
Submitted 29 December 2023
Accepted 23 May 2024
Published 24 June 2024

Corresponding author
Mohd Anul Haq, m.anul@mu.edu.sa

Academic editor
Yue Zhang

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.2131

Copyright
2024 Almujahid et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Comparative evaluation of machine
learning algorithms for phishing site
detection
Noura Fahad Almujahid1,*, Mohd Anul Haq2,* and Mohammed Alshehri1

1Department of Information Technology, College of Computer and Information Science, Majmaah
University, Majmaah, Riyadh, Saudi Arabia

2Department of Computer Science, College of Computer and Information Sciences, Majmaah University,
Al Majmaah, Riyadh, Saudi Arabia

*These authors contributed equally to this work.

ABSTRACT
The advent of Internet technologies has resulted in the proliferation of electronic trading
and the use of the Internet for electronic transactions, leading to a rise in unauthorized
access to sensitive user information and the depletion of resources for enterprises. As
a consequence, there has been a marked increase in phishing, which is now considered
one of the most common types of online theft. Phishing attacks are typically directed
towards obtaining confidential information, such as login credentials for online banking
platforms and sensitive systems. The primary objective of such attacks is to acquire
specific personal information to either use for financial gain or commit identity theft.
Recent studies have been conducted to combat phishing attacks by examining domain
characteristics such as website addresses, content on websites, and combinations of
both approaches for the website and its source code. However, businesses require
more effective anti-phishing technologies to identify phishing URLs and safeguard
their users. The present research aims to evaluate the effectiveness of eight machine
learning (ML) and deep learning (DL) algorithms, including support vector machine
(SVM), k-nearest neighbors (KNN), random forest (RF), Decision Tree (DT), Extreme
Gradient Boosting (XGBoost), logistic regression (LR), convolutional neural network
(CNN), and DL model and assess their performances in identifying phishing. This
study utilizes two real datasets, Mendeley and UCI, employing performance metrics
such as accuracy, precision, recall, false positive rate (FPR), and F-1 score. Notably,
CNN exhibits superior accuracy, emphasizing its efficacy. Contributions include using
purpose-specific datasets, meticulous feature engineering, introducing SMOTE for
class imbalance, incorporating the novel CNN model, and rigorous hyperparameter
tuning. The study demonstrates consistent model performance across both datasets,
highlighting stability and reliability.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy,
Neural Networks
Keywords Phishing, Machine learning, Phishing detection, Classification

INTRODUCTION
Phishing is a method that aims to use technological and social tricks to gain access to
customers’ financial and personal information. Social media platforms employ spoofed

How to cite this article Almujahid NF, Haq MA, Alshehri M. 2024. Comparative evaluation of machine learning algorithms for phishing
site detection. PeerJ Comput. Sci. 10:e2131 http://doi.org/10.7717/peerj-cs.2131

https://peerj.com/computer-science
mailto:m.anul@mu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2131
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2131


emails from well-known businesses and organizations, leading users to fraudulent websites
where they are prompted to disclose sensitive information such as financial details,
usernames, and passwords. Hackers employ malicious programs to steal credentials, often
intercepting usernames and passwords from users’ online accounts. Phishers employ
various methods to steal user information, including phone calls, text messages, instant
messaging, uniform resource locator (URL), instant chat, and forum postings. Phishing
attempts are designed to mimic legitimate content, tricking individuals into divulging
sensitive information. The primary objective of phishing is to acquire personal data for
identity theft or financial gain. Around the world, phishing attacks cause significant
economic harm. Furthermore, Following the latest Phishing pattern research from the
Anti-Phishing Working Group ‘‘APWG’’ (Tally et al., 2023).

Most phishing attacks target webmail and financial/payment institutions. Criminals
create unauthorized reproductions of legitimate websites and emails, typically from an
organization that deals with financial information, to get private information (Jain &
Gupta, 2018; Giri et al., 2021; Purbay & Kumar, 2021). This email is designed with the
logos and phrases of a reputable firm. HTML’s architecture and structure allow copying
pictures or an entire web page (Le et al., 2018). It is also a key element contributing to
the Internet’s quick development as a tool for communication. It permits the abuse of
brand names, logos, and other corporation identifiers that customers depend on for
authentication measures (Hong et al., 2020; Abutair & Belghith, 2017; Kumar et al., 2020)
to trick users. As many ‘‘spooled’’ emails as possible are sent by the phisher. Upon opening
these emails, clients are often directed away from the actual company and onto a phony
website user information is subject to a high risk of exploitation. Because of these factors,
phishing is important however difficult, and vital in modern culture (Rao & Pais, 2019;
Aljofey et al., 2020).

As per the cyber security authority of Saudi Arabia, the recent phishing attacks in Saudi
Arabia on April 7, 2021, increased by about 300%, and the importance of awareness
and prevention of phishing attacks (Alharbi et al., 2022). Several recent studies have been
conducted against phishing based on domain features like web pages, and website content,
incorporating the URLs and the website’s content, the website’s source code, and a snapshot
of thewebsite (AlEroud & Karabatis, 2020).Most current studies are limited toURL content
and emails only, and there are no solutions to detect phishing in text messages or social
media such as WhatsApp, Twitter, LinkedIn, and others. However, there is a need for more
appropriate anti-phishing technologies in a business to detect phishing URLs and safeguard
its users. There are many ways to detect phishing URLs, such as ML and blacklisting. It is
possible to find malicious URLs on the Internet. Recognized using ML techniques (Gupta
& Rani, 2020; Joshi & Pattanshetti, 2019). A blacklist is a key component of the traditional
URL detection technique, which is a list of malicious URLs gathered from user reports
or professional judgment. The URL in the blacklist is frequently updated, and on the one
hand, a URL is verified using the blacklist. However, there are an increasing number of
harmful URLs that are not yet on the blacklist. Cybercriminals, for instance, can create
fresh malicious URLs using a domain generation algorithm to get around the blacklist.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


As a result, It is incredibly difficult to recognize malicious URLs using an exhaustive
blacklist (Wu, Kuo & Yang, 2019; Chiew et al., 2015).

In contrast to many earlier approaches, Researchers concentrate on finding malicious
URLs among a variety of URLs. The objective of this article is to conduct an empirical
evaluation ofML algorithms for phishing detection. The novelty of the present investigation
lies in several key aspects. Firstly, it introduces a comparative analysis of ML and DL
algorithms using two distinct datasets, Mendeley and UCI. This diversification in dataset
sources enhances the generalizability of the findings. Furthermore, the study addresses
class imbalance in the datasets by employing the oversampling technique. Notably, the
novel CNN model was developed which showcased significant improvements in accuracy
compared to previous studies, while addressing the gaps in phishing analysis and detection
through data preprocessing and hyperparameter tuning, ultimately enhancing computer
system security, and providing valuable insights for future research.

BACKGROUND AND RELATED WORK
The classification of phishing attacks is carried out according to the attacker’s mechanism
for deceiving users. Some forms of such attacks are keyloggers, DNS toxicity, social
engineering blog operations, messaging services (SMS), social media platforms such as
Twitter and Facebook, and file-sharing services, etc. (Jain & Gupta, 2018). Each form of
phishing has slight differences in the way the process is carried out to deceive the user.
Phishing attacks occur via email or SMS, where these messages contain a link to direct the
user to phishing sites. Phishing detection using ML is a burgeoning subject of study with
an increased desire to use deep learning (DL) methods.

Le et al. (2018) proposed URLNet, a deep neural URL detection network based on CNN.
They asserted that current approaches, which frequently employ Bag of Words (BoW) style
features, have certain critical flaws, including the inability to recognize sequential ideas
in URL strings, a failure to detect real-time URLs containing hidden features, and the
lack of automated feature extraction. The network was built, and CNNs and Word CNNs
for characters were produced. Additionally, they offered sophisticated methods that were
especially useful for dealing with rare phrases, a challenge that frequently arises in malicious
URL identification activities. Using this strategy, URLNet can recognize URLs during the
testing phase by utilizing embeddings and subword data from hidden words. Another
study by Abutair & Belghith (2017), proposed a URL detector that can identify phishing
attempts. They contended that the approach could be purposefully and scaled modified
to fit different sizes. They collected 572 cases for both trustworthy and malicious URLs,
and the traits were extracted and weighed for use in the prediction process. The test results
were trustworthy both in the presence and absence of online phishing threats. The genetic
algorithm (GA) was used to improve accuracy.

Kumar et al. (2020) looked into how accurately phishingURLs can be distinguished from
benign URLs in a collection of URLs. They discussed statistical analysis, host-based lexical
analysis, feature engineering, randomization, and feature extraction. Multiple classifiers
were used for the comparative study, and it was discovered that the outcomes were

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


broadly consistent. The authors claimed that their approach was practical for removing
functionality from URLs using short common words. Additional features that produce the
best results could be tested. Some older URLs can be found in the study’s dataset, which
may result in a chance of underperformance.

Rao & Pais (2019) used a parameter that compares the similarity between the suspect site
and the corresponding domain and achieved 98.61% accuracy, a 97.77% true positive rate,
and a false positive rate of less than 0.64% according to the experimental results. Aljofey
et al. (2020) suggested using a convolutional neural network (CNN) to recognize phishing
URLs. To collect the URL data for this study, researchers used a sequential sequence. On
benchmark datasets, it obtained accuracies of 98.58%, 95.46%, and 95.22%, respectively.

Yerima & Alzaylaee (2020) suggested conducting experiments to evaluate CNN models.
Python was used to implement the models, and both the TensorFlow backend and the
Keras library were employed. Additionally, Pandas, ScikitLearn, Seaborn, and NumPy were
used. The dataset included 11,055 instances collected from 6,157 trusted websites and 4,898
phishing websites. They found that the CNN2 model performs better with more filters.
The highest accuracy was obtained when 64 filters were used, with an F1-score of 0.974,
contrasting accuracy of 59.8% with an F1-score of 0.963 when using only eight filters.

Mohammad, Thabtah & McCluskey (2014) built their model using seventeen
characteristics gathered from URLs and the source code of 600 legitimate and 800
fraudulent websites. They employed the ‘‘hold-out’’ validation approach to avoid the
problem of overfitting by splitting their datasets into testing, validation, and training
datasets. They used the ‘‘log sigmoid’’ activation function. Khan & Rana (2021) suggest
detecting malicious URLs using minimal features, consisting of feature extraction and
classification techniques. The experiments were conducted using a dataset consisting of
3,000 cases. Accuracy and error rates were used as computational measures, respectively.
TheDNNmethodwas used to verify the correctness of the feature selection. The researchers
found that the individual accuracy rate of the experiment ranges from 61.06% to 97.07%.
Two URL-based features for which the accuracy rate was less than 66 were separated,
resulting in a test accuracy of 99.13% and a training accuracy of 99.71%. Thus, the DNN’s
training accuracy was 99.90%.

Dunlop, Groat & Shelly (2010) used the FishTank database and 100 phishing sites. They
applied the concept of using optical character recognition to turn logos and screenshots of
images into text, thereby reducing the approach of queries to a single query.Varshney, Misra
& Atrey (2016) used page titles and URLs only to build a powerful search string specifically
pinpointing phishing websites. They developed a working prototype for Google Chrome as
a benchmark (LPD). The authors suggested adding additional features to upcoming work
while maintaining resource efficiency, which is the main idea of the LPD proposal. Jain &
Gupta (2018) presented a technique for URL-based anti-phishing using machine learning.
To verify the effectiveness of their strategy, they used 14 characteristics from the URL to
determine whether a website is legitimate or malicious. The recommended approach was
trained using over 33,000 phishing and legitimate internet sites for SVM and NB classifiers.
The process of learning was the main emphasis of the phishing detection approach. They

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


identified 14 distinct characteristics that distinguish authentic websites from phishing ones.
When SVM classification is used, the results of their trial have above 90% accuracy.

Nguyen et al. (2013) identified six minimal features and claimed to provide high
accuracy. They used the 11,660 phishing sites in the Phishtank database with an accuracy
of 97.16%. Their operations heavily rely on third parties. Ramesh, Krishnamurthi & Kumar
(2014) suggested using DNS searches and the precise target domain for matching via links
from HTML sources. The Phishtank database served as the dataset with an accuracy of
99.62%. Singh, Maravi & Sharma (2015) testedMadaline and backpropagation for phishing
website classification using neural network training on top of SVM with over 15 features.
They claimed that Adaline’s classification of 179 phished websites from the Phishtank
database was more accurate and effective. Alexa’s accuracy rate for 179 legitimate websites
is 99.14%. Table S1. shows a comparison of the literature review.

METHODOLOGY
Dataset description
The present investigation used two datasets (Brownlee, 2021; Samad et al., 2023)
for phishing site detection. The primary dataset, sourced from the Mendeley
repository (Brownlee, 2021), consisted of 48 features extracted from a collection of 10,000
web pages. Among these, 5,000 were identified as phishing sites, while the remaining
5,000 were verified as legitimate websites, see Fig. S1. To compile the list of legitimate
websites, Alexa and Common Crawl were utilized, whereas PhishTank and Open-Phish
were employed to compile the list of malicious sites (Brownlee, 2021). By examining
the extraction of content and URL features, we can achieve high-performance phishing
detection. Additionally, it is crucial to determine the usefulness of deep classification
for this task and whether converters are necessary for full-text analysis to identify the
appropriate features. The dataset provides four types of features that can be extracted for
predicting phishing based on the URL. Address bar-based features and abnormal features
are presented in Tables S2 and S3, respectively.

The second dataset employed in this study was sourced from the UCI Repository (Samad
et al., 2023), comprising 11,055 records with 31 features. Among these, 11,055 sites, and
4,898 sites were identified as phishing sites (labeled as −1), while the remaining 6,157
were verified as legitimate websites (labeled as 1). The dataset contains 31 features, 30 are
independent, while 1 serves as the target variable categorized into four groups.

The decision to use the specified datasets for phishing site detection was deliberate
and strategic. These datasets were chosen due to their direct relevance to the research
objectives, accessibility, quality, and size. With substantial instances and diverse features,
they provide a solid foundation for training and evaluating machine learning and deep
learning models. While there are other relevant datasets (Dunlop, Groat & Shelly, 2010;
Nguyen et al., 2013), these were deemed the most suitable for achieving the study’s goals
efficiently and effectively.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131#supp-8
http://dx.doi.org/10.7717/peerj-cs.2131#supp-1
http://dx.doi.org/10.7717/peerj-cs.2131#supp-9
http://dx.doi.org/10.7717/peerj-cs.2131#supp-10
http://dx.doi.org/10.7717/peerj-cs.2131


Data preprocessing and feature engineering
The present investigation used libraries including matplotlib, seaborn, pandas, and NumPy
for data pre-processing. The dataset contains features and labels as per Tables S4 and S5.
Out of 48 features in Dataset 1, The HttpsInHostname feature has no use in the case of
Dataset 1. The datasets suggest legitimate, and phishing as 1, and 0, respectively, with 5,000
instances each, see Fig. S1. Dataset 1 was balanced for both the classes.

The first feature index has no use in the case of Dataset 2; therefore, it was dropped. The
datasets suggest legitimate, and phishing as 1,−1, respectively. The number of occurrences
for legitimate and phishing were 6,157 and 4,898, respectively Fig. S2.

Dataset 2 was not well balanced for both the classes; therefore, oversampling the
minority class was performed, see Fig. S2. The SyntheticMinorityOver-samplingTechnique
(SMOTE)was used for oversampling theminority class. The present investigation employed
SMOTE with the auto-sampling strategy to address class imbalance in the dataset. The
decision to use auto was based on the algorithm’s capability to dynamically determine
suitable oversampling ratios for each class. This approach accommodates varying degrees
of class imbalance without necessitating a predefined fixed ratio, allowing for adaptability to
the dataset’s specific characteristics. The auto strategy aligns with a data-driven and flexible
methodology, enabling the algorithm to autonomously adjust to the observed distribution
of classes in the dataset. The tuning for the k_neighbors parameter was implemented in
the SMOTE algorithm. It iterated through different values of k_neighbors (3, 5, 7, and 9),
applied SMOTE to the training data for each iteration, and trained the classifier on the
resampled data. The accuracy of the classifier is then assessed on the resampled test set
for each k_neighbors value. It was found that K = 5 provided optimal results in terms of
accuracy and achievement of the class balance.

After applying SMOTE, a balanced class distribution was achieved for Dataset 2, see
Fig. S2. Each class (represented by −1 and 1) had 6,157 instances, effectively addressing
the class imbalance issue. A balanced distribution was considered beneficial for machine
learning models as it ensured that the model was exposed to a similar number of examples
from each class during training.

Analyzing correlations is a crucial aspect of EDA. Primarily, correlation analysis allows
us to gauge the strength and direction of the association between two variables. A positive
correlation signifies that as one variable increases, the other tends to increase as well,
while a negative correlation indicates an inverse relationship. This insight is crucial
for understanding how variables interact within the dataset. Additionally, correlation
analysis is instrumental in uncovering patterns and trends in the data. Identifying
relationships between variables can reveal dependencies and guide further investigation
into the underlying dynamics of the dataset. Furthermore, correlation analysis aids in
feature selection for modeling purposes. Highly correlated features may carry redundant
information, and identifying and excluding such features can streamline the model,
enhancing its interpretability and performance.Hence, a correlation analysis was conducted
to examine the relationships among data features (see Figs. S3 and S4).

The correlation analysis for Dataset 1 revealed the notable correlations within the
dataset, the top correlation (0.8730) is observed between ‘NumQueryComponents’ and

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131#supp-11
http://dx.doi.org/10.7717/peerj-cs.2131#supp-12
http://dx.doi.org/10.7717/peerj-cs.2131#supp-1
http://dx.doi.org/10.7717/peerj-cs.2131#supp-2
http://dx.doi.org/10.7717/peerj-cs.2131#supp-2
http://dx.doi.org/10.7717/peerj-cs.2131#supp-2
http://dx.doi.org/10.7717/peerj-cs.2131#supp-3
http://dx.doi.org/10.7717/peerj-cs.2131#supp-4
http://dx.doi.org/10.7717/peerj-cs.2131


‘NumAmpersand’, indicating a strong positive relationship. The second-highest correlation
(0.8118) exists between ‘QueryLength’ and ‘NumQueryComponents’, signifying a
substantial positive correlation. Additionally, the third-ranking correlation (0.7544) is
identified between ‘QueryLength’ and ‘NumAmpersand’, representing a noteworthy
positive association. The fourth-highest correlation (0.6492) is noted between ‘UrlLength’
and ‘QueryLength’, revealing a moderately positive correlation between these feature pairs.
The analysis for Dataset 2 revealed a strong correlation between the favicon and popup
window features, suggesting that websites obtaining favicon from external sources often
dominate the text field within the pop-up window. Moreover, the SSL certificate final stage
and URL of the anchor exhibited a notable correlation with the likelihood of phishing. To
represent phishing, labels with a value of −1 were transformed to 0, while labels with a
value of 1 denoted non-phishing instances.

Feature engineering involves creating new features or transforming existing ones
to improve model performance or extract useful information from the data. Feature
engineering was performed by calculating Theil’s uncertainty coefficient (TU) and Point
Biserial Correlation Coefficient (PBCC). The TU measures the predictability of the target
variable given each categorical feature. By leveraging these techniques, the analysis identified
the most relevant numerical and categorical features correlated with the target variable.
Similarly, The PBCC quantifies the linear relationship between each numerical feature
and a binary target variable. For Dataset 1, the first step towards feature engineering was
to segregate the target variable (‘CLASS_LABEL’) and ID from the dataset. Then, the
categorical and numerical features were separated, finding 29 categorical features and
19 numerical features. Subsequently, it calculates the TU for each categorical feature,
revealing their correlation with the target variable. The top correlated categorical features,
such as ‘PctExtNullSelfRedirectHyperlinksRT’, ‘FrequentDomainNameMismatch’,
‘ExtMetaScriptLinkRT’ etc., are filtered and converted back to the integer type. For
the numerical features, the PBCC was computed. The top correlated numerical features,
such as ‘NumDash’, ‘PctNullSelfRedirectHyperlinks’, ‘NumDots’, etc., are filtered. Finally,
the 13 filtered categorical and numerical data features with high scores were merged with
the target variable, see Table S6. For Dataset 2 the index and the target variable (Result)
were segregated and the scores of the features were calculated similarly to Dataset 1. The
SSLfinal_State showed the significantly highest value of 0.715, followed by URL_of_Anchor
with a value of 0.693. The 11 filtered features with high scores were merged with the target
variable, see Table S6.

Machine learning and deep learning models
In the present investigation several popular ML techniques, including SVM, KNN, RF, DT,
XGBoost, LR, and CNNwere employed to assess their accuracy in identifying phishing sites
using two real datasets. To ensure a reliable evaluation, k-fold cross-validation was utilized.
The dataset was divided into k equal-sized folds, where k−1 folds were used for training, and
the remaining fold was used for testing. In this experiment, a value of k= 5 was set initially.
Out of the total 48 features, the SelectKBest feature extraction technique was employed to
select the most informative 30 features for classification in this study. SelectKBest ranks the

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131#supp-13
http://dx.doi.org/10.7717/peerj-cs.2131#supp-13
http://dx.doi.org/10.7717/peerj-cs.2131


features based on their statistical significance and selects the top K features. By using this
approach, each fold was utilized for testing, and the average accuracy across all folds was
computed, providing a more robust measure of the ML models’ performance. To prevent
overfitting, an additional step was taken during the hyperparameter tuning process using
GridSearchCV.

Logistic regression (LR)
In the first step of the analysis, LR was employed, which is commonly used for predictive
analytics and classification tasks. LR calculates the likelihood of an event occurring based
on a given dataset of independent variables. In this approach, the dependent variable ranges
from 0 to 1, representing the outcome as a probability. To transform the odds, which is the
probability of success divided by the probability of failure, the logit formula was utilized,
as shown in Eqs. (1) and (2).

Logit(P)=
1

1+exp(−p)
. (1)

The logistic function, Logit (p), transforms a linear combination of features into a
probability range (0–1):

In
(

p
1−p

)
=β0+β1X1+···+βkXk . (2)

where In is the natural logarithm. p is the probability of an event. X1,X2,Xk are predictor
variables. β0,β1,...,βk are coefficients.

K-nearest neighbors (KNN)
The KNN algorithm is a supervised learning classifier that uses proximity to classify or
predict the grouping of a single data point. It can be applied to both classification and
regression issues. KNN works by measuring the similarity between query points and other
data points based on their distance or closeness. Euclidean distance is one of the commonly
used methods for calculating distance, as shown in Eq. (3). Euclidean distance measures
the straight line between the query point and the available point. While KNN is easy
to use and adaptable, it suffers from memory and overfitting issues. An instance of the
K-NeighborsClassifier class is created with the initial number of neighbors (K) set to 5.
The number of K was tuned using GridSearchCV to prevent the overfitting issue.

d(x,y)=

√√√√ n∑
i=1

(yi−xi)2. (3)

where d(x,y): This represents the Euclidean distance between points x and y . n: The
number of dimensions or features in the dataset. yi: The ith component of point y . xi: The
ith component of point x .

Decision tree (DT)
DT is a non-parametric supervised learning approach used for both classification and
regression applications. Its hierarchical tree structure consists of a root node, branches,

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


internal nodes, and leaf nodes. To find the best-split points inside a tree, decision tree
learning uses a greedy search method, a divide-and-conquer tactic. The dividing procedure
is then repeated top-down and recursively until all or most records have been assigned to
certain class labels. The complexity of the decision tree significantly affects whether all data
points are categorized as homogeneous sets. Smaller trees are more likely to attain pure
leaf nodes, meaning a single class of data items. To prevent overfitting the DT model was
optimized using GridSearchCV, for the parameters including criterion, max_depth, and
min_samples_split.

Random forest (RF)
The random forest method builds each decision tree in the ensemble from a data sample
taken froma bootstrap sample. The random forest algorithm extends the bagging technique,
which produces a nonstationary forest of decision trees using feature randomness in
addition to bagging. Feature randomness ensures low correlation across decision trees
and creates a random collection of features. Random forests merely choose a portion
of those feature splits, whereas decision trees consider all potential feature splits. The
hyperparameters tuned using GridSearchCV included the number of trees, maximum tree
depth, and minimum number of samples required for node splitting.

Support vector machines (SVM)
SVM is a reliable classification and regression method that increases a model’s predicted
accuracy while preventing overfitting on the training set. SVM is particularly well-suited
for data analysis with a very large number of predictor fields, such as thousands. SVM
categorizes data points even when they are not linearly separable by mapping the data to a
high-dimensional subspace. Once a divider between the classes is identified, the data are
converted to enable the hyperplane representation of the separator. By carefully adjusting
the hyperparameters, such as the regularization parameter (C), kernel type, and kernel
coefficient (gamma), the SVM model aimed to strike a balance between model complexity
and the ability to generalize well to unseen data.

XGBoost
XGBoost is a gradient-boosted decision tree implementation created for speed and
performance. It is implemented through the XGBoost package. Gradient boosting decision
tree implementation is done via this package. Boosting is an ensemble technique where
newmodels are taught from the errors of older ones. Models are gradually introduced until
no further advancements are possible. The AdaBoost method is a well-known example that
weights data points that are challenging to forecast. XGBoost supports both regression and
classification. The XGBoost model was optimized using GridSearchCV, for the parameters
including criterion, max_depth, and min_samples_split.

CNN model
In this investigation, we developed a robust and sophisticated predictive model for phishing
detection, employing a CNN architecture. The details of the tabular data were systematically
addressed through the incorporation of multiple convolutional and pooling layers within

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


the model. These architectural components were thoroughly designed to extract nuanced
patterns and relationships present in the dataset. The convolutional layers, featuring
increasing filter sizes, and the strategic integration ofmax-pooling layers for down-sampling
collectively contributed to the model’s ability to recognize subtle nuances in the tabular
input. Additionally, densely connected layers were introduced, accompanied by dropout
regularization, strategically applied to mitigate the risk of overfitting. The output layer,
characterized by a sigmoid activation function, facilitated binary classification, effectively
distinguishing between legitimate and phishing websites.

Furthermore, the architectural details of the developed CNN model were visually
represented using Fig. S5. Figure S5 illustrates the connectivity and structural attributes of
each layer within the network. The training process unfolded over 10 epochs, utilizing
a batch size of 32, and comprehensive evaluations were conducted using a suite of
performance metrics, including accuracy, precision, recall, and F1 score.

Deep learning model
In the present investigation, a DL model was developed for phishing detection using
two datasets. The model architecture was constructed using TensorFlow’s Keras API,
comprising three dense layers, each followed by a dropout layer for regularization, Fig. S6.
The first dense layer had 64 units and utilized the rectified linear unit (ReLU) activation
function. Subsequently, a dropout layer randomly sets a fraction of input units to zero to
prevent overfitting. The second dense layer had 32 units and also used the ReLU activation
function, followed by another dropout layer. The final dense layer consisted of a single unit
with a sigmoid activation function, suitable for binary classification tasks. After defining
the model, it was compiled using the Adam optimizer with a binary cross-entropy loss
function, common for binary classification problems. Additionally, accuracy, precision,
recall, and F1 scores were chosen as the evaluation metrics for model performance during
training. The model was then trained using the training data for 20 epochs with a batch
size of 32, while also validating a portion of the training data to monitor performance and
prevent overfitting. The training process yielded a history object containing information
about the training process.

Hyperparameters tuning
In this section, the performance of the ML models with hyperparameter tuning using
gridsearchCV is analyzed and compared in terms of accuracy, precision, etc., see Table S7.

The study exclusively utilized grid search cross-validation (GridSearchCV) for
hyperparameter tuning due to its simplicity, effectiveness, and thorough exploration
of the hyperparameter space. This method systematically evaluates all combinations
within a predefined grid, ensuring comprehensive tuning and robust model performance.
Without hyperparameter tuning, the model may not achieve its maximum potential,
resulting in suboptimal performance. GridSearchCV’s straightforward implementation
and interpretability make it suitable for this research, enabling the attainment of optimal
results.

For LR, L2 penalty, C at 0.1, Saga solver, and 500 max iterations were optimal. The DT
model favored the gini criterion, max depth of 3, and min samples leaf of 5. Random forest

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131#supp-5
http://dx.doi.org/10.7717/peerj-cs.2131#supp-5
http://dx.doi.org/10.7717/peerj-cs.2131#supp-6
http://dx.doi.org/10.7717/peerj-cs.2131#supp-14
http://dx.doi.org/10.7717/peerj-cs.2131


excelled with 150 estimators, max depth of 10, min samples split of 5, min samples leaf of
2, and Log2 for max features. K-NN leaned towards three neighbors and brute algorithm.
SVC tuned to C 0.7 and the Sigmoid kernel. XGBoost chose a learning rate of 0.2, 100
estimators, max depth of 5, min child weight of 2, subsample of 0.8, and colsample bytree of
1.0. The CNN featured 64 filters, (3, 3) filter size, (3, 3) pool size, 128 dense neurons, and a
0.5 dropout rate. For the deep learning model, hyperparameters such as optimizer, learning
rate, batch size, and dropout rate were tuned to optimizemodel performance. These settings
are aimed at enhancing model predictive capabilities, considering algorithmic nuances and
dataset intricacies.

Experimental design
The D1 contains 10,000 instances while the D2 contains 12,314 instances with class balance
in both datasets. In the present investigation, a Stratified K-Fold cross-validation method
with 10 splits, was employed to enhance the robustness of the model evaluation process. In
this study, we used Google’s specialized processors called Tensor Processing Units (TPUs)
v2–8. These TPUs speed up the training of AI models. The TPU v2–8 had eight cores and
64 GiB of memory. On average, the CNN model took 94 s and 29 ms to complete the
training cycles, while ML models took less time, which was under 10 s for all the models.

EVALUATION MEASURES
In this section, we evaluate the resulting effectiveness of seven ML and DL models using
four measures, namely precision, recall, f 1-score, accuracy, and false positive rate (FPR)
for analyzing the results. The FPR measures the proportion of actual negatives incorrectly
classified as positives by amodel, indicating its ability to avoid false alarms. Accuracymeans
the ratio of the number of web pages detected as phishing pages to the number of total
regular web pages. The recall is the ratio of the number of web pages detected as phishing
pages to the number of total phishing samples. precision is the ratio of the number of pages
detected as phishing pages to the total detected web pages. Accuracy, recall, precision, and
FPR are calculated in Eqs. (4), (5), (6) and (7) (Haq, 2022).

Accuracy=
TP+TN

TP+FP+TN+FN
(4)

Precision=
TP

TP+FP
(5)

Recall=
TP

TP+FN
(6)

FPR=
FP

FP+TN
. (7)

The number of classified phishing pages is referred to as the true positive (TP). True
negative (TN) is the number of legitimate pages that have been correctly classified.

The number of phishing pages misclassified as legitimate pages is referred to as the false
negative (FN). The number of legitimate pages misclassified as phishing pages is referred to
as false positives (FP). Furthermore, we use the F1-score in Eq. (8) as a metric to evaluate

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


Figure 1 Accuracy of all models after hyperparameter tuning on both datasets.
Full-size DOI: 10.7717/peerjcs.2131/fig-1

our approach.

F1=
Precision+Recall
Precision×Recall

. (8)

RESULTS AND ANALYSIS
The performance of eight classification algorithms was evaluated using five metrics, namely
precision, recall, f 1-score, FPR, and accuracy. In evaluating ML models on Mendeley
(Dataset 1) and UCI (Dataset 2), diverse algorithms including LR, KNN, DT, RF, SVM,
XGBoost, CNN, and DLwere assessed for their inherent capabilities before hyperparameter
tuning (BHT), and after hyperparameter tuning (AHT), see Fig. S7, Fig. 1 and Table S8.

The LR model demonstrated an accuracy of 94% at BHT on Dataset 1, improving
marginally to 95% at AHT, with stable precision, recall, and F1-score values. On Dataset
2, consistent performance was observed with an accuracy of 93% at BHT and 94% at AHT.
For the KNN model, an accuracy of 95% was achieved on Dataset 1 at both BHT and
AHT, with stable precision, recall, and F1 scores. On Dataset 2, the model attained an
accuracy of 94% at BHT and maintained 94% accuracy at AHT. The DT model showcased
high accuracy across both datasets, with BHT accuracies of 97% on Dataset 1 and 96% on
Dataset 2. Post-tuning, accuracy remained high at 97% and 96%, respectively. The SVM
model displayed accuracies of 95% and 96% at BHT on Dataset 1 and 94% on Dataset
2. After AHT, accuracies were maintained, with precision showing slight improvement.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 12/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2131/fig-1
http://dx.doi.org/10.7717/peerj-cs.2131#supp-7
http://dx.doi.org/10.7717/peerj-cs.2131#supp-15
http://dx.doi.org/10.7717/peerj-cs.2131


RF model accuracies were consistently high at 97% on Dataset 1 and 96% on Dataset 2,
with minimal variation post-tuning. XGBoost model exhibited accuracies of 93% and 98%
at BHT and AHT on Dataset 1, and 91% and 98% on dataset 2. Performance remained
stable across both datasets. The DL model achieved accuracies of 95% and 98% at BHT
and AHT on Dataset 1, with consistent precision, recall, and F1 scores. The CNN model
outperformed others with accuracies of 97% and 99% at BHT and AHT on Dataset 1, and
95% and 99% on Dataset 2, with stable precision, recall, and F1-scores.

All models demonstrated low FPR values, indicating effective data preprocessing and
hyperparameter tuning. CNN’s superior performance is attributed to its feature extraction
capability, capturing intricate patterns and spatial hierarchies in the dataset. The better
performance of the CNN model in the present study is due to its natural ability to
automatically extract relevant features from the input data, reducing the need for manual
feature engineering. This feature extraction capability allows them to adapt and generalize
well to diverse and complex datasets. The findings of the present investigation highlighted
that CNNs excel because of their ability to capture intricate patterns and spatial hierarchies
in the dataset.

COMPARISON WITH OTHER STUDIES
In comparison to existing studies, our research stands out through distinctive elements.
Firstly, our study introduces a comparative analysis of ML and DL algorithms, utilizing
two real datasets, Mendeley and UCI. This deliberate choice enhances the robustness and
generalizability of our findings, setting this study apart. Particularly noteworthy is the
superior performance of the CNNmodel in intrusion detection, a contribution highlighted
in our results. This unique insight into CNN’s efficacy represents a significant advancement
compared to previous works. Secondly, the present investigation used meticulous feature
engineering for both datasets using TU and PBCC techniques. Additionally, the present
study addresses class imbalance in Dataset 2 through the application of SMOTE. By
incorporating purpose-specific datasets and employing rigorous hyperparameter tuning
using the GridSearchcv approach, this research significantly enriches the experimental
scope, distinguishing itself as a valuable contribution to the field. The study demonstrates
consistent model performance across both datasets, highlighting the stability and reliability
of the proposed models. Table 1 presents the comparison with other studies for all the
models at the AHT phase.

The LR model in our study demonstrates superior accuracy, achieving 95% compared
to the 93% reported in Samad et al. (2023). This notable difference primarily stems from
our extensive hyperparameter tuning. Our approach involved exploring a wider range
of hyperparameters such as penalty, C, solver, and max_iter through gridsearchCV,
whereas (Samad et al., 2023) employed fewer combinations. Similarly, subtle variations in
the performance of other models can also be attributed to rigorous hyperparameter tuning.

Comparisons with Haq (2022) reveal consistent trends, with models like RF and
XGBoost performing well across datasets. Interestingly, Alsharaiah et al. (2023) introduces
variability in KNN and gradient-boosting performance, emphasizing the influence of

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


Table 1 Comparison with the other studies for all the models after the AHT phase.

Studies Accuracy Precision Recall F1-score Reference Dataset

LR 0.95 0.94 0.94 0.94 Current Study 1
KNN 0.96 0.94 0.95 0.94 Current Study 1
DT 0.97 0.97 0.97 0.97 Current Study 1
RF 0.98 0.98 0.97 0.98 Current Study 1
SVM 0.96 0.96 0.95 0.95 Current Study 1
XGBoost 0.97 0.96 0.95 0.96 Current Study 1
CNN 0.99 0.98 0.98 0.99 Current Study 1
DL 0.98 0.98 0.97 0.97 Current Study 1
LR 0.95 0.94 0.94 0.94 Current Study 2
KNN 0.94 0.95 0.95 0.94 Current Study 2
DT 0.97 0.97 0.96 0.96 Current Study 2
RF 0.98 0.97 0.97 0.97 Current Study 2
SVM 0.95 0.95 0.95 0.94 Current Study 2
XGBoost 0.98 0.97 0.98 0.97 Current Study 2
CNN 0.99 0.99 0.98 0.99 Current Study 2
DL 0.99 0.98 0.98 0.98 Current Study 2
LR 0.93 0.92 0.95 0.93 Samad et al. (2023) 1
SVM 0.94 0.94 0.94 0.94 Samad et al. (2023) 1
NB 0.84 0.94 0.72 0.81 Samad et al. (2023) 1
KNN 0.94 0.94 0.93 0.94 Samad et al. (2023) 1
DT 0.96 0.96 0.96 0.96 Samad et al. (2023) 1
RF 0.98 0.98 0.97 0.97 Samad et al. (2023) 1
GB 0.97 0.97 0.97 0.97 Samad et al. (2023) 1
XGBoost 0.98 0.98 0.98 0.98 Samad et al. (2023) 1
LR 0.92 0.91 0.93 0.92 Samad et al. (2023) 2
SVM 0.95 0.94 0.96 0.95 Samad et al. (2023) 2
NB 0.91 0.91 0.90 0.91 Samad et al. (2023) 2
KNN 0.95 0.95 0.95 0.94 Samad et al. (2023) 2
DT 0.97 0.97 0.97 0.97 Samad et al. (2023) 2
RF 0.97 0.97 0.98 0.97 Samad et al. (2023) 2
GB 0.95 0.94 0.95 0.95 Samad et al. (2023) 2
XGBoost 0.97 0.97 0.98 0.98 Samad et al. (2023) 2
KNN 0.96 0.96 0.96 0.96 Haq (2022) 1
NB 0.85 0.86 0.85 0.85 Haq (2022) 1
SVM 0.94 0.94 0.94 0.94 Haq (2022) 1
DT 0.96 0.96 0.96 0.96 Haq (2022) 1
XGBoost 0.86 0.91 0.79 0.85 Alsharaiah et al. (2023) 1
KNN 0.83 0.93 0.69 0.79 Alsharaiah et al. (2023) 1
RF 0.82 0.98 0.64 0.77 Alsharaiah et al. (2023) 1
DT 0.81 0.98 0.64 0.77 Alsharaiah et al. (2023) 1
SVM 0.80 0.97 0.62 0.75 Alsharaiah et al. (2023) 1

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 14/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


dataset characteristics. In the case of Patil, Patil & Chinnaiah (2023), variations are
observed in KNN, Naive Bayes (NB), and XGBoost, highlighting the nuanced nature
of phishing website detection models.

COMPUTATIONAL COMPLEXITY
The computational complexity of data preprocessing and EDA is dependent on the size
of the dataset and the complexity of the operations being performed. Libraries such as
Matplotlib, Seaborn, Pandas, and NumPy are used for data preprocessing, and their
computational complexity is typically O (n) or O(n log n) for basic operations like
filtering and transformation. For the machine learning techniques used in the study, the
computational complexity varies depending on the algorithm. LR has a computational
complexity of O (k * n * d), where k is the number of iterations, n is the number of samples,
and d is the number of features. KNN has a computational complexity of O (n * d * log (k)),
where k is the number of neighbors to consider, n is the number of samples, and d is the
number of features. DT has a computational complexity of O (n * d * log (n)), where n is
the number of samples and d is the number of features. RF has a computational complexity
of O (n * d * k * log (k)), where k is the number of trees in the forest. XGBoost has a
computational complexity of O (n * d * k), where k is the number of trees in the ensemble.
Overall, the computational complexity of the ML techniques used in the study ranges from
linear to logarithmic and polynomial in the number of samples and features, with the
highest complexity being O (n * d * k * log (k)) for random forest. The computational
complexity of the DL and CNN models training was O (knd), where k is the number of
epochs, n is the number of samples, and d is the number of features in the dataset.

LIMITATIONS AND FUTURE SCOPE
The current investigation, akin to previous studies (Samad et al., 2023), innovatively
incorporates robust feature engineering techniques alongside the integration of
convolutional neural network (CNN) and deep learning (DL) models. This approach
extends beyond conventional machine learning methodologies, enriching the analysis with
advanced neural network architectures. Our future scope involves adding more DL models
and diverse datasets, promising further advancements in phishing website detection. This
forward-looking approach distinguishes our work and ensures ongoing innovation in the
field. While CNN model interpretability was not applied in the current investigation due
to practical constraints and the initial focus on performance assessment, its importance
for real-world applications is recognized. Integrating CNN model interpretability in
future studies could deepen the analysis, offering insights into decision-making processes
crucial for practical deployment. Another essential future direction involves evaluating the
practicality of deploying the models in real-world scenarios and comparing various CNN
models for a more comprehensive understanding.

The present study exceeds the promising accuracy of 95% similar to Samad et al.
(2023), so it is essential to consider the applicability of such results in real-world scenarios.
The present investigation recognizes the potential influence of dataset distribution on

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


performance outcomes and acknowledges the need to investigate challenges where DL
methods can offer significant improvements over traditional approaches. Exploring these
challenges and potential disparities between lab performance and real-world applicability
is crucial for advancing the field. By addressing these aspects in future research, the present
investigation aims to provide more nuanced insights into the effectiveness and practicality
of DL methods for phishing website detection.

CONCLUSION
This study conducted a comprehensive evaluation of seven classification algorithms
for phishing website detection, employing precision, recall, f 1-score, and accuracy as
performance metrics. In the evaluation of seven intrusion detection algorithms across
Mendeley (Dataset 1) and UCI (Dataset 2), LR maintained consistent performance, KNN
showed stability, and DT exhibited remarkable accuracy. SVM demonstrated sensitivity to
tuning, while RF andXGBoost proved robust, especially after hyperparameter tuning.While
the DL model also demonstrated commendable performance, the CNN model emerged
as the superior performer, exhibiting exceptional accuracy and notable enhancements
following parameter tuning. Distinctive study elements, including ML and DL algorithm
comparison, real dataset usage, and addressing class imbalance through SMOTE, and
rigorous hyperparameter tuning contribute to the intrusion detection literature. Model
comparisons with other studies highlight consistent trends (RF, XGBoost) and nuanced
variations, emphasizing dataset-specific model behaviors. The findings provide insights
into hyperparameter tuning efficacy and the relevance of algorithm choice in intrusion
detection. This study contributes nuanced perspectives, advancing intrusion detection
research. The study demonstrates consistent model performance across both datasets,
highlighting the stability and reliability of the proposed models. The utility of DL can be
explored as the future scope with adding more datasets (Haq, Khan & Alshehri, 2022; Haq,
2023; Haq & Khan, 2022; Haq, Khan & AL-Harbi, 2022; Kumar et al., 2023). Furthermore,
the study can be expanded to generate results for a larger network (Kumar et al., 2023;
Atlam et al., 2020; Ahmad & Hameed, 2021).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The Deanship of Postgraduate Studies and Scientific Research at Majmaah University
supported this work under Project No. PGR-2024-1103. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Deanship of Postgraduate Studies and Scientific Research at Majmaah University: No.
PGR-2024-1103.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 16/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Noura Fahad Almujahid conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Mohd Anul Haq conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Mohammed Alshehri conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The dataset containing the features of URL addresses, which we analyzed to detect
phishing sites, and Python codes, for cleaning the dataset and writing algorithms are
available in the Supplemental Files.

The Mendeley Dataset is available at: https://data.mendeley.com/datasets/h3cgnj8hft/1.
The UCI Datasets are available at: https://archive.ics.uci.edu/dataset/327/phishing+

websites.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2131#supplemental-information.

REFERENCES
Abutair HYA, Belghith A. 2017. Using case-based reasoning for phishing detection.

Procedia Computer Science 109:281–288 DOI 10.1016/j.procs.2017.05.352.
AhmadHM, Hameed SR. 2021. Eye diseases classification using back propagation

artificial neural network. Engineering and Technology Journal 39(1B):11–20
DOI 10.30684/etj.v39i1B.1363.

AlEroud A, Karabatis G. 2020. Bypassing detection of URL-based phishing attacks using
generative adversarial deep neural networks. In: Proceedings of the sixth international
workshop on security and privacy analytics, New York, NY, USA. 53–60.

Alharbi A, Alotaibi A, Alghofaili L, AlsalamahM, Alwasil N, Elkhediri S. 2022. Security
in social-media: awareness of phishing attacks techniques and countermeasures. In:
Proceedings 2nd international conference on computing and information technology
(ICCIT), Tabuk, Saudi Arabia. 10–16.

Aljofey A, Jiang Q, Qu Q, HuangM, Niyigena JP. 2020. An effective phishing detection
model based on character level convolutional neural network from URL. Electronics
9(9):1514 DOI 10.3390/electronics9091514.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2131#supplemental-information
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://archive.ics.uci.edu/dataset/327/phishing+websites
https://archive.ics.uci.edu/dataset/327/phishing+websites
http://dx.doi.org/10.7717/peerj-cs.2131#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2131#supplemental-information
http://dx.doi.org/10.1016/j.procs.2017.05.352
http://dx.doi.org/10.30684/etj.v39i1B.1363
http://dx.doi.org/10.3390/electronics9091514
http://dx.doi.org/10.7717/peerj-cs.2131


AlsharaiahMA, Abu-shareha AA, Abualhaj M, Baniata LH, Adwan O, Al-saaidah A,
Oraiqat M. 2023. A new phishing-website detection framework using ensemble
classification and clustering. International Journal of Data and Network Science
7:857–864 DOI 10.5267/j.ijdns.2023.1.003.

AtlamM, Torkey H, SalemH, El-Fishawy N. 2020. A new feature selection method for
enhancing cancer diagnosis based on dna microarray. In: Proceedings of the 37th
national radio science conference (NRSC), Cairo, Egypt. 285–295.

Brownlee J. 2021. Ensemble learning algorithms with Python: make better predictions with
bagging, boosting, and stacking. Vermont, Victoria, Australia: Machine Learning
Mastery.

Chiew KL, Chang EH, Sze SN, TiongWK. 2015. Utilisation of website logo for phishing
detection. Computer Security 54:16–26 DOI 10.1016/j.cose.2015.07.006.

DunlopM, Groat S, Shelly D. 2010. GoldPhish: using images for content-based phishing
analysis. In: 2010 Fifth international conference on internet monitoring and protection,
Barcelona, Spain. Piscataway: IEEE, 123–128 DOI 10.1109/ICIMP.2010.24.

Giri KJ, Parah SA, Bashir R, Muhammad K. 2021. An efficient approach for phishing
detection using machine learning. In: Giri KJ, Parah SA, Bashir R, Muhammad K,
eds.Multimedia security. Algorithms for intelligent systems. Singapore: Springer,
239–253 DOI 10.1007/978-981-15-8711-5_12.

Gupta D, Rani R. 2020. Improving malware detection using big data and ensemble
learning. Computers and Electrical Engineering 86:106729
DOI 10.1016/j.compeleceng.2020.106729.

HaqMA. 2022. Smotednn: a novel model for air pollution forecasting and aqi classifica-
tion. Computers, Materials & Continua 71(1):1403–1425
DOI 10.32604/cmc.2022.021968.

HaqMA. 2023. DBoTPM: a deep neural network-based botnet. Electronics 12:1159
DOI 10.3390/electronics12051159.

HaqMA, KhanMAR. 2022. Dnnbot: deep neural network-based botnet detec-
tion and classification. Computers Materials and Continua 71(1):1729–1750
DOI 10.32604/cmc.2022.020938.

HaqMA, KhanMAR, AL-Harbi T. 2022. Development of pccnn-based network
intrusion detection system for edge computing. Computers Materials and Continua
71(1):1769–1788 DOI 10.32604/cmc.2022.018708.

HaqMA, KhanMAR, Alshehri M. 2022. Insider threat detection based on NLP word
embedding and machine learning. Intelligent Automation and Soft Computing
33(1):619–635 DOI 10.32604/iasc.2022.021430.

Hong J, Kim T, Liu J, Park N, Kim S-W. 2020. Phishing URL detection with lexical
features and blacklisted domains. In: Jajodia S, Cybenko G, Subrahmanian V,
Swarup V, Wang C, Wellman M, eds. Adaptive autonomous secure cyber systems.
Cham: Springer, 253–267 DOI 10.1007/978-3-030-33432-1_12.

Jain AK, Gupta BB. 2018. PHISH-SAFE: URL features-based phishing detection
system using machine learning. In: Bokhari M, Agrawal N, Saini D, eds. Cyber

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 18/20

https://peerj.com
http://dx.doi.org/10.5267/j.ijdns.2023.1.003
http://dx.doi.org/10.1016/j.cose.2015.07.006
http://dx.doi.org/10.1109/ICIMP.2010.24
http://dx.doi.org/10.1007/978-981-15-8711-5_12
http://dx.doi.org/10.1016/j.compeleceng.2020.106729
http://dx.doi.org/10.32604/cmc.2022.021968
http://dx.doi.org/10.3390/electronics12051159
http://dx.doi.org/10.32604/cmc.2022.020938
http://dx.doi.org/10.32604/cmc.2022.018708
http://dx.doi.org/10.32604/iasc.2022.021430
http://dx.doi.org/10.1007/978-3-030-33432-1_12
http://dx.doi.org/10.7717/peerj-cs.2131


security. Advances in intelligent systems and computing, vol 729. Singapore: Springer
Singapore, 467–474 DOI 10.1007/978-981-10-8536-9_44.

Joshi A, Pattanshetti PTR. 2019. Phishing attack detection using feature selection
techniques. SSRN Preprint DOI 10.2139/ssrn.3418542.

KhanMF, Rana BL. 2021. Detection of phishing websites using Deep learning tech-
niques. Turkish Journal of Computer and Mathematics Education 12(10):3880–3892.

Kumar S, HaqM, Jain A, Jason CA, Moparthi NR, Mittal N, Alzamil ZS. 2023.Mul-
tilayer neural network based speech emotion recognition for smart assistance.
Computers, Materials & Continua 74(1):1523–1540 DOI 10.32604/cmc.2023.028631.

Kumar J, Santhanavijayan A, Janet B, Rajendran B, Bindhumadhava BS. 2020. Phishing
website classification and detection using machine learning. In: Proceedings interna-
tional conference on computer communication and informatics (ICCCI), Coimbatore,
India. 1–6.

Le H, PhamQ, Sahoo D, Hoi SCH. 2018. URLNet: learning a URL representation with
deep learning for malicious URL detection. ArXiv arXiv:1802.03162.

Mohammad RM, Thabtah F, McCluskey L. 2014. Predicting phishing websites based on
self-structuring neural network. Neural Computing and Applications 25(2):443–458
DOI 10.1007/s00521-013-1490-z.

Nguyen LAT, To BL, Nguyen HK, NguyenMH. 2013. Detecting phishing websites: a
heuristic URL-based approach. In: Proceedings international conference on advanced
technologies for communications (ATC), Ho Chi Minh City, Vietnam. 597–602.

Patil S, Patil M, Chinnaiah K. 2023.Machine learning and deep learning for phishing
page detection swatej. Research Reports on Computer Science 2:45–54.

PurbayM, Kumar D. 2021. Split behavior of supervised machine learning algorithms for
phishing url detection. In: Harvey D, Kar H, Verma S, Bhadauria V, eds. Advances in
VLSI, communication, and signal processing. Lecture notes in electrical engineering, vol.
683. Singapore: Springer Singapore, 497–505 DOI 10.1007/978-981-15-6840-4_40.

Ramesh G, Krishnamurthi I, Kumar KSS. 2014. An efficacious method for detecting
phishing webpages through target domain identification. Decision Support Systems
61:12–22 DOI 10.1016/j.dss.2014.01.002.

Rao RS, Pais AR. 2019. Jail-Phish: an improved search engine-based phishing detection
system. Computer Security 83:246–267 DOI 10.1016/j.cose.2019.02.011.

Samad SRA, Balasubaramanian S, Al-Kaabi AS, Sharma B, Chowdhury S, Mehbodniya
A,Webber JL, Bostani A. 2023. Analysis of the performance impact of fine-tuned
machine learning model for phishing URL detection. Electronics 12(7):1642
DOI 10.3390/electronics12071642.

Singh P, Maravi YPS, Sharma S. 2015. Phishing websites detection through supervised
learning networks. In: Proceedings international conference on computing and
communications technologies (ICCCT), Chennai, India. 61–65.

Tally AC, Abbott J, Bochner AM, Das S, Nippert-Eng C. 2023. Tips, tricks, and training:
supporting anti-phishing awareness among mid-career office workers based on
employees. In: Conference: CHI ’23: CHI conference on human factors in computing
systems DOI 10.1145/3544548.3580650.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 19/20

https://peerj.com
http://dx.doi.org/10.1007/978-981-10-8536-9_44
http://dx.doi.org/10.2139/ssrn.3418542
http://dx.doi.org/10.32604/cmc.2023.028631
http://arXiv.org/abs/1802.03162
http://dx.doi.org/10.1007/s00521-013-1490-z
http://dx.doi.org/10.1007/978-981-15-6840-4_40
http://dx.doi.org/10.1016/j.dss.2014.01.002
http://dx.doi.org/10.1016/j.cose.2019.02.011
http://dx.doi.org/10.3390/electronics12071642
http://dx.doi.org/10.1145/3544548.3580650
http://dx.doi.org/10.7717/peerj-cs.2131


Varshney G, Misra M, Atrey PK. 2016. A survey and classification of web phishing
detection schemes: phishing is a fraudulent act that is used to deceive users. Security
and Communication Networks 9(18):6266–6284 DOI 10.1002/sec.1674.

WuC-Y, Kuo CC, Yang CS. 2019. A phishing detection system based on machine
learning. In: Proceedings international conference on intelligent computing and its
emerging applications (ICEA), Tainan, Taiwan. 28–32.

Yerima SY, Alzaylaee MK. 2020.High accuracy phishing detection based on convo-
lutional neural networks. In: Proceedings 3rd international conference on computer
applications & information security (ICCAIS), Riyadh, Saudi Arabia. 1–6.

Almujahid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2131 20/20

https://peerj.com
http://dx.doi.org/10.1002/sec.1674
http://dx.doi.org/10.7717/peerj-cs.2131

