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ABSTRACT
The reinforcement learning based hyper-heuristics (RL-HH) is a popular trend in the
field of optimization. RL-HH combines the global search ability of hyper-heuristics
(HH) with the learning ability of reinforcement learning (RL). This synergy allows
the agent to dynamically adjust its own strategy, leading to a gradual optimization of
the solution. Existing researches have shown the effectiveness of RL-HH in solving
complex real-world problems. However, a comprehensive introduction and summary
of the RL-HH field is still blank. This research reviews currently existing RL-HHs and
presents a general framework for RL-HHs. This article categorizes the type of algorithms
into two categories: value-based reinforcement learning hyper-heuristics and policy-
based reinforcement learning hyper-heuristics. Typical algorithms in each category are
summarized and described in detail. Finally, the shortcomings in existing researches
on RL-HH and future research directions are discussed.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Neural Networks
Keywords Hyper-heuristics, Reinforcement learning, Value-based reinforcement learning hyper-
heuristics, Policy-based reinforcement learning hyper-heuristics

INTRODUCTION
Evolutionary algorithms (EAs) represent a category of population-based heuristics inspired
by the natural selection and evolution (Zhou et al., 2021), which solve optimization
problems by simulating mechanisms such as inheritance, mutation, and adaptive selection
observed in the process of biological evolution. EAs, which are frequently applied to address
challenges characterized by sample space that lack clear definition, gather evolutionary
insights over generations by exploring various regions within the problem space (Houssein
et al., 2021; Baykasoğlu & Ozsoydan, 2017). As they explore, EAs iteratively refine solutions
until converge to a local optimum, thereby crafting tailored solutions suited to the specific
problemat hand.With the capability to explore complex search spaces, EAs offer remarkable
adaptability and parallelization ease (Young et al., 2015). At present, EAs find extensive
application across diverse research domains, including sequence optimization (Lutz et al.,
2023; Junior et al., 2023), scheduling (Chen et al., 2023; Wang, Li & Gao, 2023; Wang et al.,
2023), object recognition (Afif et al., 2023; Zhang, Li & Qi, 2023).

The concept of heuristic search is introduced under the framework of EAs, paving the
way for the development of hyper-heuristics (HH) (Cowling, Kendall & Soubeiga, 2001),
which aims at enhancing the optimization process with greater intelligence. In recent
years, HH has emerged as a prominent research domain, yielding notable advancements
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across various fields such as traveling salesman problem (Pandiri & Singh, 2018; Dasari
& Singh, 2023; Simões, Bahiense & Figueiredo, 2023; Gharehchopogh, Abdollahzadeh &
Arasteh, 2023), packing problem (Ross et al., 2002; Leon, Miranda & Segura, 2009;Guerriero
& Saccomanno, 2022; Guerriero & Saccomanno, 2023), examination timetabling problem
(Ahmadi et al., 2003; Burke et al., 2005; Burke, Petrovic & Qu, 2006; Sabar et al., 2012),
vehicle routing problem (Hou et al., 2022b; Asta & Özcan, 2014; Hou et al., 2022a; Shang
et al., 2022), and scheduling problem (Cowling, Kendall & Han, 2002; Cowling, Kendall &
Soubeiga, 2002a; Cowling, Kendall & Soubeiga, 2002b). HH, which aims to effectively solve
various real-world optimization problems (Özcan, Bilgin & Korkmaz, 2008), combines
the problem specificity of heuristic search with the global search capability of EAs. HH
is designed not for the exclusive resolution of specific domain problems, but rather
to steer the search process utilizing high-level strategies. Concurrently, HH excels at
developing universal methodologies by distilling and generalizing problem attributes. This
empowers HH with the ability to address cross-domain problems adeptly and handle
diverse optimization problems with finesse. Furthermore, HH can be delineated into
two distinct categories depending on the heuristic search space’s characteristic, namely
generation hyper-heuristics algorithm and selection hyper-heuristics algorithm. Selection
hyper-heuristics dynamically and selectively utilize diverse human-designed heuristics or
components based on the evolving requirements and performance metrics throughout
the iterative process. Selection hyper-heuristics can also reduce manual intervention and
enhance flexibility, thereby the application of selection hyper-heuristics ismore widespread.
The selection hyper-heuristics algorithm consist of two important modules: learning and
selection. Based onwhat has been learned, the selection hyper-heuristics dynamically choose
an appropriate low level heuristic (LLH) and apply the LLH to address the given problem.
The performance and efficiency of HH hinge directly on the chosen learning strategy, which
assumes a critical role. Commonly used learning methods encompass methods based on
meta-heuristics algorithm, selection function, and reinforcement learning.

Reinforcement learning based hyper-heuristics (RL-HH) uses reinforcement learning
(RL) (Sutton & Barto, 1998) as learning method. Compared with meta-heuristics and
selection function, RL stands out by not demanding in-depth prior knowledge of
the problem domain. RL exhibits robust generalization capabilities, allowing RL to
automatically learn to adapt to the dynamic environment at runtime. For these above
reasons, RL proves to be more proficient when confronted with novel challenges. The ideas
of HH and RL revolve around finding the most suitable solution through specific strategies
or methods. Both entail an iterative search process, optimizing their performance through
continuous trial and error and feedback. However, there are essential differences between
RL and HH. HH is a type of optimization algorithm that focuses on learning how to
choose the appropriate LLH at the decision point. While RL is a machine learning method
that relies on the reward mechanism of environmental feedback for learning. So HH and
RL are based on different principles. However, because RL’s focus on long-term reward
maximization matches HH’s goal of pursuing the optimal solution, RL can be combined
with HH to aid in making the most advantageous single-step decision in the global search
process. Recognized as a prevalent research topic inmachine learning, RL has found broader
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applications in fields such as robot control (Kober, Bagnell & Peters, 2013; Mülling et al.,
2013; Banino et al., 2018; Mirowski et al., 2016), traffic control (Belletti et al., 2018; Wei et
al., 2018; Chu et al., 2020; Han, Wang & Leclercq, 2023), game (Mnih et al., 2013; Moravčík
et al., 2017; Hessel et al., 2018; Wang et al., 2020), optimization and scheduling (Ipek et al.,
2008; Liu et al., 2023a; Liu, Piplani & Toro, 2023; Tejer, Szczepanski & Tarczewski, 2024).
RL is an autonomous learning method in which an agent can learn from environmental
interactions without heavy reliance on labeled data or prior knowledge. RL is capable of
adapting to changing situations and needs, while also automatically generating training
samples and learning in a real-time environment. RL continuously improves strategies
based on feedback information to effectively handle complex and dynamic problems.
Consequently, the innovative combination of HH with global search capabilities and RL
with learning capabilities has sparked a burgeoning research trend in optimization, giving
rise to RL-HH as an innovative frontier. The execution process of RL-HH can be described
as follows: (i) Initialization is performed at the beginning of the algorithm to ensure
consistent performance of all LLH; (ii) Select and apply LLH to generate new solutions,
and the RL agent updates the performance of each LLH based on the quality of the solution;
(iii) At each decision point, the LLH to be applied next is selected based on the performance
of the known LLH; (iv) Repeat steps (ii) and (iii) until the termination condition is met.

Rationale for the review
To the best of our knowledge, there are few studies describing the survey in the field of
HH. Özcan, Bilgin & Korkmaz (2008) investigated and summarized HH, but the review
they wrote only focused on the general classification of HH. With RL increasingly used in
solving complex problems, embedding RL into HH to select the most appropriate LLH
has become more and more popular. However, there has not yet been a comprehensive
survey and summary of RL-HH, which motivates the need for a review of the field. This
review aims to fill this need by systematically organizing and analyzing existing research,
providing academia and industry with an in-depth understanding of RL-HH. By enabling
more people to better understand the latest developments in this field, as well as the
advantages, disadvantages and possible future research directions of the method, this
review will contribute to advancing the field of hyper-heuristics.

Who this study is intended for
Given the crucial role that excellent RL-HH plays in the field of optimization, the review
is intended for a variety of audiences to provide a comprehensive understanding of the
current development of RL-HH. Audiences for this review include, but are not limited to:

(1) RL and optimization researchers: For those researchers who are interested in the
study of RL and HH, through this review they can gain insights into the latest progress and
technology in the field of RL-HH, which will be helpful for future research work.

(2) Practitioners in the industry: Professionals engaged in related fields such as artificial
intelligence, optimization or decision analysis in the industry can learn how to apply
RL-HH to actual industrial problems and solve real-world optimization problems in
various industrial settings.
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(3) Managers in the corporate world: Managers and decision-makers in the corporate
world may be interested in learning how to leverage RL-HH to improve business processes,
optimize resource allocation, and increase efficiency.

SEARCH METHODOLOGY
Regarding the theme of ‘A review of reinforcement learning based hyper-heuristics’, we use
the following methods to retrieve and organize previous relevant research articles, aiming
to better understand the development trends in this field.

Searching for literature: A systematic approach is used to search and select articles, thus
ensuring comprehensive and unbiased coverage of the literatures. We select six academic
digital sources, and specific search terms were applied to these repositories to identify
literatures related to reinforcement learning based hyper-heuristics. The bibliographic
databases considered are: Scopus; Web of Science (WoS); IEEE Xplore; SpringerLink; and
ACM Digital Library. Additionally, the academic search engine Google Scholar is also used
to find any documents that might have been missed to ensure a comprehensiveness.

Keywords: Selecting popular keywords from related fields to screen out literature
highly related to reinforcement learning based hyper-heuristics. The keywords include:
‘‘hyper-heuristics’’, ‘‘selective hyper-heuristic algorithm’’, ‘‘optimization’’, ‘‘reinforcement
learning’’, ‘‘artificial intelligence’’, and ‘‘deep learning’’. The search terms ultimately
applied to all databases were (‘‘hyper-heuristics’’ OR ‘‘selective hyper-heuristic algorithm’’
OR ‘‘optimization’’) AND (‘‘reinforcement learning’’ OR ‘‘artificial intelligence’’ OR ‘‘deep
learning’’).

Selection criteria: Carefully read the titles and abstracts of these literatures after obtaining
a large list of literatures. Conduct a thorough analysis of these literatures to determine their
relevance to our research field and their eligibility. Based on this, relevant articles that fit
our research field are selected.

Minimize bias: Striving to minimize bias, the search and selection process endeavors to
include diverse perspectives while maintaining standards of relevance and quality. Each
chosen literature underwent meticulous scrutiny to assess scientific rigor, ensuring the
literature review presents a fair and comprehensive overview of existing research without
undue favoritism towards any specific approach or viewpoint.

RELATED WORKS
Hyper-heuristics
HH was proposed by Denzinger, Fuchs & Fuchs (1997) as early as 1997, and later
supplemented and defined by Cowling, Kendall & Soubeiga (2001) as heuristics to
choose heuristics. HH is a search method that solves various optimization problems
by automatically selecting or generating a set of heuristics, thereby providing a more
general search paradigm. With rapid implementation and simplicity, HH evolves through
the acquisition of performance feedback from LLH during the search process (Pylyavskyy,
Kheiri & Ahmed, 2020). The core concept of HH revolves around leveraging multiple
LLHs to address the given problems, fostering a comprehensive framework to intelligently
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Figure 1 The framework of hyper-heuristics.
Full-size DOI: 10.7717/peerjcs.2141/fig-1

control the applications of LLHs (Garrido & Castro, 2012). HH exploits the search space
of LLHs and adaptively discovers heuristic strategies to address the problem rather than
directly producing a solution. HH, which essentially has the ability to learn, entails gaining
experience from the current running results and adjusting in a direction that is beneficial
to solving the problem. As an advanced automated method for selecting or generating a
set of heuristics, HH operates on an elevated plane, managing or generating LLHs that
operate within the domain of the problem (Burke et al., 2013;Özcan et al., 2010). Capable of
integrating efficient optimization methods to better solve complex problems, HH pursues
the versatility and adaptability (Burke et al., 2003). HH typically consists of a dual-layered
framework encompassing both a control domain and a problem domain (Burke et al.,
2013). The problem domain involves diverse LLHs and heuristic components, while
the control domain serves as a high-level strategy for choosing suitable solutions within
the problem domain. A domain barrier within the problem environment is established
between these two layers, which streamlines algorithmic design complexities across distinct
problems and bolsters the universal applicability of HH across diverse problem scenarios.
The execution framework of HH is shown in Fig. 1.

Burke et al. (2010) classified HH into two categories: selection hyper-heuristics and
generation hyper-heuristics. Selection hyper-heuristics make astute choices regarding
the appropriate LLH to apply at each decision point from a collection of human-crafted
heuristics. In contrast, generationhyper-heuristics aim to create novel LLHs byutilizing pre-
existing components (Choong, Wong & Lim, 2018). Given that selection hyper-heuristics
directly select the appropriate LLH from available options, there is no need for time-
consuming searches during the solution process. HH can generate solutions in real-time,
showcasing a high degree of flexibility (Drake et al., 2020). This research exclusively focuses
on selection hyper-heuristics.

The selection hyper-heuristics opt for a suitable LLH from a collection of LLHs to
employ at the present phase (Ferreira, Goncalves & Trinidad Ramirez Pozo, 2015). The
control domain of selection hyper-heuristics consists of two components: (i) High Level
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Figure 2 Execution framework of the selection hyper-heuristics.
Full-size DOI: 10.7717/peerjcs.2141/fig-2

Strategy (HLS): HLS strategically selects which appropriate LLH to apply at each decision
point from a pool of LLHs based on the learned knowledge; (ii) Move Acceptance Strategy
(MAS):MAS is responsible for evaluating the acceptability of the newly generated candidate
solution during the iterative process. The problem domain of selection hyper-heuristics
contains a group of human-designed off-the-shelf LLHs. The selection hyper-heuristics
employ HLS to select the appropriate LLH from LLHs, apply the selected LLH to tackle
the problem and generate a new candidate solution. Subsequently, MAS evaluates the
performance of the solution and decides whether to substitute the previous candidate
solution with the new candidate solution. This iterative process continues until predefined
termination criteria are met (Alanazi & Lehre, 2016). The execution framework of selection
hyper-heuristics is shown in Fig. 2.

Reinforcement learning in hyper-heuristics
As a learning mechanism, HH can use various methods to gather information during
learning processes for LLH selection. RL is a common example which has drawn much
attention as a powerful decision-making tool. Unlike traditional function selection, RL
does not require intricate functions for diverse strategies, nor does it demand excessive
time like meta-heuristics. Therefore, RL emerges as a powerful approach for solving
optimization challenges in complex decision-making scenarios, offering distinct advantages
in intelligently guiding the selection of LLH (Choong, Wong & Lim, 2018; Shang, Ma & Liu,
2023).

RL stands as a pivotal filed within the realm of machine learning that is adept at
assimilating knowledge acquired from previously solved instances of a problem to inform
decision-making in novel scenarios. The core concept of RL revolves around learning to
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Figure 3 The execution process of reinforcement learning.
Full-size DOI: 10.7717/peerjcs.2141/fig-3

evaluate actions that enabling the system to learn through trials and errors how to choose the
best action in a given situation (Kaelbling, Littman & Moore, 1996). RL acquires knowledge
through dynamic interaction and feedback between the agent and the environment with
less prior knowledge. In the process of executing a certain task, the agent first interacts
with the environment, and then performs action in the environment to generate a new
state. At the same time, the environment will give a corresponding reward. As the cycle
continues, the agent continuously adjusts learning strategy according to past experience
and selects themost appropriate action. Ultimately the agentmakes a series of decisions and
obtains the maximum reward (Sutton & Barto, 1998). The goal of RL is to enable the agent
to gradually improve learning strategy through continuous trial and learning feedback,
enabling the agent to make increasingly insightful decisions when confronted with diverse
environments and tasks. One of the characteristics of RL is its autonomy and the ability to
automatically generate training data. During the training process, the agent automatically
generates training samples. These samples reflect the interaction between the agent and
the environment, which means that RL can be used to solve problems that are difficult
to handle with traditional technologies. In addition, unaddressed problem instances yield
valuable experience, which can be quantified into reward and penalty values. Guided by
these values, the agent determines the next course of action. Figure 3 shows the execution
process of RL.

The Bellman equation is a core mathematical tool in RL that decomposes complex
multi-stage decision-making problems into a series of simple sub-problems. Bellman’s
equation expresses how to recursively calculate the expected return given the current state
and action taken. The core idea of Bellman equation is current decisions will affect the
future state, which in turn depends on subsequent decisions. The Bellman equation is
shown in Eq. (1).

Q(s,a)= Es′∼s[r+γQ(s′,a′)|s,a]. (1)

When the state action value function Q is optimal, the optimal Bellman equation is
obtained, as shown in Eq. (2).

Q(s,a)= Es′∼s[r+γmaxQ(s′,a′)|s,a]. (2)
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Through iterative solving of the Bellman equation, the agent learns how to take the best
action in a given environment to maximize long-term rewards.

According to the different methods of agent action selection, RL can be categorized
into two types: value-based reinforcement learning (VRL) and policy-based reinforcement
learning (PRL).

Value-based reinforcement learning
VRL centers on computing value functions to determine the appropriate action, thereby
implicitly deriving a deterministic policy. Depending on whether neural networks are
involved, VRL can be divided into traditional VRL (TRL) and deep VRL (DRL).

Traditional value-based reinforcement learning (TRL) State-Action-Reward-State-Action
(SARSA) and Q-Learning stand as the two most representative methods within TRL.
SARSA operates as an on-policy learning approach, where the reward value of the next
action actually taken is utilized to update the value function. Different from the way SARSA
updates the value, Q-Learning is an off-policy learning method that focuses on the optimal
strategy during the learning process. Regardless of the action actually executed, Q-Learning
consistently updates the value function based on the action that would maximize future
rewards. HH focuses more on how to effectively search and optimize the solution space,
rather than updating the value function in real time. The update strategy employed by
Q-Learning is more helpful in guiding HH’s search process to be more effective. Therefore,
existing algorithms mainly use the combination of Q-Learning and HH, which is also
consistent with the findings obtained through search methodology. The pseudo code of
Q-Learning is as follows:

Algorithm 1: A pseudo code for Q-Learning

1 Initialize Q(s,a) arbitrarily ;
2 for each episode do
3 Initialize state s;
4 while s is not terminal do
5 Choose action a using policy derived from Q (e.g., ε-greedy);
6 Take action a, observe reward r and next state s′;
7 Update Q(s,a)←Q(s,a)+α

[
r+γmaxa′Q(s′,a′)−Q(s,a)

]
;

8 s← s′;
9 end

10 end

In this pseudo code, s represents the current state, a represents the current action, r
represents the reward, s′ represents the next state, a′ represents the next action, α represents
the learning rate. γ is the discount rate, which is used to balance the immediate reward
and future rewards.
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Deep value-based reinforcement learning (DRL) On the basis of TRL, neural network is
added to propose DRL, which fills the gap that TRL cannot solve high-dimensional tasks.
One of themost representative DRL algorithm is DeepQ-Network (DQN), which enhances
Q-Learning by incorporating neural networks and introducing several improvements. In
addition to using a neural network to approximate the value function, DQN also uses a
separate target network to generate the targetQvalue. Additionally,DQNutilizes experience
replay mechanism during training process to reduce the correlation between samples. The
addition of these modules improves data utilization, while increasing the stability and
convergence speed of the learning process. Building upon DQN, Double Deep Q-Network
(DDQN) further improves performance by employing two independent neural networks
to estimate values and select actions respectively. DDQN alleviates the overestimation
problem existing in DQN and improves learning accuracy. Duel Double Deep Q Network
(D3QN) extends DDQN by integrating the dueling architecture, decomposing the value
function into two parts: the state value function and the advantage function, which can
learn the value of each action more effectively.

Policy-based reinforcement learning
PRL directly parameterizes the policy and optimizes these parameters to learn a policy
directly instead of learning a value function first. This type of method first initializes the
strategy parameters, then executes the corresponding strategy, collects experience and
calculates returns, and finally updates the strategy parameters to increase returns. The
entire process is repeated until the policy performance is satisfactory or the termination
condition is met.

RL represents a powerful learning paradigm that simulates the nature of human learning
and continuously refines decision-making strategies continuously through trials and
errors. Across numerous domains, RL has shown remarkable promise, serving as a potent
instrument for addressing intricate challenges and enhancing autonomous decision-making
systems.

Reinforcement learning based hyper-heuristics
HLS constitutes a vital component of HH, exploring the space of heuristic methodologies
and carefully selects the most appropriate LLH, which greatly impacts the overall
performance of HH. Therefore, how to efficiently search the space of heuristic algorithms
and select the most suitable LLH is of vital significance. RL is a decision-making tool whose
tasks are typically described using Markov Decision Process (MDP), which includes the
environment state set, the agent action set, the state transition probability function denoted
as P and the reward function. Initially, MDP first learns a policy function π to map the state
to the action that should be taken. In the current state, the agent selects the appropriate
action to act on the environment according to the policy π and receives the reward from
the environment feedback. Then the agent moves to the next state based on the transition
probability P (Liu, Gao & Luo, 2019; AlMahamid & Grolinger, 2021). RL can be used as a
vuable method within HLS to meet the requirements of learning and selecting LLH. The
execution of LLH is regarded as an action, the improvement of the solution after executing

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2141 9/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2141


LLH is perceived as a state. Appropriate LLH is then intelligently selected at different stages
of the optimization process. HLS utilizes RL to empower HH in assimilating knowledge and
expertise acquired from solved specific problem instances, which is then utilized to tackle
unanticipated challenges with greater efficacy (Udomkasemsub, Sirinaovakul & Achalakul,
2023).

According to the learning goal, reinforcement learning based hyper-heuristics (RL-HH)
can be divided into two categories: value-based reinforcement learning hyper-heuristics
(VRL-HH) and policy-based reinforcement learning hyper-heuristics (PRL-HH). VRL-HH
uses VRL as HLS to indirectly derive the policy by learning the value function. In contrast,
HLS in PRL-HH is PRL, which directly optimizes the policy. According to different VRL
methods, VRL-HH can be further subdivided into traditional reinforcement learning
hyper-heuristics (TRL-HH) and deep reinforcement learning hyper-heuristics (DRL-HH).
TRL-HH uses TRL to learn how to choose suitable LLH, while HLS in DRL-HH is DRL
that integrates neural networks into TRL. The specific classification is shown in Table 1.
Furthermore, Fig. 4 illustrates the frameworks of the three RL-HHs, which share identical
structures, only differing in the HLS component. The top is the configuration of TRL-HH,
which employing various score update rules to compute the score of each LLH and choose
the most suitable one from LLHs. The middle part shows the framework of DRL-HH,
which uses neural network as a method to calculate the score of each LLH and select the
appropriate LLH based on these scores. PRL-HH is depicted at the bottom of the figure.
The probability of each LLH being selected is obtained through policy network learning,
followed by randomly selecting an LLH through sampling.

VALUE-BASED REINFORCEMENT LEARNING
HYPER-HEURISTICS
In VRL, decisions hinge upon either the value of the state value function or the value
of the action value function. Then the agent chooses the action corresponding to the
state with the value among the next states that may be reached starting from the current
state. Regarding VRL as HLS, the specific implementation process involves the following
steps: During the initialization phase, RL allocates the identical initial score to each LLH.
Each time LLH is invoked, VRL is used to update the score of associated LLH to undergo
corresponding dynamic alterations. Depending on the improvement made by the LLH on
the current solution, the agent uses value-based methods to update the score of the LLH.
In each iteration of the search process, LLHs that lead to an improved solution provide
a positive reward to the agent. This is achieved by increasing the score to reward LLHs
that enhance the solution. On the contrary, the reward returned by the LLHs that cause
the solution to deteriorate is negative to the agent. Penalize poorly performing LLHs by
reducing their score. The probability of being selected at each decision point is adaptively
adjusted according to the score of each LLH. Always choose the most suitable LLH at each
stage of the iteration (Pylyavskyy, Kheiri & Ahmed, 2020). The process is shown in Fig. 5.
In VRL-HH, score update rules and neural network usually use theQ function to update

the score of LLH. The state action value functionQ (s,LLHi) refers to the cumulative return
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Table 1 Specific classification of RL-HH.

Classification Main RLmethod Representative papers

Value update Pylyavskyy, Kheiri & Ahmed (2020), Özcan et al. (2010),
Nareyek (2003), Sin (2011), Di Gaspero & Urli (2012),
Kumari, Srinivas & Gupta (2013), Elhag & Özcan (2018),
Lamghari & Dimitrakopoulos (2020), Santiago Júnior, Özcan
& Carvalho (2020), Ahmed et al. (2021)

Transition probability matrix update McClymont & Keedwell (2011), Kheiri & Keedwell (2015), Li,
Ozcan & John (2019), Li et al. (2023)

TRL-HH Bandit-based update Ferreira, Goncalves & Trinidad Ramirez Pozo (2015), Sabar
et al. (2015), Zhang et al. (2023a)

VRL-HH Q table update Choong, Wong & Lim (2018),Watkins & Dayan (1992),
Falcão, Madureira & Pereira (2015), Smith et al. (2017),
Yao, Peng & Xiao (2018), Ahmed et al. (2020),Mosadegh,
Fatemi Ghomi & Süer (2020), Gölcük & Ozsoydan (2021),
Zhang & Tang (2021), Cheng et al. (2022), Kanagasabai
(2022), Lin, Li & Song (2022), Dantas & Pozo (2022), Ji
et al. (2023), Liu et al. (2023b), Zhao, Di & Wang (2023),
Zhang et al. (2023b), Zhang et al. (2023c), Zhao et al. (2023),
Ozsoydan & Gölcük (2023)

Other methods Garrido & Castro (2012), Heger & Voss (2021), Lassouaoui,
Boughaci & Benhamou (2020), Kemmar, Bouamrane &
Gelareh (2021), Cao et al. (2022), Ozsoydan & Gölcük
(2022), Yin et al. (2023)

DRL-HH Deep Q-network Dantas, Rego & Pozo (2021)
Double deep Q-network Zhang et al. (2022)
Dueling double deep Q-network Tu et al. (2023)

PRL-HH Proximal policy optimization Udomkasemsub, Sirinaovakul & Achalakul (2023),Kallestad
et al. (2023), Cui et al. (2024)

Distributed proximal policy optimization Qin et al. (2021)

that can be obtained by executing LLHi in the current state s. The definition is shown in
Eq. (3).

Q(s,LLHi)= E[Rt |st = s,LLH = LLHi]. (3)

In value-based reinforcement learning, the Q-value function is generally solved through
iterative Bellman equation updates, as shown in Eq. (4).

Qi+1(s,LLHi)= (E s′∼s[r+γ max
LLHi+1

Qi(s′,LLHi+1)|s,LLHi] (4)

when i→∞, Qi eventually tends to the optimal, that is, the Q-value function finally
converges through continuous iteration, thereby obtaining the optimal strategy:
π∗= argmaxLLHi∈LLHQ

∗(s,LLHi). For VRL-HH, the optimal policy is the LLH selected to
be applied.

According to different solution methods of value functions, VRL-HH can be further
divided into traditional reinforcement learning hyper-heuristics (TRL-HH) and deep
reinforcement learning hyper-heuristics (DRL-HH).
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Figure 4 The framework of RL-HHs.
Full-size DOI: 10.7717/peerjcs.2141/fig-4

Traditional reinforcement learning hyper-heuristics
TheTRL-HH typically employs variousmethods such as value update, transition probability
matrix update, bandits-based update, Q table update and othermethods to adaptively select
the most appropriate LLH.

The concept behind value update involves assigning a certain value to each LLH. The
form of value encompasses various forms such as weight, utility value and score. Nareyek
(2003) proposed a hyper-heuristic evolutionary algorithm based on weight adaptation to
learn how to select promising LLH during the search process. Özcan et al. (2010) assigned
a utility value to each LLH obtained through a predetermined reward and punishment
scheme, then selected the appropriate LLH based on the maximum utility value to solve
the exam scheduling problem. Sin (2011) used the P:1-N:1 strategy to control the weight
value of LLH and set upper and lower limits of the weight value, which provides a solution
to the exam scheduling problem. Di Gaspero & Urli (2012) developed a method based on
RL to automatically select LLHs in different problem areas based on value of each LLH.
Kumari, Srinivas & Gupta (2013) proposed a fast multi-objective hyper-heuristic genetic
algorithmMHypGA, which selects LLH based on adaptive weights that change as the search
proceeds. Elhag & Özcan (2018) extended the grouped hyper-heuristic framework applied
to graph coloring, using RL as a heuristic selection method to maintain a utility score for
each LLH. Lamghari & Dimitrakopoulos (2020) combined RL and tabu search with HH and
selected the heuristic based on the score of LLH and the tabu status. Santiago Júnior, Özcan
& Carvalho (2020) proposed two multi-objective optimization hyper-heuristic algorithms
HRISE_M and HRISE_R based on the HRISE framework which select the next LLH to
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Figure 5 Flow chart of VRL-HH.
Full-size DOI: 10.7717/peerjcs.2141/fig-5

be applied based on the weight value of LLH through the roulette method. Pylyavskyy,
Kheiri & Ahmed (2020) assign a score to each LLH and change the score according to the
improvement plan. RL selects the LLH with the highest score at each stage to optimize
the flight connection problem. Ahmed et al. (2021) assigned the same initial score to all
LLHs, selected LLHs by their scores, and assigned new scores to LLHs according to the
performance of the solution in each iteration.

The transition probabilitymatrix explicitly provides the probability of transitioning from
one LLH to another. McClymont & Keedwell (2011) introduced a new online selection
hyper-heuristic algorithm MCHH, which they applied to multi-objective continuous
problems. They use Markov chain to simulate the transition probability between LLHs,
use RL to update the weight of the transition and adaptively adjust the selection of LLH
according to these weights. Kheiri & Keedwell (2015) proposed a method based on hidden
Markov models to analyze and construct longer low-level heuristic sequences. They
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determined the parameters and acceptance strategies of each LLH through the transition
probability matrix and the emission probability matrix. Li, Ozcan & John (2019) developed
a new selection hyper-heuristic framework based on learning automata and implemented
two variantsHH-LA andHH-RILA. They used learning automata tomaintain the transition
matrix and select the LLH in the next iteration based on this matrix. In 2023, Li et al.
(2023) improved on the basis of HH-RILA and proposed HH-mRILA, which utilized a
more general initialization strategy and dynamically adjusted parameter settings according
to the parameters of the problem being solved.

Bandits can also play the role of HLS as a value-based reinforcement learning method.
Ferreira, Goncalves & Trinidad Ramirez Pozo (2015) proposed a deterministic selection
mechanism based onMulti-Armed Bandits (MAB). They using MAB to select and evaluate
the performance of LLH, while using a fixed-size sliding window structure to store reward
values for all LLHs, using an upper bound confidence policy to select the next applied LLH.
Sabar et al. (2015) employed dynamic MAB extreme value rewards as an online selection
mechanism, which determine the most appropriate LLH for the next iteration by detecting
the average reward change of the current best LLH to solve combinatorial optimization
problems. Zhang et al. (2023a) proposed a new selective hyper-heuristic algorithm adaptive
bandit-based selection hyper-heuristic (HH-AB), which uses the bandit-based method as
a learning mechanism to update the quality of each LLH. By iteratively learning, selecting,
and applying LLHs, HH-AB addresses multi-objective optimization problems.

There are many other traditional reinforcement learning methods used as HLS. Garrido
& Castro (2012) proposed an improved adaptive hyper-heuristic algorithm, based on
simple RL to assign reward or penalty values to LLH and guide the selection of LLH. Heger
& Voss (2021) used the RL algorithm to select LLH based on the sorting rules, proving
the ability of RL to dynamically change the sorting rules to reduce the average delay of
the system. Lassouaoui, Boughaci & Benhamou (2020) used Thompson sampling selection
strategy to evaluate the behavior of LLH, updated the learning mechanism based on
Beta probability law. Kemmar, Bouamrane & Gelareh (2021) utilized RL based on a scoring
system to dynamically update the weight value of LLH every time it is called, thereby solving
the hub location problem in round-trip service applications. Cao et al. (2022) developed
a reinforcement learning hyper-heuristic inspired by probabilistic matching and applied
it to structural damage identification. Ozsoydan & Gölcük (2022) adopted a feedback
mechanism as HLS, which promotes more successful algorithms while implicitly hindering
the development of the remaining algorithms. Yin et al. (2023) proposed a hyper-heuristic
algorithm based on reinforcement learning (HHRL) to solve the task scheduling problem
in cloud computing. HHRL uses an advanced heuristic method based on a reward table
updated with iterations.

With the emergence ofQ-Learning (Watkins & Dayan, 1992), a large number ofHHhave
arisen that use Q table to record state action value functions and select LLH based on this
function value. These types of HH have successfully addressed combinatorial optimization
problems such as scheduling and allocation. For the workshop scheduling problem,
Zhang & Tang (2021) embedded Q-Learning into the HH framework, introducing Q-
Learning-based hyper-heuristics (QHH), Cheng et al. (2022) devised a multi-objective
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Q-learning-based hyper-heuristic with Bi-criteria selection (QHH-BS), Zhao, Di & Wang
(2023) proposed a hyper-heuristic with Q-Learning (HHQL). Additionally, Zhang et al.
(2023b) proposed a Q-Learning-based hyper-heuristic evolutionary algorithm (QLHHEA),
Zhang et al. (2023c) designed a Q-Learning-based hyper-heuristic evolutionary algorithm
(QHHEA). All these algorithms apply Q-Learning as HLS, manipulating the choice of LLH
at each decision point based on feedback information from different stages, effectively
addressing the workshop scheduling problem. Falcão, Madureira & Pereira (2015) utilized
Q-Learning to independently select the LLH and corresponding parameters used in
the optimization process to solve scheduling problems in the manufacturing system.
Lin, Li & Song (2022) presented a Q-Learning based hyper-heuristic (QHH) to solve
the semiconductor final testing scheduling problem with the maximum time span. For
allocation problems, Ji et al. (2023) suggested a novel Q-Learning-based hyper-heuristic
evolutionary algorithm (QLHHEA), which handles the task allocation problem in a
self-learning manner. Liu et al. (2023b) proposed a parallel HH based on Q-Learning (QL-
PHH), which considers the combination states and utilizes Q-learning to select suitable
LLH, aiming to quickly solve corridor allocation problems. The use ofQ-learning-basedHH
has led to the effective resolutions of numerous real-world problems as well. Mosadegh,
Fatemi Ghomi & Süer (2020) utilized Q-learning as the RL to develop a novel hyper
simulated annealing (HSA), which was employed to investigate real-world mixed-model
sequencing problems. Kanagasabai (2022) proposed an algorithm using Q-Learning and
hyper-heuristic (QH) for the power loss reduction problem. Zhao et al. (2023) introduced a
selection hyper-heuristic framework withQ-learning (QLSHH), validating the effectiveness
of the algorithm on a common engineering problem of pressure vessel design. Fehmi et
al. Ozsoydan & Gölcük (2023) proposed using Q-Learning as an LLH recommendation
system to analyze the performance of the optimizers used, which provided a solution to
the set-union knapsack problem.

All TRL-HH implementations mentioned above employ conventional VRL as the
learning strategy of HH. The approach calculates the score of LLH according to the
information of LLH and different score update rules. The most suitable LLH is then
selected and applied to generate candidate solutions. MAS evaluates the acceptance of the
candidate solution and provides feedback to HLS at the same time, gradually improving
the performance of HLS in selecting LLH. The framework of TRL-HH is shown at the top
of Fig. 4.

Deep reinforcement learning hyper-heuristics
TRL-HH, which uses methods such as transition probability matrix update, Q table update
as HLS, is only suitable for problems with small action spaces and sample spaces. These TRL
methods lack scalability and are limited to low-dimensional problems (Arulkumaran et al.,
2017). Nevertheless, complex tasks frequently involve large state spaces and continuous
action spaces. TRL methods struggle to handle such complex tasks with high-dimensional
features. In order to address this challenge, RL is combined with deep learning (DL), giving
rise to the concept of DRL. RL excels in decision-making but is helpless on perception
problems. while although lacking certain decision-making capability, DL demonstrates
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robust perceptual ability. DL can effectively classify the environment and improve the
performance of RL (Qin et al., 2021). DRL synergistically harnesses the strengths of both
RL and DL, integrating neural network into RL to address the challenges associated with
perception and decision-making in complex systems. In DRL, the deep neural network
possesses the capability to autonomously discern and abstract sophisticated features directly
from raw data inputs (Zhang et al., 2022). DRL implements end-to-end learning, acquiring
knowledge directly from original input to output actions, which simplifies the design
process and enhances scalability. With continuous learning and adjustment, the deep
neural network gradually refines. DRL dynamically adjusts to evolving environments and
showcasing superior generalization capabilities. DRL is an artificial intelligence method
that is closer to the way humans think, offering advantages in addressing large-scale and
high-dimensional problems. Treat DRL as HLS of HH, DRL-HH is proposed. The DRL
agent uses deep neural network to approximate the reward value function, ultimately
selecting the most appropriate LLH based on the obtained value. The framework of
DRL-HH is shown in the middle part of Fig. 4. DRL-HH can improve the performance
and robustness of HH, enabling superior handling of high-dimensional data.

Limited study has been conducted onDRL-HH.Dantas, Rego & Pozo (2021) investigated
a selection hyper-heuristic which uses a DQN. This modeled the task of selecting LLH as
a Markov decision process, used DQN to select LLH based on the current observed state
representation, and iteratively improved solutions to the vehicle routing problem (VRP)
and the traveling salesman problem (TSP). Zhang et al. (2022) used DDQN to train the
selection module of HH, which provides better ability to process high-dimensional data.
It also adopts an experience replay strategy to handle uncertainty issues more effectively.
Tu et al. (2023) proposed a new DRL-HH that combines DRL’s end-to-end sequential
decision-making capability with a selection hyper-heuristic. D3QN is used as an advanced
heuristic reinforcement learning algorithm to collect decisions, status and rewards from
the problem environment to improve its own performance. It also uses a feature fusion
method to extract key features of the online environment to solve the online packaging
problem.

Whether it is TRL-HH or DRL-HH, the optimal strategies in these VRL-HHs are
indirectly obtained by the agent using the argmax function to calculate the Q value of LLH.
Although DRL makes up for the shortcomings of TRL, it can only solve the problem of
high-dimensional state spaces and cannot solve the problem of high-dimensional action
spaces. These VRL-HHs might exhibit drawbacks such as a limited description of the
problem and a random nature of the policy, which are commonly encountered in the
search space of LLHs (Qin et al., 2021).

POLICY-BASED REINFORCEMENT LEARNING
HYPER-HEURISTICS
PRL exhibits greater adaptability when confronted with problems presented in high-
dimensional and continuous action spaces. By directly learning the optimal policy, PRL
makes up for the shortcomings of VRL, thereby enhancing stability. Therefore, PRL is used
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to solve the problems associated with high-dimensional action spaces and serves as HLS to
propose PRL-HH to further improve algorithm performance. The framework of PRL-HH
is shown in the bottle of Fig. 4.

PRL usually parameterizes the policy and constructs a policy model. Policy function
in the policy network is typically represented as π (s, LLHi, θ), which indicating the
probability of directly outputting LLHi in state s. The model is controlled by θ , we can
find the optimal strategy by finding the most appropriate rparameter θ . Establishing an
objective function is necessary to find the optimal strategy π , and then θ is found through
various extreme value methods. Iteratively update the parameters θ of the policy function
to maximize the expected return leads to convergence to the optimal policy. The update
formula of parameter θ is:

θ = θ+α∇J (θ) (5)

where θ is the parameter of the policy gradient, α is the learning rate, and is the gradient
of the expected reward.

Proximal policy optimization (PPO) stands as a popular PRLmethod that is used as HLS
to select LLH. Kallestad et al. (2023) proposed deep reinforcement learning hyper-heuristic
(DRLH), which uses PPO to train a DRL agent. This agent effectively utilizes search
state information in each iteration to make better decisions in selecting the next LLH
to be applied. DRLH operates at a micro-level in order to adapt to different problem
conditions and settings. Moreover, the performance of DRLH is not negatively affected
by an increase in the number of available LLHs. Udomkasemsub, Sirinaovakul & Achalakul
(2023) proposed a new policy-based hyper-heuristic framework (PHH) whose uses PPO
as learning algorithm to represent the probability distribution of available LLHs under a
given environmental state. PHH also contains an experience buffer, which stores experience
samples used for training and improving the policy. PHH is applied to solve workflow
scheduling problems in hybrid cloud.Cui et al. (2024) proposed a newDRLHH framework
to solve real-world multi-period portfolio optimization problems. The heuristic selection
module is trained using the PPO algorithm, which computes an update at each step to
optimize the cost function, and ultimately selects the LLH based on the two state vectors
and the experience of the DRL agent.

Distributed proximal policy optimization (DPPO) serves as a distributed implementa-
tion of PPO, which is capable of multi-thread parallelization. Qin et al. (2021) developed a
novel reinforcement learning-based hyper-heuristic (RLHH), whose HLS uses a distributed
proximal policy optimization (DPPO) to select the appropriate LLH at each decision point.
RLHH utilizes a multi-threading method based on asynchronous advantage actor-critic
(A3C) to accelerate the entire training process and converge the policy gradient faster. And
then uses DPPO to calculate the policy gradient to find the next LLH to be executed. This
algorithm effectively overcomes the possible limitations of VRL and effectively solves the
heterogeneous vehicle routing problem.

PRL often requires policy optimization, which can involve highly complex numerical
optimization problems. Inmany cases, policy-based approaches frequently incur substantial
time overheads, particularly in scenarios featuring high-dimensional state spaces and action
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spaces. Moreover, policy-based methods explore in the policy space and require more
samples to learn effective policies, making them inferior to value-based methods in terms
of sample efficiency. Additionally, PRL is also more susceptible to training instabilities,
which can make the training process extremely difficult and make it difficult for the
algorithm to converge. Due to these challenges, there is currently little limited on PRL-HH.

APPLICATION
As a powerful optimization method, RL-HH has very significant practical value. RL-HH
leverages the adaptive capabilities of RL to learn and refine strategies over time, alongside
the flexibility of HH to select and combine LLHs effectively. Such a combination allows
RL-HH to tackle diverse challenges and presents a robust approach to solving complex
optimization problems. By enabling a more nuanced exploration of the solution space
and iterative learning from interactions, RL-HH has demonstrated exceptional value in
areas where traditional methods fall short, including resource allocation, scheduling and
automated decision-making. At present, RL-HH has been successfully implemented in
these optimization challenges, which demonstrates the effectiveness of RL-HH. Table 2
shows the application areas that RL-HH has implemented.

In addition to the application areas mentioned in Table 2, RL-HH can also be deployed
in many other scenarios. For example, RL-HH can be used in the medical and health
field to assist doctors in formulating more precise treatment plans to improve the quality
and efficiency of medical services. In the field of energy management, RL-HH can also
be applied to help operators intelligently schedule energy to achieve energy conservation
and emission reduction. RL-HH has strong practicality. In the future, we need to further
explore RL-HH. Apply RL-HH to solve more real-life problems and develop broader
application prospects.

DISCUSSION
VRL-HHprimarily revolves around estimating the value of each possible LLH in the current
iteration, This method focuses on learning the value function. The core mechanism is to
assign a value to all LLHs during initialization. At each decision point, the most appropriate
LLH is chosen based on the value or through a policy derived from the value function. After
taking an LLH and getting the reward, the value of the previous state-LLH pair is updated
iteratively using the Bellman equation. Through the learning process, the algorithm will
always choose the most suitable LLH at the moment.

Unlike VRL-HH, PRL-HH is characterized by directly optimizing the policy that maps
state to LLH without using value functions as an intermediary. The key to PRL-HH is to
parameterize the policy, this policy defines the probability of selecting each LLH in the
current state. Then LLH is selected based on probabilities derived from the policy. The
policy parameters are adjusted based on the gradient of the expected reward. So that the
parameters are moved in the direction that maximally increases the expected reward. As a
result, PRL-HH gradually improves the mechanism for selecting LLH.
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Table 2 Real-life applications of RL-HH.

Application areas Representative papers

Scheduling problem Özcan et al. (2010), Ferreira, Goncalves & Trinidad
Ramirez Pozo (2015), Sin (2011), Lamghari &
Dimitrakopoulos (2020), Yin et al. (2023),
Falcão, Madureira & Pereira (2015),Zhang & Tang (2021),
Cheng et al. (2022), Lin, Li & Song (2022), Zhao, Di & Wang
(2023),
Zhang et al. (2023b), Zhang et al. (2023c)

Allocation Problem Ahmed et al. (2021), Ji et al. (2023), Ji et al. (2023)
Traveling salesman problem Pylyavskyy, Kheiri & Ahmed (2020), Udomkasemsub,

Sirinaovakul & Achalakul (2023),Mosadegh, Fatemi Ghomi
& Süer (2020)

Vehicle routing problem Garrido & Castro (2012), Sabar et al. (2015), Yao, Peng &
Xiao (2018),Mosadegh, Fatemi Ghomi & Süer (2020), Zhang
& Tang (2021)

Packing problem Ferreira, Goncalves & Trinidad Ramirez Pozo (2015),
Ahmed et al. (2020), Gölcük & Ozsoydan (2021)

Knapsack problem Zhang et al. (2023a), , Gölcük & Ozsoydan (2021)
Vehicle crashworthiness problem Santiago Júnior, Özcan & Carvalho (2020), Li, Ozcan & John

(2019), Zhang et al. (2023a)
Multi-period portfolio optimization problem Cheng et al. (2022)
Structural damage identification problem Cao et al. (2022)

The difference betweenVRL-HHandPRL-HH ismainly reflected in the following points.
First, in terms of complexity and efficiency, VRL-HH can be computationally efficient in
discrete and smaller action spaces, whereas PRL-HH can handle complex, continuous
action spaces more effectively. Furthermore, as far as applicability is concerned, VRL-HH
is often preferred in environments where an explicit value can be assigned to LLHs, while
PRL-HH excels in scenarios where modeling the environment directly through policies
can offer better performance without the intermediate step of value estimation.

Both VRL-HH and PRL-HH have had a profound impact on theory and practice, and
each has unique advantages and limitations.

From a theoretical perspective, VRL-HH is able to handle problems in continuous state
and action spaces. Because of the value-based nature, VRL-HH can provide deep insights
into the problem structure. However, VRL-HH may also face the challenge of the curse
of dimensionality, especially when the state or action space is very large. Furthermore,
for some complex problems, it may be difficult to accurately estimate the value. PRL-HH
performs better on problems with high dimensions and continuous action spaces. Due
to the property of directly optimizing strategy, PRL-HH can usually converge to a better
strategy faster. But PRL-HH also faces the problem of policy degradation. Moreover, PRL-
HH generally requires more computing resources because it requires direct optimization
of the parameters of the policy.

From the perspective of the impact on practice, VRL-HH accurately evaluates the value
function and is suitable for scenarios that require accurate evaluation of future potential
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returns, such as resource allocation problems. However, for complex problems with high
real-time requirements or the need to process large amounts of data, VRL-HH requires
a large amount of storage and computing resources, which is impractical in real-time or
resource-constrained environments. In comparison, PRL-HH is more suitable for solving
complex problems. PRL-HH can usually better adapt to environmental changes and is
suitable for solving real-time challenges. However, PRL-HH requires more interactive
samples to learn effective strategies, which is a limiting factor in practical applications
where sample acquisition costs are high.

Although a lot of progress has been made in RL-HH, many limitations in this field still
exist as follows:

(1) Lack of theoretical knowledge analysis of RL-HH. The theoretical foundation
of RL-HH necessitates further exploration, particularly in terms of theoretical analysis
encompassing the RL-HH’s convergence, convergence speed, and stability.

(2) One of the fundamental challenges in RL-HH is the design of RL. The efficacy of
RL-HH mainly relies on the capability of RL. Improperly designed RL can lead to poor
overall performance of RL-HH.

(3) The lack of adaptive research is also an obstacle to the current development of
RL-HH. The existing RL-HH cannot adapt well to the characteristics and needs of different
problem areas.

(4) The computational cost of RL-HH is also one of the unresolved limitations. This
limitation is a critical concern when aiming for real-time applications or scenarios where
computational resources are limited.

(5) Both VRL-HH and PRL-HH have their own limitations. How to combine them to
create a more powerful and flexible RL-HH has yet to be solved.

In view of the above limitations, there are many future research courses on RL-HH.
(1) Adequate theoretical analysis is crucial for the development of RL-HH. A

comprehensive analysis of these theoretical aspects will not only enhance our understanding
of RL-HH but also contribute to the robustness and reliability of RL-HH in various
problem-solving scenarios. Theoretical advancements can help us better understand
RL-HH, thereby fostering the applicability and effectiveness of RL-HH in different fields.

(2) The performance of RL directly affects the effect of RL-HH. In the future we can
integrate advanced and efficient RL algorithms into the framework of HH. The learning
and decision-making capabilities of HH can be significantly enhanced by refining and
incorporating state-of-the-art RL.

(3) Developing adaptive RL-HH is also a focus of future research efforts. In-depth
research on adaptive RL-HH to dynamically adapt to different properties and need of
various problem domains is urgently needed. The adaptability of RL-HH to environmental
changes can be enhanced through research on multi-task learning, transfer learning and
combination with model predictive control.

(4) Reducing the computational cost of RL-HH is also a course worthy of research in
the future. The reduction in computing costs is beneficial to speeding up the execution of
RL-HH and can improve the overall computing resource utilization. In future research,
computing costs can be reduced by developing more efficient models such as using
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approximate dynamic programming or using caching technology to reduce redundant
calculations.

(5) Combining the respective advantages of VRL-HH and PRL-HH to develop new
hybrid RL-HH is also a future direction worth exploring. Hybrid RL-HH can take full
advantage of the stability and accuracy of VRL-HH and the flexibility of PRL-HH in
processing high-dimensional space.

At the same time, with the continuous advancement of related technologies and the
emergence of new problems, we also need to continue to explore and develop new RL-HH
to deal with various challenges.

CONCLUSION
RL-HH is a frontier ofmulti-field cross-research. As an important optimization technology,
RL-HH has received widespread attention and application. By integrating reinforcement
learning with hyper-heuristic evolutionary algorithm, RL-HH endeavors to improve the
efficiency and performance of hyper-heuristic evolutionary algorithm. Research in this
burgeoning field has made significant progress. The problem-solving ability of RL-HH
has been verified in many literatures, with grate potential for practical application. In this
research, we elucidate the fusion of value-based and policy-based RL methods with HH,
delineating the distinct advantages offered by various RL-HHs. Furthermore, we provide a
comprehensive summary of existing RL-HH methodologies. Through this study, we hope
to provide researchers in related fields with a comprehensive understanding of RL-HH,
thereby promoting further development and research on RL-HH.
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