
Submitted 19 February 2024
Accepted 23 May 2024
Published 12 June 2024

Corresponding authors
Mumtaz Ali, mumtazali@cusit.edu.pk
Osama Sohaib,
Osama.Sohaib@uts.edu.au

Academic editor
Ivan Miguel Pires

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.2129

Copyright
2024 Ali et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Efficient context-aware computing: a
systematic model for dynamic working
memory updates in context-aware
computing
Mumtaz Ali1, Muhammad Arshad1, Ijaz Uddin1, Muhammad Binsawad2,
Abdullah Bin Sawad3 and Osama Sohaib4,5

1Department of Computer Science, City University of Science and Information Technology, Peshawar,
Pakistan

2Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah, Saudi Arabia

3Department of Computer and Information Technology, The Applied College, King Abdulaziz
University, Jeddah, Saudi Arabia

4 School of Computer Science, University of Technology Sydney, Sydney, Australia
5 School of Business, American University of Ras al Khaimah, Ras al Khaimah, United Arab Emirates

ABSTRACT
The expanding computer landscape leads us toward ubiquitous computing, in which
smart gadgets seamlessly provide intelligent services anytime, anywhere. Smartphones
and other smart devices with multiple sensors are at the vanguard of this paradigm,
enabling context-aware computing. Similar setups are also known as smart spaces.
Context-aware systems, primarily deployed on mobile and other resource-constrained
wearable devices, use a variety of implementation approaches. Rule-based reasoning,
noted for its simplicity, is based on a collection of assertions in working memory and
a set of rules that regulate decision-making. However, controlling working memory
capacity efficiently is a key challenge, particularly in the context of resource-constrained
systems. The paper’s main focus lies in addressing the dynamic working memory
challenge in memory-constrained devices by introducing a systematic method for
content removal. The initiative intends to improve the creation of intelligent systems for
resource-constrained devices, optimizememory utilization, and enhance context-aware
computing.

Subjects Algorithms and Analysis of Algorithms, Computer Education, Emerging Technologies,
Software Engineering
Keywords Smart spaces, Context-aware systems, Rule-based reasoning, Working memory

INTRODUCTION
The latest computing trends drive toward ubiquitous computing, where seamlessly
integrated gadgets, leveraging embedded or portable devices, deliver intelligent
services to assist individuals anytime and anywhere. This paradigm empowers users to
communicate and exchange information through smart gadgets, enhancing convenience,
safety, and overall well-being, albeit with device dependency. With their inherent
mobility, smartphones align perfectly with this vision, benefiting from a wide range of

How to cite this article Ali M, Arshad M, Uddin I, Binsawad M, Bin Sawad A, Sohaib O. 2024. Efficient context-aware
computing: a systematic model for dynamic working memory updates in context-aware computing. PeerJ Comput. Sci. 10:e2129
http://doi.org/10.7717/peerj-cs.2129

https://peerj.com/computer-science
mailto:mumtazali@cusit.edu.pk
mailto:Osama.Sohaib@uts.edu.au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2129
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2129

communication channels and incorporating sensors like GPS, proximity, shake sensors,
and accelerometers (Pei et al., 2010). These sensors enhance users’ daily activities by
enabling access to many smart applications that provide contextual information about the
user and their environment, thus contributing to a context-aware computing paradigm.

Context awareness, initially centered around the positioning of objects and people
in early works on Pervasive and Ubiquitous Computing (Schilit & Theimer, 1994), has
expanded in recent years to encompass additional dimensions such as social and physical
aspects of entities, as well as user activities and behavior towards their surroundings (Rakib
& Uddin, 2019;Dourish, 2004; Sarker, 2019;Brown et al., 2022). These sensors offer valuable
user information and facilitate seamless communication among users, devices, and
applications (Raento et al., 2005). Smartphones, self-contained entities equipped with
sensors, code, and applications, can qualify as agents in agent-based computing, functioning
autonomously in their respective domains. Consequently, using agent-based systems and
smartphones holds immense potential for developing sophisticated context-aware systems.

Considering these factors, designing and developing context-aware smart systems that
can be deployed universally becomes an ideal approach. Leveraging existing data, these
systems can intelligently infer outputs or adapt to new contexts in real time. Developing
intelligent context-aware systems that can think and make decisions on behalf of users or
other devices using a rule-based system (RBS) emerges as a viable solution. RBS utilizes
rules to steer the system in the desired direction. The ultimate goal is to integrate such
intelligent systems into small gadgets, thereby significantly enhancing the quality of life,
especially for individuals with disabilities, who may require minimal input or effort.

The present study continues the work presented in Ali et al. (2024). A memory
calculation model calculates the required working memory for application(s). This model
calculates working memory requirements very efficiently; however, the model still lacks
the removal/withdrawal of preference sets from the memory that are no longer in use. Due
to this, the memory reaches its maximum, and then there is no systematic method for
removing rules from the memory. Currently, the benchmark technique (Rakib & Uddin,
2019) eliminates rules randomly from the memory once it reaches its limits, which leads
to different issues discussed in detail in Ali et al. (2024), especially the removal of critical
context/rules. With the introduction of our previous work and after the incorporation of
the proposed technique, the model optimization process reached its conclusion, and now
we can claim to have an efficient solution.

The rest of this article is organized as follows. ‘Related Work’ provides a review of
relevant literature. ‘Working Memory Size Estimation’ presents the working memory size
estimation model and its algorithm. ‘Working Memory Update Methodologies’ provides a
detailed discussion of the working memory updating model. ‘Scenarios’ provides an insight
into the scenarios and their results. Lastly, ‘Conclusion’ summarizes the key findings of the
article.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

RELATED WORK
The related work primarily focuses on two key subsections: ‘‘Context-Aware Systems,’’
which provides a detailed discussion of the topic, and ‘‘Preferences,’’ which highlights the
significant role played by preferences in the contemporary era, enhancing system efficiency.

Context-aware systems
Context awareness is becoming increasingly crucial in pervasive and ubiquitous computing.
As early works Schilit & Theimer (1994) illustrate, context awareness was first limited to
the location of objects and people. Recent advancements, however, have broadened the
concept of context to include additional components, such as the social and physical
features of entities and user behaviors (Rakib & Uddin, 2019; Dourish, 2004; Sarker, 2019).
To comprehend the many characteristics of context, researchers conducted rigorous
evaluations. Studies have examined user identity, social situations, location information,
temporal data, and the surrounding environment, including objects and individuals (Schilit
& Theimer, 1994; Brown, Bovey & Chen, 1997; Nazir, Sholla & Bashir, 2021; Ryan, Pascoe &
Morse, 1997; Brown, 1995; Franklin & Flaschbart, 1998; Ward, Jones & Hopper, 1997; Hull,
Neaves & Bedford-Roberts, 1997).

Moreover, the advent of social networks has played a significant role in gathering
user information, preferences, and behavioral patterns (Sarker, 2018b; Sarker, 2018a).
Gadgets and applications have emerged as valuable sources of user data. For example,
the SociaCircuit Platform enables the monitoring of social interactions, facilitating the
adaptation of user preferences (Chronis, Madan & Pentland, 2009). Other studies have
utilized data mining tools, sociometric badges, and mobile sensors to track user activities,
predict job satisfaction, analyze employee interactions, and identify significant locations
based on social activities (Jung, 2009; Aly, Eskaf & Selim, 2017; Olguín et al., 2008; Eagle &
Pentland, 2006).

Despite efforts to integrate complex expert systems into the Android platform, certain
limitations persist. For example, the book ‘‘Build Android-Based Smart Applications’’
describes using rule engines on Android (Mukherjee, 2017). However, these rule engines
frequently needmore critical characteristics like context awareness, resource efficiency, and
dynamic context utilization with preferences. For example, some rule engines do not offer
OR operators. In contrast, others require authoring rules in code or storing separate files
for each rule, which can be inconvenient for bigger systems. Technical issues arose during
the porting of rule engines. Due to Drools’ memory-intensive nature, Eclipse encountered
memory restrictions while converting files to Dalvik.

Similarly, Take required a Java compiler at runtime, while Jlisa experienced stack
overflows on the Android platform. Furthermore, despite its compatibility concerns
and high cost, the Jess rule engine posed challenges due to significant memory usage.
Table 1 shows different rule engines available in the literature. Most of them are based
on Rete algorithms, which are greedy algorithms that are not recommended for memory-
constrained devices due to their memory-intensive nature.

Furthermore, Uddin et al. (2016) needs a systematic method for memory allocation
instead of relying on fixed-size memory for execution, which may lead to problems

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Table 1 Comparison of various rule engines.

Name Generic Context-Aware For resource
bounded devices

Context
removal

RETE
based

Porting
issue

Context
reusability

Clips Yes No No No Yes Yes NA
Drools Yes No No No Yes Yes NA
FMES No No No No No NA No
Jlisa Yes No No No No Yes NA
JruleEngine Yes No No No Yes Yes NA
JEOPS Yes No No No Yes Yes NA
KBAM No Yes No No No NA No
SociaCircuit No NA No No NA NA Yes
Zilionis Yes No No No Yes Yes NA
PSBM Yes Yes Yes Random No No Yes
TermWare Yes No No No Yes No No

discussed in detail in Ali et al. (2024). Notably, both Uddin et al. (2016) and Uddin (2019)
need to incorporate a method for removing previously loaded rules from memory once it
has reached capacity. Instead, rules are randomly removed, maybe including essential ones
that will shortly be required for execution. This condition could send the system into an
infinite loop if a vital rule needed for execution is inadvertently removed. The following
subsection goes into preferences in greater detail.

Preferences
The fundamental idea behind preferences is to select a subset of the rule base instead of
the entire set. The preferences can have a significant impact on the overall performance of
the system. This technique allows the inference engine to iterate through a subset of rules,
enhancing the system’s efficiency. This is particularly relevant for personalizing resource-
constrained context-aware applications without modifying the primary rule base. Although
preferences in multi-agent context-aware systems have received less attention (Brandt,
Chabin & Geist, 2015), they hold importance in recommender applications (Abbas,
Zhang & Khan, 2015), User Interface (UI) customization (Loitsch et al., 2017), rules for
triggering context-awareness (Moore & Pham, 2015), personalizing notifications (Auda et
al., 2018; Mehrotra, Hendley & Musolesi, 2016), and acting as tour guides (Manotumruksa,
Macdonald & Ounis, 2016).

The basic approach in the methods above involves gathering user preferences and
tailoring the user experience accordingly. Preferences were utilized for UI customization
in terminals (Loitsch et al., 2017). The flow manager retrieves user preferences from a
cloud-based server upon user login, enabling adjustments to the UI based on these choices
and relevant information obtained from the user’s device via USB or NFC channel.
In Alhamid et al. (2016), preferences were predicted from user-item selections, which can
be an application software in the current context. User preferences can be computed based
on the relationship between objects to uncover the underlying reasons for user behavior
in specific situations. However, this approach may face a cold start problem due to limited
initial information. Similarly, Manotumruksa, Macdonald & Ounis (2016) may encounter

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

the same challenge when visiting new places or in situations with limited information. In
this article, the technique is context-aware, meaning that context can be derived from the
words in the user’s feedback remarks.

Location-based social networks (LBSN), such as Foursquare, offer context
recommendations for places to visit. To make such a system context-aware, it should
consider associated user information like the time of day and location. The authors
employed word embedding to infer venue representation, user contextual preferences, and
existing user preferences. Zhu et al. (2014) utilized context logs to mine a variety of popular
context-aware preferences. However, these solutions require significant resources in terms
of memory and computation, making them unsuitable for resource-constrained devices.
To address this,Uddin & Rakib (2018) proposes a novel technique where users have control
over their choices and are explicitly asked to indicate their interests in the knowledge base,
enabling efficient resource utilization. While this approach seemed superior.

Compared to RETE algorithm-based solutions at the time, it lacked support for
preferences once loaded. Over time, this approach accumulated significant overhead and
consumed excessive memory, which posed a considerable challenge, especially considering
the limited availability of memory resources. The current working memory updating
technique is discussed in the next section.

WORKING MEMORY SIZE ESTIMATION
Estimating the size of working memory proves advantageous in addressing context loss,
particularly in critical contexts. In Ali et al. (2024), we have achieved this using three
distinct techniques: (i) Distinct Working Memory (DWM), (ii) Average of the Preference
Sets (APS), and (iii) Smart Average of the Preference Sets (SAPS).While all three techniques
perform effectively in their respective scenarios, SAPS emerges as the more viable option.
It not only utilizes less memory compared to APS but also requires less time for estimating
the working memory size in most scenarios. The APS technique lays the groundwork for
SAPS to calculate the required working memory size, making it more practical for detailed
discussion, as illustrated in Algorithm 1. The APS algorithm begins by initializing and
measuring the time for performance assessment. It then determines the total number of
preference sets and calculates the number of rules in each set. The algorithm computes
the average number of regulations across all preference sets and creates a distinct rule
set (DRS) if the calculated average is less than the number of rules in the preference set
with the highest rule count (PSHR). The DRS is formed by including rules absent from
the original rule set. Subsequently, the algorithm compares the number of regulations in
the DRS with the computed average and sets the required working memory size (RWM)
based on the outcome of this comparison. The time measurement concludes, and the
algorithm returns the calculated RWM and the time taken for performance assessment.
The conditions in the algorithm enable adaptive adjustments to memory requirements and
processing time, making it suitable for scenarios where rule-based characteristics impact
system performance.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Algorithm 1: Average of the Preference Sets (APS) (Ali et al., 2024)
Input: RB: Rule-base [RC: Rule Consequent, RDC: Rule Distinct Consequent, RS: Ar-
ray to hold Rule Set, DRS: Array to hold distinct Rule Set, NPS: Number of Preference
Set, PS: Preference Set, APS: Average of Preference sets, PSHR: Preference Set with
highest Number of Rules]

Output: RWM: Required Working Memory Size, TPM: Time for Performance Mea-
surement

START
TPM_ start to start measuring the time
NPS← Check RB for the number of preference sets
PS[i]← Check RB for the number of rules in each preference sets
Average← Calculate the average/mean of the preference sets
if (Average <PSHR), then
Create DRS
for each Rule in PSHR do
if RS does not include RC then
Push rule to DRS
end
end
end
if Number of rules in DRS >Average then
RWM←DRS
end
else
RWM← Average
End
TPM_ end

TPM= TPM_ start –TPM_ end

Return RWM, TPM
END

WORKING MEMORY UPDATE METHODOLOGIES
Working memory stores the currently available contexts, allowing for context-aware
reasoning. Saving memory emerges as a critical problem during system design and
implementation procedures prioritizing resource constraints. Limiting the size of working
memory guarantees that it does not exceed its ability to hold contexts at any given time.
However, contexts can be generated almost at every iteration. Therefore, it is critical to keep
those that are more relevant for execution. The following section provides an overview of
existing and proposed models for updating working memory.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Current working memory update methodology
In the current implementation proposed by Rakib & Haque (2014), the working memory
is structured as a fixed-size container comprising static and dynamic components. The
dynamic memory portion is limited in size, with each memory unit capable of storing a
single context. Only facts stored in the dynamic memory are subject to being overwritten,
a scenario triggered either by the agent’s memory reaching capacity or the arrival of a
contradictory context in the working memory, regardless of its current occupancy. Upon
arriving at a newly derived context, it compares with existing contexts to detect any
conflicts. If a conflict arises, the conflicting context is replaced with the newly derived
one. If the working memory is full, the new context is added by overwriting a random
existing context. Due to the finite size of the working memory, the system may enter into
an infinite execution loop if a goal proves unachievable without a mechanism to forcibly
halt the inference engine. Similarly, the context targeted for removal could be critical and
potentially necessary for imminent execution.

The Rete algorithm working memory updating is only the introduction/loading of new
rule(s)/context(s) to working memory, as the applications based on the Rete algorithm
claim memory almost equal to the rules set provided; due to this, there might not be any
chance that a rule does not have sufficient space in memory to be loaded.

Proposed working memory update methodology
The memory size calculation has been proposed in our previous work Ali et al. (2024).
We can select one of the three methods (DWM, APS, and SAPS) for memory calculation.
After calculating the memory, the currently proposed technique is the final step toward
memory-efficient utilization. Algorithm 1 shows the technique in detail.

This algorithm has three major parts: (i) First, the system will check whether the
context(s) is loading for the first time through WM Flag. If it is false, there is no data, and
the data is loading to the memory for the first time. So, the system will load the data directly
without checking the other attributes. (ii) If the context(s) are already there and there is a
new incoming context, the system will first check the preference. If the preference matches,
then it means that the new context belongs to the same preference set. After this, the system
will check the context with the existing contexts. The system will load the context into the
memory if its consequent part is distinct. Conversely, the system will overwrite the context
over the existing context, which will have the same consequence. (iii) If the preference does
not match the existing one in memory, the system will then check if the preference matches
any consequent part. If yes, the rule will be appended in memory in the next available free
slot. In case of no, it is time to change the context(s) loaded in the memory as the incoming
context shows the change of preference set. So, the system will remove all the rules of the
old preference set, update the preference in memory, and start loading the rule(s) of the
new preference set.

Algorithm 2 completes the framework for which the memory calculation model was
introduced in our previous article, Ali et al. (2024). This algorithmminimizes the load over
the memory by removing the context(s)that are no longer required, as the preference set
has been changed. This algorithm overcomes the issue of critical context(s) removal, as the

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Algorithm 2: Proposed Working Memory Update Algorithm (WMUA)
Input: Fact(s), Context(s)
START
load Facts
checkWM_Flag
If (WM_ Flag ==False) then
setWM_Flag← True
load Preference
load Context toWM
end
else
check Preference
if (Preference Matches) then
check rule for Distinct_Consequent Part
if (Consequent is Distinct) then
append the rule inWM
end
else
Overwrite the rule(Over the same consequent rule in WM)
end
else if (Preference Matches any Consequent Part) then
Overwrite the rule inWM
end
else
clear theWM(Except the rule having ‘‘Tell’’ part)
load Preference
load Context inWM
end
end
END

system now has sufficient memory to load all the required contexts, and there may not be
a need to remove context(s) randomly due to lack of space in memory.

Figure 1 (Step 1) illustrates the preprocessing part introduced by the authors of Uddin
(2019), where the rule set creation and preference set were introduced and followed in the
same manner in this article. Figure 1 (Step 2) corresponds to our previous work published
in Ali et al. (2024), where three algorithms, DWM, APS, and SAPS, have been introduced
for the calculation of required working memory; these algorithms are also followed in
the same context as they are working in the article which introduced it. Figure 1 (Step 3
WMUA) outlines the proposed workflow of this article that removes the preference set,
which is no longer required for processing. In the next section, two different scenarios have
been discussed to validate the proposed work.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 1 Integrated framework with latest proposed work.
Full-size DOI: 10.7717/peerjcs.2129/fig-1

SCENARIOS
Here are the two scenarios employed to assess the model’s performance. The
implementation has been completed, and results have been generated using a Raspberry Pi
3 Model B with 1 GB of RAM.

Scenario 1 (patient care system)
The presented scenario is documented inUddin (2019), encompasses 85 rules, and revolves
around a patient care system. The ontology outlining the structure of this scenario is visually
depicted in Fig. 2. While varied and extensive sets of steps for annotation and preference
sets exist within this scenario, our focus in this discussion is primarily on memory usage.
Notably, the creation and execution of preference sets will remain consistent.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 9/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-1
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 2 Patient care ontology.
Full-size DOI: 10.7717/peerjcs.2129/fig-2

Figure 3 A snapshot of some of the patient care rules.
Full-size DOI: 10.7717/peerjcs.2129/fig-3

The development of the rule set yielded seven preference sets, exemplified by a sample
of rules illustrated in Fig. 3. The rules set and preference set were generated following
the methodology introduced by Uddin (2019). This snapshot provides a glimpse into
the complexity and richness of the rule-based system designed for the patient care
scenario, as detailed in the comprehensive case study. For memory calculation, APS
was employed, as SAPS and DWM do not align well with the requirements of this scenario
(Ali et al., 2024). Since the standard deviation exceeded 2, it is advised not to adhere
to SAPS, as recommended by the authors. The proposed algorithm executed memory
updating.

The RETE algorithm poses a challenge due to its memory-intensive nature, loading
almost all 85 rules into memory without considering preference sets (on Raspberry PI
3B, it consumed 405 bytes). In contrast, the preference-sets-based method, as observed
in our case, demands a minimum space for 40 rules with a memory requirement of

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 10/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-2
https://doi.org/10.7717/peerjcs.2129/fig-3
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 4 Patient care system result.
Full-size DOI: 10.7717/peerjcs.2129/fig-4

220 bytes. Notably, the absence of a memory requirement calculation technique in the
preference-sets-based method leads to random memory allocation, an issue effectively
addressed in our prior work Ali et al. (2024).

While the preference-sets-based method exhibits a nearly 59% reduction in memory
requirements in this instance, it encounters difficulties when the available memory lacks
space for incoming rules or contexts. This method lacks a mechanism to remove preference
sets no longer in use. Consequently, when a new context emerges, the method randomly
removes existing contexts to accommodate the incoming one. This random removal
process introduces the risk of discarding critical contexts, potentially leading to unforeseen
issues or, in some cases, causing an infinite loop.

In our prior article, Ali et al. (2024), we introduced three distinct methods, DWM, APS,
and SAPS, enabling the calculation of memory requirements. For the same set of rules,
these methods yield memory requirements of 45 rules (236 bytes), 30 rules (136 bytes),
and 30 rules (136 bytes), respectively (APS employed here). Integrating these methods with
the currently proposed one forms a comprehensive framework. This framework excels
by eliminating preference sets no longer needed for processing, ensuring a systematic
approach. Consequently, this technique eradicates the necessity for random removal of
contexts, enabling the system to operate seamlessly. Notably, it exhibits a remarkable
efficiency with a percentage difference of 22.22% compared to the Preference-Sets-Based-
Method and 78.82% compared to RETE-Based-Algorithms, contributing to a significantly
improved system performance described in Fig. 4.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 11/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-4
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 5 Comparative results for scenario 1 (PSBMwith 10 rules space).
Full-size DOI: 10.7717/peerjcs.2129/fig-5

Figure 6 Comparative results for scenario 1 (PSBMwith 20 rules space).
Full-size DOI: 10.7717/peerjcs.2129/fig-6

Working memory updating results for scenario 1
Table 2 presents working memory update steps that were utilized for the comparative
analysis of three algorithms, WMUA, RETE, and PSBM, based on the number of rules
involved at different steps of their execution. Some of the steps can run in parallel in
the patient care scenario. However, to better understand the results, we implemented it
sequentially in Table 2. In total, there are 30 steps in the scenario. The Rete and the proposed
WMUA algorithm were implemented per the algorithm recommendation. However, as the
PSBM algorithm claims memory randomly, we implement it with different memory claims
three times for better understanding and comparison. The memory required first for ten
rules, second for 20 rules, and third for 40 rules, as shown in Figs. 5, 6, and 7, respectively.
The figures show that the more we increase the memory size, the more PSBM behaves like
the Rete algorithm regarding memory consumption. In Fig. 7, both are exact matches.

Similarly, suppose we chose less memory for the PSBM algorithm. In that case, rules
need to be randomly removed from the memory to make room for incoming rules, which

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 12/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-5
https://doi.org/10.7717/peerjcs.2129/fig-6
http://dx.doi.org/10.7717/peerj-cs.2129

Table 2 Working memory update steps for scenario 1.

Steps
number

Agent
number

Rule
number

Preference Consequent

1 1 1 . Patient(?p)
2 2 45 . hasBPLevel(?p, High)
3 3 56 . hasDBCat.(?p, High)
4 4 65 . hasFever(?p, High)
5 5 70 . hasPulseRate(?p, High)
6 2 51 hasBPLevel(?p, High) Tell(2, 1, hasBPLevel(?p, High))
7 3 60 hasDBCat.(?p, High) Tell(3, 1, hasDBCat.(?p, High))
8 4 67 hasFever(Mike, High) Tell(4, 1, hasFever(?p, High))
9 5 77 hasPulseRate(?p, High) Tell(5, 1, hasPulseRate(?p, High))
10 1 51 Copy Copy
11 1 36 Patient(Mike) hasBPLevel(?p, High)
12 1 60 Copy Copy
13 1 29 Patient(Mike) hasDBCat.(?p, High)
14 1 67 Copy Copy
15 1 30 Patient(Mike) hasFever(?p, High)
16 1 77 Copy Copy
17 1 33 Patient(Mike) hasPulseRate(?p, High)
18 1 5 Patient(Mike) hasSituation(?p, Critical)
19 1 42 Patient(Mike) Tell(1, 6, hasSituation(?p, Critical))
20 1 44 GPSLoc(Hospital) hasBPLevel(?p, Hypotention)
21 1 42 Copy Copy
22 6 idle idle idle
23 6 79 . hasSituation(?p, Critical)
24 6 81 . hasGPSLoc(?p, ?loc)
25 7 81 Copy Copy
26 7 84 . hasGPSLoc(?p, ?loc)
27 7 85 . Tell(7, 6, hasGPSLoc(?p, ?loc))
28 6 85 Copy Copy
29 6 81 . hasGPSLoc(?p, ?loc)
30 6 82 . isDiagnosedBy(?p, ?physc)

leads to other issues that have been thoroughly discussed in Ali et al. (2024). WMUA
consistently demonstrates the lowest number of rules among the three algorithms across
most steps.

This suggests that WMUA is adept at managing and processing rules with almost no
redundancy, making it an attractive choice for scenarios where computational resources
are limited or speed is critical. The average percentage difference in Rete and WMUA
algorithm results is 103.49%, meaning WMUA needs almost half of the DWM compared
to Rete. Similarly,WMUAalso outperformed the PSBMalgorithmwith aminimumaverage
percentage difference of 74.45%. However, when the memory size for PSBM increases, the
difference also increases. These results make the WMUA algorithm better for memory and
processing-constrained devices.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 7 Comparative results for scenario 1 (PSBMwith 40 rules space).
Full-size DOI: 10.7717/peerjcs.2129/fig-7

Figure 8 Comparative results for scenario 2 (PSBMwith 10 rules space).
Full-size DOI: 10.7717/peerjcs.2129/fig-8

Scenario 2 (smart home)
The smart home scenario has also been published in Uddin (2019). The total number
of rules in this scenario is 32, and the number of preferences sets in this rule set is 2.
The ontology outlined in Fig. 8 shows the structure of the scenario. Table 3 shows the
steps involved in scenario 24 in number. Here, we also consider the sequential fashion for
simplicity and a better understanding of the scenario’s results. These 24 steps were utilized
to analyze the performance of the three algorithms.

Working memory updates results for scenario 2
The Rete and WMUA algorithms were implemented as per the recommendation of the
algorithms in both the results shown in Figs. 8 and 9. However, for the PSBM algorithm
in the first experiment, the memory was fixed for 10 rules and in the second for 20 rules,
respectively. In these results, PSBM and WMUA perform similarly till step number 16;
after this step, there is a preference change, and the WMUA algorithm removes the rules

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 14/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-7
https://doi.org/10.7717/peerjcs.2129/fig-8
http://dx.doi.org/10.7717/peerj-cs.2129

Table 3 Working memory update steps for scenario 2.

Steps
number

Agent Rule # Preference Consequent

1 8 86 GPSLoc(home) isAuthorizedPerson(?p, Yes)
2 8 87 GPSLoc(home) Tell(8, 9, isAuthenticPerson(?p, Yes))
3 9 87 copy copy
4 8 88 GPSLoc(home) Tell(8, 15, isAuthenticPerson(?p, Yes))
5 9 94 GPSLoc(home) isAuthenticPerson(?p, Yes)
6 9 92 GPSLoc(home) hasOccupancy(?p, Yes)
7 9 89 GPSLoc(home) Tell(9, 10, hasOccupancy(?p,Yes))
8 9 90 GPSLoc(home) Tell(9, 11, hasOccupancy(?p,Yes))
9 10 90 copy copy
10 9 91 GPSLoc(home) Tell(9, 12, hasOccupancy(?p,Yes))
11 10 100 GPSLoc(home) hasAirconStatus(?room, On)
12 9 93 GPSLoc(home) Tell(9, 10, isAvailableAt(?p,?room))
13 11 90 copy
14 8 95 GPSLoc(home) Tell(9, 11, isAvailableAt(?p,?room))
15 10 95 copy copy
16 11 102 GPSLoc(home) hasOccupancy(?p, Yes)
17 10 96 isAuthenticPerson(Ali,yes) isAvailableAt(?p, ?room)
18 11 95 GPSLoc(home) Tell(9, 11, isAvailableAt(?p,?room))
19 13 113 GPSLoc(home) hasTemp(?t, Hot)
20 10 99 isAuthenticPerson(Ali,yes) hasLightStatus(?p, On)
21 11 105 GPSLoc(home) isAvailableAt(?p, ?room)
22 13 112 GPSLoc(home) Tell(13, 11, hasTemp(?t,Hot))
23 11 112 copy copy
24 11 100 GPSLoc(home) hasAirconStatus(?room, On)

and clears space for upcoming rules. The PSBMmemory limit in the first experiment is 10,
and it reaches its limit on step number 14. After that, the algorithm needs to remove a rule
randomly for each new upcoming rule, which may lead to different problems discussed in
our previous article (Ali et al., 2024) in detail. In experiment number 2, shown in Fig. 9,
it did not reach its limit (that is 20 rules at most) and continuously moved up word by
introducing new rules tomemory. The Rete algorithm showed its memory-intensive nature
from step number 4 and onward in both results shown in Figs. 8 and 9.

The average percentage difference here in this scenario also follows a similar trend. That
is the average percentage difference between Rete and WMUA in this scenario is 54.34%.
Similarly, the minimum difference between PSBM and WMUA calculated for the result
shown in Fig. 8 is 25%, and it will increase for the result shown in Fig. 9 which becomes
34.57%. Here, in this scenario, the WMUA also outperformed both algorithms.

CONCLUSION
This study introduces a systematic and innovative solution to tackle the dynamic working
memory challenge within devices constrained by limited memory. Notably, the absence

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129

Figure 9 Comparative results for scenario 2 (PSBMwith 20 rules space).
Full-size DOI: 10.7717/peerjcs.2129/fig-9

of a methodical approach for removing context(s) from working memory had been a
notable gap in prior research. Existing methods either retained loaded contexts without
discernment or resorted to random removal, introducing critical issues as meticulously
identified within the article.

The proposed initiative seeks to revolutionize the landscape by offering a systematic
methodology for efficiently managing working memory in resource-constrained devices.
By addressing the previous shortcomings, this solution opens avenues for constructing
more intricate and intelligent systems tailored to operate seamlessly on devices with
restricted resources. The significance lies in not only optimizing memory utilization but
also in providing a reliable mechanism for the controlled removal of contexts, thereby
enhancing the overall performance and reliability of intelligent systems on devices with
constrained resources. This marks a crucial step forward in the pursuit of creating efficient
and sophisticated systems capable of maximizing functionality even within resource
limitations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research work was funded by Institutional Fund Projects under grant no. (IF-PIP:
211-611-1443). Technical and financial support was provided by the Ministry of Education
and King Abdulaziz University, DSR, Jeddah, Saudi Arabia. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Institutional Fund Projects: IF-PIP: 211-611-1443.
The Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 16/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2129/fig-9
http://dx.doi.org/10.7717/peerj-cs.2129

Competing Interests
Osama Sohaib is an Academic Editor for PeerJ Computer Science.

Author Contributions
• Mumtaz Ali conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Muhammad Arshad conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• Ijaz Uddin conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.
• Muhammad Binsawad analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
• Abdullah Bin Sawad analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
• Osama Sohaib analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and dataset are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2129#supplemental-information.

REFERENCES
Abbas A, Zhang L, Khan SU. 2015. A survey on context-aware recommender systems

based on computational intelligence techniques. Computing 97(7):667–690
DOI 10.1007/s00607-015-0448-7.

AlhamidMF, RawashdehM, Dong H, El HossainMA, Saddik A. 2016. Exploring latent
preferences for context-aware personalized recommendation systems. IEEE Transac-
tions on Human-Machine Systems 46(4):615–623 DOI 10.1109/THMS.2015.2509965.

Ali M, ArshadM, Uddin I, Ali G, AsimM, ElAffendi M. 2024. A resource aware memory
requirement calculation model for memory constrained context-aware systems. IEEE
Access 12:19320–19329 DOI 10.1109/ACCESS.2024.3361317.

AlyWM, Eskaf KA, Selim AS. 2017. Fuzzy mobile expert system for academic advising
Electrical and Computer Engineering (CCECE). In: 2017 IEEE 30th Canadian
conference on. Piscataway: IEEE.

Auda J, Weber D, Voit A, Schneegass S. 2018. Understanding user preferences towards
rule-based notification deferral. In: Extended abstracts of the 2018 CHI conference on
human factors in computing systems. New York: ACM.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 17/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2129#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2129#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2129#supplemental-information
http://dx.doi.org/10.1007/s00607-015-0448-7
http://dx.doi.org/10.1109/THMS.2015.2509965
http://dx.doi.org/10.1109/ACCESS.2024.3361317
http://dx.doi.org/10.7717/peerj-cs.2129

Brandt F, Chabin G, Geist C. 2015. Pnyx: a powerful and user-friendly tool for prefer-
ence aggregation. In: AAMAS.

BrownH, Lee K, Mireshghallah F, Shokri R, Tramèr F. 2022.What does it mean for a
language model to preserve privacy? In: Proceedings of the 2022 ACM conference on
fairness, accountability, and transparency.

Brown PJ. 1995. The stick-e document: a framework for creating context-aware applica-
tions. Chichester: Electronic Publishing 8:259–272.

Brown PJ, Bovey JD, Chen X. 1997. Context-aware applications: from the lab-
oratory to the marketplace. Personal Communications, IEEE 4(5):58–64
DOI 10.1109/98.626984.

Chronis I, Madan A, Pentland AS. 2009. Social circuits: the art of using mobile phones
for modeling personal interactions. In: Proceedings of the ICMI-MLMI’09 workshop
on multimodal sensor-based systems and mobile phones for social computing. ACM.

Dourish P. 2004.What we talk about when we talk about context. Personal and Ubiqui-
tous Computing 8:19–30 DOI 10.1007/s00779-003-0253-8.

Eagle N, Pentland AS. 2006. Reality mining: sensing complex social systems. Personal and
Ubiquitous Computing 10(4):255–268 DOI 10.1007/s00779-005-0046-3.

Franklin D, Flaschbart J. 1998. All gadgets and no representation make Jack a dull
environment. In: Proceedings of the AAAI 1998 spring symposium on intelligent
environments.

Hull R, Neaves P, Bedford-Roberts J. 1997. Towards situated computing Digest of
papers. In: First international symposium on wearable computers. Piscataway: IEEE.

Jung JJ. 2009. Contextualized mobile recommendation service based on interactive
social networks discovered by mobile users. Expert Systems with Applications
36(9):11950–11956 DOI 10.1016/j.eswa.2009.03.067.

Loitsch C,Weber G, Kaklanis N, Votis K, Tzovaras D. 2017. A knowledge-based
approach to user interface adaptation from preferences and for special needs. User
Modeling and User-Adapted Interaction 27(3):445–491
DOI 10.1007/s11257-017-9196-z.

Manotumruksa J, Macdonald C, Ounis I. 2016.Modeling user preferences using word
embeddings for context-aware venue recommendation. ArXiv arXiv:1606.07828.

Mehrotra A, Hendley R, Musolesi M. 2016. Prefminer: mining user’s preferences
for intelligent mobile notification management. In: Proceedings of the 2016 ACM
international joint conference on pervasive and ubiquitous computing. New York:
ACM.

Moore PT, PhamHV. 2015. Personalization and rule strategies in data-intensive
intelligent context-aware systems. The Knowledge Engineering Review 30(2):140–156
DOI 10.1017/S0269888914000265.

Mukherjee C. 2017. Build Android-based smart applications: using rules engines, NLP,
and automation frameworks. New York: Springer Science.

Nazir A, Sholla S, Bashir A. 2021. An ontology-based approach for context-aware
security in the Internet of Things (IoT). International Journal of Wireless and
Microwave Technologies (IJWMT) 11(1):28–46 DOI 10.5815/ijwmt.2021.01.04.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 18/19

https://peerj.com
http://dx.doi.org/10.1109/98.626984
http://dx.doi.org/10.1007/s00779-003-0253-8
http://dx.doi.org/10.1007/s00779-005-0046-3
http://dx.doi.org/10.1016/j.eswa.2009.03.067
http://dx.doi.org/10.1007/s11257-017-9196-z
http://arXiv.org/abs/1606.07828
http://dx.doi.org/10.1017/S0269888914000265
http://dx.doi.org/10.5815/ijwmt.2021.01.04
http://dx.doi.org/10.7717/peerj-cs.2129

Olguín DO,Waber BN, Kim T, Mohan A, Ara K, Pentland A. 2008. Sensible organi-
zations: technology and methodology for automatically measuring organizational
behavior. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
39(1):43–55.

Pei C, Guo H, Yang X,Wang Y, Zhang X, Hairong Y. 2010. Sensors in smartphone.
In: International conference on computer and computing technologies in agriculture.
491–495 DOI 10.1007/978-3-642-18336-2_59.

RaentoM, Oulasvirta A, Petit R, Toivonen H. 2005. Contextphone: a prototyping plat-
form for context-aware mobile applications. IEEE Pervasive Computing 4(2):51–59.

Rakib A, Haque HMU. 2014. A logic for context-aware non-monotonic reasoning
agents. In: Human-inspired computing and its applications. Springer, 453–471.

Rakib A, Haque HMU. 2014. A logic for context-aware non-monotonic reasoning
agents. In: Gelbukh A, Espinoza FC, Galicia-Haro SN, eds. Human-inspired com-
puting and its applications. MICAI 2014. Lecture notes in computer science, vol. 8856.
Cham: Springer DOI 10.1007/978-3-319-13647-9_41.

Ryan NS, Pascoe J, Morse DR. 1997. Computer applications in archaeology 1997. In:
Gaffney V, van Leusen M, Exxon S, eds. British archaeological reports. Oxford:
Tempus Reparatum, 182–196.

Sarker IH. 2018a. Behavminer: mining user behaviors from mobile phone data for
personalized services. In: PerComWorkshops.

Sarker IH. 2018b.Mobile data science: towards understanding data-driven intelligent
mobile applications. ArXiv arXiv:1811.02491.

Sarker IH. 2019. Context-aware rule learning from smartphone data: survey, challenges,
and future directions. Journal of Big Data 6(1):1–25 DOI 10.1186/s40537-018-0162-3.

Schilit BN, TheimerMM. 1994. Disseminating active map information to mobile hosts.
Network, IEEE 8(5):22–32 DOI 10.1109/65.313011.

Uddin I. 2019. A rule-based framework for developing context-aware systems for smart
spaces. Ph.D. thesis, University of Nottingham.

Uddin I, Haque HMU, Rakib A, Rahmat MRS. 2016. Resource-bounded context-aware
applications: a survey and early experiment. In: International conference on nature of
computation and communication. Cham: Springer.

Uddin I, Rakib A. 2018. A resource-aware preference model for context-aware systems.
In: Lecture notes of the institute for computer sciences, social informatics and telecom-
munications engineering. vol. 217. 3–13 DOI 10.1007/978-3-319-77818-1_1.

Ward A, Jones A, Hopper A. 1997. A new location technique for the active office. IEEE
Personal Communications 4(5):42–47.

ZhuH, Chen E, Xiong H, Yu K, Cao H, Tian J. 2014.Mining mobile user preferences
for personalized context-aware recommendation. ACM Transactions on Intelligent
Systems and Technology (TIST) 5(4):1–27.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2129 19/19

https://peerj.com
http://dx.doi.org/10.1007/978-3-642-18336-2_59
http://dx.doi.org/10.1007/978-3-319-13647-9_41
http://arXiv.org/abs/1811.02491
http://dx.doi.org/10.1186/s40537-018-0162-3
http://dx.doi.org/10.1109/65.313011
http://dx.doi.org/10.1007/978-3-319-77818-1_1
http://dx.doi.org/10.7717/peerj-cs.2129

