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ABSTRACT
This article proposes an optimized backstepping control strategy designed for a category
of nonlinear stochastic strict-feedback multi-agent systems (MASs) with sensor faults.
The plan formulates optimized solutions for the respective subsystems by designing
both virtual and actual controls, achieving overall optimization of the backstepping
control. To address sensor faults, an adaptive neural network (NN) compensation
control method is considered. The reinforcement learning (RL) framework based
on neural network approximation is employed, deriving RL update rules from the
negative gradient of a simple positive function correlated with the Hamilton-Jacobi-
Bellman (HJB) equation. This significantly simplifies the RL algorithm while relaxing
the constraints for known dynamics and persistent excitation. The theoretical analysis,
based on stochastic Lyapunov theory, demonstrates the semi-global uniform ultimate
boundedness (SGUUB) of all signals within the enclosed system, and illustrates the
convergence of all follower outputs to the dynamic convex hull defined by the leaders.
Ultimately, the proposed control strategy’s effectiveness is validated through numerical
simulations.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Algorithms
and Analysis of Algorithms
Keywords Stochastic multi-agent systems (MASs), Sensor faults, neural network (NN),
Reinforcement learning (RL)

INTRODUCTION
Multi-agent systems (MASs) have garnered considerable attention due to their ability to
organize vast and intricate systems into smaller, intercommunicating, easily coordinated,
and manageable subsystems. Currently, MASs find widespread applications in various
domains such as aircraft formation, sensor networks, data fusion, parallel computing and
cooperative control of multiple robots (Antonio et al., 2021; Tang et al., 2016; Liu et al.,
2020; Zhao et al., 2023; De Sá & Neto, 2023). As a class of classical control problems from
cooperative control, the containment control approach guarantees the convergence of all
followers to a dynamic convex hull formed by multiple leaders. Numerous findings on
containment control have been documented in the last decade (Li et al., 2022; Li, Pan &
Ma, 2022; Li et al., 2023; Liang et al., 2021).
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It is noteworthy that optimal control, formally introduced by Bellman (1957) and
Pontryagin et al. (1962) half a century ago, has become the foundation and prevailing
design paradigm of modern control systems. The key to solving the optimal control
problem lies in solving the Hamilton–Jacobi–Bellman (HJB) equation. Theoretically,
solving optimal control based on the HJB equation is nearly impossible using analytical
methods due to its strong nonlinearity (Beard, Saridis & Wen, 1996). Fortunately,
Werbos (Werbos, 1992) introduced the approximate technique referred to as Adaptive
Dynamic Programming (ADP) or Reinforcement Learning (RL), providing an effective
method for solving the HJB equation. To date, this technique has witnessed significant
development and achievements, as seen in Wen, Xu & Li (2023), Chen, Dai & Dong
(2022), Gao & Jiang (2018), Zargarzadeh, Dierks & Jagannathan (2012), Zargarzadeh,
Dierks & Jagannathan (2012), Li, Sun & Tong (2019), Song & Dyke (2013), Hu & Zhu
(2015), Rajagopal, Balakrishnan & Busemeyer (2017), Wen, Xu & Li (2023). In Wen, Xu
& Li (2023), RL was combined with backstepping to design actual controls and virtual
controls, optimizing the overall control of high-order systems. In Chen, Dai & Dong
(2022), this technique was applied to underactuated surface vessels, ensuring optimal
tracking performance for ship control. Gao & Jiang (2018) addressed the computation
problem of adaptive nearly optimal trackers without prior knowledge of system dynamics.
In Zargarzadeh, Dierks & Jagannathan (2012), investigated neural network-based adaptive
optimal control for nonlinear continuous-time systems with known dynamics in strict-
feedback form. Zargarzadeh, Dierks & Jagannathan (2015) extended their work to address
nonlinear continuous-time systems characterized by uncertain dynamics in strict feedback
form. They accomplished this by adapting the standard backstepping technique, as outlined
in Zargarzadeh, Dierks & Jagannathan (2015), transforming the optimal tracking problem
into an equivalent optimal control problem and generating adaptive control inputs. Li, Sun
& Tong (2019) presented a data-driven robust approximate optimal tracking scheme for a
subset of strict-feedback single-input, single-output nonlinear systems characterized by the
presence of unknown non-affine nonlinear faults and unmeasured states. In addition to
deterministic nonlinear systems, various optimal control methods have been explored for
stochastic systems in the past decade. The numerical techniques, proposed by Song & Dyke
(2013), aimed to reduce system responses under extreme loading conditions with stochastic
excitations. Hu & Zhu (2015) introduced a stochastic optimization-based bounded
control strategy for multi-degree-of-freedom strongly nonlinear systems. In Rajagopal,
Balakrishnan & Busemeyer (2017), an offline ADP method based on neural networks was
developed to address finite-time stochastic optimal control problems. Specifically, inWen,
Xu & Li (2023) applied the RL strategy with the actor-critic architecture to stochastic
nonlinear strict-feedback systems. However, for more complex nonlinear stochastic MASs,
the above methods have not been fully studied. The challenges lie in the stability analysis
process where the quadratic form of the Lyapunov function is no longer applicable,
necessitating a reproof of system stability. Furthermore, in contrast to the single-agent
stochastic strict-feedback system discussed in Wen, Xu & Li (2023a), we consider complex
multi-agent systems. Many practical multi-agent systems, especially in areas like intelligent
transportation and smart grids, tackle complex large-scale problems that surpass the
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capabilities of individual nonlinear systems. Therefore, research on nonlinear multi-agent
systems is more meaningful.

Furthermore, in real-world scenarios, MASs comprise numerous actuators and sensors.
Faults of some actuators or sensors can lead to the deviation from global control objectives.
Therefore, investigating fault-tolerant control for MASs can enhance their safety and
reliability. For instance, Ding et al. (2018) applied a region-based segmentation analysis to
overcome caused by multiple sensor faults in strict-feedback systems. Wang et al. (2018)
introduced a fault model to achieve fault-tolerant consensus for a multi-vehicle wireless
network system with different actuator faults. Cao et al. (2021) fully considered consensus
problems in MASs with sensor faults, utilizing neural networks not only for identifying
unknownnonlinearities but also for designing adaptive compensatory controllers. Although
there have been studies related to sensor faults, the conclusions from the above research
cannot be directly applied to randomly occurring systems with statistical characteristics.

Inspired by the discussions above, This paper presents an enhanced backstepping control
method tailored for a class of nonlinear stochastic strict-feedbackMASs experiencing sensor
faults. The primary contributions are summarized as follows:

(1) In this article, the optimal backstepping (OB) control method is extended to the
nonlinear stochastic MASs with multiple leaders, which is more general than the consensus
control results of MASs and can solve the optimal containment control problem.

(2) Suppressing sensor faults is important to enhance the system’s safety and reliability.
To tackle the challenge posed by sensor faults in stochastic MASs, consideration is given to
an adaptive neural network (NN) compensation control method. This method is designed
to alleviate the adverse effects of sensor faults on the MASs.

(3) The proposed adaptive control scheme successfully solves the problem of contained
control with sensor faults, and the designed RL optimization method can optimize the
control of unknown or uncertain stochastic dynamic systems.

PRELIMINARIERS AND PROBLEM FORMULATION
Graph theory
In the context of a group of N + M agents, the associated directed graph G can
be described by G= (V,E,3), where V = 1,2,...,N ,...,N +M constitutes a set
of nodes, and E=

(
j,i
)
∈V×V represents a set of edges. The adjacency matrix is

3=
[
aij
]
∈R(N+M)×(N+M),

(
j,i
)
∈E implies that nodes j and i can share information

with one another. aij is defined as

aij =

{
1,if (i,j)∈ E
0,if (i,j) 6∈ E

(1)

where the set of neighbors for a node i is denoted by Ni= j ∈V :
(
j,i
)
∈E. The Laplacian

matrix L=
[
lij
]
(M+N )×(M+N )=D−3∈R(N+M)×(N+M) is defined as

lij =


−aij,if i 6= j∑
j∈Ni

aij,if i= j (2)
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where D= {diagd1,...,dN } represents the degree matrix and di=
∑

j∈Ni
aij . In this paper,

the focus is on N + M agents, comprising N followers and M leaders, within a directed
graph topology. It is assumed that each follower has at least one neighbor. Consequently,
one can observe

L=

[
L1 L2

0M×N 0M×M

]
(3)

where L1 ∈RN×N ,L2 ∈RN×M .
Assumption 1: Each follower is connected to a minimum of one leader through a

directed path, while leaders themselves lack neighboring nodes.
Lemma 1: According to Assumption 1, the matrix L1 issymmetric and positive definite,

each element of −L−11 L2 is nonnegative scalar, and all row sums of −L−11 L2 equal to 1.
Assumption 2: (Yoo, 2013) The multiple leaders’ outputs yld , l ∈ (N+1,...,N+M ) and

their derivatives ẏld,ÿld,...,y
(n)
ld are bounded.

Lemma 2: (Tong et al., 2011a) Existing continuously differentiable function V (t ,x) ∈
R+, it meets the conditions

ν1(‖ x ‖)≤V (t ,x)≤ ν2(‖ x ‖) (4)

LV (t ,x)≤−aV (t ,x)+ c (5)

where a > 0, c > 0 are constants, ν1(· ), ν2(· ) are K∞ functions, the differential Eq. (9)
has a singular, robust solution, and subsequent inequality is satisfied:

E[V (t ,x)] ≤ e−atV (0,x(0))+
c
a
. (6)

Inequality Eq. (6) signifies that the solution x(t) showcases SGUUB when considering
expectations.

Lemma 3: (Wang, Wang & Peng, 2015) Defining s∗1 = [s11,s21,...,sN1]
T , yi =

[y1,y2,...,yN ]Twe have s∗1=L1yi+L2yld . Then the following inequality holds:

‖yi+L−11 L2yld‖≤‖s∗1‖/‖η(L1)‖ (7)

where ‖η(L1)‖ is the minimum singular value of L1.

Lemma 4 (Young’s Inequality (Tong et al., 2011)): For all x, y ∈ R+, the subsequent
inequality is held:

xy ≤
1
p
xp+

1
q
yq (8)

where p> 0,q< 0,1/p+1/q= 1.

Stochastic systems statement
Consider a group of nonlinear stochastic MASs described as follows:
dxim= [xim+1+ fim(x im)]dt+ψim(x im)dw
dxin= [ui+ fin(x in)]dt+ψin(x in)dw
yi= h(xi1)

(9)
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where x im= [xi1,...,xim]T ∈Rm(m= 1 ,...,n−1) represents the state vector. ui ∈R denotes
the control input, yi ∈R is the system output. h(xi1)= ki(t )xi1+ρi(t ) ,where ki(t ) and
ρi(t ) denote the parameters of sensor faults. fim(·)∈Rm and ψim(·)∈Rm depict uncertain
smooth functions. w ∈Rr denotes the independent r-dimensional standard Brownian
motion.

Neural network approximation
It has been shown that a neural network (NN) can approximate any continuous function
F (x) :Rn

→Rm to a desired accuracy within a specified compact set �x ⊂Rn. The neural
network approximation function can be represented as follows:

FNN(x)=W TS(x) (10)

where W ∈ Rq×m is the weight matrix, q is the quantity of neurons, S(x) =[
s1(x),...,sq(x)

]T
∈Rq is the Gaussian basis function vector with si(x)= exp(−(x−νi)T

(x−νi)/ϕ2i )∈R,νi= [νi1,...,νin]T ∈Rn represents the centers of receptive fields, and ϕi
is the width of the Gaussian function.

To fulfill Eq. (10), there must exist an ideal weight W ∗, and the function F (x) can be
rewritten as

F(x)=W ∗TS(x)+ε(x) (11)

where ε(x)∈Rm is the approximation error required to meet ||ε(x)|| ≤ δ with δ being a
positive constant.

The ideal weight matrixW ∗ can be shown as

W ∗= arg minW∈Rp×m

{
sup
x∈�x

‖F(x)−WS(x)‖

}
. (12)

The Eq. (12) implies that the NN approximation error in Eq. (11) represents the
minimum achievable deviation between F (x) andW TS(x).

Sensor faults
Within sensor faultmodel (Bounemeur, Chemachema & Essounbouli, 2018), the unspecified
parameters adhere to 0< k imin≤ ki(t )≤ 1 and−ρ i≤ ρi(t )≤ ρ i, where k imin > 0 represents
the minimum sensor effectiveness, −ρ i, ρ i are the lower bound and the upper bound
respectively. The parameters of the sensor fault models can be summarized as below:
(a) If ki(t )= 1 and ρi(t ) is a constant, the sensor exhibits bias fault.
(b) If ki(t )= 1, |ρi(t )| = ιt ,0< ι� 1, the sensor experiences a drift fault.
(c) If ki(t )= 1, |ρi(t )|<ρ i,ρi(t )→ 0, this signifies that the sensor has incurred a loss of

accuracy.
(d) If 0< k imin≤ ki(t )≤ 1, ρi(t )= 0, this suggests that the sensor has undergone a loss of

effectiveness.
Denote fsi = (ki(t )− 1)xi1+ρi(t ). Then yi can be reformulated as yi = xi1+ fsi. The

derivative of yi can be rewritten as ẏi= ẋi1+ fpsi, where fpsi= ḟsi.
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Figure 1 OB design in the i th agent, i= 1, . . . ,n.
Full-size DOI: 10.7717/peerjcs.2126/fig-1

Operator L
For function V (t ,x), calculate its differential operator L as Mao, (2006)

LV =
∂V
∂xT

(f (x)+g (x)u(x))+
1
2
Tr
{
ψT ∂2v

∂x∂xT
ψ

}
(13)

where Tr signifies the matrix trace.

DISTRIBUTED ADAPTIVE OPTIMAL CONTAINMENT
CONTROL
The backstepping technique is employed for controller design. Before we begin, to clearly
demonstrate our ideas and process, let’s provide a brief overview using Fig. 1.

Figure 1 illustrates the application process of RL in the design of optimized backstepping
control. This process employs a Critic-Actor architecture to address the leader-following
consensus control issue for nonlinear MASs. Within this method, the actor network
is responsible for generating control actions, while the critic network evaluates the
performance of the current control strategy. By iterating these two networks, the RL
algorithm can learn an optimized control strategy that optimizes the control performance
of the entire system.

Specifically, the optimal control problem is transformed into solving the HJB equation.
However, due to the nonlinearity of the HJB equation, solving it directly is very challenging.
To overcome this difficulty, a neural network-based RL method is proposed. This method
derives the RL update rules from the negative gradient of a simple positive function, thereby
avoiding the direct handling of multiple nonlinear terms in the HJB equation. This not
only simplifies the algorithm but also relaxes the requirements for known system dynamics
and persistent excitation.
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During the RL learning process, the critic network first evaluates the performance of
the current control strategy and provides it as feedback to the actor network. The actor
network then adjusts its control actions based on this feedback, with the expectation of
improving the system’s performance. In this way, the RL algorithm can continuously learn
and optimize the control strategy through iteration until the optimal solution is found.

To start with, the i-th subsystem’s distributed containment error is defined as

si1=
N∑
j=1

aij(yi−yj)+
N+M∑
`=N+1

ai`(yi−yld)

sim= xim−αim−1(m= 2,...,n)

(14)

where αim−1 denotes the virtual controller. The OB control method is designed as follows.
Step 1: With Eq. (14) and Itô formula, the containment error can be calculated as

follows:

dsi1=

di(xi2+ fpsi+ fi1(xi1))− N∑
j=1

aij(ẋj1+ ḟsj)−
N+M∑
`=N+1

ail ẏld

dt+diψi1(xi1)−
N∑
j=1

ψj1(xj1)

dw =
dixi2− N∑

j=1

aijxj2+Fi1

dt+9i1dw

where:

Fi1= di(fpsi+ fi1(xi1))−
N∑
j=1

aij(fpsj+ fj1(xj1))−
N+M∑
`=N+1

ai`ẏ`d

9i1= diψi1(xi1)−
N∑
j=1

ψj1(xj1)

Representing virtual control by αi1, the performance index function is formulated as

Ji1(si1)=
∫
∞

t
ci1(si1(s),αi1(si1(s)))ds (16)

where ci1(si1,αi1)= s2i1(t )+α
2
i1 is the cost function.

Replace αi1 with α
∗

i1 (optimal virtual control) in Eq. (16), the function is obtained as

J ∗i1(si1)=
∫
∞

t
ci1(si1(s),α∗i1(si1(s)))ds (17)

According to the previous introduction, the function is given as follows:

E[J ∗i1(si1)] = min
αi1∈9(�)

[
E[
∫
∞

t
ci1(si1,αi1)ds] (18)

where � is a predefined compact set containing origin. By viewing xi2 as optimal control
α∗i1, the HJB equation linked with Eqs. (15) and (17) can be rewritten

Hi1

(
si1,α∗i1,

dJ ∗i1(si1)
dsi1

)
= s2i1+α

2
i1+

dJ ∗i1
dsi1

diα∗i1+Fi1−
N∑
j=1

aijxj2

+ 1
2
d2f ∗i1
ds2i1

9T
i19i1= 0 (19)

Mo and Lyu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2126 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2126


The optimal virtual controller α∗i1 can be derived by solving ∂Hi1/∂α
∗

i1= 0 as

α∗i1=−
1
2
dJ ∗i1(si1)
dsi1

(20)

To attain the tracking control, the term dJ ∗i1(si1)
dsi1

is partitioned as

dJ ∗i1(si1)
dsi1

=
2γi1
di

si1+
1

2βi1di
s3i1+

2
di
hi1(xi1,si1)+

1
di
J 0i1(xi1,si1) (21)

where γi1 > 0,βi1 > 0 are two designed constants, hi1(xi1,si1)= Fi1+ si1||9i1||
4 and

J 0i1(xi1,si1)=−
2γi1
di
si1− 1

2βi1di
s3i1−

2
di
hi1(xi1,si1)+

dJ ∗i1(si1)
dsi1
∈R. Substituting Eqs. (21) into

(20) yields

α∗i1=
1
di
[−γi1si1−

1
4βi1

s3i1−hi1(xi1,si1)−
1
2
J 0i1(xi1,si1)] (22)

Since two functions hi1(xi1,si1) and J 0i1(xi1,si1) are uncertain yet continuous, they can be
approximated by NN as

hi1(xi1,si1)=W ∗Thi1 Shi1(xi1,si1)+εhi1(xi1,si1) (23)

J 0i1(xi1,si1)=W T
Ji1SJi1(xi1,si1)+εJi1(xi1,si1) (24)

where W ∗Thi1 ∈ Rp1 and W ∗TJi1 ∈ Rq1 are the ideal NN weights, Shi1(xi1,si1) ∈ Rp1 and
SJi1(xi1,si1) ∈Rq1 are basis function vectors, and εhi1(xi1,si1)∈R, εJi1(xi1,si1)∈R denote
approximation errors. Substitute Eqs. (23) and (24) into Eqs. (21) and (22), separately

df ∗i1(si1)
dsi1

=
1
di
[2γi1si1(t )+

1
2βi1

s3i1(t )+2W
∗T
hi1 Shi1(xi1,si1)+W

∗T
ji1 Sji1(xi1,si1)+εi1] (25)

α∗i1=
1
di
[−γi1si1(t )−

1
4βi1

s3i1(t )−W
∗T
hi1 Shi1(xi1,si1)−

1
2
W ∗TJi1 SJi1(xi1,si1)−

1
2
εi1] (26)

where εi1= 2εhi1+εJi1. The optimal control Eq. (26) is unattainable due to the two ideal
weightsW ∗Thi1 andW ∗TJi1 are uncertain constant vectors.

To acquire an effective optimized virtual control, the implementation involves applying
RL through the identifier-critic-actor architecture, utilizing the NNs. The uncertain
function hi1(xi1,si1) of adaptive identifier is constructed in the following:

ĥi1(xi1,si1)= Ŵ T
hi1(t )Shi1(xi1,si1) (27)

where ĥi1(xi1,si1) is the identifier output, and Ŵ T
hi1(t )∈Rp1 is the NN weight. The weight

experiences updates based on the following law:
˙̂W hi1(t )=0i1(Shi1(xi1,si1)s3i1(t )−σi1Ŵhi1(t )) (28)

where 0i1 is a positive-definite constant matrix, σi1> 0 is constant. Designing the critic to
evaluate the control performance aligns with Eq. (25) as

dĴ ∗i1(si1)
dsi1

=
1
di

[
2γi1si1(t )+

1
2βi1

s3i1(t )+2Ŵ
T
hi1(t )Shi1(xi1,si1)+Ŵ

T
ci1(t )SJi1(xi1,si1)

]
(29)
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where dĴ ∗i1(si1)
dsi1
∈R is the estimation of dJ ∗i1(si1)

dsi1
, Ŵ T

ci1 ∈Rq1 is the NN weight of critic. The
weight experiences updates based on the following law:

˙̂W ci1(t )=−γci1SJi1(xi1,si1)STJi1(xi1,si1)Ŵci1(t ) (30)

where γci1 > 0 is constant. The formulation of the actor, responsible for executing the
control action, corresponds to Eq. (25) as articulated below:

α̂∗i1=
1
di
[−γi1si1(t )−

1
4βi1

s3i1(t )−Ŵ
T
hi1(t )Shi1(xi1,si1)−

1
2
Ŵ T

ai1(t )SJi1(xi1,si1)] (31)

where α̂∗i1 is the optimized virtual control, Ŵ T
ai1(t )∈Rq1 is the NN weight of actor. The

weight experiences updates based on the following law:

Ŵai1(t )=−SJi1(xi1,si1)STJi1(xi1,si1)×
(
γai1(Ŵai1(t )−Ŵci1(t ))+γci1Ŵci1(t )

)
(32)

where γai1> 0 is constant. These determined parameters, βi1, γi1, γci1, and γai1, are selected
to satisfy

βi1> 0,γi1> 3,γai1>
βi1

2
,γai1>γci1>

γai1

2
(33)

According to Eqs. (19), (29) and (31), the HJB equation is calculated as

Hi1(si1,α̂∗i1,
dĴ ∗i1
dsi1

)= s2i1(t )+
1
d2i
(−γi1si1(t )−

1
4βi1

s3i1(t )−Ŵ
T
hi1(t )Shi1(xi1,si1)

−
1
2
Ŵ T

ai1(t )SJi1(xi1,si1)
)2

+
1
d2i

[2γi1si1(t )+
1

2βi1
s3i1(t )+2Ŵ

T
hi1(t )Shi1(xi1,si1)

+ Ŵ T
ci1(t )SJi1(xi1,si1)

]
×(−γi1si1(t )−

1
4βi1

s3i1(t )−Ŵ
T
hi1(t )Shi1(xi1,si1)−

1
2
Ŵ T

ail(t )×

SJil(xi1,si1)+ fi1(xi1)+ψT
i1 (xi1)

dw
dt
− ẏd )+

1
2
d2J ∗i1
ds2i1
‖ψi1(xi1) ‖2

(34)

Building upon the preceding analysis, the optimized control α̂∗i1 is foreseen as
the sole solution to achieve Hi1(si1,â∗i1,(dĴ

∗

i1)/(dsi1))→ 0. Assuming the existence of

Hi1

(
si1,â∗i1,

dĴ ∗i1
dsi1

)
= 0 and its unique solution, it is equivalent to the following equation:

∂Hi1(si1,â∗i1,
dĴ ∗i1
dsi1

)

∂Ŵai1
=

1
2
SJi1(xi1,si1)STJi1(xi1,si1)×

(
Ŵai1(t )−Ŵci1(t )

)
= 0 (35)

Define the positive function Pi1(t ) as

Pi1(t )=
(
Ŵai1(t )−Ŵci1(t )

)T (Ŵai1(t )−Ŵci1(t )) (36)

It is evident that Eq. (35) is the equivalent to Pi1(t ) = 0. Given the fact that
(∂Pi1(t ))/(∂Ŵai1(t ))=−(∂Pi1(t ))/(∂Ŵci1(t ))= 2(Ŵai1(t )−Ŵci1(t )), the time derivative
of Pi1(t ) along with Eqs. (29) and (31) is

dPi1
dt
=

∂Pi1
∂Ŵ T

ai1

˙̂W ai1+
∂Pi1
∂Ŵ T

ci1

˙̂W ci1=−
∂Pi1
∂Ŵ T

ai1
SJi1STJi1(γai1(Ŵai1−Ŵci1)+γci1Ŵci1)

=−γai1
∂Pi1
∂Ŵ T

ai1
SJi1STJi1(Ŵai1−Ŵci1)=−

γai1

2
∂Pi1
∂Ŵ T

ai1
SJi1STJi1

∂Pi1
∂Ŵai1

≤ 0
(37)

Mo and Lyu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2126 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2126


The inequality Eq. (37) suggests that the updating laws Eqs. (30) and (32) can ensure
eventually. The key benefits of the RL design approach include: (1) comparatively, the
optimized control algorithm demonstrates a substantially simpler structure than existing
optimal methods, such as Vamvoudakis & Lewis (2010), Liu et al. (2013), Wen, Ge & Tu
(2018). (2) this can alleviate the necessity for persistent excitation, a requirement prevalent
in many optimal control methods. Replace xi2 with α∗i1+ si2 in the dynamic Eq. (14) to
have

dsi1=

di(α̂∗i1+ si2)+Fi1− N∑
j=1

aijxj2

dt+9i1dw (38)

The Lyapunov function candidate is designed as

Li1=
1
4
s4i1+

1
2
W T

hi10
−1
i1 Whi1+

1
2
W T

ci1Wci1+
1
2
Wai1Wai1 (39)

where W̃hi1(t )= Ŵhi1(t )−W ∗hi1, W̃ci1(t )= Ŵci1(t )−W ∗Ji1 and W̃ai1(t )= Ŵai1(t )−W ∗Ji1
represent corresponding errors. Compute the L of Li1, along with Eqs. (28), (30), (32) and
(39) to yield

LLi1= s3i1

di(α̂∗i1+ si2)+Fi1− N∑
j=1

aijxj2

+ 3
2
s2i1 ‖9i1 ‖

2
+W̃ T

hi1(Shi1s
3
i1−σi1Ŵhi1)−

γciŴ T
ci1SJi1S

T
Ji1Ŵci1−W̃ T

ai1SJi1S
T
Ji1[γai1(Ŵai1−Ŵci1)+γci1Ŵci1] (40)

Design optimal virtual controller

α̂∗i1=
1
di
(−γi1si1−

1
4βi1

s3i1−Ŵ
T
hi1Shi1−

1
2
Ŵ T

ai1SJi1) (41)

and then Eq. (31) becomes

LLi1= s3i1

[
γi1si1−

1
4βi1

s3i1−Ŵ
T
hi1Shi1−

1
2
Ŵai1SJi1 +si2di+Fi1−

N∑
j=1

aijxj2

+ 3
2
s2i1 ‖9i1||

2

+W̃ T
hi1(shi1s

3
i1−σi1Ŵhi1)−γci1W̃ T

ci1SJi1S
T
Ji1Ŵci1−γai1W̃ T

ai1SJi1S
T
Ji1Ŵai1+ (γai1−γci1)

W̃ T
ai1SJi1S

T
Ji1Ŵci1

(42)

With Young’s inequality Eq. (8), there are following results:

dis3i1si2≤
3
4
dis4i1+

1
4
dis4i2 (43)

−s3i1

N∑
j=1

aijxj2≤
3
4
s4i1+

1
4

 N∑
j=1

aijxj2

4

(44)

3
2
s2i1||9i1||

2
≤ s4i1||9i1||

4
+

9
16

(45)
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−
1
2
s3i1Ŵ

T
ai1SJi1≤

1
4βi1

s6i1+
βi1

4
Ŵai1SJi1STJi1Ŵai1 (46)

Substituting inequalities Eqs. (43), (44), (45) and (46) into (42) has

LLi1≤−(γi1−
3
4
di−

3
4
)s4i1− s

3
i1(Ŵ

T
hi1Shi1−hi1)+W

T
hi1(Shi1s

3
i1−σi1Ŵhi1)−

γci1W̃ T
ci1SJi1S

T
Ji1Ŵci1−γai1W̃ T

ai1SJi1S
T
Ji1Ŵai1+ (γai1−γci1)W̃ T

ai1S
T
Ji1S

T
Ji1Ŵci1+

βi1

4
Ŵ T

ai1SJi1S
T
Ji1Ŵai1+

1
4
(

N∑
j=1

aijxj2)4+
9
16
+

1
4
dis4i2 (47)

where hi1 = Fi1+ si1||9i1||
4. Substituting Eqs. (24) into (47) results in the following

inequality:

LLi1≤−
(
γi1−

3
4
di−

3
4

)
s4i1+ s

3
i1εhi−σi1W̃

T
hi1Ŵhi1−γci1W̃ T

ci1SJi1S
T
Ji1Ŵci1−

γai1W̃ T
ai1SJi1S

T
Ji1Ŵai1+

βi1

4
Ŵ T

ai1SJi1S
T
Ji1Ŵai1+ (γai1−γci1)W̃ T

ai1SJi1S
T
Ji1Ŵci1+

1
4
(

N∑
i=1

ajixj2)4+
1
4
dis4i2+

9
16

(48)

From the facts W̃hi1(t )= Ŵhi1(t )−W ∗hi1, W̃ci1(t )= Ŵci1(t )−W ∗Ji1 and W̃ai1(t )=
Ŵai1(t )−W ∗Ji1, the following equations can be derived:

W̃ T
hi1Ŵhi1=

1
2
W̃ T

h1iW̃hi1+
1
2
Ŵ T

hi1Ŵhi1−
1
2
W ∗Thi1W

∗

hi1 (49)

W̃ T
ci1SJi1S

T
Ji1Ŵci1=

1
2
W̃ T

ci1S
T
Ji1W̃ci1+

1
2
Ŵ T

ci1S
T
Ji1Ŵci1−

1
2
W ∗TJi1 SJi1S

T
Ji1W

∗

Ji1 (50)

W̃ T
ai1SJi1S

T
Ji1Ŵai1=

1
2
W̃ T

ai1SJi1S
T
Ji1W̃ai1+

1
2
Ŵ T

ai1SJi1S
T
Ji1Ŵai1−

1
2
W ∗TJi1 SJi1S

T
Ji1W

∗

Ji1 (51)

WithYoung’s inequality Eqs. (8) and limitation of (33), subsequent inequalities obtained:

s3i1εhi1≤
3
4
s4i1+

1
4
ε4hi1 (52)

(γai1−γci1)W̃ T
ai1SJi1S

T
Ji1Ŵci1≤

γai1−γci1

2
W̃ T

ai1SJi1S
T
Ji1W̃ai1+

γai1−γci1

2
Ŵ T

ci1SJi1S
T
Ji1Ŵci1 (53)

Substituting Eqs. (49)–(53) into (48) yields

LLi1≤−
(
γi1−

3
2
−

3
4
di

)
s4i1−

σi1

2
W̃ T

hi1W̃hi1−
γci1

2
W̃ T

ci1SJi1S
T
Ji1W̃ci1−

γci1

2
W̃ T

ai1SJi1S
T
Ji1W̃ai1

−(γci1−
γai1

2
)(Ŵ ∗Tci1 SJi1)

2
− (
γai1

2
−
βi1

4
)(Ŵ T

ai1SJi1)
2
+Bi1+

di
4
s4i2+

1
4
(

N∑
j=1

aijxj2)4 (54)
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where Bi1(t )= (γci12 +
γai1
2 )(W ∗TJi1 SJi1)

2
+
σi1
2 ||W

∗

hi1||
2
+

1
4ε

4
hi1+

9
16 and |Bi1(t )| ≤ bi1, because

all its terms are bounded, and 1
4

(∑N
j=1aijxj2

)4
will be handled in step 2′s hi2(xi2,si2).

Step m (2≤m≤ n−1):Define the containment error as sim= xim− α̂∗im−1. According to
Eq. (9), the error dynamic, along with Eq. (13), is

dsim= [xim+1+ fim(xim)−Lα̂∗im−1]dt+9imdw (55)

where9im=ψim(x im)−
∑m−1

j=1
∂α̂∗im−1
oxij

ψij . Let αim denote virtual controller, the performance
index function can be defined as

Jim(sim)=
∫
∞

t
cim(sim(s),αim(sim(s)))ds (56)

where cim(sim,αim)= s2im(t )+α
2
im is the cost function. Denoted α∗im as the optimal virtual

controller, substitute α∗im into Eq. (56), the function can be rewritten as

J ∗im(sim)=
∫
∞

t
cim(sim(s),α∗im(sim(s)))ds. (57)

Similar to Step 1, Eq. (57) manifests the subsequent characteristic

E[J ∗im(sim)] = min
αim∈9(�)

E[Jim(sim)]. (58)

By viewing xim+1(t ) as optimal control α∗im, the HJB equation relate to Eqs. (55) and
(57) is

Him

(
sim,α∗im,

dJ ∗im
dsim

)
= sim+α∗im2+

dJ ∗im
dsim
×

(
α∗im+ fim+9im

dw
dt
−Lα̂∗im−1

)
+

1
2
d2J ∗im
ds2im

9T
im9im= 0 (59)

where (dw)/(dt ) represents the white noise. Besides, α∗im is obtained by solving
(∂Him)/(∂α∗im)= 0 as

α∗im=−
1
2
dJ ∗im
dsim

(60)

To attain the containment control, the term (dJ ∗im(sim))/(dsim) is segmented as

dJ ∗im
dsim
= 2γimsim+

1
2βim

s3im+2him+ J
0
im (61)

where γim > 0 and βim > 0 are two designed constants, hi2 = fi2 + si2||9im||
4
−

1
4

(∑N
j=1aijxj2

)4
∈R, him = fim+ sim||9im||

4
∈R(m≥ 3), and J 0im =−2γimsim−

1
2βim

s3im−

2him+
dJ ∗im
dsim
∈R. By substituting Eqs. (61) into (60), optimal control transforms into

α∗im=−γimsim−
1

4βim
s3im−him− J

0
im (62)

Since two functions him(x im,sim) and J 0im(x im,sim) are uncertain yet continuous, they
can be approximated by NN as

him(x im,sim)=W ∗ThimShim(x im,sim)+εhim(x im,sim) (63)
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J 0im(x im,sim)=W T
JimSJim(x im,zim)+εJim(x im,sim) (64)

where W ∗Thim ∈ Rpm and W ∗TJim ∈ Rqm are the ideal NN weights, Shim(xim,sim) ∈ Rpm ,
SJim(xim,sim) ∈Rqm are basis vectors, εhim(xim,sim) ∈R,εJim(xim,sim) ∈R are bounded
approximation errors. Substituting Eqs. (63) and (64) into Eqs. (61) and (62) has

dJ ∗im(sim)
dsim

= 2γimsim+
1

2βim
s3im+2W

∗T
himShim(x im,sim)+W

∗T
JimSJim(x im,sim)+εim (65)

α∗im=−γimsim−
1

4βim
s3im−W

∗T
himShim−

1
2
W ∗TJimSJim−

1
2
εim (66)

where εim= 2εhim+εJim.The optimal control Eq. (66) is impractical due to the two ideal
weights W ∗Thim and W ∗TJim are uncertain. To obtain a practical optimized control, RL is
constructed based on Eqs. (65) and (66) as follows. The adaptive identifier is formulated
as follows:

ĥim(x im,sim)= Ŵ T
himShim(x im,sim) (67)

where ĥim(xim,sim) is the identifier output, Ŵ T
him(t )∈Rpm is the NN weight. The weight

experiences updates based on the following law:

˙̂W him=0im(Shim(x im,sim)s3im−σimŴhim) (68)

where 0im is a positive-definite constant matrix, σim> 0 is constant. The critic is designed
in the following:

dĴ ∗im(sim)
dsim

= 2γimsim+
1

2βim
s3im+2Ŵ

T
himShim+Ŵ

T
cimSJim (69)

where dĴ ∗im(sim)/dsim ∈R is the estimation of dJ ∗im(sim)/dsim, Ŵ
T
cim(t ) ∈Rqm is the NN

weight of critic. The weight experiences updates based on the following law:

˙̂W cim=−γcimSJimSTJimŴcim (70)

where γcim> 0 is constant. The actor is designed as follows:

α̂∗im=−γimsim−
1

4βim
s3im−Ŵ

T
himShim−

1
2
ŴaimSJim (71)

where α̂∗im is the optimized virtual control, Ŵ T
aim(t )∈Rqm is the NN weight of actor. The

weight experiences updates based on the following law:

˙̂W aim=−SJimSTJim(γaim(Ŵaim−Ŵcim)+γcimŴcim) (72)

where γaim> 0 are constant. These designed parameters, βim, γim, γcim and γaim satisfy the
following conditions:

βim> 0,γim> 4,γaim>
βim

2
,γaim>γcim>

γaim

2
. (73)
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Define containment error of the step m+1 as sim+1= xim+1−α∗im+1. Replace xim+1 with
α∗im+1+ sim+1 in the dynamic Eq. (55) to have

dsim= (α̂∗im+ sim+1+ fim−Lα̂∗im−1)dt+9imdw (74)

Select the Lyapunov function candidate:

Lim=
m−1∑
j=1

Lij+
1
4
s4im+

1
2
W̃ T

himW̃him+
1
2
W̃ T

cimW̃cim+
1
2
W̃ T

aimW̃aim (75)

where Lij = 1
4 s

4
ij+

1
2W̃

T
hij0
−1
ij W̃hij+

1
2W̃

T
cijW̃cij+

1
2W̃

T
aijW̃aij , and W̃him(t )= Ŵhim(t )−W ∗him,

W̃cim(t )= Ŵcim(t )−W ∗Jim and W̃aim(t )= Ŵaim(t )−W ∗Jim. Computing the infinitesimal
generator L of Lim, along with Eqs. (68), (70), (72) and (74) has

LLim=
m−1∑
j=1

LLij+ s3im(α̂∗im+ sim+1+ fim−Lα̂∗im−1)+
3
2
s2im||9im||

2
+W̃ T

him(Shims
3
im−σimŴhim)

−γcimW̃ T
cimSJimS

T
JimŴcim−W̃ T

ainSJimS
T
Jim[γaim(Ŵaim−Ŵcim)+γcimŴcim] (76)

Substituting the virtual control Eqs. (71) into (76) holds

LLim=
m−1∑
i=1

LLij+ s3im(−γimsim−
1

4βim
s3im−Ŵ

T
himShim−

1
2
Ŵ T

aimSJim+ sim+1+ fim−

Lα̂∗im−1)+
3
2
s2im||9im||

2
+W̃ T

him(Shims
3
im−σimŴhim)−γcimW̃ T

cimSJimS
T
JimŴcim

−W̃ T
ainSJimS

T
Jim[γaim(Ŵaim−Ŵcim)+γcimŴcim] ≤

m−1∑
j=1

LLij−
(
γim−

3
2

)
s4im+

βim

4
Ŵ T

aimSJimS
T
JimŴaim+

1
4
s4im+1+

1
4
Lα̂∗im+1+

9
16
−W̃ T

him(Shims
3
im−him)

+W̃ T
him(Shims

3
im−σimŴhim)−γcimW̃ T

cimSJimS
T
JimŴcim−γaimW̃ T

aimSJimS
T
JimŴaim+

(γaim−γcim)W̃ T
aimSJimS

T
JimW̃cim (77)

From the fact −s3im(t )Lα̂
∗

im−1 ≤ (3/4)s4im(t )+ (1/4)(Lα̂∗im−1)
4 and previous results,

following numerous operations resembling those in Eqs. (43)–(54) in Step 1, (87) can be
expressed as

LLim≤
m−1∑
j=1

(−aijLij+bij)− (γim−4)s2im−
σim

2λmax
0−1im

W̃ T
him0

−1
im W̃him

−
γcim

2
λmin
SJimW̃

T
cimW̃cim−

γcim

2
λmin
SJimW̃

T
cimW̃cim+Bim+

1
4
s4im+1

(78)

where λmax
0−1im

is the maximal eigenvalue of 0−1im , λmin
SJim is the minimal eigenvalue of SJimSTJim.

And Bim = (γcim2 +
γaim
2 )(W ∗TJimSJim)

2
+

σim
2 ||W

∗

him||
2
+

1
4(Lα̂

∗

im−1)
4
+

1
4ε

4
him+

9
16 ,which

satisfied |Bim| ≤ bim.Define aim=min

{
4(γim−4), σimλmax

0
−1
im

,γcimλ
min
SJim

}
, and then Eq. (78) can
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become the following one:

LLim≤
m∑
j=1

(−aijLij+bij)+
1
4
s4im+1 (79)

Step n: The optimized control ui is obtained here. Based on Eq. (9), sin= xin− α̂∗in−1 can
be derived from Eq. (13) as follows:

dsin= (ui+ fin(x in)−Lα̂∗n−1)dt+9indw (80)

where 9in=ψin−
∑n−1

j=1
∂αin−1
∂xij

ψij .The performance index function related to Eq. (80) can
be written as

Jin(sin)=
∫
∞

t
cin(sin(s),ui(sin(s)))ds (81)

where cin(sin,ui)= sin2+u2i is cost function. Denoted u∗i as optimal control, the function
can be rewritten as

J ∗in(sin)=
∫
∞

t
cin(sin(s),u∗i (sin(s)))ds (82)

The function Eq. (82) implies the following property:

E[J ∗in(sin)] = min
ui∈9(�)

E[Jin(sin)] (83)

The HJB equation related to Eqs. (80) and (82) is

Hin

(
sin,u∗i ,

dJ ∗in
dsin

)
= sin2+u∗2i +

dJ ∗in
dsin

(
u∗i + fjn−Lα̂∗in−1+9in

dw
dt

)
+

1
2
d2J ∗in
d sin2

9T
in9in= 0 (84)

Solving (∂Hin)/(∂u∗i )= 0 yields

u∗i =−
1
2
dJ ∗in(sin)
dsin

(85)

Split the term dJ ∗in
dsin

as

dJ ∗in
dsin
= 2γinsin+

1
2βin

sin3+2hin+ J 0in (86)

where γin > 0 and βin > 0 are two designed constants, and hin = fin+ sin||9in||
4
∈R,

J 0in=−2γinsin−
1

2βin
sin3−2hin+

dJ ∗in
dsin
∈R. Substituting Eqs. (86) into (85) has

u∗i =−γinsin−
1

4βin
sin3−hin−

1
2
J 0in (87)

Since the unknown functions hin(x in,sin) and J 0n (x in,sin) are continuous, which can be
approximated by NN as

hin(x in,sin)=W ∗Thin Shin(x in,sin)+εhin(x in,sin) (88)
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J 0n (x in,sin)=W ∗TJin SJin(x in,sin)+εJin(x in,sin) (89)

where W ∗Thin ∈ Rpn , W ∗TJin ∈ Rqn are the ideal NN weights, Shin(xin,sin) ∈ Rpn and
SJin(xin,sin) ∈Rqn are the basis function vectors, εhin(xin,sin) ∈R, εJin(xin,sin) ∈R are
the bounded approximation errors. Substituting Eqs. (88) and (89) into Eqs. (86) and (87)
yields

dJ ∗in
dsin
= 2γinsin+

1
2βin

sin3+2W ∗Thin Shin+W
∗T
Jin SJin+εin (90)

u∗i =−γinsin−
1

4βin
sin3−W ∗Thin Shin−

1
2
W ∗TJin SJin−

1
2
εin (91)

where εin= 2εhin+εJin.The adaptive identifier is formulated as

ĥin(x in,sin)= Ŵ T
hinShin(x in,sin) (92)

where ĥin(xin,sin) is the identifier output, Ŵ T
hin(t )∈Rpn is the NN weight of identifier.

The weight experiences updates based on the following law:

˙̂W hin=0in(Shin(x in,sin)sin3−σinŴhin) (93)

where 0in is a positive-definite constant matrix, σin> 0 is constant. The critic is

dĴ ∗in(sin)
dsin

= 2γinsin+
1

2βin
sin3+2Ŵ T

hinShin(x in,sin)+Ŵ
T
cinSJin(x in,sin) (94)

The weight experiences updates based on the following law:

˙̂W cin=−γcinSJin(x in,sin)STJin(x in,sin)Ŵcin (95)

where γcin is a constant. The actor is

û∗i =−γinsin−
1

4βin
sin3−Ŵ T

hin(t )Shin(x in,sin)−
1
2
Ŵ T

ainSJin(x in,sin) (96)

The weight experiences updates based on the following law:

˙̂W ain=−SJin(x in,sin)STJin(x in,sin)× (γain(Ŵain−Ŵcin)+γcinŴcin) (97)

These parameters are required to meet the following limitation:

βin> 0,γin> 4,γain>
βin

2
,γain>γcin>

γain

2
. (98)

Select the Lyapunov function candidate for overall backstepping control as

Lin=
n−1∑
j=1

Lij+
1
4
sin4+

1
2
W̃ T

hin0
−1
in W̃hin+

1
2
W̃ T

cinW̃cin+
1
2
W̃ T

ainW̃ain (99)
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where W̃hin(t )= Ŵhin(t )−W ∗hin, W̃cin(t )= Ŵcin(t )−W ∗Jin, W̃ain(t )= Ŵain(t )−W ∗Jin.
Compute L of Lin, along with Eqs. (80), (93), (95) and (97), and then apply (96), resulting
in the following:

LLin=
n−1∑
j=1

LLij+ sin3
(
−γinsin−

1
4βin

sin3 −Ŵ T
hinShin−

1
2
Ŵ T

ainSJin+ fin−Lα̂∗n−1
)
+

3
2
sin||9in||

2
+W̃ T

hin(Shinsin3−σinŴhin)−γcinW̃ T
cinSJinS

T
JinŴcin−W T

ainSJinS
T
Jin

[γain(Ŵain−Ŵcin)+γcinŴcin]

(100)

The following expression is derived from Eqs. (100):

LLin≤
n−1∑
j=1

(−aijLij+bij)− (γin−4)sin4−
σin

2λmax
0−1in

W̃ T
hin0

−1
in W̃hin−

γcin

2
λmin
sJin W̃

T
cinW̃cin

−
γcin

2
λmin
sJin W̃

T
ainW̃ain+Bin (101)

where λmax
0−1in

is the maximal eigenvalue of 0−1in , λmin
SJin is the minimal eigenvalue of SJinSTJin.

And Bin= (γcin2 +
γain
2 )(W ∗TJin SJin)

2
+
σin
2 ||W

∗

hin||
2
+

1
4(Lα̂

∗

in−1)
4
+

1
4ε

4
hin+

9
16 ,which satisfied

|Bin| ≤ bin.Let ain=min4(γin−4),σin/(λmax
0−1in

),γcinλmin
SJin , and then Eq. (101) can become the

following one

LLin≤
n∑

j=1

(−aijLij+bij). (102)

STABILITY ANALYSIS
Theorem 1: Consider MASs described by Eq. (13) and subjected to Assumptions 1-2,
operating within a directed graph and employing the adaptive laws Eqs. (32), (72) and
(97), together with the virtual controllers Eqs. (31) and (71), and the actual controller
Eq. (96), the containment control protocol unequivocally guarantees the SGUUB of
all signals within the closed-loop system. Furthermore, for a given ∀t > 0, tuning the
design parameters leads the containment error to converge within an arbitrarily small
neighborhood, as expressed:

||yi+L−11 L2y`d || ≤ ε (103)

Proof: Consider the overall Lyapunov function L given by:

L=
N∑
i=1

n∑
j=1

Lij (104)

Define ai =min
{
ai1,ai2,...,aij

}
and bi =

∑n
j=1bij . Subsequently, Eq. (104) can be

expressed as

LL| ≤−aiL+bi (105)
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Figure 2 The RL control scheme.
Full-size DOI: 10.7717/peerjcs.2126/fig-2

Based on Lemma 2, the following inequality is deduced from Eq. (105):

E(L)≤ e−aitL(0)+
bi
ai

(106)

E(L)≤ E[L(0)]+
bi
ai

(107)

For s∗1= [s11,s21,...,sN1]
T , based on the definition of Lin and Eq. (99)

E(||s∗1||4)≤E(s211+ s
2
21+ ...+ s

2
N1)

2
≤E(s411+ s

4
21+ ...+ s

4
N1)≤ 4N (E[L(0)]+

bi
ai
) (108)

where N denotes quantity of follower agents. With Eq. (99), for ∀ε > 0:

E[L(0)]+
bi
ai
≤
ε

8
(η(L1))4 (109)

Taking Eq. (109) and Lemma 3 into account to obtain

E(||yi+L−11 L2y`d ||)≤
E(||s∗1||4)
||η(Li)||4

≤ ε (110)

The proof is completed and the RL control strategy process diagram is illustrated in
Fig. 2.
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Figure 3 Communication graph.
Full-size DOI: 10.7717/peerjcs.2126/fig-3

SIMULATION EXAMPLE
In this section, the effectiveness of OB, RL and containment control is illustrated by a
numerical example. For the nonlinear stochastic MASs consisting of 4 followers and 2
leaders, the following system dynamics are considered:{
dxi1= [0.9xi2−0.8x2i1sin(xi2)]dt+ψi1(x i1)dw
dxi2= [ui+0.9sin(xi1)]dt+ψi2(x i2)dw

(111)

where xi1,xi2 ∈ R,u ∈ R is the control input, ψi1(x i1) = 0.3sin(xi1), ψi2(x i2) =
0.01sin(0.1sin(xi1)).The leaders are defined as:{
y5r = 0.1sin(2t )−0.1
y6r = 0.45−0.5e−(t+2)

(112)

The communication graph that we used in the simulation is visualized in Fig. 3.
According to Fig. 3, the Laplacian matrix as:

L=



2 −1 0 0 −1 0
0 2 0 0 −1 −1
0 −1 3 −1 0 −1
−1 0 0 2 0 −1
0 0 0 0 0 0
0 0 0 0 0 0


. (113)

The NN update parameters are designed as: γai1= 20,γai2= 15,γci1= 14,γci2= 14,σi1=
14. The design parameters for the optimized virtual control action α̂∗i corresponding
to Eq. (41) are: γi1 = 12,βi1 = 5. The parameters of the optimized actual control action
corresponding to Eq. (42) are set as γi2= 5,βi2= 2.
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Figure 4 The actor NNweight a in step m.
Full-size DOI: 10.7717/peerjcs.2126/fig-4

The simulation results, illustrating the application of the proposed OB method for
stochastic nonlinear MASs, are presented in Figs. 4–12. Figure 4–6 depict the boundedness
of the actor, identifier, and critic NN weights. The actor for performing the control action
α̂∗i and the optimized control actor û∗i are illustrated in Figs. 7–8. Figure 9 displays the
trajectories of leaders and followers, demonstrating the asymptotic convergence of all
followers to the convex hull formed by the leaders. The distributed containment errors are
shown in Figs. 10–11. The results verify that all closed-loop system signals are SGUUB.
The simulation results demonstrate that the OB method used in MASs can achieve the
desired control performance. Besides, Fig. 12 is the error curve without considering the
adaptive compensation scheme in this paper. By comparing simulation results, it can be
seen that through RL, adjusting the adaptive rate accelerates the convergence speed of the
optimization algorithm, allowing sensor errors to converge more quickly.

CONCLUSION
This article introduces an optimized backstepping control based on RL, which has been
developed and applied to a class of nonlinear stochastic strict-feedback MASs experiencing
sensor faults. Crafting virtual and actual controls as optimized solutions for their respective
subsystems, an overall optimization of the backstepping control has been achieved. To
address sensor faults, an adaptive neural network compensation control method has been
constructed. Utilizing the RL framework based on neural network approximation, the
rules for updating RL have been deduced from the negative gradient of a basic positive
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Figure 5 The identifier NNweight h in step m.
Full-size DOI: 10.7717/peerjcs.2126/fig-5

Figure 6 The critic NNweight c in step m.
Full-size DOI: 10.7717/peerjcs.2126/fig-6
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Figure 7 The optimized virtual control action in step 1.
Full-size DOI: 10.7717/peerjcs.2126/fig-7

Figure 8 The optimized actual control action in step 2.
Full-size DOI: 10.7717/peerjcs.2126/fig-8
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Figure 9 The trajectories of four followers and two leaders.
Full-size DOI: 10.7717/peerjcs.2126/fig-9

Figure 10 The distributed containment errors s in step 1.
Full-size DOI: 10.7717/peerjcs.2126/fig-10
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Figure 11 The distributed containment errors s in step 2.
Full-size DOI: 10.7717/peerjcs.2126/fig-11

Figure 12 The distributed containment errors q in step 2.
Full-size DOI: 10.7717/peerjcs.2126/fig-12
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function linked to the HJB equation. In comparison with existing methods, not only did
this approach significantly simplify the RL algorithm, but it also relaxed the requirements
for known dynamics and persistent excitation. Additionally, the proposed control scheme
has that the outputs of all followers converge to the dynamic convex hull formed by the
leaders.
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