
Submitted 5 January 2019
Accepted 15 July 2019
Published 12 August 2019

Corresponding author
Lars G. Willighagen,
lars.willighagen@gmail.com

Academic editor
Silvio Peroni

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.214

Copyright
2019 Willighagen

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Citation.js: a format-independent,
modular bibliography tool for the
browser and command line
Lars G. Willighagen
Eindhoven, The Netherlands

ABSTRACT
Background. Given the vast number of standards and formats for bibliographical data,
any program working with bibliographies and citations has to be able to interpret such
data. This paper describes the development of Citation.js (https://citation.js.org/), a
tool to parse and format according to those standards. The program follows modern
guidelines for software in general and JavaScript in specific, such as version control,
source code analysis, integration testing and semantic versioning.
Results. The result is an extensible tool that has already seen adaption in a variety of
sources and use cases: as part of a server-side page generator of a publishing platform,
as part of a local extensible document generator, and as part of an in-browser converter
of extracted references. Use cases range from transforming a list of DOIs or Wikidata
identifiers into a BibTeX file on the command line, to displaying RIS references on a
webpage with added Altmetric badges to generating ’’How to cite this’’ sections on a
blog. The accuracy of conversions is currently 27% for properties and 60% for types
on average and a typical initialization takes 120 ms in browsers and 1 s with Node.js on
the command line.
Conclusions. Citation.js is a library supporting various formats of bibliographic
information in a broad selection of use cases and environments. Given the support
for plugins, more formats can be added with relative ease.

Subjects Computer Networks and Communications, Digital Libraries
Keywords Bibliography, Javascript

INTRODUCTION
All research extends or uses knowledge from other research. With the primary goal
of scholarly publishing being the distribution of knowledge, it is important that the
publications—and the literature they cite—are distributed in an accessible, identifiable
and findable manner (Shotton, 2013). That also allows the analysis and visualisation of how
research cites each other (Shotton, 2013; van Eck & Waltman, 2014). While traditionally
journals required text-based citations, each formatted in their own specific style, the
last few decades the use of Persistent IDentifiers (PIDs) has become commonplace, with
Digital Object Identifiers (DOIs) being the most common for scholarly articles, and
International Standard Book Numbers (ISBNs) for books. These PIDs are then linked to
central stores that provide machine-readable bibliographic information, such as Crossref
and DataCite (Lammey, 2015; Brase, 2009; Neumann & Brase, 2014).

How to cite this article Willighagen LG. 2019. Citation.js: a format-independent, modular bibliography tool for the browser and com-
mand line. PeerJ Comput. Sci. 5:e214 http://doi.org/10.7717/peerj-cs.214

mailto:lars.willighagen@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.214
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://citation.js.org/
http://doi.org/10.7717/peerj-cs.214

Since most kinds of PIDs are intended for certain kinds of publication, be it data sets,
journal articles, books or code repositories, the bibliographic information is stored in a
format intended for that kind of publication. As a result, there are many different stores
and many different formats: Libraries use Machine-Readable Cataloging (MARC) (Avram,
2003) and similar formats, Wikidata (Malyshev et al., 2018) and WikiCite (Taraborelli et
al., 2017) have their own scheme; DataCite has DataCite eXtensible Markup Language
(XML) and JavaScript Object Notation (JSON) (De Smaele et al., 2017); and Crossref has
Crossref UNIXREF (Crossref, 2018). Similarly, most reference managers have their own
formats too: Zotero and EndNote have their own schemes (Vinckevicius, 2017; EndNote,
2012), and Office Word has an XML namespace (Microsoft, 2018). On top of that there are
a lot of old and new formats created for a variety of reasons, like BibTeX (Patashnik, 1988),
Citation Style Language (CSL) (Zelle, 2012), Research Information Systems (RIS) (Reference
Manager, 2012), and the Bibliographic Ontology (BIBO) (D’Arcus & Giasson, 2009).

This leads to reduced findability between organisations and disciplines (Godby, Young
& Childress, 2004; Zinn et al., 2016), and reference managers need to maintain parsers
for numerous formats and different types of citable resources (articles, books, data,
software (Smith, Katz & Niemeyer, 2016), etc.). The management requires a detailed
description of the source being referenced and preferably link to the full-text too (Hull,
Pettifer & Kell, 2008). A second requirement is their ability to convert references into
citations, according to the norms for formatting citations inwriting (Gilmour & Cobus-Kuo,
2011). Reference managers assist in keeping references accessible and machine-readable,
ready to be formatted for use in citation (Fenner, Scheliga & Bartling, 2014).

Existing managers, like Zotero, either require a client desktop program or a server,
or have entirely proprietary backends. This paper introduces Citation.js, a standalone
JavaScript library capable of running in the browser, on a server and as a CLI. It consists
of a set of parsers and formatters (see Fig. 1) that together allow for the conversion of
different metadata formats via a central format, CSL-JSON (Bennett et al., 2018). To better
suit individual needs, and to minimize unnecessary code which is especially important in
the browser, Citation.js is fully modularised. Formats are bundled in thematic plugins,
which can be installed separately. For formatted bibliographies and citations, CSL styles and
locales are used with citeproc-js (Zelle, 2012; Bennett et al., 2018). This paper describes
how Citation.js is developed, documented, tested, and released.

BACKGROUND
Crosswalks
To convert one data format (or scheme) to another, a crosswalk is used. A crosswalk is a
set of mappings between equivalent properties and entry types in different formats (Pierre
& LaPlant, 1998). First of all, for most properties a simple mapping suffices: title in
BibTeX refers to the same concept as it does in BibJSON and CSL-JSON. On top of that,
the property coincides with TI in RIS. This mapping could come in the form of a JSON
Linked Data (JSON-LD) context, as done by CodeMeta (Jones et al., 2017), as eXtensible
Stylesheet Language Transformations (XSLT), as discussed by Godby, Smith & Childress
(2003).

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

Figure 1 Program setup of Citation.js. Everything within the dotted square is part of Citation.js or its
dependencies. Extraction is separating data from noise, look-up is fetching information based on a Uni-
form Resource Locator (URL) or PID, parsing is transforming text-based formats into data structures, and
translation is transforming data structures with different schemas. Two types of output are supported: ci-
tations and bibliography, and machine-readable references.

Full-size DOI: 10.7717/peerjcs.214/fig-1

Second, some mappings are context-dependent. For example, consider the CSL-JSON
properties author and reviewed-author in relation to the RIS properties author (AU) and
reviewer (usually C4). Normally, AUmaps to author. However, if the entry being converted
has the review entry type, AU maps to reviewed-author while author maps to C4.

Third, the data format of the values needs to be converted. While title in BibTeX
can have formatting in the form of TeX, title in CSL-JSON uses a subset of HTML for
formatting, and TI in RIS does not have formatting at all. Properties can also have different
data types. In CSL-JSON, author is a list of objects, while authors in BibTeX, which
describes the same concept, is serialized text delimited by " and ".

Finally, theremight not be a one-to-onemapping between properties. For instance, page
in CSL-JSON maps to both start and end in Citation File Format (CFF) (Druskat et al.,
2018). Similarly, page, issue, volume and ISSN are all top-level properties in CSL-JSON,
while the corresponding properties in Wikidata are proposed to be nested in the journal
property.

Since the last two aspects can lead to information loss, crosswalks often need to be
one-directional converters between two formats. To not have to create crosswalks between
every possible combination of supported formats, one could define a central format,
similar to the ‘‘interoperable core’’ in the ’’long translation path’’ proposed by Godby,
Smith & Childress (2003). It is however important that the central format can hold as
much information as should be represented in any of the output formats, as to prevent
information loss when converting between two formats.

Existing tools
Bibutils is very similar to Citation.js in that it also is a set of converters with a central format,
there the Metadata Object Description Schema by the Library of Congress (Putnam, 2005).

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 3/20

https://peerj.com
https://doi.org/10.7717/peerjcs.214/fig-1
http://dx.doi.org/10.7717/peerj-cs.214

Bibutils is used as a set of CLI programs, and does not directly allow formatting as
citations and bibliographies. More recently, astrocite was created, a set of parsers that all
output CSL-JSON (Sifford, 2019). Astrocite uses Abstract Syntax Trees (ASTs) and formal
grammars, which should make it easier to write, read and maintain parsers. For drawbacks
of formal grammars, see the Outlook.

The impact of reference managers should also not be underestimated. However, most
reference managers have proprietary backends or require human input to use. Even Zotero,
which is open source, is only commonly used via the client or alternatively as a server.
While the fact that it has a server already allows for many more possibilities than other
managers, it remains difficult to run a standalone program, which Citation.js does allow.

APPROACH
As mentioned, Citation.js converts different bibliographical formats into each other. To
achieve interoperability without too much work, a central format is chosen. All input is
converted into this central format, and all output is created from it, adopting the approach
of the ‘‘long translation path’’ with the ‘‘interoperable core’’ by Godby, Smith & Childress,
2003. See also Fig. 1.

Input is parsed iteratively: for each distinct format along the way from the input to the
central format, a separate parser function is defined. This allow progressive enhancement,
easily replacing parts of the parsing process without touching the rest, and lets users input
intermediate formats without second thought.

Parsing iteratively is relatively simple, because all different kinds of input should get
turned into a single type anyway: you do not have to choose what format you need next,
you only have to recognize and parse what you have now. However, a similar process
for output does not make as much sense. With output formatting, there is only one kind
of input, the central format, and several kinds of output. If output formatting should be
done iteratively as well, the paths to reach final output formats would have to be defined
separately.

The Approach section is organized as follows. First, methods used while developing the
software are listed. Then, design choices of the code itself, and how to install and use it is
explained. Last, the method to evaluate the results is described.

Software Development
The software was developed using modern standards: version control with Git,
semantic versioning for releases (Preston-Werner, 2013), open source archives on
GitHub (https://github.com/larsgw/citation.js; https://github.com/citation-js) and Zenodo
(https://doi.org/10.5281/zenodo.1005176), browser bundles with browserify (Halliday
et al., 2018), compatible code with Babel (Zhu et al., 2018), integration testing using
the Travis-CI service (Travis, 2018), code linting (source code analysis) with ESLint
(Zakas et al., 2018) and Standard (Aboukhadijeh et al., 2018), checking RegExp’s for
ReDOS vulnerabilities with vuln-regex-detector (Davis et al., 2018), and detailed
documentation with JSDoc (Williams et al., 2018).

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 4/20

https://peerj.com
https://github.com/larsgw/citation.js
https://github.com/citation-js
https://doi.org/10.5281/zenodo.1005176
http://dx.doi.org/10.7717/peerj-cs.214

The development process took place with Node.js and npm. First off, any changes
would be linted and tested with the aforementioned tools. Bugs or new features can also
warrant the introduction of new test cases. If the changes work properly, they are then
committed into the version control. If the changes warrant a new release, or if enough
changes have piled up for a new release, the change log is updated. Updating the version
in the package metadata automatically triggers the linters and test runners, preventing
accidental mistakes. Afterwards, publishing the package to npm automatically triggers the
generation of files necessary for the package. The scripts used for this are described in
https://github.com/larsgw/citation.js/blob/90cd68c/CONTRIBUTING.md#installing.

Libraries
Apart from tools used for development, Citation.js also uses a number of runtime libraries.
Their function and the reason for using them is explained below.

@babel/polyfill is a runtime library which fills in support for modern APIs on older
platforms. It comes with the use of Babel to transform modern
syntax for older platforms (Zhu et al., 2018).

citeproc-js is a widely usedCSL formatting librarywritten in JavaScript (Bennett
et al., 2018; Citation Style Language, 2018).

commander is a utility library, only used for the Command Line Interface (CLI).
It parses the command line arguments and generates documentation
(Holowaychuk et al., 2018).

isomorphic-fetch is a specific polyfill, a library filling in support, for the Fetch
Application Programming Interface (Fetch API), a modern way of
requesting web resources. It works in both Node.js and browsers
(Andrews et al., 2018).

sync-request is a way to request web resources synchronously (Lindesay et al.,
2018). While performing such operations synchronously is advised
against in JavaScript, it is still useful for non-production scientific
scripts, and demos.

wikidata-sdk is a utility library for working with the Wikidata API (Lathuiliére et
al., 2018; Vrandečić & Krötzsch, 2014)

Implementation
Citation.js employs a number of ways to achieve a balance between function and ease of
use. The program consists of three major parts: the bibliography interface, code handling
input parsing, and code handling output formatting. The bibliography interface itself is
quite simple; it mainly acts as a wrapper around the parsing and formatting parts. These
two parts behave in a modularised way, with a common plugin system.

Input parsing
Input parsing works by registered input formats. These registrations include an optional
type recognizer and a synchronous and/or an asynchronous function transforming the
input into a format closer to the final format: CSL-JSON. The new input can then be tested
again, and will be parsed iteratively until the final format is reached. Plugin authors are

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 5/20

https://peerj.com
https://github.com/larsgw/citation.js/blob/90cd68c/CONTRIBUTING.md#installing
http://dx.doi.org/10.7717/peerj-cs.214

encouraged to create input parsers with as small steps as possible, to allow users to input a
variety of different formats.

Type recognition is done with a search tree. First of all, types are ordered by
the data type of the input. This is one of: String (unparsed text, identifiers, etc.),
SimpleObject (standard JavaScript Object), Array (a possibly non-uniform list of
inputs), ComplexObject (other non-literal values) and Primitive (numbers, null,
undefined). The data type can be inferred from other format specifications in some cases.
Types can also be specified to be a more specific version of something else. For example,
a DOI URL is also a normal URL, but should be parsed differently, namely with content
negotiation.

Types can then provide a list of predicates, testing if input belongs to that format. To
avoid code repetition and make plugin registration code easier to read, certain common
tasks can also be accomplished using shortcuts. These shortcuts include testing text against
a RegExp pattern, checking for certain properties and checking for the value of elements in
an array. These properties can also eliminate the need for an explicit data type: for example,
if a RegExp is provided, input can be expected to be a String.

Output formatting
Output formatting is less complicated. Users and developers only have to provide the
identifier of the formatter. Further customization can then be done by providing options,
which are automatically forwarded to the formatter. This allows the CSL plugin to take
in options specifying the template and locale, for example. All formatting producing
bibliographies and citations is done with citeproc-js (Bennett et al., 2018).

Plugin system
Apart from being able to add input and output formats and schemes on their own, it is
also possible to add them in a thematically linked plugin. For example, a BibTeX plugin
might consist of a parser for .bib files, a parser for the resulting BibTeX-schemed JSON,
and an output formatter to create BibTeX from other sources as well. This plugin could
then be combined with, for example, a Bib.TXT plugin, resulting in a JavaScript package
or module, which could be published in package managers like npm. Code for this plugin
would look like Fig. 2.

For configuring plugins there is also a config option. As an example a labelForm option
is added, which could control the way the BibTeX output formatter generates labels. Users
of this plugin can then retrieve and modify this configuration. It is also possible to offer
internal functions this way, for more fine-grained control.

Bibliography interface
The methods for parsing input and formatting output are also included in a general class,
Cite. Class instances also have access to opt-in version control—changes are tracked if
an explicit flag is passed—and sorting. The latter currently does not have effect on CSL
bibliographies unless set with the nosort option, as the styles define their own sorting
method.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

1 let Cite = require('citation-js')
2

3 Cite.plugins.add('bibtex', {
4 input: {
5 '@bibtex/text': {
6 parseType: { ... },
7 parse (text) { ... }
8 },
9 '@bibtex/object': {

10 parseType: { ... },
11 parse (text) { ... }
12 }
13 },
14

15 output: {
16 bibtex (data, options) {
17 ...
18 }
19 },
20

21 config: {
22 labelForm: ['author', 'title', 'issued']
23 }
24 })
25

26 let bibtexConfig = Cite.plugins.config.get('bibtex')
27 bibtexConfig.labelForm = ['author', 'issued', 'year-suffix']

Figure 2. Possible structure of a plugin for BibTeX. In this example package, line 1 loads Citation.js
and lines 2-24 adds the plugin. This plugin consists of two input formats (4-13), one output format (15-19)
and configuration options (21-23). Lines 26-27 show how this configuration would be used. Some code is
omitted for the sake of clarity, and is replaced with ellipsis (...).

Plugin system181

Apart from being able to add input and output formats and schemes on their own, it is also possible to add182

them in a thematically linked plugin. For example, a BibTeX plugin might consist of a parser for .bib183

files, a parser for the resulting BibTeX-schemed JSON, and a output formatter to create BibTeX from other184

sources as well. This plugin could then be combined with, for example, a Bib.TXT plugin, resulting in185

a JavaScript package or module, which could be published in package managers like npm. Code for this186

plugin would look like Fig. 2.187

For configuring plugins there is also a config option. As an example a labelForm option is added,188

which could control the way the BibTeX output formatter generates labels. Users of this plugin can then189

retrieve and modify this configuration. It is also possible to offer internal functions this way, for more190

fine-grained control.191

Bibliography interface192

The methods for parsing input and formatting output are also included in a general class, Cite. Class193

instances also have access to opt-in version control — changes are tracked if an explicit flag is passed — and194

sorting. The latter currently does not have effect on CSL bibliographies unless set with the nosort option,195

as the styles define their own sorting method.196

Supported formats197

Table 1 shows the formats supported by Citation.js at the moment.198

6/18

PeerJ Comput. Sci. reviewing PDF | (CS-2018:12:33959:2:0:NEW 11 Jul 2019)

Manuscript to be reviewedComputer Science

Figure 2 Possible structure of a plugin for BibTeX. In this example package, line 1 loads Citation.js and
lines 2–24 adds the plugin. This plugin consists of two input formats (4–13), one output format (15–19)
and configuration options (21–23). Lines 26–27 show how this configuration would be used. Some code is
omitted for the sake of clarity, and is replaced with ellipsis (...).

Full-size DOI: 10.7717/peerjcs.214/fig-2

Table 1 Input and output format support. This table only shows general support. For example, the
‘‘Wikidata’’ format is both used for Wikidata identifiers and Wikidata API results.

Format BibJSON BibTeX Bib.TXT CSL DOI RIS Wikidata

Input x x x (JSON) x x
Output x x x x

Supported formats
Table 1 shows the formats supported by Citation.js at the moment.

Distribution
Browser use
For in-browser use, there is also a standalone JavaScript file available. This includes
dependencies. This bundle is built automatically when publishing, and is available through
a number of Content Delivery Networks (CDNs) that automatically distribute npm
packages. The Cite class can then be imported and used just as the npm package, barring
browser limitations.

For simple use cases like inserting static bibliographies, a separate tool,
citation.js-replacer, was developed. When included on a page, this replaces
every HyperText Markup Language (HTML) element matching a certain selector with
a bibliography.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 7/20

https://peerj.com
https://doi.org/10.7717/peerjcs.214/fig-2
http://dx.doi.org/10.7717/peerj-cs.214

1 <html>
2 <head>
3 <!-- Altmetric widget code --> <script

src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script>→֒
4 <script src="https://cdn.jsdelivr.net/npm/citation-js"></script>
5 </head>
6 <body>
7 <div id="element"></div>
8 <script>
9 window.onload = async function () {

10 let Cite = require('citation-js')
11 let cite = await Cite.async('10.1371/journal.pone.0185809')
12

13 let bibliography = cite.format('bibliography', {
14 format: 'html',
15 append ({DOI}) {
16 return ` `
17 }
18 })
19

20 let element = document.getElementById('element')
21 element.innerHTML = bibliography
22 _altmetric_embed_init()
23 }
24 </script>
25 </body>
26 </html>

Figure 3. Basic use, including appending data to formatted bibliography entries. Here, line 3 loads
the Altmetric widget code, line 4 loads the library, line 10 imports Cite, and line 11 creates an interface for
a bibliography with one entry, with metadata from a DOI. Lines 13-18 render the bibliography, with line 14
setting the output to HTML and lines 15-17 appending an Altmetric widget to the entry. Lines 20-21 show
the output on the page. Lines 9 and 22 are to avoid race conditions in DOM access. Line 3 and 22 initialize
the Altmetric badge. In the example, (Hallmann et al., 2017) is used.

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., … de Kroon, H. (2017). More than
75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809.
https://doi.org/10.1371/journal.pone.0185809

Figure 4. Result of the code in Fig. 3. Bibliography consisting of Hallmann et al. (2017) in APA style.
Note the Altmetric badge at the end.

templating language to generate citations when creating Portable Document Format (PDF) documents,234

and the npm package citation-js-showdown was created as a demo on how to introduce syntax for235

citations in Markdown.236

Evaluation237

Coverage238

Coverage of types and properties was determined by creating two spreadsheets, one with all of the CSL239

types and one with all of the CSL variables. Then, columns where created for other supported formats and240

filled in with the corresponding type or property in that format. The amount of mappings were counted as a241

percentage of the total possible mappings, i.e. the total amount of types or properties, available in CSL.242

This method of counting skews the perspective as not all properties and types can plausibly be mapped,243

8/18

PeerJ Comput. Sci. reviewing PDF | (CS-2018:12:33959:2:0:NEW 11 Jul 2019)

Manuscript to be reviewedComputer Science

Figure 3 Basic use, including appending data to formatted bibliography entries.Here, line 3 loads the
Altmetric widget code, line 4 loads the library, line 10 imports Cite, and line 11 creates an interface for a
bibliography with one entry, with metadata from a DOI. Lines 13–18 render the bibliography, with line
14 setting the output to HTML and lines 15–17 appending an Altmetric widget to the entry. Lines 20–21
show the output on the page. Lines 9 and 23 are to avoid race conditions in DOM access. Lines 3 and 22
initialize the Altmetric badge. In the example, (Hallmann et al., 2017) is used.

Full-size DOI: 10.7717/peerjcs.214/fig-3

1 <html>
2 <head>
3 <!-- Altmetric widget code --> <script

src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script>→֒
4 <script src="https://cdn.jsdelivr.net/npm/citation-js"></script>
5 </head>
6 <body>
7 <div id="element"></div>
8 <script>
9 window.onload = async function () {

10 let Cite = require('citation-js')
11 let cite = await Cite.async('10.1371/journal.pone.0185809')
12

13 let bibliography = cite.format('bibliography', {
14 format: 'html',
15 append ({DOI}) {
16 return ` `
17 }
18 })
19

20 let element = document.getElementById('element')
21 element.innerHTML = bibliography
22 _altmetric_embed_init()
23 }
24 </script>
25 </body>
26 </html>

Figure 3. Basic use, including appending data to formatted bibliography entries. Here, line 3 loads
the Altmetric widget code, line 4 loads the library, line 10 imports Cite, and line 11 creates an interface for
a bibliography with one entry, with metadata from a DOI. Lines 13-18 render the bibliography, with line 14
setting the output to HTML and lines 15-17 appending an Altmetric widget to the entry. Lines 20-21 show
the output on the page. Lines 9 and 22 are to avoid race conditions in DOM access. Line 3 and 22 initialize
the Altmetric badge. In the example, (Hallmann et al., 2017) is used.

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., … de Kroon, H. (2017). More than
75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809.
https://doi.org/10.1371/journal.pone.0185809

Figure 4. Result of the code in Fig. 3. Bibliography consisting of Hallmann et al. (2017) in APA style.
Note the Altmetric badge at the end.

templating language to generate citations when creating Portable Document Format (PDF) documents,234

and the npm package citation-js-showdown was created as a demo on how to introduce syntax for235

citations in Markdown.236

Evaluation237

Coverage238

Coverage of types and properties was determined by creating two spreadsheets, one with all of the CSL239

types and one with all of the CSL variables. Then, columns where created for other supported formats and240

filled in with the corresponding type or property in that format. The amount of mappings were counted as a241

percentage of the total possible mappings, i.e. the total amount of types or properties, available in CSL.242

This method of counting skews the perspective as not all properties and types can plausibly be mapped,243

8/18

PeerJ Comput. Sci. reviewing PDF | (CS-2018:12:33959:2:0:NEW 11 Jul 2019)

Manuscript to be reviewedComputer Science

Figure 4 Result of the code in Fig. 3. Bibliography consisting of Hallmann et al. (2017) in APA style.
Note the Altmetric badge at the end.

Full-size DOI: 10.7717/peerjcs.214/fig-4

Figure 3 shows an example of another use case. For example, the basic use can be
extended to add additional information to citations, such as an Altmetric (Adie & Roe,
2013) score icon or Dimensions citation count (Thelwall, 2018). The output is shown in
Fig. 4.

npm package
Citation.js is published as an npm package on the main npm registry, as citation-js.
Use of the package is the same anywhere, apart from platform limitations. For example,
synchronous requests for web resources, used to get metadata for DOIs, is limited on
Chrome as discussed in Willighagen (2017b). Also, the Node.js platform, not being a
browser, doesn’t have access to the Document Object Model (DOM), and so can’t easily
use HTML elements as input or output.

Separate components, including formats not included in the standard configuration are
available under the @citation-js scope.

Use cases for the npm package include using it when generating content (either at
runtime or for static websites) like PubPub (Shihipar & Rich, 2018), and setting up APIs
(Willighagen, 2017a). It is also useful for converting metadata when text mining. For
example, BibJSON is one of the input formats, and can then be converted to BibTeX or

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 8/20

https://peerj.com
https://doi.org/10.7717/peerjcs.214/fig-3
https://doi.org/10.7717/peerjcs.214/fig-4
http://dx.doi.org/10.7717/peerj-cs.214

formatted. All references for GitHub projects were created with a simple script running
Citation.js.

CLI use
Simple one-time conversions, with no extensive customization, can also be done with
Command Line Interface (CLI). The command can be installed with npm, which may
require root privileges depending your setup. Alternatively, any commands can be prefixed
with npx instead. The command can get input text from files, command line arguments
or via standard in. Output can be configured with a number of options detailed in the man
file, also available by running with the -h, -help option. Any output is then written to a
file or redirected to standard out.

Integrations
The Citation.js npm package can also be used as a library to create integrations with, among
other things, word processing systems. For example, ReLaXed (Zulko et al., 2018) integrates
Citation.js into the Pug templating language to generate citations when creating Portable
Document Format (PDF) documents, and the npm package citation-js-showdown was
created as a demo on how to introduce syntax for citations in Markdown.

EVALUATION
Experimental setting
Coverage
Coverage of types and properties was determined by creating two spreadsheets, one with
all of the CSL types and one with all of the CSL variables. Then, columns where created
for other supported formats and filled in with the corresponding type or property in
that format. The amount of mappings were counted as a percentage of the total possible
mappings, i.e., the total amount of types or properties, available in CSL.

This method of counting skews the perspective as not all properties and types can
plausibly be mapped, either because no equivalent term exists in the other format, or
because the existence is currently unknown to the authors. This is explained in more detail
in the results.

Impact
To collect dependent projects, theGitHubDependencyNetworkswas used,which lists other
GitHub repositories listing Citation.js as a dependency. To find dependent repositories on
different hosting platforms, a search on the respective hosting platforms and Google was
carried out. Additionally, projects known to the authors to use the library were listed. Of
those lists, a diverse set of projects was extracted by hand, followed by a check to see if and
how Citation.js is used.

For download counts, npm-stat.com was chosen because of its ability to collect
download statistics over specific, multi-year time frames.

Performance
Performance statistics were gathered by recording runtime performance in the Chrome
DevTools and the Firefox Developer Tools while importing Citation.js in the browser. The

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

Table 2 Mapping statistics. The number of CSL-JSON properties and types mapped to different formats.
See Table S1.

CSL-JSON Wikidata Wikidata (>0.4.4) BibTeX RIS BibJSON

Properties 78 24 (31%) 46 (59%) 21 (27%) 42 (54%) 20 (27%)
Types 35 31 (89%) 31 (89%) 11 (31%) 30 (86%) 11 (31%)

results were obtained with the default settings for each of the platforms. In Chrome, this
was achieved by using guest mode, while no custom settings were used for Firefox and Node
was used without command-line options affecting performance.

The sizes of the different components was determined with the disc tool (Kennedy et al.,
2019).

Results
Coverage
An important aspect of Citation.js, other than parsing and formatting specific syntaxes, is
the mappings between different formats. Since creating mappings between each format is
often unnecessarily much work, CSL-JSON was chosen as a central format. To review the
existing mappings, the number of mapped properties and entry types relative to CSL-JSON
were counted. Table 2 shows those results.

While the numbers may seem low, note that not every CSL-JSON property can be
mapped: the intentions behind at least three properties are contested (Wiernik, 2018), the
values of two other properties can usually be derived from other fields, ten properties
are specific to references and may not apply to resource-describing schemas, and twenty
properties could be reduced to just eight with linked data. Additionally, a number of
properties have limited documentation and usage, making it difficult to determine what
the exact meaning is.

On top of that, the other formats may not have enough well-defined properties to
map either. The BibTeX and BibJSON mappings, the latter being based on BibTeX, are
limited by the low number of known properties and types. Without an authoritative list
of properties, examples from a range of sources were used to define a mapping, which
consequently lacked lesser-used properties. The Wikidata mapping has the most potential
for expansion due to the large number of described properties. In fact, a recent Citation.js
update nearly doubled the number of mapped properties to 46 (59%). At that point, the
CSL specification becomes limiting again.

The number of mapped RIS properties is actually higher than expected; the RIS mapping
has a lot of one-to-many and many-to-one mappings, which makes it inconsistent while
artificially raising the number of mapped properties. Since there is no authoritative
document other than an Internet-Archived spreadsheet linked to on Wikipedia (Reference
Manager, 2012), the current mapping is partially based on the Zotero translator for RIS.

Apart from property and type mappings, value conversion affect the accuracy of results
as well. For example, since BibTeX does not encode information about how names are built
up, such information has to be estimated. While this is seems to be going fine for Western
names, other naming systems may not work as well. The same goes for how RIS encodes

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214#supp-1
http://dx.doi.org/10.7717/peerj-cs.214

Table 3 Different uses of Citation.js found in the wild. Some of these projects contributed valuable feedback to the development of Citation.js.

User Use Parsing Formatting

wcite (Voß, 2019) CLI tool for managing a Wikidata
bibliography

Wikidata Yes

Reference Extractor (Zelle & Zumstein, 2018) Browser tool extracting references from
Word documents

No Yes

PubPub (Shihipar & Rich, 2018) Live server-side generation of citations
(with REST API)

No CSL, BibTeX

service-based-antipatterns (Boceck, Popp & JREB, 2019) Live in-browser generation of citations No CSL, BibTeX
ds.korea.ac.kr, ccv.brown.edu Static site generation of lists of publications BibTeX/DOI CSL
dabai.compute.dtu.dk Live in-browser generation of lists of

publications
Wikidata CSL

schol-js, RelaxedJS (Czerwinski, 2018; Zulko et al., 2018) Document generation Yes Yes
Ovide, Fonio (de Mourat & Rabot, 2019; de Mourat, Plique
& Pichon, 2019)

Experimental publishing platform BibTeX CSL

PolarisOS (Ribeyre, Louis-Marie & MyScienceWork, 2019) Library management system and repository No CSL

names: a first name, a last name and an optional suffix. Note, however, that Zotero, which
uses CSL, is not particularly geared towards any naming schemes other than the most
simple, as noted by D’Arcus (2008). Also, style guides themselves may not have rules for
non-Western names either (Qiu, 2008; Puniamoorthy, Jeevanandam & Narayanan Kutty,
2008).

Impact
Since Citation.js was published as an npm module, it has been used independently of the
authors in a variety of use cases. With the GitHub Dependency graph, Google, and via
Twitter, a number of those uses can be identified, listed in Table 3. The download count is
also increasing, as can be seen in Fig. 5. Between the first version in October 2016 and 26
April 2019, our package was downloaded a total of 26,718 times.

Performance
The performance of the Citation.js package has been analyzed on a number of different
platforms. Between browsers, compiling the script and importing the library takes about
120 ms, compiling itself taking a little less than half of that. Node.js on the other hand takes
about 1 s to initialize, both when the source consisting of multiple files is imported, and
when a bundle is imported. This is possibly because Chrome caches compiled JavaScript
reducing the compiling times from around 50 ms to about 8 ms, as is explained in Alle
(2018).

As shown in Fig. 6 and Table 4, time taken to import the library mainly consists of
importing @babel/polyfill. This is because adding the polyfills requires repeated feature
detection. After that the actual code is imported in two parts. In the first part, where core
functionality like the Cite interface is loaded, the main culprit is addTypeParser, with
0.13 ms per call on average. In the second part, loading output-related code, importing
citeproc-js takes the longest with a single call of 2.82 ms. Note that that Firefox uses
Just-In-Time (JIT) compilation, compiling pieces of code when they are used a lot.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

Figure 5 Download counts since package creation.Graph from npm-stat.com, data from npm. See Data
S1.

Full-size DOI: 10.7717/peerjcs.214/fig-5

Figure 6 Initialization performance results on different platforms. Actual timings may vary depend-
ing on the device, operating system and cache. Note that Chrome (A) starts with 40 ms of compiling time
that is cached on subsequent runs. Firefox (B) compiles JIT, while the code is running. Both graphs show
three parts, one loading polyfills from @babel/polyfill taking up half the loading time, followed by two
parts mainly loading core functionality and plugins respectively. Profiling data is available as Data S2 and
Data S3.

Full-size DOI: 10.7717/peerjcs.214/fig-6

While code execution is one part, one should also look into the file size. This is especially
important in the browser, which has to fetch the library when loading the page. The biggest
part is citeproc-js, accounting for almost half of the file size. Additionally, built-in CSL
styles and locales should also be counted. A complete overview can be found in Table 4.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214#supp-2
http://dx.doi.org/10.7717/peerj-cs.214#supp-2
https://doi.org/10.7717/peerjcs.214/fig-5
http://dx.doi.org/10.7717/peerj-cs.214#supp-3
http://dx.doi.org/10.7717/peerj-cs.214#supp-4
https://doi.org/10.7717/peerjcs.214/fig-6
http://dx.doi.org/10.7717/peerj-cs.214

Table 4 Browser bundle breakdown. Running time is the time it takes to import that part of the script
with browserify require in the Chrome data set. Note that a big part of the plugin-csl ’’own’’ code is
serialized styles and locales from the CSL repository. Minified the code is 702 kB, which is reduced to 177
kB with gzip and 164 kB with Brotli, both with default compression levels.

Size

Part Own Dependencies Total Running time

Backport 5.9 kB – 5.9 kB 5.9 ms
core 99.7 kB 33.9 kB 133.5 kB 8.3 ms
plugin-bibjson 7.6 kB – 7.6 kB 3.5 ms
plugin-bibtex 42.9 kB – 42.9 kB 2.6 ms
plugin-csl 87.0 kB 461.8 kB 548.9 kB 3.2 ms
plugin-doi 6.6 kB – 6.6 kB 0.6 ms
plugin-ris 11.1 kB – 11.1 kB 0.5 ms
plugin-wikidata 22.1 kB 40.4 kB 62.4 kB 2.2 ms
name 16.6 kB – 16.6 kB 1.1 ms

Citation.js

date 7.3 kB – 7.3 kB 0.2 ms
Additional @babel/polyfill – 197.3 kB 197.3 kB 32.0 ms

browserify – 6.8 kB 6.8 kB 0.2 ms

Total 306.8 kB 740.1 kB 1046.8 kB 60.3 ms

DISCUSSION
Converting between formats and standardized crosswalks with linked
data
Converting input data like parsed BibTeX, BibJSON or Wikidata API results into another
format and back can get very repetitive in terms of code. Yet, there are still cases where
special handling is needed. Since different formats call for different needs, each plugin has
developed its own system to deal with this. Unifying this into a single, performant, reusable
and developer-friendly system would be preferable.

Jones et al. (2017) use a JSON-LD context for this. While a JSON-LD context would
scale very well without a central format, most cases restrict the usefulness. Consider the
page property in CSL-JSON, mapping to the first and last properties in CFF. If the
nested values were deserialized, this could be expressed in JSON-LD contexts. However, in
the first example it cannot, since JSON-LD cannot distinguish between parts of strings.

Alternatively, a custom system could be developed that defines as much mapping as
possible to and from a central format, with special cases for context-dependent mappings
and one-to-many mappings. It would be difficult to do this entirely language-agnostic,
since serialization and deserialization usually requires some amount of scripting.

CSL-JSON as a central format
As mentioned in the Background, an important feature of the central format is that it
can hold any information needed for the output formats—if it cannot, information loss
can occur. Citation.js currently uses CSL-JSON as a central format, as it has a (mostly)
well-defined list of properties and entry types, an authority to clear up any confusion, and
relatively good support for most metadata while still being simple to work with.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

However, CSL-JSON is not perfect, and information loss is definitely possible. This is
currently the case with the software entry type, which does not exist in CSL 1.0.1, and is
represented by the book type by convention. When converting Wikidata input consisting
of a computer program to RIS output, the fact that it is in fact a computer program is lost,
even though both formats support it as an entry type.

A solution for this would be to extend the format to allow for the missing entry type
or property, assuming the specification authors agree. Otherwise, a custom extension
could be made. Doing that for every future shortcoming may not be sustainable though,
since it effectively creates a new poorly-supported standard to add to the mix. Choosing
a different format is among the possibilities, but we have not found a suitable candidate;
even Wikidata, which is intended to cover everything, is changing constantly and even if a
proper specification is created, the question remains whether the bulk of the publication
data is up to date.

If no suitable format is found, one might add additional mappings to common formats,
to cover properties missing from the central format. Then, find a path for every property
through the crosswalks to get to the end format. That way, one could bypass the central
format in specific cases only, keeping an easy mapping for common properties.

Scraping from source versus fetching from central stores
When getting data from, for example, the Wikidata API or scraped from a web page,
that data may be incomplete. However, if part of the data you get is the DOI linked to
the entity queried, you could amend that data with data fetched from a central store like
Crossref or DataCite. Due to difficulties with prioritizing data sources and non-trivial
merging conflicts this has not been implemented yet, although linked-data formats such as
ResourceDescription Framework (RDF) and JSON-LDwould be possibilities. Additionally,
if the user specifically requests data from a specific API, it can be assumed they want that
specific data to be used.

OUTLOOK
Use of formal grammars for parsing
Apart from more common formats like JSON, XML and YAML (YAML Ain’t Markup
Language), Citation.js has to parse a number of text formats with syntax specific to that
format, like BibTeX and RIS. While one can use standard or even built-in parsers for
common formats, that is usually not possible for the latter formats. To solve this, one
can employ formal grammars, which can be translated into code parsing and validating
input. Examples of libraries working with grammars are PEG.js (Majda et al., 2018) and
nearley.js (Kartik et al., 2018). Creating grammars has the benefits of not having to write
and maintain code validating and parsing input, and having a readable grammar instead
of a complex program file.

However, there are also drawbacks. Generating these grammars requires an extra build
step, which in the case of Citation.js cannot be integrated with the preceding step due to a
lack of appropriate tooling. On top of that, early tests have shown generated code to have
poor performance or large size, and in the case of nearley.js requires a runtime library.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 14/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

Therefore, it may be preferable to write custom parsers in some cases. For example for
RIS, which has no balanced brackets or quotes, and does not need much more than simply
iterating over the individual lines.

Use of GraphQL for API queries
With REpresentational State Transfer (REST) APIs comes the problem of over-fetching and
under-fetching: when fetching a resource it may contain too much unneeded information,
require additional calls to the API, or both. This causes unnecessary load on both the client
and the server, as both have to process more calls with more network bandwidth. One
case where this is especially relevant is Wikidata, which in its linked-data nature does not
expose the name of the authors or journals it links to; to retrieve that, additional requests
are needed. To overcome this a better way of generating those requests locally could be
implemented, or a GraphQL server could be developed by allowing the client to specify
exactly what data it needs (Facebook, 2018).

Support for additional formats
Apart from the formats currently supported in Citation.js (see Table 1), there are plans
to include more formats such as EndNote import files, MARC XML (Avram, 2003),
the Zotero API JSON schema and Office XML. These will be published in thematic
plugins. For example, formats used to describe software projects are joined in the plugin
@citation-js/plugin-software-formats. These formats will also include linked data
scraped from web pages.

CONCLUSIONS
Citation.js has been introduced as a library that supports bibliographic information in
various formats, from multiple sources. The use of JavaScript ensures it can be used in
a wide variety of use cases in the web browser, on the command line, and in a server
environment. The tool is developed using modern approaches and released via the npm
network and archived on GitHub and Zenodo. In addition to machine-readable formats
such as BibTeX and RIS, the support for CSL styles ensures that citations and bibliographies
can be formatted in many textual representations. Additional content can be easily added
to those representations, such as Altmetric icons. The support for plugins allows additional
formats to be integrated with relative ease, and without the need of a central repository
managing those plugins.

ACKNOWLEDGEMENTS
Thanks to JS.org for providing the (sub)domain name for the homepage of Citation.js.
Thanks to the many people submitting bug reports, pull requests, and other kinds of
feedback during the development of Citation.js.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.214

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
The author declares there are no competing interests.

Author Contributions
• Lars G. Willighagen conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared
figures and/or tables, performed the computation work, authored or reviewed drafts of
the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Source code is available onGitHub at the https://github.com/larsgw/citation.js repository
and the https://github.com/citation-js organisation, and on Zenodo:

Lars Willighagen, Egon Willighagen, The Gitter Badger, Petr Čermák, & Johannes
Wienke. (2018, November 2). larsgw/citation.js: v0.4.0-10 (Version v0.4.0-10). Zenodo.
http://doi.org/10.5281/zenodo.1476934.

The library is distributed on npm at https://www.npmjs.com/package/citation-js and
the individual modules in the https://www.npmjs.com/org/citation-js organisation.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.214#supplemental-information.

REFERENCES
Aboukhadijeh F, Flettre D, developerjin , Yang A, Unnebäck L, Lavieri D, Sta. Cruz R,

Cousens D, Greenkeeper , Comnes B, Littauer R, Nassri A, LiuW, Colvin J, Barros
R, Robin , Emanuele , Spac J, Watson T, Mathur T, Varela P, Reggi T, Wuyts Y,
Chen SMA, Horst B, Charlie , Prigara E. 2018. standard/standard. Available at
https:// github.com/ standard/ standard .

Adie E, RoeW. 2013. Altmetric: enriching scholarly content with article-level discussion
and metrics. Learned Publishing 26(1):11–17 DOI 10.1087/20130103.

Alle M. 2018. Improved code caching. Available at https:// v8.dev/blog/ improved-code-
caching .

AndrewsM, Tschinder D, Knuth E, Josiah , Cirkel K, Melnikow P, Evans R, Giles S,
Simeon . 2018.matthew-andrews/isomorphic-fetch. Available at https:// github.com/
matthew-andrews/ isomorphic-fetch.

AvramHD. 2003. Machine-readable cataloging (MARC) program. In: Encyclopedia
of library and information science. Second edition. Vol. 3. Boca Raton: CRC Press,
1712–1730.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 16/20

https://peerj.com
https://github.com/larsgw/citation.js
https://github.com/citation-js
http://doi.org/10.5281/zenodo.1476934
https://www.npmjs.com/package/citation-js
https://www.npmjs.com/org/citation-js
http://dx.doi.org/10.7717/peerj-cs.214#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.214#supplemental-information
https://github.com/standard/standard
http://dx.doi.org/10.1087/20130103
https://v8.dev/blog/improved-code-caching
https://v8.dev/blog/improved-code-caching
https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/matthew-andrews/isomorphic-fetch
http://dx.doi.org/10.7717/peerj-cs.214

Bennett F, Adam , Sifford D, Maloney C, Ruf D, MowerM, C-P F, SMM, Zelle RM.
2018. Juris-M/citeproc-js. Available at https:// github.com/ Juris-M/citeproc-js.

Boceck T, PoppM, JREB. 2019. xJREB/service-based-antipatterns. Available at https:
// github.com/xJREB/ service-based-antipatterns.

Brase J. 2009. DataCite—a global registration agency for research data. In: 2009 fourth
international conference on cooperation and promotion of information resources in
science and technology. Beijing, China: IEEE, 257–261
DOI 10.1109/COINFO.2009.66978-0-7695-3898-3.

Citation Style Language. 2018. CSL processors—developers. Available at https://
citationstyles.org/developers#/csl-processors.

Crossref. 2018. UNIXREF query output format. Available at http:// support.crossref.org/
hc/ en-us/articles/ 214936283-UNIXREF-query-output-format .

Czerwinski J. 2018. schol-js/schol. Available at https:// github.com/ schol-js/ schol .
D’Arcus B. 2008. Non-western name ordering in bibliographies. Zotero Forums.

Available at http:// bibliontology.com/ specification.html .
D’Arcus B, Giasson F. 2009. The Bibliographic Ontology (BIBO). In: Bibliographic

ontology specification.
Davis JC, Coghlan CA, Servant F, Lee D. 2018. The impact of regular expression

denial of service (ReDoS) in practice: an empirical study at the ecosystem scale. In:
Proceedings of the 2018 26th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering. Lake Buena
Vista, FL, USA: ACM Press, 246–256 DOI 10.1145/3236024.3236027.

DeMourat R, Plique G, Pichon A. 2019.medialab/fonio. Available at https:// github.com/
medialab/ fonio.

DeMourat R, Rabot S. 2019. peritext/ovide. Available at https:// github.com/peritext/
ovide.

De Smaele M, Starr J, Ashton J, Birt N, Dietiker S, Elliott J, Fenner M, Hatfield Hart
A, HugoW, Jakobsson S, Bernal Martínez I, Rücknagel J, Yahia M, Ziedorn F,
Zolly L. 2017. DataCite metadata schema documentation for the publication and
citation of research data v4.1. Available at https:// schema.datacite.org/meta/kernel-
4.1/ index.html DOI 10.5438/0014.

Druskat S, Chue Hong N, Haines R, Baker J. 2018. Citation File Format (CFF) -
Specifications. Zenodo. DOI 10.5281/zenodo.1003149.

EndNote. 2012. EndNote X6 Help User Guide (For Macintosh). Available at https:
//web.archive.org/web/20180127234028/http:// endnote.com/ sites/ en/ files/ support/
endnotex6machelp.pdf.

Facebook. 2018. GraphQL. Available at https:// facebook.github.io/ graphql/ June2018/ .
Fenner M, Scheliga K, Bartling S. 2014. Reference management. In: Bartling S, Friesike

S, eds. Opening science: the evolving guide on how the internet is changing research,
collaboration and scholarly publishing. Cham: Springer International Publishing,
125–137.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 17/20

https://peerj.com
https://github.com/Juris-M/citeproc-js
https://github.com/xJREB/service-based-antipatterns
https://github.com/xJREB/service-based-antipatterns
http://dx.doi.org/10.1109/COINFO.2009.66978-0-7695-3898-3
https://citationstyles.org/developers#/csl-processors
https://citationstyles.org/developers#/csl-processors
http://support.crossref.org/hc/en-us/articles/214936283-UNIXREF-query-output-format
http://support.crossref.org/hc/en-us/articles/214936283-UNIXREF-query-output-format
https://github.com/schol-js/schol
http://bibliontology.com/specification.html
http://dx.doi.org/10.1145/3236024.3236027
https://github.com/medialab/fonio
https://github.com/medialab/fonio
https://github.com/peritext/ovide
https://github.com/peritext/ovide
https://schema.datacite.org/meta/kernel-4.1/index.html
https://schema.datacite.org/meta/kernel-4.1/index.html
http://dx.doi.org/10.5438/0014
http://dx.doi.org/10.5281/zenodo.1003149
https://web.archive.org/web/20180127234028/http://endnote.com/sites/en/files/support/endnotex6machelp.pdf
https://web.archive.org/web/20180127234028/http://endnote.com/sites/en/files/support/endnotex6machelp.pdf
https://web.archive.org/web/20180127234028/http://endnote.com/sites/en/files/support/endnotex6machelp.pdf
https://facebook.github.io/graphql/June2018/
http://dx.doi.org/10.7717/peerj-cs.214

Gilmour R, Cobus-Kuo L. 2011. Reference management software: a comparative
analysis of four products. Issues in Science and Technology Librarianship (66)
DOI 10.5062/f4z60kzf.

Godby CJ, Smith D, Childress ER. 2003. Two paths to interoperable metadata. In:
International conference on dublin core and metadata applications. Dublin Core
Metadata Initiative, 19–27.

Godby CJ, Young JA, Childress E. 2004. A repository of metadata crosswalks. D-Lib
Magazine 10(12) DOI 10.1045/december2004-godby.

Halliday J, Suarez A, Kooi R, Aboukhadijeh F, Denicola D, McCarthy J, Lindesay F,
Popp A, Stock T, Lorenz T, Duff J, Shtylman R, Kennedy H, Harband J, Patrick ,
Mao S, Anatoliy , Metcalf C, McConnell C, Kastner D, Govett D,Wright J, Ewald
J, Parodi A, Comnes B, Macabiau C, Gozalishvili I, Hanson J. 2018. browseri-
fy/browserify. Available at https:// github.com/browserify/browserify .

Hallmann CA, SorgM, Jongejans E, Siepel H, Hofland N, Schwan H, StenmansW,
Müller A, Sumser H, Hörren T, Goulson D, de Kroon H. 2017.More than 75
percent decline over 27 years in total flying insect biomass in protected areas. PLOS
ONE 12(10):e0185809 DOI 10.1371/journal.pone.0185809.

Holowaychuk T, Li Z, Abe T, Koutnik R, Geraghty T, Lukasavage T, Allen D, Agius A,
Petersen J, Neeman I, De Bollivier S, Nichols A, Lyons P, Sorohan B, Geisendörfer
F, Yaroshevich A, Franzoia A, Ruf D, George J, Robertson J, Hamlet J, Brooks M,
Thomas R, Vanesyan R, Ilia , Buathier Q, Nitta A. 2018. tj/commander.js. Available
at https:// github.com/ tj/ commander.js.

Hull D, Pettifer SR, Kell DB. 2008. Defrosting the digital library: bibliographic tools
for the next generation web. PLOS Computational Biology 4(10):e1000204
DOI 10.1371/journal.pcbi.1000204.

Jones MB, Boettiger C, Mayes AC, Slaughter P, Niemeyer K, Gil Y, Fenner M, Nowak K,
Hahnel M, Coy L, Allen A, Crosas M, Sands A, Hong NC, Cruse P, Katz D, Goble C.
2017. CodeMeta: an exchange schema for software metadata. KNB Data Repository.
DOI 10.5063/schema/codemeta-2.0.

Kartik , Radvan T, Stewart A, Corbin JT,Windels R, Marinov B, Emanuel K, Viet
LQ, Itzhaky S, alex , Litvin N, Olmsted S, Hunter C, Edelman J, Kanefsky B, Jake
, Aukia J, Kemp KJ, Ljunglöf P, Rose R, Hildebrandt S, Trefz A, Rosenzweig A,
Gunderson B, Meadors C, Bertolini F, Victorio F, Quigley J. 2018. kach/nearley.
Available at https:// github.com/kach/nearley .

Kennedy H, MatuzakM,MacWright T,Wuyts Y, Pourkhomami P, Næss B, Dickinson
C, ConlenM, Antoni M, LysenkoM, Verbaten J, Chiniquy R,Williams S, Nguyen
T. 2019. hughsk/disc. Available at https:// github.com/hughsk/disc .

Lammey R. 2015. CrossRef text and data mining services. Science Editing 2(1):22–27
DOI 10.6087/kcse.32.

Lathuiliére M, Voß J, SimantovM,Willighagen L, Roberts L, offirmo . 2018.maxlath/
wikidata-sdk. Available at https:// github.com/maxlath/wikidata-sdk.

Lindesay F, Joppi DH, Kannan S, Irving-Beer A, Double C, Dascalescu D, Zaharee
D, Hoffmann D, Krems JO, Hong J, Bílek K,Willighagen L, ZoltuM. 2018.

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 18/20

https://peerj.com
http://dx.doi.org/10.5062/f4z60kzf
http://dx.doi.org/10.1045/december2004-godby
https://github.com/browserify/browserify
http://dx.doi.org/10.1371/journal.pone.0185809
https://github.com/tj/commander.js
http://dx.doi.org/10.1371/journal.pcbi.1000204
http://dx.doi.org/10.5063/schema/codemeta-2.0
https://github.com/kach/nearley
https://github.com/hughsk/disc
http://dx.doi.org/10.6087/kcse.32
https://github.com/maxlath/wikidata-sdk
http://dx.doi.org/10.7717/peerj-cs.214

ForbesLindesay/sync-request. Available at https:// github.com/ForbesLindesay/ sync-
request .

Majda D, Ryuu F-z, Breault A, Ruciński R, felix , https://github.com/josephfrazier,
Sampson A, Tavakoli A, Vrána J, Blank J, Pirsch F, Ramjiawan A, Mimms A,
Almad , Neculau A, Kutil B, Hearon C, Davies J, Doersing N, Brandt P, Lukasavage
T, chunpu . 2018. pegjs/pegjs. Available at https:// github.com/pegjs/pegjs.

Malyshev S, KrötzschM, González L, Gonsior J, Bielefeldt A. 2018. Getting the most
out of wikidata: semantic technology usage in wikipedia’s knowledge graph. In:
Vrandečić D, Bontcheva K, Suárez-Figueroa MC, Presutti V, Celino I, Sabou M,
Kaffee L-A, Simperl E, eds. The Semantic Web—ISWC 2018. 11137. Cham: Springer
International Publishing, 376–394.

Microsoft. 2018. DocumentFormat.OpenXml.Bibliography Namespace. Available at
https://docs.microsoft.com/en-us/dotnet/ api/documentformat.openxml.bibliography .

Neumann J, Brase J. 2014. DataCite and DOI names for research data. Journal of
Computer-Aided Molecular Design 28(10):1035–1041 DOI 10.1007/s10822-014-9776-5.

Patashnik O. 1988. BibTeXing. Available at http://mirrors.ctan.org/biblio/bibtex/base/
btxdoc.pdf .

Pierre MS, LaPlantWP. 1998. Issues in Crosswalking Content Metadata Standards -
National Information Standards Organization. Available at https:// groups.niso.org/
publications/white_papers/ crosswalk/ .

Preston-Werner T. 2013. Semantic Versioning 2.0.0. Available at https:// semver.org/ .
Puniamoorthy N, Jeevanandam J, Narayanan Kutty S. 2008. Give south Indian authors

their true names. Nature 452:530 DOI 10.1038/452530d.
Putnam C. 2005. Bibutils—Bibliography conversion utilities. The scripps research

institute, February. Available at http:// bibutils.refbase.org/ .
Qiu J. 2008. Scientific publishing: identity crisis. Nature 451(7180):766–767

DOI 10.1038/451766a.
Reference Manager. 2012. RIS Format Specifications. Available at https://web.archive.

org/web/20120526103719/http:// refman.com/ support/ risformat_intro.asp.
Ribeyre C, Louis-Marie , MyScienceWork. 2019.MyScienceWork/PolarisOS. Available

at https:// github.com/MyScienceWork/PolarisOS.
Shihipar T, Rich T. 2018. PubPub: open publishing. Available at https:// pubpub.org .
Shotton D. 2013. Publishing: open citations. Nature 502(7471):295–297

DOI 10.1038/502295a.
Sifford D. 2019. dsifford/astrocite. Available at https:// github.com/dsifford/astrocite.
Smith AM, Katz DS, Niemeyer KE. 2016. Software citation principles. PeerJ Computer

Science 2:e86 DOI 10.7717/peerj-cs.86.
Taraborelli D, Pintscher L, Mietchen D, Rodlund S. 2017.WikiCite 2017 report.

Figshare DOI 10.6084/m9.figshare.5648233.v3.
Thelwall M. 2018. Dimensions: a competitor to scopus and the web of science? Journal of

Informetrics 12(2):430–435 DOI 10.1016/j.joi.2018.03.006.
Travis CI. 2018. Travis CI—test and deploy your code with confidence. Available at

https:// travis-ci.org/ .

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 19/20

https://peerj.com
https://github.com/ForbesLindesay/sync-request
https://github.com/ForbesLindesay/sync-request
https://github.com/pegjs/pegjs
https://docs.microsoft.com/en-us/dotnet/api/documentformat.openxml.bibliography
http://dx.doi.org/10.1007/s10822-014-9776-5
http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
https://groups.niso.org/publications/white_papers/crosswalk/
https://groups.niso.org/publications/white_papers/crosswalk/
https://semver.org/
http://dx.doi.org/10.1038/452530d
http://bibutils.refbase.org/
http://dx.doi.org/10.1038/451766a
https://web.archive.org/web/20120526103719/http://refman.com/support/risformat_intro.asp
https://web.archive.org/web/20120526103719/http://refman.com/support/risformat_intro.asp
https://github.com/MyScienceWork/PolarisOS
https://pubpub.org
http://dx.doi.org/10.1038/502295a
https://github.com/dsifford/astrocite
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.6084/m9.figshare.5648233.v3
http://dx.doi.org/10.1016/j.joi.2018.03.006
https://travis-ci.org/
http://dx.doi.org/10.7717/peerj-cs.214

van Eck NJ, Waltman L. 2014. CitNetExplorer: a new software tool for analyz-
ing and visualizing citation networks. Journal of Informetrics 8(4):802–823
DOI 10.1016/j.joi.2014.07.006.

Vinckevicius A. 2017. Zotero to CSL extension and mappings. Available at https://
aurimasv.github.io/ z2csl/ typeMap.xml .

Voß J. 2019. wikicite/wcite. Available at https:// github.com/wikicite/wcite.
Vrandečić D, KrötzschM. 2014.Wikidata: a free collaborative knowledgebase. Commu-

nications of the ACM 57(10):78–85 DOI 10.1145/2629489.
Wiernik B. 2018. Inconsistencies with genre and medium. CSL discourse. Available at

https://discourse.citationstyles.org/ t/ inconsistencies-with-genre-and-medium/1475.
Williams J, MathewsM, Frank J, Wrzeszcz R, Blank B, Colter M, Schaub T, Hayes

L, Haagsman E, Pozin K, KimM, Phasmal , Harrtell B, Kerns B, Chambers D,
Schonning N, Droogmans P, Taylor R, Tutt B, Parks C, Locke K, Dubeau L-D,
Voyer V, Nicksay A, Kienzle S, NisonM,Wytrȩbowicz T. 2018. jsdoc3/jsdoc.
Available at https:// github.com/ jsdoc3/ jsdoc .

Willighagen L. 2017a. Citation.js: Endpoint on RunKit. Available at https:// larsgw.
blogspot.com/2017/08/ citationjs-endpoint-on-runkit.html .

Willighagen L. 2017b.Make a synchronous redirectable CORS request in Chrome.
Available at https:// stackoverflow.com/questions/45238537/make-a-synchronous-
redirectable-cors-request-in-chrome.

Zakas NC, Volodin I, Katz T, Singh G, Nagashima T, alberto , Mills B, Partington K,
Ficarra M, Cataldo K, Kaya BY, Myers IC, SchreckM, VanSchooten I, DuVall M,
Pedrotti M, Balocco V, Aliaksei , Rajavuori J, Anson D, Cochard G, Allardice J,
Fang P, HomV, Pool J, Harband J, @scriptdaemon , Vidal JR. 2018. eslint/eslint.
Available at https:// github.com/eslint/ eslint .

Zelle RM. 2012. CSL 1.0.1 Specification. Available at http://docs.citationstyles.org/ en/1.0.
1/ specification.html .

Zelle RM, Zumstein P. 2018. rmzelle/ref-extractor. Available at http:// github.com/
rmzelle/ ref-extractor .

ZhuH, Smyth L, Ng B, HaverbekeM,Masad A, Tschinder D, Stepanyan I, Jamie ,
Ridgewell J, Ribaudo N, Sauleau S, Yavorsky A, Hanson A, McCarthy J, Burzyński
M, Donovan B, Goldman S, DiGioia J, ZilbermanM, Franco J, Bynens M, Kappert
L, Kushwaha P, Bedford G, Newman B, Gonçalves AAS, Cataldo K, Abramov D.
2018. babel/babel. Available at https:// github.com/babel/ babel .

Zinn C, Trippel T, Kaminski S, Dima E. 2016. Crosswalking from CMDI to Dublin Core
and MARC 21. In: LREC.

Zulko , Drew , Townsend T, Ruf D, Li J, Mitra N, Forrest G, Koska K, David , ldrovira .
2018. RelaxedJS/ReLaXed. Available at https:// github.com/RelaxedJS/ReLaXed .

Willighagen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.214 20/20

https://peerj.com
http://dx.doi.org/10.1016/j.joi.2014.07.006
https://aurimasv.github.io/z2csl/typeMap.xml
https://aurimasv.github.io/z2csl/typeMap.xml
https://github.com/wikicite/wcite
http://dx.doi.org/10.1145/2629489
https://discourse.citationstyles.org/t/inconsistencies-with-genre-and-medium/1475
https://github.com/jsdoc3/jsdoc
https://larsgw.blogspot.com/2017/08/citationjs-endpoint-on-runkit.html
https://larsgw.blogspot.com/2017/08/citationjs-endpoint-on-runkit.html
https://stackoverflow.com/questions/45238537/make-a-synchronous-redirectable-cors-request-in-chrome
https://stackoverflow.com/questions/45238537/make-a-synchronous-redirectable-cors-request-in-chrome
https://github.com/eslint/eslint
http://docs.citationstyles.org/en/1.0.1/specification.html
http://docs.citationstyles.org/en/1.0.1/specification.html
http://github.com/rmzelle/ref-extractor
http://github.com/rmzelle/ref-extractor
https://github.com/babel/babel
https://github.com/RelaxedJS/ReLaXed
http://dx.doi.org/10.7717/peerj-cs.214

