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ABSTRACT
Image segmentation is a crucial process in the field of image processing. Multilevel
threshold segmentation is an effective image segmentation method, where an image is
segmented into different regions based on multilevel thresholds for information anal-
ysis. However, the complexity of multilevel thresholding increases dramatically as the
number of thresholds increases. To address this challenge, this article proposes a novel
hybrid algorithm, termed differential evolution-golden jackal optimizer (DEGJO), for
multilevel thresholding image segmentation using the minimum cross-entropy (MCE)
as a fitness function. The DE algorithm is combined with the GJO algorithm for
iterative updating of position, which enhances the search capacity of the GJO algorithm.
The performance of the DEGJO algorithm is assessed on the CEC2021 benchmark
function and comparedwith state-of-the-art optimization algorithms. Additionally, the
efficacy of the proposed algorithm is evaluated by performing multilevel segmentation
experiments on benchmark images. The experimental results demonstrate that the
DEGJO algorithm achieves superior performance in terms of fitness values compared
to other metaheuristic algorithms. Moreover, it also yields good results in quantitative
performance metrics such as peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and feature similarity index (FSIM) measurements.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Image segmentation, Multilevel thresholding, Differential evolution-golden jackal
optimization, Minimum cross-entropy

INTRODUCTION
Image segmentation is a crucial step in image processing, and the correctness of image
segmentation directly affects the extraction, detection, and recognition of objects (Pare
et al., 2019). According to the features of the image, such as grayscale, histogram, and
geometric shape, the image is segmented into independent regions to obtain reduce the
complexity of image analysis. It has been widely used in remote sensing, medicine, and
surveillance fields (Elaziz, Ewees & Oliva, 2020; Houssein et al., 2021a).

Recently, multiple methods for image segmentation have been presented, which can
be categorized into (1) histogram thresholding-based methods, (2) region feature-based
methods, (3) clustering-based techniques, (4) texture feature-based methods, and (5)
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artificial intelligence techniques (Ayala et al., 2023; Bhargavi & Jyothi, 2014 Rai, Das &
Dhal, 2022; Zhang et al., 2021). Histogram thresholding-based methods utilize histogram
data to obtain segmentation thresholds and divide the image pixels into multiple
independent regions. The methods are widely applied to image segmentation techniques
due to their simplicity, accuracy, and robustness (Elaziz, Ewees & Oliva, 2020).

Approaches based on image histogram thresholding can be classified as bi-level
and multilevel (Pare et al., 2019; Wunnava et al., 2022). Bi-level thresholding methods
distinguish the region of interest from the image background using a single threshold. On
the contrary, in the multilevel thresholding methods, the images are divided into several
regions with multiple threshold values. For the processing of real images, researchers may
require information from multiple regions, and bi-level thresholding does not meet the
requirements. Therefore, the histogram of an image needs to be divided into regions by
multilevel threshold segmentation. Inmultilevel threshold segmentation, themainmethods
for determining the optimal threshold are: parametric and non-parametric (Wang et al.,
2023a). Parametric approaches define each category of the image by determining the
probability density distribution of the image region. However, these methods are complex
to implement and the estimation of parameters is limited by the initial conditions. On
the other hand, non-parametric approaches employ discriminative rules to partition
image pixels into homogeneous regions and then determine thresholds based on criteria
of entropy or variance (Wang et al., 2023a). Over the years, various criteria have been
developed, including the Otsu (Otsu, 1975), Kapur entropy (Kapur, Sahoo & Wong, 1985),
and minimum cross entropy (MCE) (Li & Lee, 1993) criteria, aimed at identifying optimal
thresholds for segmented images. Nevertheless, these approaches have some limitations,
such as the high computational complexity of these methods, especially for high threshold
numbers.

For image segmentation, the determination of multilevel thresholding could be
considered as an NP-hard optimization problem, and the objective functions are chosen as
the Otsu, Kapur entropy and MCE (Rodríguez-Esparza et al., 2020). The optimal multilevel
threshold is typically derived through iterative optimization algorithms.

Metaheuristic algorithms (MAs) are widely used for solving NP-hard optimization
problems (Houssein et al., 2021a). MA methods are typically inspired by natural processes,
which could be divided into three categories: (1) evolution-based algorithms, (2) physics-
inspired algorithms, and (3) swarm intelligence algorithms. More specifically, evolution-
based algorithms are inspired by the laws of natural evolution, including genetic algorithms
(GA) (Kazarlis, Bakirtzis & Petridis, 1996), and differential evolutionary (DE) Algorithms
(Storn & Price, 1997). Physically-inspired algorithms are based on modeling various
observed physical phenomena. Such algorithms include the spectral optimizer (LSO)
(Abdel-Basset et al., 2022), water flow optimizer (WFO) (Luo, 2022), geometric mean
optimizer (GMO) (Rezaei et al., 2023), and many others. Swarm intelligence algorithms
are based on modeling group behavior in nature, such as grey wolf optimizer (GWO)
(Mirjalili, Mirjalili & Lewis, 2014), wild horse optimizer (WHO) (Naruei & Keynia, 2021),
whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016), Harris hawks optimization
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(HHO) (Heidari et al., 2019), horned lizard optimization (HLO) algorithm (Peraza-
Vázquez et al., 2024), and so on.

To achieve an optimal multilevel threshold, many MA algorithms have been presented
to address the multilevel thresholding problem (Sharma et al., 2020; Tan & Zhang, 2020).
Specifically, Ahmadi et al. (2019) presented a bird mating optimization (BMO) for image
segmentation using Otsu and Kapur techniques. The performance of the BMO approach
was demonstrated compared to existing algorithms in terms of segmentation quality.
Rodríguez-Esparza et al. (2020) developed an efficient HHO algorithm for multilevel image
segmentation utilizing the MCE as the objective function. The results indicated the HHO
algorithm’s superior performance with benchmark images. Eisham et al. (2022) introduced
a chimp optimization algorithm (COA) for image segmentation, outperforming existing
methods in segmenting benchmark images. Wang & Song (2022) proposed an image
segmentation method with an adaptive firefly algorithm (AFA), using the MCE method
as an objective function. The AFA algorithm exhibited excellent segmentation quality and
low computation time. Houssein et al. (2021a); Houssein et al. (2021b) proposed a black
widow optimization (BWO) algorithm to determine optimal thresholds for multilevel
thresholding. Furthermore, Houssein et al. (2023) enhanced the heap-based optimizer
(EHBO) and applied it to multi-threshold segmentation. The results indicated that the
EHBO algorithm has superior image segmentation performance.

As mentioned above, the implementation of meta-heuristic algorithms for thresholding
images could reduce the complexity of finding the optimal threshold. Not all meta-heuristic
optimization algorithms could solve this problem according to the ‘No Free Lunch (NFL)’
theorem proposed byWolpert & Macready (1997). Consequently, it is necessary to perform
tests on multi-threshold segmentation methods for images.

As a novel metaheuristic algorithm, Golden Jackal Optimization (GJO) was presented
based on the social and hunting behaviors of golden jackals (Chopra & Mohsin Ansari,
2022), which has the advantages of simplicity of principles, fewer parameter requirements,
and excellent performance. Compared to other metaheuristic algorithms, the GJO has been
demonstrated to be an effective optimization method. Similar to other MA algorithms, the
GJO algorithm has some limitations, the main limitation is that GJO tends to fall into local
optima with solving practical problems (Houssein et al., 2022; Zhang et al., 2023).

As one of the earliest metaheuristic algorithms, the DE algorithm (Storn & Price, 1997)
has been widely used in several fields due to its simple structure. However, the DE algorithm
suffers from poor performance in solving complex optimization problems, which has led
many researchers to improve it to obtain superior performance. Because the DE algorithm
is easily combined with other algorithms, the main improvement of the DE algorithm is to
combine it with other meta-heuristic algorithms to enhance the optimization performance.

To overcome the problem of low convergence accuracy, a novel hybrid algorithm
based on differential evolution (DE) and GJO algorithms (DEGJO) is proposed, which
utilizes the DE algorithm to update the optimal locations of the jackal to enhance the
search performance. The DEGJO is used for image segmentation based on the MCE
method, which aims to achieve threshold and minimum fitness values. The stability and
adaptability of the DEGJO are demonstrated through benchmark function experiments,
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and the segmentation results are compared with those of original DE, GWO, WOA, GJO,
and hybrid GJO (HGJO) algorithms for minimum cross entropy. To evaluate the quality
of image segmentation, several evaluation metrics are employed. The experimental results
of benchmark functions and images show that the DEGJO obtain good effectiveness and
stability.

The main contributions of this article are as follows.
(1) A novel hybrid DEGJO is presented by improving the optimal position update in GJO
through the differential position and selection operators of the DE algorithm.
(2) The performance of the DEGJO is evaluated using the CEC2021 benchmark function,
and the DEGJO is compared with other MA algorithms: original DE, GWO, WOA, GJO,
and hybrid GJO.
(3) The DEGJO is applied to solve the image segmentation problem using the minimum
cross-entropy function. The performance of the proposed algorithm is validated on
differentmultilevel segmentation experiments, and the DEGJO algorithm achieves superior
performance compared to different MA algorithms.

This article is organized as follows. ‘Material and Methods’ introduces the MCE, the
GJO algorithm, the DE algorithm, and the DEGJO algorithm. Test function and image
segmentation experiments are performed in ‘Experimental Analysis and Discussion’.
Finally, the conclusions and future work are presented in ‘Conclusions’.

MATERIALS & METHODS
Minimum cross-entropy in multilevel image thresholding
It is effective and convenient to obtain image information through image segmentation.
Based on the features of the image, the image is segmented into multiple regions, thus
presenting distinctive features of different regions. The histogram provides a visual
representation of the distribution of pixels throughout the image. Consequently, image
histogram segmentation is achieved by determining the threshold value using the MCE
method (Wang & Song, 2022).

The cross-entropy can be characterized using the information-theoretic distance between
the two probability distributions P = [p1,p2,...,pN ] and Q= [q1,q2,...,qN ], expressed as
(Rodríguez-Esparza et al., 2020):

D(P,Q)=
i=1∑
N

pi log
pi
qi
, (1)

Using the cross-entropy as the objective function, the optimal thresholding is determined
by minimizing the cross-entropy.

According to the image histogram I , the segmented image can be computed as:

Iseg (x,y)=


υ(1,th)=

th−1∑
i=1

ih(i)
/th−1∑

i=1

h(i), if I (x,y)< th

υ(th,L+1)=
L∑

i=th

ih(i)
/ L∑

i=th

h(i), if I (x,y)≥ th

, (2)
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where h(i) is the histogram, L represents the gray level, and th is the threshold number.
The formula for the MCE is calculated as:

fcross(th)=
i=1∑
L

ih(i)log(i)−
i=1∑
th−1

ih(i)log(υ(1,th))−
i=th∑
L

ih(i)log(υ(th,L+1)). (3)

Through minimizing the cross-entropy, the optimal thresholds are achieved, denoted as

th∗= argmin
(
fcross(th)

)
. (4)

In Eq. (3), the multilevel method is for the vector th= [th1,th2,...,thn], which can be
calculated as

fcross(th)=
i=1∑
L

ih(i)log(i)−
i=1∑
n

Hi, (5)

where n denotes the threshold number and Hi is calculated as:

H1=

i=1∑
th1−1

ih(i)log(υ(1,th1)), (6)

Hk =

i=thk−1∑
thk−1

ih(i)log(υ(thk−1,thk)),1< k< n, (7)

Hn=

i=thn∑
L

ih(i)log(υ(thn,L+1)). (8)

GJO algorithm
The GJO algorithm is a novel approach inspired by the behaviors of golden jackals (Chopra
& Mohsin Ansari, 2022). Similar to other MA algorithms, the GJO provides a method
for addressing practical optimization problems. Golden jackals engage in collaborative
hunting, typically in pairs (males and females) or groups. For golden jackals, the hunting
process can be described as the exploration and exploitation phase (Yang & Wang, 2024).
The mathematical models for these processes are described below.

Exploration phase
In the exploration phase, the golden jackal utilizes its unique ability to locate and stalk the
prey. Male and female jackals hunt for prey together. The mathematical model of behavior
is described as:

P1(t )= PM (t )−E · |PM (t )− rl ·Prey(t )|, (9)

P2(t )= PFM (t )−E · |PFM (t )− rl ·Prey(t )|, (10)

E = 1.5×E0× (1− t/T ), (11)

rl = 0.05×LF , (12)

wherePM (t ) andPFM (t ) represent the positions of themale and female jackals, respectively.
Prey(t ) represents the position vector of the prey, E denotes the prey’s escape energy, E0
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represents the initial escape energy in [-1,1], t is the current iteration, T is the maximum
iteration, rl is a random vector, and LF denotes the Lévy flight function (Heidari et al.,
2019).

Finally, the positions of the golden jackal are updated with the positions of the male and
female jackals, represented as:

P(t+1)= 0.5× (P1(t )+P2(t )). (13)

Exploitation phase
When the prey is tracked and pursued by golden jackals, the prey’s evasion energy degrades
rapidly, and a pair of jackals surround the prey. After encircling the prey, the jackals pounce
and capture it. The behavior of jackals can be described as follows.

P1(t )= PM (t )−E · |rl ·PM (t )−Prey(t )|, (14)

P2(t )= PFM (t )−E · |rl ·PFM (t )−Prey(t )|. (15)

Finally, the positions of the golden jackal are also updated using the mean position with
Eq. (13).

DE algorithm
The DE algorithm is a simple and effective population-based method, which is realized by
mutating the differences between randomly selected pairs of target vectors (Storn & Price,
1997). Through these individual differences, the DE algorithm is guided to search for the
optimal value. It primarily consists of mutation, crossover, and selection operations, and
the processes can be expressed as follows (Wunnava et al., 2022).

Mutation operation
In the population, mutation vectors are generated through the mutation operation. The
commonly used mutation operator is denoted as:

Vi(t )=Xbest (t )+FM · (Xr1(t )−Xr2(t )), (16)

where FM is the scaling control parameter in [0, 2], Xbest (t ) represents the individual
vector for t iterations, r1 and r2 are randomly selected values from the population.

Crossover operation
After generating themutant vector, a crossover operation is performed on the source vector
and its corresponding mutation vector to generate the crossover vector. This process is
mathematically represented as:

Ui(t )=

{
Vi(t ),if (rand ≤CR)
Xi(t ),otherwise

, (17)

where CR denotes a crossover factor in [0, 1].
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Selection operation
If the fitness value of the crossover vector is better than that of the source individual vector,
the individual vector is updated to the crossover vector. Otherwise, the individual vector
remains unchanged. The selection operation is denoted as:

Xi(t+1)=

{
Ui(t ),f (Ui(t ))< f (Xi(t ))
Xi(t ),otherwise

, (18)

where f (·) represents the fitness function.

The proposed DEGJO algorithm
As mentioned above, many studies have demonstrated the GJO algorithm’s remarkable
search capabilities with a simple structure (Lou et al., 2024). In the GJO algorithm, golden
jackals exhibit hunting behavior in pairs, typically led bymale jackals with females following
suit. However, this strategy may cause the algorithm to converge to a local optimum. On
the other hand, the DE algorithm quickly searches for the minimum region in the search
space and is easily integrated with other MA algorithms. In this article, we propose a hybrid
DEGJO algorithm based on the DE and the GJO algorithms. This integration aims to
further optimize the position of the jackal, enhancing its ability to escape local optimal
solutions.

The GJO algorithm is combined with DE with mutation, crossover, and selection
mechanisms. After the optimal position obtained by the GJO algorithm, the mutation,
crossover, and selection operations of the DE are used to determine the best position of
the golden jackal, and the corresponding fitness value is calculated. If the fitness value after
differential evolution is better than that of the optimal position of the jackal, the differential
evolution position is used as the optimal position. Otherwise, the optimal position of the
golden jackal remains unchanged. The pseudo-code of the DEGJO algorithm is displayed
in Algorithm 1.

Computational complexity of the DEGJO
Computational complexity is closely related to the dimension number and running time,
and the level of computational complexity directly affects the efficiency of an algorithm.
The big-O notation provides a reliable method for quantifying and assessing the stability
of algorithms (Pan et al., 2023).

The main parameters of the algorithm include the population size (N ), maximum
iteration number (T ), and dimension number (D). According to the optimization process
of the GJO algorithm, the computational complexity is calculated as follows (Chopra &
Mohsin Ansari, 2022):

O(GJO)=O(N × (1+T+T×D)). (19)

For the DEGJO algorithm, the computational complexity is based on the GJO algorithm
with the addition of the complexity of the DE algorithm. The computational complexity of
the DE algorithm is O(T×N ). Therefore, the computational complexity is represented as

O(DEGJO)=O(N × (1+2×T+T×D)). (20)

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2121 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2121


Scheme 1 Algorithm 1: Pseudo-code of the DEGJO algorithm.
Full-size DOI: 10.7717/peerjcs.2121/fig-10

DEGJO-based multilevel thresholding method
The DEGJO algorithm is used to search for multilevel thresholding through cross-entropy
minimization. The flowchart in Fig. 1 displays the DEGJO algorithm for multilevel
thresholding. The detailed steps are described below:
Step 1: Input a grayscale image Igray and calculate the corresponding histogram of the image
hgray .

Step 2: The main parameters are set: N , T , the number of thresholds k, and the search
range within [0, 255].

Step 3: The initial positions of the prey are randomly generated and the corresponding
fitness values are calculated using Eq. (4). Then, comparing the fitness values, the positions
of the best prey and second-best prey are set as Y1 and Y2, respectively.

Step 4: Calculate the prey energy E using Eq. (11). Depending on the value of E, the
positions of the prey are updated through the exploration phase (Eqs. (9) and (10)) and
exploitation phase (Eqs. (14) and (15)).
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Figure 1 The flowchart of the DEGJO algorithm for multilevel threshold image segmentation.
Full-size DOI: 10.7717/peerjcs.2121/fig-1

Step 5: The DE algorithm is used to update the obtained optimal position of the jackal
with Eqs. (16)–(18), and the corresponding fitness value is calculated. Determine whether
to update the optimal position of the jackal through the fitness value.

Step 6: If the iteration number reaches T, the optimal position of the golden jackal is
used as the optimal thresholding.

Step 7: The segmentation image Is is achieved with the optimal thresholding, represented
as:

Is(x,y)=


0, if Igray(x,y)< th1
thi−1, if thi−1< Igray(x,y)< thi,i= 2,3,...,k−1
thk, if Igray(x,y)> thk

(21)

EXPERIMENTAL ANALYSIS AND DISCUSSION
In this section, experiments are performed to prove the algorithm’s performance using the
CEC2021 benchmark function and test images. Other MA algorithms such as DE (Storn &
Price, 1997), GWO (Mirjalili, Mirjalili & Lewis, 2014), WOA (Mirjalili & Lewis, 2016), GJO
(Chopra & Mohsin Ansari, 2022) and HGJO (Lou et al., 2024) are executed experimentally
to compare their performance with the proposed algorithm. The parameters of the relevant
algorithms are depicted in Table 1.

Benchmark function testing
Test functions and experiment settings
Multiple experiments are performed using the CEC2021 benchmark function (Lou et
al., 2024; Mohamed et al., 2022; Wang et al., 2023b) to verify the DEGJO algorithm’s
performance. Table 2 displays the detailed information on the benchmark functions.
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Table 1 Parameters of different meta-heuristic algorithms.

Algorithms Parameters value

DE FM=0.5, CR=0.9
GWO E1 = [2, 0]
WOA E1 = [2, 0]
GJO E1 = [1.5, 0]
HGJO θ= [0◦ , 360◦ ]

E1= [1.5, 0]
DEGJO FM=0.5, CR=0.9

E1= [1.5, 0]

For the previously mentioned algorithm, the population number, dimension number, and
maximum iteration number are set to 30, 10, and 200, respectively.

Analysis of the results of the CEC2021 benchmark functions
To analyze the results, two measures of average fitness (Avg) and standard deviation (Std)
are utilized. After 20 independent runs, themeasurement results of differentMA algorithms
are depicted in Table 3. Figure 2 illustrates the convergence curves of the DEGJO and
other MA algorithms.

Table 3 illustrates that the DEGJO algorithm obtains the best results in the test functions
compared to the other algorithms. Specifically, for F2, F3, F4, F6, and F8, both the DEGJO
and HGJO algorithms achieve the minimum theoretical values, outperforming the results
of the other algorithms. Although the results of the DEGJO algorithm are not optimal in F1,
F7, F9, and F10, there are still significant improvements with theGJO andHGJO algorithms.
These results highlight the superior search capabilities of the proposed algorithm.

As observed in Fig. 2, the DEGJO algorithm exhibits excellent convergence ability. In
the unimodal function F1, the convergence accuracy of the DEGJO algorithm is better
than other algorithms and the HGJO algorithm. For the basic function F2–F4, the DEGJO
algorithm shows good searching ability and has almost the same convergence performance
as the HGJO algorithm. For the functions F5–F7 and F8–F10, the DEGJO algorithm
consistently outperforms the other MA algorithms in terms of search results.

Segmented image testing
Test images
To assess the adaptability, the DEGJO is employed for image segmentation. Experiments
are performed on six test images used in the literature (Houssein et al., 2021b; Wang &
Song, 2022). These images are selected from the Open Standard Test Dataset and Berkeley
Segmentation Dataset (Martin et al., 2001), as depicted in Fig. 3.

Figure 3 shows the benchmark images used for the testing along with their corresponding
histograms. These histograms reveal variations of gray-level intensity in different images,
which facilitate the verification of the robustness and applicability of the proposed method
on different datasets.
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Table 2 CEC2021 benchmark functions (Lou et al., 2024).

Functions
number

fmin Search range

Unimodal Func-
tion

F1 0

F2 0
F3 0Basic Functions
F4 0
F5 (N = 3) 0
F6 (N = 4) 0Hybrid Functions

F7 (N = 5) 0
F8 (N = 3) 0
F9 (N = 4) 0Composition

Functions
F10 (N = 5) 0

[−100,100]

Table 3 Results of the different algorithms.

Function DE GWO WOA GJO HGJO DEGJO

F1 Avg 3.75E+00 2.23E−15 8.05E−23 7.48E−35 3.27E−183 2.61E−235
Std 2.06E+00 2.53E−15 2.10E−22 2.68E−34 0.00E+00 0.00E+00

F2 Avg 7.50E+01 4.36E+01 4.29E+02 3.92E−03 0.00E+00 0.00E+00
Std 3.65E+01 8.26E+01 5.05E+02 1.84E−02 0.00E+00 0.00E+00

F3 Avg 2.04E+01 3.74E+01 3.61E+00 1.26E+00 0.00E+00 0.00E+00
Std 2.19E+00 2.61E+01 9.62E+00 5.93E+00 0.00E+00 0.00E+00

F4 Avg 1.75E+00 1.01E+00 8.12E−03 8.13E−02 0.00E+00 0.00E+00
Std 3.27E−01 8.40E−01 2.51E−02 3.55E−01 0.00E+00 0.00E+00

F5 Avg 2.35E+00 3.67E+00 2.88E−07 5.31E−04 6.11E−222 0.00E+00
Std 1.09E+00 6.52E+00 1.29E−06 2.38E−03 0.00E+00 0.00E+00

F6 Avg 1.74E+00 2.64E+00 2.32E+01 1.66E−01 0.00E+00 0.00E+00
Std 3.59E−01 2.42E+00 5.95E+01 5.05E−01 0.00E+00 0.00E+00

F7 Avg 9.39E−01 7.04E+00 1.36E−01 6.12E−02 3.04E−07 1.53E−87
Std 2.49E−01 2.92E+01 3.04E−01 2.28E−01 8.95E−07 6.52E−87

F8 Avg 2.86E−01 6.67E−13 7.79E+01 0.00E+00 0.00E+00 0.00E+00
Std 4.54E−01 2.68E−12 3.47E+02 0.00E+00 0.00E+00 0.00E+00

F9 Avg 1.22E−02 1.43E−10 2.65E−01 9.77E−15 9.32E−129 1.20E−225
Std 3.86E−03 1.14E−10 1.18E+00 2.73E−15 4.17E−128 0.00E+00

F10 Avg 5.05E+01 5.39E+01 7.96E−02 2.94E+01 4.61E−04 1.84E−04
Std 1.26E+00 8.56E+00 3.14E−02 3.45E+01 3.30E−04 1.47E−04

Notes.
The best values are highlighted in bold.

Evaluation metrics
For image thresholding segmentation of the DEGJO algorithm, multiple evaluationmetrics
are required to assess the performance of the proposed algorithm. These evaluation metrics
are described as follows.

1. Average (Avg) and standard deviation (Std) values of the fitness function
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Figure 2 Convergence curves of different meta-heuristic algorithms.
Full-size DOI: 10.7717/peerjcs.2121/fig-2

The convergence accuracy of the algorithm is influenced by the fitness value. Accurate
image segmentation thresholds can be obtained by iterating through the minimization of
the fitness value. Therefore, the efficiency of the algorithm is assessed using Avg and Std of
the fitness function.

2. The best threshold values
Optimization algorithms are employed for segmentation images, where the optimal

thresholds are derived through iterative optimization of the algorithm. The selection of
the best threshold is crucial for image segmentation, as it directly affects the quality of the
segmentation.

3. Peak Signal-to-Noise Ratio (PSNR)
The PSNR denotes the peak signal-to-noise ratio of the source Isou and the segmented

image Iseg and is closely related to the quality of the segmented image (Houssein et al.,
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Figure 3 (A–F) Test images used in our experiments. (A–C) image source credit: (A) https://github.
com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/standard_test_images/
cameraman.tif; (B) https://github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/
blob/master/standard_test_images/peppers_gray.tif; (C) https://github.com/mohammadimtiazz/standard-
test-images-for-Image-Processing/blob/master/standard_test_images/livingroom.tif. (D–F) image source
credit: (Martin et al., 2001).

Full-size DOI: 10.7717/peerjcs.2121/fig-3

2022). The PSNR can be calculated as:

PSNR= 10 log10
(

2552

MeanSE

)
, (22)

whereMeanSE is the mean square error.
4. Structural Similarity Index (SSIM)
The SSIM represents the similarity between the Isou and Iseg images (Houssein et al.,

2021b). The higher the value of SSIM, the higher the similarity between the source and the
segmented image, which means that the segmentation of the image is more effective. The
SSIM can be calculated as:

SSIM (x,y)=

(
2µsouµseg + c1

)
(2σss+ c2)(

µ2
sou+µ

2
seg + c1

)(
σ 2
sou+σ

2
seg + c2

) , (23)

where µsou and µseg are the mean intensity of the Isou and Iseg images, respectively. σsou
and σseg represent the standard deviation of the Isou and Iseg images, respectively. σss is the
covariance. c1 and c2 are the constant numbers.

5. Feature Similarity Index (FSIM)
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The FSIM denotes the similarity between the Isou and Iseg images (Aziz, Ewees &
Hassanien, 2017). A high FSIM value denotes good performance of the image segmentation
method. The calculation formula is denoted as follows:

FSIM=
∑

x∈�SL(x)PCmax(x)∑
x∈�PCmax(x)

, (24)

SL(x)= SPC(x)SG(x), (25)

SPC(x)=
2PC1(x)PC2(x)+T1

PC2
1 (x)+PC

2
2 (x)+T1

, (26)

SG(x)=
2G1(x)G2(x)+T2

G2
1(x)+G

2
2(x)+T2

, (27)

PCmax(x)=max{PC1(x),PC2(x)}, (28)

where T1 and T2 are constant numbers. PC(x) denotes the phase congruence, and G(x)
denotes the magnitude of the image gradient.

Analysis of the segmented image results
The DEGJO algorithm is employed to search for the optimal multilevel threshold, with an
objective function of cross-entropy minimization. For each algorithm, the N is selected
as 30, T is chosen as 100, and the threshold levels are set to 3, 5, and 8, respectively.
To reduce the randomness of the algorithms, each algorithm is run independently 20
times. The experimental results of the DEGJO and other MA algorithms are displayed in
Tables 4–8.

Table 4 shows the Avg and Std of the cross-entropy values for the DEGJO and other
algorithms. The best values are highlighted in bold. Compared to DE, GWO, WOA, GJO
andHGJO algorithms, the DEGJO algorithm obtains the best average values inmost images
at all levels.

Table 5 depicts the best threshold values with the DE, GWO, WOA, GJO, HGJO, and
DEGJO algorithms. Generally, most algorithms exhibit similar values when the threshold
levels are 3 and 5, however, significant differences emerge in the threshold values obtained
when the threshold level is 8, particularly with the HGJO algorithm.

Table 6 displays the mean PSNR values of the algorithm mentioned above. The Optimal
values are marked in bold. In most images, the segmented image using the DEGJO
algorithm has a higher PSNR value than other algorithms. However, for some images,
other algorithms perform better than the DEGJO algorithm.

Table 7 compares the mean SSIM values derived from the performance of various
algorithms. The best results are highlighted in bold, indicating superior segmentation of
the original image. It can be observed that the DEGJO algorithm achieves significant results
across most of the images.

Table 8 shows the mean FSIM values by employing the proposed DEGJO and other MA
algorithms. The optimal values are highlighted in bold, indicating superior segmentation
quality, with higher values reflecting better performance of the thresholding method.

Finally, Figs. 4–9 depict the segmentation images using the DEGJO approach at three
different levels (k= 3, 5, and 8), alongside their respective histograms. In these figures, the
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Table 4 Results of the Avg and Std of fitness values.

Images k DE GWO WOA GJO HGJO DEGJO

Avg 0.7611 0.7616 0.7611 0.7611 0.7639 0.7611
3

Std 0 6.17E−04 0 0 3.95E−03 0
Avg 0.4087 0.4084 0.4023 0.4060 0.4097 0.4043

5
Std 3.37E−3 4.13E−03 2.55E−03 4.01E−03 8.12E−03 2.02E−03
Avg 0.2091 0.2082 0.2084 0.2089 0.2182 0.2078

Test 1

8
Std 2.17E−3 8.10E−03 3.47E−03 5.97E−03 1.11E−02 1.71E−03
Avg 1.2190 1.2187 1.2186 1.2186 1.2255 1.2185

3
Std 2.87E−4 3.40E−4 1.20E−4 9.66E−5 2.12E−2 0
Avg 0.5845 0.5836 0.5835 0.5930 0.5910 0.5811

5
Std 2.64E−03 3.03E−03 8.49E−03 1.98E−02 1.26E−02 5.71E−04
Avg 0.2877 0.2750 0.2938 0.2903 0.2918 0.2745

Test 2

8
Std 9.28E−03 1.05E−2 1.81E−02 1.63E−02 2.00E−02 5.34E−03

3 Avg 1.1702 1.1693 1.1694 1.1693 1.1713 1.1690
Std 1.27E−03 4.09E−4 4.53E−04 3.81E−04 4.74E−03 0

5 Avg 0.5446 0.5431 0.5410 0.5461 0.5504 0.5389
Std 4.25E−03 3.67E−03 2.42E−03 6.21E−03 1.02E−2 3.03E−04

8 Avg 0.2753 0.2624 0.2552 0.2599 0.2661 0.2536

Test 3

Std 8.41E−03 9.21E−03 2.96E−3 9.40E−3 5.20E−3 1.09E−03
3 Avg 1.3467 1.3466 1.3465 1.3466 1.3468 1.3465

Std 0 9.49E−05 0 9.49E−05 2.53E−04 0
5 Avg 0.5780 0.5804 0.5770 0.5769 0.5846 0.5765

Std 1.32E−04 7.44E−03 7.34E−04 5.93E−04 1.09E−02 3.16E−05
8 Avg 0.2768 0.2762 0.2719 0.2735 0.2791 0.2709

Test 4

Std 3.52E−03 5.05E−03 1.45E−03 2.95E−03 3.76E−03 0
3 Avg 1.4460 1.4460 1.4460 1.4460 1.4463 1.3473

Std 0 0 0 0 3.87E−04 3.39E−04
5 Avg 0.6681 0.6675 0.6675 0.6675 0.6714 0.5833

Std 1.01E−03 0 0 0 3.10E−03 2.01E−03
8 Avg 0.2983 0.2964 0.2957 0.2972 0.3086 0.2821

Test 5

Std 3.29E−03 8.57E−04 0 1.41E−3 8.53E−03 2.34E−03
3 Avg 0.9534 0.9529 0.9525 0.9526 0.9530 0.9525

Std 8.84E−04 0.15E−04 0 1.55E−04 6.76E−04 0
5 Avg 0.4396 0.4397 0.4392 0.4394 0.4443 0.4391

Std 3.20E−04 8.99E−04 1.05E−04 3.40E−04 8.05E−03 0
8 Avg 0.2139 0.2103 0.2087 0.2095 0.2191 0.2080

Test 6

Std 3.36E−03 3.36E−03 1.90E−03 2.29E−03 7.60E−03 1.58E−04

Notes.
The best values are highlighted in bold.

optimal thresholds are indicated by red vertical lines. As shown in Figs. 4–9, the contrast
quality of the images improves significantly with the increasing number of thresholds.
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Table 5 The best threshold values.

Images k DE GWO WOA GJO HGJO DEGJO

3 30,83,144 30,83,144 30,83,144 30,83,144 30,83,144 30,83,144

5 27,68,110,144,174 27,66,109,144,172 28,71,115,145,172 28,69,113,145,172 26,51,93,138,168 28,70,114,146,172Test 1

8 23,47,74,106,132,153,174,196 24,50,82,112,134,155,173,203 15,26,51,85,120,146,169,200 22,46,77,108,132,154,173,207 22,47,79,111,133,156,175,204 24,46,76,107,131,150,170,204

Test 2 3 43,87,139 44,88,139 44,88,139 44,88,139 44,88,139 44,88,139

5 21,50,86,125,169 22,51,86,125,169 23,51,87,125,169 42,81,112,144,176 23,50,86,126,169 23,52,86,125,169

8 2,26,49,78,98,123,154,184 9,29,52,79,100,125,155,182 10,29,53,80,101,124,153,180 10,27,51,79,101,125,154,181 9,31,55,82,100,124,152,181 10,30,53,79,101,124,152,180

Test 3 3 43,95,145 44,95,145 44,95,145 44,95,145 43,94,145 44,95,145

5 32,68,103,134,168 34,70,103,133,167 33,69,103,133,167 31,67,103,133,168 17,70,108,133,166 33,70,102,134,167

8 18,35,56,76,102,126,150,181 22,47,69,89,111,131,152,181 22,43,66,89,112,131,152,181 21,42,63,88,111,131,152,181 15,39,66,90,110,131,150,181 21,42,66,90,111,132,153,182

Test 4 3 34,77,152 35,77,152 35,77,152 35,77,152 34,77,151 35,77,152

5 20,45,73,102,165 21,46,73,102,165 21,46,73,102,165 21,46,73,102,165 21,46,73,102,165 21,46,73,102,165

8 16,33,49,67,87,106,135,196 16,33,49,67,86,106,135,194 16,33,49,67,87,106,135,196 16,32,48,66,86,106,136 17,36,52,69,88,107,139,205 16,33,49,67,87,106,135,196

Test 5 3 36,78,142 36,78,142 36,78,142 36,78,142 36,78,142 35,77,152

5 25,49,79,119,168 25,49,79,119,168 25,49,79,119,168 25,49,79,119,168 25,48,79,119,166 22,46,75,103,161

8 20,35,51,70,94,123,157,191 19,34,50,70,95,123,159,190 21,36,52,71,95,123,156,190 21,36,52,71,95,123,156,190 20,35,51,71,96,123,155,187 18,33,48,66,86,107,138,185

Test 6 3 28,72,128 28,72,128 28,72,128 28,72,128 28,72,128 28,72,128

5 21,42,72,105,141 21,42,73,105,141 21,42,73,105,141 21,42,73,105,141 21,42,73,105,141 21,42,73,105,141

8 18,33,51,75,99,117,138,165 18,32,50,73,98,117,140,169 18,32,50,73,98,117,140,169 18,32,50,74,98,117,141,170 19,33,51,74,98,116,135,167 18,32,50,74,98,117,140,168
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Table 6 Results of the mean PSNR.

Images k DE GWO WOA GJO HGJO DEGJO

Test 1 3 18.7967 18.7582 18.7127 18.7469 18.7611 18.7184
5 22.4806 22.4347 22.8284 22.5989 22.4820 22.8473
8 25.5671 25.6409 25.2934 25.5776 25.5854 25.6030

Test 2 3 17.8345 17.8340 17.8277 17.8317 17.8102 17.8399
5 21.2451 21.3074 21.2425 21.4339 21.2702 21.2628
8 24.7374 24.9890 24.7006 25.0026 24.6506 23.8157

Test 3 3 18.5074 18.4300 18.4107 18.4048 18.4689 18.4347
5 22.0869 22.1710 22.2243 22.0245 22.0935 22.1923
8 25.1981 25.3756 25.5581 25.4552 25.4987 25.5163

Test 4 3 18.9777 18.9974 19.0048 18.9961 18.9750 19.0048
5 22.6020 22.6179 22.6522 22.6564 22.6307 22.6335
8 26.0114 26.0202 26.1691 26.0932 26.0439 26.1921

Test 5 3 17.7790 17.7790 17.7790 17.7790 17.7494 17.9873
5 21.3595 21.3347 21.3347 21.3410 21.3160 20.6440
8 24.8356 24.8856 24.9075 24.8747 24.8193 23.6847

Test 6 3 19.6786 19.6403 19.6564 19.6190 19.6818 19.6729
5 22.9878 23.0368 23.0054 22.9959 23.0613 23.0517
8 25.8374 26.0622 26.0283 26.0307 25.8926 26.1068

Notes.
The best values are highlighted in bold.

Table 7 Results of the mean SSIM.

Images k DE GWO WOA GJO HGJO DEGJO

Test 1 3 0.6667 0.6726 0.6724 0.6727 0.6724 0.6718
5 0.7137 0.7129 0.7200 0.7159 0.7111 0.7202
8 0.7698 0.7678 0.7818 0.7785 0.7733 0.7614

Test 2 3 0.6912 0.6905 0.6908 0.6906 0.6889 0.6902
5 0.7702 0.7716 0.7716 0.7712 0.7694 0.7719
8 0.8356 0.8389 0.8354 0.8410 0.8338 0.8280

Test 3 3 0.6604 0.6603 0.6603 0.6604 0.6602 0.6603
5 0.7581 0.7614 0.7610 0.7573 0.7598 0.7629
8 0.8422 0.8454 0.8496 0.8475 0.8473 0.8495

Test 4 3 0.6244 0.6240 0.6237 0.6239 0.6249 0.6237
5 0.7499 0.7513 0.7514 0.7516 0.7490 0.7506
8 0.8464 0.8456 0.8479 0.8464 0.8465 0.8485

Test 5 3 0.6498 0.6498 0.6498 0.6498 0.6492 0.6538
5 0.7879 0.7885 0.7885 0.7884 0.7861 0.7822
8 0.8703 0.8728 0.8716 0.8722 0.8710 0.8618

Test 6 3 0.5381 0.5383 0.5384 0.5382 0.5383 0.5386
5 0.6115 0.6111 0.6107 0.6110 0.6123 0.6110
8 0.6722 0.6716 0.6712 0.6699 0.6683 0.6695

Notes.
The best values are highlighted in bold.
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Table 8 Results of the mean FSIM.

Images k DE GWO WOA GJO HGJO DEGJO

Test 1 3 0.8182 0.8213 0.8209 0.8215 0.8212 0.8206
5 0.8752 0.8744 0.8816 0.8776 0.8748 0.8822
8 0.9255 0.9269 0.9186 0.9235 0.9239 0.9283

Test 2 3 0.7477 0.7475 0.7473 0.7472 0.7462 0.7473
5 0.8054 0.8059 0.8051 0.8106 0.8053 0.8059
8 0.8678 0.8718 0.8670 0.8725 0.8669 0.8577

Test 3 3 0.8247 0.8249 0.8245 0.8247 0.8245 0.8252
5 0.9092 0.9093 0.9100 0.9085 0.9079 0.9104
8 0.9497 0.9525 0.9537 0.9535 0.9517 0.9542

Test 4 3 0.7305 0.7308 0.7307 0.7306 0.7319 0.7307
5 0.8358 0.8373 0.8371 0.8374 0.8359 0.8368
8 0.9096 0.9092 0.9119 0.9108 0.9094 0.9123

Test 5 3 0.8008 0.8008 0.8008 0.8008 0.8004 0.7955
5 0.8772 0.8777 0.8777 0.8778 0.8780 0.8651
8 0.9344 0.9351 0.9349 0.9348 0.9337 0.9184

Test 6 3 0.7985 0.7985 0.7985 0.7986 0.7985 0.7983
5 0.8278 0.8282 0.8281 0.8279 0.8289 0.8282
8 0.8746 0.8779 0.8771 0.8676 0.8740 0.8783

Notes.
The best values are highlighted in bold.

CONCLUSIONS
Image segmentation is a critical step in the accurate processing and analysis of images.
Various techniques using multilevel thresholding have been developed to solve this
challenge. Thresholding-based segmentation methods are widely utilized for their simple
operation and efficient point characteristics. In this study, we present a hybrid DEGJO
algorithm, which uses the MCE as a fitness function to determine optimal threshold
values. The DEGJO algorithm aims to obtain the optimal threshold using the MCE
method. Experiments are conducted on benchmark functions and images, comparing the
performance of the DEGJO algorithm with other metaheuristic algorithms, including DE,
GWO, WOA, GJO, and HGJO. The results of these experiments highlight the superior
performance of the DEGJO algorithm, evident in its outperformance across various
metrics including fitness values, PSNR, SSIM and FSIM, compared to other optimization
algorithms.

In future work, we will further optimize the performance of the DEGJO algorithm using
actual captured images employ Otsu, Kapur entropy, Fuzzy entropy, and Masi entropy for
multilevel thresholding image segmentation.
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Figure 4 (A–C) Segmentation results of the DEGJO to the Test 1 image. Image source credit: https://
github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/standard_test_
images/cameraman.tif.

Full-size DOI: 10.7717/peerjcs.2121/fig-4

Figure 5 (A–C) Segmentation results of the DEGJO to the Test 2 image. Image source credit: https://
github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/standard_test_
images/peppers_gray.tif.

Full-size DOI: 10.7717/peerjcs.2121/fig-5
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Figure 6 Segmentation results of the DEGJO to the Test 3 image. Image source credit: https://github.
com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/standard_test_images/
livingroom.tif.

Full-size DOI: 10.7717/peerjcs.2121/fig-6

Figure 7 (A–C) Segmentation results of the DEGJO to the Test 4 image. Image source credit: (Martin et
al., 2001).

Full-size DOI: 10.7717/peerjcs.2121/fig-7
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Figure 8 (A–C) Segmentation results of the DEGJO to the Test 5 image. Image source credit: (Martin et
al., 2001).

Full-size DOI: 10.7717/peerjcs.2121/fig-8

Figure 9 (A–C) Segmentation results of the DEGJO to the Test 6 image. Image source credit: (Martin et
al., 2001).

Full-size DOI: 10.7717/peerjcs.2121/fig-9
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