid search strategy, we optimize the model hyperparameters with Tune
(Liaw et al., 2018), focusing on embedding dimension, batch size, number of training
epochs, and dropout rate. Notably, higher dropout values exhibited superior performance.
For the optimal configurations, refer to Table Table 2. For the optimization of model
parameters during training, we use the ADAM optimizer (Kingma ¢» Ba, 2015); to measure
model efficacy and steer the optimization we use Cross Entropy Loss as primary metric,
consistently with the multi-class classification nature of the problem.

Training and evaluation was conducted on a high-performance computing (HPC)
cluster consisting of 10 processing nodes. Each node was equipped with an Intel Common
KVM CPU with 4 cores operating at 2194.842 MHz, 44 GiB of RAM, and an Nvidia
GeForce RTX 2080Ti 11 GiB graphics card. The average training duration for each dataset,
using only a single node, was of 11 h, 34 min, and 14 s.

RESULTS

We can now compare the accuracy results obtained by the author classifiers trained,
respectively, on the three datasets: Pristine (using both ASTs and CSTs), Formatted,
and Minified. Consistently with established literature, we use top-1 accuracy as primary
evaluation metric (Grandini, Bagli & Visani, 2020).

General results
On the Pristine dataset (before code formatting or minification, and using CSTs) the
trained classifier achieves an average accuracy of 67.86%, which is comparable with the
state-of-the-art for code2vec-based code stylometry on the gcjpy dataset. Table 3 provides
a comparative overview of our results and related work; several observations are in order.
Our author classifier based on CST (bottom line in Table 3) performs slightly worse
(—4.44%) than that of Bogomolov et al. (2021). The difference is small enough to be
imputable to differences in hyperparameter tuning during network design or training. But
we also observe that, methodologically, we enforce a strict separation between training,

Balla et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2142 14/24


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2142

PeerJ Computer Science

Table 2 Best hyperparameter configuration for each dataset.

Dataset Batch size Dropout Embed. Dim. N. Epochs
Pristine source code (CST) 8 0.7 64 300
Formatted source code 64 0.7 32 300
Minified source code 32 0.7 32 300

Table 3 Comparison of authorship recognition results across approaches and related work.

Research Approach Accuracy
Islam et al. (2015) random forest 53.91%
Alsulami et al. (2017) LSTM 88.86%
Bogomolov et al. (2021) code2vec 72.30%
This work (pristine dataset, AST) code2vec 51.00%
This work (pristine dataset, CST) code2vec 67.86%

test, and validation sets, whereas they use k-fold cross validation and grid search, which
incurs a higher risk of overfitting than our approach. We confirm that code2vec-based

author classifiers under perform (in mere accuracy terms, as they have other advantages)
with respect to the LSTM-based one by Alsulami et al. (2017); this is not problematic to
pursue our research questions: what matters is using the same baseline classifiers on the
three dataset variants.

Impact of moving from AST to CST on authorship recognizability
By comparing the results of the AST-based and the CST-based classifiers on the Pristine
dataset, we can answer experimentally RQ 1 (What is the impact of using CSTs (instead of
ASTs) on the ability to automatically identify authors of Python source code?). The obtained
respective accuracies can be observed on lines 4 and 5 of Table 3. It is indeed the case that
in our experiments moving from ASTs to CST's leads to a significant increase in author
recognizability: +16.86%.

This finding aligns with the work of Islam et al. (2015), confirming that layout features,
which are not captured by ASTs, significantly contribute to the definition of individual
programming style.

Impact of code formatting on authorship recognizability
Moving on, we can now answer quantitatively RQ 2 (What is the impact of code formatting
on the ability to automatically identify authors of Python source code?) by comparing the
average accuracy of the classifier trained on the Pristine dataset and that of the classifier
trained on Formatted dataset. Looking at the first two rows of Table 4 we can see
that the impact of automated code formatting of Python code with Black on author
recognizability is significant: the average accuracy after code formatting is 52.68% marking
a decline of —15.18% with respect to the original code (67.86%).

The observed reduction suggests that automated code formatting partly “erases” source
code features that are part of the stylistic signature of individual authors, making code
more uniform across different authors, and hence code stylometry harder.
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Table 4 Accuracy of authorship recognition on different datasets: pristine (both CST and AST), for-
matted with Black, and minified with Python Minifier.

Dataset Accuracy (test set)
Pristine source code (AST) 51.00%
Pristine source code (CST) 67.86%
Formatted source code 52.68%
Minified source code 50.00%

Nonetheless, authors remain largely recognizable after code formatting: an accuracy
of ~50% across 59 authors is very significant—with the baseline of random attribution
sitting at 1/59-100 = 1.69%.

Impact of code minification on authorship recognizability

What about code minification: would it make authors less recognizable than code
formatting, and then nothing at all? We can now answer quantitatively RQ 3 (What is the
impact of code minification on the ability to automatically identify authors of Python source
code?) as well, by comparing the accuracy of the classifier trained on the Minification
dataset and the two others: Pristine and Formatted; see Table 4, last line.

With respect to the Pristine dataset, once again minification reduces author
recognizability significantly: —17.86%, from 67.86% down to 50.00%. We remind that
code minification optimizes code size by stripping superfluous characters without altering
its functionality, which includes deleting white spaces, comments, and renaming variables.
Clearly those modifications impact on source code traits that embody a significant part of
individual authors’ coding styles, making them harder to recognize via code stylometry.

On the other hand, and perhaps surprisingly, the decrease in author recognizability
between code formatting and minification is minimal: —2.68%, from 52.68% to 50.00%
in our experiments. This is in contrast with the respective visual impacts of the two
techniques when applied to real-world code: formatted code is generally perceived as
being (1) not that different from before-formatting code and (2) easier to read; whereas
minified code is considered much harder to read than before-minification code by most
programmers. It appears that state-of-the-art code stylometry is largely immune to those
differences and that most of the identifiable traits that could be suppressed automatically
by these two techniques were already suppressed by Black, without needing to resort to
Python Minifier for a significant further reduction in author recognizability. Furthermore,
minification entails some form of code “uniformization” (e.g., removing non-significant
spaces) as one of its preliminary steps, which can be seen as a form of code formatting, even
though not one geared towards making code easier on human eyes. In our experiments
CST-based code stylometry does not appear to be particularly sensible to the differences
in formatting style that exist between (Black) code formatting and (Python Minifier)
minification.

Due to the small difference in impact between the two techniques, as before authors
remain largely recognizable after code minification too, with a significant (for a set of 59
authors) success rate of 50% recognized authors. Once again, authors of software that must
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be distributed in source code form cannot rely on code minification to be unrecognizable
via stylometry techniques.

DISCUSSION

Relevance of the findings
The answers provided for the stated research questions inform the discussion around what
contributes to author recognizability for software distributed in source code form.

In our controlled experiment, transitioning from AST to CST significantly improved
style recognition. This aligns with Caliskan’s conceptualization of programming style,
which is broadly recognized as integrating layout elements along with lexical components,
present in the CST but not in the AST. Our results suggest that, by capturing a more
comprehensive spectrum of stylistic elements, CSTs can improve the accuracy of author
recognition techniques, possibly beyond the state of the art when used in combination with
already well performing methodologies, like those of Alsulami et al. (2017).

Note that we replicated the experiment by Bogomolov et al. (2021) applying data cleaning,
which was needed to ensure successful parsing. This reduced the dataset size, which may
explain the lower absolute accuracy we obtained in our AST-based experiment with respect
to theirs. As we compare, with a controlled experiment on the same dataset and in the
same conditions, the use of CSTs and ASTs for code stylometry, we consider the accuracy
drop from ASTs to CSTs both relevant and interesting in itself.

Both code formatting and minification reduce author recognizability by a significant
margin, although not enough to make authors safe from de-anonymization. Other
techniques are needed for that, such as full-blown obfuscation (Kurtukova, Romanov
& Shelupanov, 2020); although in that case it would be harder to justify insisting on source
code distribution versus the distribution of bytecode or binary code, which suppress most
code style traits.

It is also worth noting that the accuracy of CST-based author recognition after code
formatting or minification—respectively 52.68% and 50.00%, see Table 4—is very close
(£1.7%) to the accuracy of AST-based author recognition on the pristine dataset at
51.00%. This suggests that formatting and minification neutralize the benefits obtained
from including concrete syntax features in authorship attribution, without impacting the
more intrinsic aspects of author style captured by abstract syntax features.

In terms of absolute accuracy results, even though improving the state of the art on that
front was not a goal of this study, we are in the ballpark of previous approaches based on
similar architectures (code2vec), which we consider satisfactory. At the same time, this is
the first study that isolates by construction the effects of code formatting and minification
from other effects that can become confounding variables for the stated conclusion. For
example, whereas Kurtukova, Romanov & Shelupanov (2020) also observed a decrease in
the recognizability of authors contributing to projects that adopt strict coding guidelines,
the result might come from other project-specific factors. In our case the application of
formatting and minification to the same initial code base, together with the training and
validation of the same classifier, provide guarantees that the measured difference is only
imputable to source code changes and not other incidental factors.
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Threats to validity
In the remainder of this section we review the adopted experimental methodology, in order
to assess the threats to the validity of stated conclusions.

Internal validity. Our dataset of choice is the Python subset of the Google Code Jam dataset
(Google, 2023), a popular choice for benchmarking authorship attribution solutions (Islam
et al., 2015; Tereszkowski-Kaminski et al., 2022; Alsulami et al., 2017; Kurtukova, Romanov
& Shelupanov, 2020; Bogomolov et al., 2021). This choice is motivated in the literature
with two main arguments: result comparison and mitigating biases coming from the
domain/project of origin of input source code file. Result comparison is a common need
for studies that aim to improve code stylometry accuracy: they need to compare new
solutions with previous ones on a common benchmark; we do not share this need due
to different study goals. Domain bias is the risk of letting the ML model inadvertently
learn that two code snippets code belong to, respectively, the Linux kernel and Nginx, and
mistaking that from having learned they belong to the code style of the respective authors
who only contribute to one of the two projects.

Regarding the foundation on which the model learns, employing the Google Code Jam
dataset ensures that the models do not inadvertently learn to associate code content with
specific authors. This means that the model is designed not to merely recognize what
an author typically writes, such as code related to web development, data manipulation
functions, or numerical calculations. Instead, the model is cultivated to discern and learn
the distinct programming styles of each author genuinely. This unique characteristic,
previously highlighted by Caliskan, is achieved due to the nature of the dataset, which
requires each author to respond to the same set of challenges by writing code files, all while
using the same programming language. By using gcjpy we avoid this risk of this bias, as all
retained authors have contributed the same set of 10 snippets, each proposing a different
solution for the same problem.

In the extraction pipeline, we implemented the following steps: excluding files that
include syntax errors, under-sampling the dataset to maintain balance, extracting path
contexts, and finally applying formatting or minification. Our cleaning process is highly
conservative, ensuring that all steps are aligned to preserve a balanced dataset, honoring a
strict training/validation/testing set separation.

Path extraction introduces some challenges. One concern emerges from the random
sampling of 200 path contexts to maintain a fixed maximum size of path bags, as
recommended by code2vec. This constraint results in some file representations that
incorporate only a small fraction, between 0.0269% and 0.0295%, of all file paths. The
sampling being random, we have repeated our experiments 10 times, always obtaining
results comparable with those reported in the article. We are hence confident the context
sampling step does not introduce appreciable biases.

Similarly, the maximum limit on path lengths, also inherited from code2vec, might
induce biases in our results: longer paths might make authors more recognizable. We have

not performed a parameter sweep on path length to quantify this phenomenon. However,
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as we use the same classifier architecture for all datasets, we do not expect it to impact the
main experimental results of the article.

The choice of tools for formatting (Black) and minification (Python Minifier) is
debatable like any tool choice. We are however confident to have chosen the tools that were
considered state of the art for the respective tasks in the Python community at the time, as
corroborated by our personal experience as Python developers, technical exchanges with
professional Python developers, as well as Web searches for the respective keywords. We
acknowledge that the best choice of tools can evolve over time. Furthermore, we make
available a complete replication experiment for the results presented in this article, which
would allow to reproduce our experiment in the future, possibly with different tools.

External validity. The stated research questions are about author recognizability for
Python source code, consistently with the use of the gcjpy dataset. We do not claim more
generality than that with respect to other programming languages. Differently from most
related works, however, the experimental methodology is inherently language-agnostic. In
particular the path context extraction pipeline available from the replication package can
be applied to any programming language for which a Tree-sitter grammar exists (more
than 100 parsers at the time of writing; Cf. https:/tree-sitter.github.io/tree-sitterfparsers,
accessed on 2023-10-25). The remainder of the experiments from there on (training,
evaluation, comparison) would be repeatable without changes.

Previous works (Bogomolov et al., 2021; Kovalenko et al., 2020) hint at the fact that author
recognizability is largely unaffected by programming language differences. Experimental
evaluations of this fact are still lacking in the literature, though. We expect source-to-source
code transformations like those we evaluate to be even less affected by programming
language differences, given the language remains the same across transformations.

Our findings are inherently rooted in a controlled setting, specifically a programming
competition where algorithmic problem solving is predominant in source code files. It
would be imprudent (although quite common in the literature!) to speculate without
empirical validation that our results seamlessly transfer across diverse coding domains.
Some surveyed related works (Bogomolov et al., 2021; Kovalenko et al., 2020) provide
a glimpse into analogous studies conducted within real-world development contexts,
including multi-author Web development projects and applications. To establish the
uniformity of results across different development domains it is imperative to replay our
methodology in those scenarios. Yet, securing a balanced dataset in non-controlled coding
situations remains a significant challenge.

CONCLUSION

In the context of code stylometry techniques, used to automatically identify the author of
a given source code snippet, we have characterized quantitatively the impact of popular
software engineering practices like automated code formatting and minification on author
recognizability. Experiments were conducted on the Python subset of the Google Code
Jam dataset (59 authors), using Black as code formatter, Python Minifier as minifier, and
a machine learning classifier based on code2vec.
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The applied experimental methodology—namely: start from a clean dataset, transform
it to obtain corresponding formatted and minified datasets, and then separately train
author classifiers on the three datasets—provides strong guarantees of having measured
the impact of formatting/minification, rather than conflating them with confounding
factors. As a novelty with respect to the state of the art we fed code2vec with concrete
syntax trees (CSTs), rather than ASTs, verifying how that increases classification accuracy
in a controlled experiment.

Experimental results show that: (1) moving from AST to CST enhances by 17% author
recognizability (51.00% —68%), (2) code formatting reduces it by 15% (68% —53%), (3)
code minification further reduces it by 3% (68% —50%), (4) none of the two techniques
are enough to guarantee author non-recognizability. For that, more invasive techniques
should be explored, such as obfuscation or compilation, giving up almost completely on
code readability.

Future work. Comparing the effect of code formatting and minification on the
recognizability of developers writing in different programming languages remains an
open lead. Whereas empirical studies on code stylometry have been conducted on different
programming languages, benchmark-style experiments (in terms of code size, problem
solved, settings) are still missing, partly due to the difficulty of obtaining relevant balanced
datasets.

A second area of extension of this work lies in enlarging the set of source-to-source code
transformation considered. Obfuscation is here an obvious low-hanging fruit to evaluate
next (in a clean-slate setting w.r.t. the original dataset, differently from related work on the
topic Kurtukova, Romanov ¢ Shelupanov, 2020), but other interesting possibilities exist,
like automated code refactoring as presently available in modern IDEs.
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