
Deep reinforcement learning task
scheduling method based on server real-
time performance
Jinming Wang, Shaobo Li, Xingxing Zhang, Fengbin Wu and Cankun
Xie

State Key Laboratory of Public Big Data, Guizhou University, Guiyang, Guizhou, China

ABSTRACT
Server load levels affect the performance of cloud task execution, which is rooted in
the impact of server performance on cloud task execution. Traditional cloud task
scheduling methods usually only consider server load without fully considering the
server’s real-time load-performance mapping relationship, resulting in the inability
to evaluate the server’s real-time processing capability accurately. This deficiency
directly affects the efficiency, performance, and user experience of cloud task
scheduling. Firstly, we construct a performance platform model to monitor server
real-time load and performance status information in response to the above
problems. In addition, we propose a new deep reinforcement learning task
scheduling method based on server real-time performance (SRP-DRL). This method
introduces a real-time performance-aware strategy and adds status information
about the real-time impact of task load on server performance on top of considering
server load. It enhances the perception capability of the deep reinforcement learning
(DRL) model in cloud scheduling environments and improves the server’s load-
balancing ability under latency constraints. Experimental results indicate that the
SRP-DRL method has better overall performance regarding task average response
time, success rate, and server average load variance compared to Random, Round-
Robin, Earliest Idle Time First (EITF), and Best Fit (BEST-FIT) task scheduling
methods. In particular, the SRP-DRL is highly effective in reducing server average
load variance when numerous tasks arrive within a unit of time, ultimately
optimizing the performance of the cloud system.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Distributed and Parallel
Computing, Mobile and Ubiquitous Computing
Keywords Cloud task scheduling, Load and performance, Deep reinforcement learning, State
augmentation, Load balancing

INTRODUCTION
Cloud computing is a technology and service model that provides computing resources
such as computing power, storage, and networks over the Internet. It permits users to
acquire and leverage computing resources through the cloud service providers’
infrastructure without worrying about the management of the underlying hardware
and software. Among them, virtualization technology is critical in cloud computing
(Tong et al., 2021). Cloud computing can achieve higher efficiency, scalability, and
flexibility through virtualization technology. Hence, the applications of cloud computing

How to cite this article Wang J, Li S, Zhang X, Wu F, Xie C. 2024. Deep reinforcement learning task scheduling method based on server
real-time performance. PeerJ Comput. Sci. 10:e2120 DOI 10.7717/peerj-cs.2120

Submitted 14 March 2024
Accepted 20 May 2024
Published 21 June 2024

Corresponding author
Shaobo Li, lishaobo@gzu.edu.cn

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.2120

Copyright
2024 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2120
mailto:lishaobo@�gzu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2120
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

are pervasive. However, many problems still need to be settled in cloud computing. The
task scheduling problem is one of vital in cloud computing. This problem involves the
efficient allocation and management of limited computing resources to perform various
types of tasks. The task scheduling approach is currently one of the effective methods to
address resource constraints in complex cloud environments, and it is critical to promote
the quality of Quality of Service (QoS) indicators like resource utilization and service delay.

It is tough for traditional scheduling algorithms to show excellent performance in cloud
resource allocation and task scheduling due to the complexity of cloud environments, the
dynamics and diversity of resource demands, and the heterogeneity of resources. This
limitation primarily arises from their inherent constraints, making them unable to meet
the dynamic requirements of cloud resource environments, thereby impacting user
experience and performance. In contrast, reinforcement learning can flexibly adapt to
changing workloads and resource status by learning and optimizing scheduling decisions.
The learning framework with the reward mechanism enables the system to make optimal
scheduling decisions under real-time requirements, allowing it to be adjusted to the ever-
changing cloud computing environment. Therefore, applying reinforcement learning to
cloud task scheduling is highly appropriate.

When scheduling tasks in a cloud environment, since the diversity and dynamics of task
demands, along with the continuity of tasks, the server will occupy some resources after
accepting and processing task requests. With the arrival of subsequent tasks, previously
arrived tasks impose a particular load on the server, influencing service time (Delasay et al.,
2019). An increase in server load usually leads to delays in response time, that is, an
increment in the processing time of client requests, affecting the user experience.
Simultaneously, the performance of web servers is immediately influenced by the load
directed towards them (Jader, Zeebaree & Zebari, 2019). Server performance directly
affects the efficiency of cloud task processing, resource utilization, and system stability.
Consequently, in the decision-making process of implementing cloud task scheduling
using reinforcement learning methods, it is necessary to comprehensively consider the
interaction between load and performance. This can accurately evaluate the real-time
processing capabilities of the server, thereby rationally allocating tasks to servers with
better performance. In this way, tasks can be processed faster, task response times can be
reduced, and cloud resource utilization and overall system performance can be improved.

We propose a deep reinforcement learning task scheduling method based on server real-
time performance (SRP-DRL). It introduces a real-time performance-aware strategy to
enhance the cloud scheduling environment awareness of the deep reinforcement learning
(DRL) model. The mathematical model of the reinforcement learning architecture can
conveniently represent the scheduling process dynamics, and as a learning-based
algorithm, the DRL algorithm has high model generalization capability (Chen et al.,
2023b). SRP-DRL aims to optimize the load balancing capability of servers and to consider
the effect of server load on server performance on top of server load to perfect the state
information fed back from the environment for improving the decision-making capability
of the model. The overall contributions of our research are as follows.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 2/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

1) Utilizing power function models with nonlinear relationships and load thresholds to
establish a real-time performance platform model to accurately model the impact of
load on performance, thereby enhancing the precision and efficiency of cloud task
scheduling.

2) By introducing a real-time performance-aware strategy, the influence of task-generated
load on server performance is considered, enhancing the DRL model’s ability to
perceive environmental states.

3) Propose a DRL task scheduling method built on server real-time performance to reduce
task response time under latency constraints and enhance the load balancing capability
of servers.

4) SRP-DRL has undergone extensive evaluation, comparing its performance with several
commonly used baseline task scheduling schemes on various dimensions and metrics,
including Random, Round-Robin, Earliest Idle Time First (EITF) and Best Fit (BEST-
FIT) task scheduling methods. Experimental results demonstrate the superiority of SRP-
DRL over the mentioned baseline task scheduling methods.

The following structure characterizes the remainder of the article. “Related Work”
delves into related work on task scheduling methods for optimizing load balancing.
“SystemModel” introduces the systemmodel and depicts the relevant system assumptions.
In “The Proposed SRP-DRL”, we illustrate the design details of the DRL task scheduling
method (SRP-DRL) based on server real-time performance. “Experiment” presents and
analyzes the experimental outcomes across various dimensions and indicators, and
confirms that the proposed SRP-DRL is superior to other comparative baseline task
scheduling methods. Finally, we conclude this article and propose improvements for future
work in “Conclusion”.

RELATED WORK
The real-time performance of the server will affect the allocation decisions of cloud tasks,
thereby affecting the effect of load balancing. Although traditional load balancing
algorithms (Jafarnejad Ghomi, Masoud Rahmani & Nasih Qader, 2017; Shafiq, Jhanjhi &
Abdullah, 2022) such as Round Robin, Min-Min, Opportunistic Load Balancing, and Max-
Min are simple to implement and perform well in relatively stable systems. Yet these
algorithms are limited when considering server real-time loads, performance variations,
and adaptability. To solve the adaptability problem of traditional load-balancing
algorithms, many scholars have studied swarm intelligence optimization algorithms.
Commonly used swarm intelligence optimization load-balancing algorithms include
Artificial Bee Colony (Kruekaew & Kimpan, 2022), Ant Colony Optimization (Shi, Hu &
Lu, 2021), Particle Swarm Optimization (Dubey & Sharma, 2021), and Genetic Algorithms
(Zhou et al., 2020), etc. These algorithms are highly adaptable and suitable for complex
environments, but they usually have problems such as poor adaptive capabilities, non-real-
time decision-making, and insufficient flexibility. Thus, to solve the problems existing in
the above-mentioned intelligent optimization algorithms, reinforcement learning is
introduced to achieve load balancing of cloud task scheduling. Owing to the complexity of

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 3/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

the cloud environment, the dynamics of task requirements, and the characteristics of DRL
suitable for solving complex optimization problems in high-dimensional state spaces (Liu
et al., 2022), DRL has demonstrated outstanding performance in processing cloud tasks.
Indeed, optimizing cloud task scheduling for load balancing using DRL has attracted
significant attention and research. The following focuses primarily on the research work
related to DRL optimization for load balancing and is illustrated by the two metrics:
makespan and response time.

Makespan. Cheng, Li & Nazarian (2018) proposed an approach built on DRL, which
integrates resource provision and task scheduling systems. Tong et al. (2020) suggested a
deep Q-learning task scheduling algorithm. It integrates the strengths of Q-learning
algorithms and deep neural networks to decrease the task completion time. Dong et al.
(2020) presented a task scheduling algorithm depending upon DRL, which dynamically
allocates priority tasks on cloud servers and optimizes task execution time. Swarup,
Shakshuki & Yasar (2021) developed a task scheduling algorithm according to clipped
double-deep Q-learning to diminish task execution time and costs. Hu, Tu & Li (2019)
introduced a task scheduling framework, that employs Monte Carlo Tree Search (MCTS)
for task scheduling and trains a DRL model to instruct the scaling and launch of MCTS.
When considering tasks reduce the completion time of complicated jobs under
dependencies and heterogeneous resource requirements. Wu et al. (2018) proposed an
adaptable directed acyclic graphs task scheduling algorithm DRL-based to reduce task
completion time. Mangalampalli et al. (2023) introduced a task scheduling method based
on deep Q-learning networks (DQN) to optimize completion time and the percentage of
service level agreement (SLA) violations. Grinsztajn et al. (2021) developed a dynamic task
scheduling algorithm for directed acyclic graphs, which merges graph convolutional
networks with an advantage actor-critic algorithm to shorten task completion time. Dong
et al. (2023) introduced an adaptive fault-tolerant workflow scheduling framework that
combines double deep Q networks (DDQN) to reduce task completion time while
achieving fault tolerance.Mangalampalli et al. (2024) provided a multi-objective workflow
scheduling algorithm based on DRL, which captures data feedback such as dependencies
and task priorities to reduce completion time. Chen et al. (2023a) suggested a cloud
computing heterogeneous workflow collaborative scheduling method combined with DRL
to optimize workflow completion time under task execution continuity constraints. Cao
et al. (2024) proposed a task scheduling method depending on the graph attention network
and DRL to minimize the completion time of user tasks. Besides, a multi-action and
environment-adaptive proximal policy optimization algorithm is presented by Li et al.
(2024). In this work, a joint task scheduling and resource allocation method was designed
to reduce request completion time.

Task response time. Jyoti & Shrimali (2020) proposed a dynamic resource allocation
approach that depends upon load balancing and service proxy to solve the problem of
performance reduction of traditional methods in dynamic resource allocation. The local
user agent in the method uses multi-agent DRL-dynamic resource allocation to predict
user task requests to reduce the response time. Baek et al. (2019) presented an offloading
method rooted in reinforcement learning to solve the problem of different computing

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 4/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

capabilities of fog nodes, which can keep the convergence of the algorithm in polynomial
time and improve the load balancing problem under the restriction of achieving minimum
delay in the fog network. Gazori, Rahbari & Nickray (2020) introduced a dual deep Q-
learning scheduling algorithm using target networks and experiences replay strategy,
which is beneficial to reducing service latency. Rjoub et al. (2021) proposed four
approaches for automatic task scheduling—reinforcement learning, DQN, recurrent
neural network long short-term memory (LSTM), and DRL integrated with LSTM.
Experiments on a real dataset from the Google Cloud Platform show that these methods
can automate workload scheduling and reduce task waiting time. Chen et al. (2019)
provided the collaborative mobile edge computing intelligent resource allocation
framework, which is built on the multi-task DRL algorithm trained of self-play training to
shorten service delays. Ran, Shi & Shang (2019) employed a deep deterministic policy
gradient network to find the optimal distribution solution of tasks that meets the SLA
requirements, reduce the average response time of tasks and improve load balancing
between virtual machines. Cheng et al. (2023) introduced proposed an improved task
scheduling strategy optimization algorithm for the asynchronous advantage actor-critic
(A3C). They used a convolutional neural network to improve the network structure of
A3C and adopted an asynchronous multi-thread training method to decrease task
response time and system energy consumption in the edge-cloud collaborative
environment. Sun, Yang & Lei (2022) provided a task scheduling algorithm according to
optimized DRL in heterogeneous computing environments. They used double Q-learning
to enhance the primal DQN and reduce average task response time and the standard
deviation of machine CPU utilization. Pang et al. (2024) developed a vehicle application
task offloading framework, using DAG to model task dependencies, DDQN, and specific
mobility management strategies to reduce task delays. Huang et al. (2023) presented a
DRL-based computing offloading and resource allocation algorithm, which dynamically
learns the optimal computing offloading and resource allocation scheme by adapting to the
network to reduce task processing delays.Wang et al. (2024) introduced an IoT application
scheduling algorithm integrated into DRL to optimize the response time of heterogeneous
IoT applications. Farimani et al. (2024) reported a task offloading algorithm depending on
Rainbow to reduce the average task delay by effectively integrating the computing
resources of edge servers. Moreover, a preemptive cloud job scheduling method based on
DRL is proposed by Cheng et al. (2024), which improves the training of scheduling
strategies through an effective preemption mechanism to meet the user’s expected
response time.

Although these studies mentioned above have utilized DRL to optimize relevant
indicators of load balancing, they have yet to consider the impact of server load generated
by task execution on server performance and thus on task response time. Hence, when
using DRL to realize cloud task scheduling load balancing, the interplay of load and
performance must be considered to enhance the perceptual capability of the DRL model,
thereby improving the performance of DRL in realizing cloud task scheduling load
balancing.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 5/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

SYSTEM MODEL
In this section, we use formal and mathematical forms to model the problem and give the
relevant problem assumptions and definitions. In Table 1, we present the pivotal notations
utilized in this section for clarity in subsequent discussions.

Task analysis model
The user sends a task request to the cloud platform for handling, and the task information
corresponding to user requests is stored in a task queue to form a user task request queue.
A task request queue contains a series of tasks, which can be expressed as
Q ¼ T1; T2; � � � ; Tnf g, where T represents a task, and nmeans on number of tasks in the
task request queue. Tasks do not interfere with each other, cannot be preempted, and can
be executed in parallel when meeting the current virtual machine load and own resource
requests. An essential attribute of task information is the task length. The task length L is
subjected to a normal distribution with mean l and standard deviation r, that is,

L � N l; r2ð Þ. Of course, the arrival time of tasks Ta, is also a vital attribute of task
information, which determines the order in which the DRL model allocates virtual
machines to tasks. As a classic distribution, the Poisson distribution is widely used in
queueing theory and can be used to describe the pattern of task arrivals. Hence, the arrival
time Ta of tasks defers to the Poisson distribution with parameter λ, that is, Ta � P kð Þ. At
the same time, the response time Tres required for task execution on the cloud platform
needs to be no greater than the deadline TD to ensure that the task can be responded to and
processed normally. Tasks with a response time exceeding TD will be considered failed
tasks during runtime performance parameter evaluation.

Tres ¼ Tw þ Te � TD (1)

where Tw represents the waiting time required to fulfill task execution, and Te is the
execution time of the task. The waiting time Tw and the execution time Te will be
influenced by the scheduling decisions made by the DRL model.

To validate the robustness of the proposed task scheduling method and to show the
diversity of task requests, we randomly sample the resource requests of tasks for CPU,
memory and disk I/O in the range of 0; h½ Þ. As a result, in this scheduling model, each task
is represented as

Ti ¼ li; Ta
i ; reqCi; reqMi; reqIOi;TD

i

� �
(2)

subject to reqCi; reqMi; reqIOi 2 0; h½ Þ (2a)

where li is the task length of the i-th task, Ta
i is the arrival time of the i-th task, reqCi is the

CPU resource request of the i-th task, reqMi is the memory resource request of the i-th
task, reqIOi is the disk I/O resource request of the i-th task, and TD

i is the deadline of the
i-th task, h denotes the load threshold of the virtual machine.

The waiting time Tw of the task is determined by the virtual machine state chosen by the
DRL model. This virtual machine state will be affected by previously executed tasks,
especially the end time of the task.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 6/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

TE
i ¼ Ta

i þ Tres
i (3)

where TE
i is the end time of the i-th task, Ta

i and T
res
i are the arrival time and response time

of the i-th task respectively.
Thereby, the waiting time of the i-th task is

Tw
i ¼

0; if first task or condition
minimize TE

k jcondition
� �� Ta

i ; otherwise

�
(4)

subject to VMk ¼ VMi ¼ j; k2 1; i� 1½ � (4a)

Ta
k< Ta

i ; T
a
i < TE

k ;T
res
k � TD

k (4b)

where condition ¼ fulfill reqCi; reqMi; reqIOi and ðloadtj þ loadi Þ � h, VMk and VMi

are the virtual machines selected by DRL to execute the k-th task and the i-th task. The
above formula VMk ¼ VMi ¼ jmeans that the virtual machines selected by the two tasks
are the same, both are the j-th virtual machine. And loadtj is the real-time load of the j-th
virtual machine at time t, and loadi is the load generated by the execution of the i-th task.

Table 1 Symbols employed in the scheduling model.

Notation Definition

Q The task queue

VMs The virtual machine group

n The task queue size

m The virtual machine group size

Ti The i-th task in the task queue

VMj The j-th virtual machine of a virtual group

Tres The response time for the task

Tw The wait time for the task

Te The execution time for the task

li The length of the i-th task

Ta
i The arrival time for the i-th task

reqCi The CPU resource request for the i-th task

reqMi The memory resource request for the i-th task

reqIOi The disk I/O resource request for the i-th task

TD
i The deadline for the i-th task

TE
i The end time for the i-th task

loadi The load generated when the i-th task is executed

Vj The raw speed for the j-th virtual machine

loadj The load on the j-th virtual machine

Cj The CPU resource of the j-th virtual machine

Mj The memory resource of the j-th virtual machine

IOj The disk I/O resource of the j-th virtual machine

rtj The is the set of tasks running on the j-th virtual machine at time t

h The load thresholds for virtual machine

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 7/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

When a task is run on a virtual machine, the task will produce a certain load on the
virtual machine, and the virtual machine load will have a certain impact on the
performance of the virtual machine, that is, the processing speed V of the virtual machine.
In moment t, the i-th task commences execution on the selected j-th virtual machine. The
task will be processed at the real-time processing speed Vt

j corresponding to the real-time
load of the virtual machine at moment t, thus obtaining the execution time Te

i of the
current task.

Te
i ¼

li
Vt
j

(5)

where li is the task length of the i-th task, and Vt
j is the real-time processing speed of the

j-th virtual machine selected at the moment t when the i-th task starts running.

Real-time performance platform model
The real-time performance platform is composed of a group of virtual machines, which
can be denoted as VMs ¼ VM1; VM2; � � � ; VMmf g, where VM represents a virtual
machine, and m indicates the total count virtual machines on the current cloud platform.
A virtual machine is an independent and isolated computing environment that allows
users to feel like they are using a real physical machine. Similar to physical machines,
virtual machines include CPU, disk, memory, and processing speed. The processing speed
of virtual machines is a crucial factor considered, which is extended to virtual machine
performance in this article. The DRL model utilizes current state information to make
decisions for each task, assigning them to the most appropriate virtual machine for
execution. In this article, the processing speeds of different virtual machines are assumed
to be consistent. Still, due to varying loads during task execution, the processing speeds
under different loads naturally differ. Meanwhile, load thresholds h are set for virtual
machines. Once this threshold is exceeded, tasks cannot execute and enter the virtual
machine waiting queue until the virtual machine load meets the needs of the task, which is

Ti running status ¼ Execute; if condition
Wait; otherwise

�
(6)

For the literature (Toumi, Brahmi & Gammoudi, 2022), the resource contention rate
directly affects the server computational performance in the cloud, i.e., when tasks are
executed in parallel, the contention rate for the resources increases which leads to the rapid
degradation of the server performance. The general linear function is difficult to reflect the
complex relationship between load and performance, whereas the power function as a
nonlinear function has good nonlinear fitting ability. Consequently, combining the above
discussion and considering the mutual interference of parallel execution of tasks, this
article expresses the relationship between virtual machine performance and load as follows

Vt
j ¼ Vj � 1�

ffiffiffiffiffiffiffiffiffiffi
loadtj

q� �
(7)

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 8/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

where Vt
j represents the real-time processing speed of the j-th virtual machine at time t, Vj

is the originally defined processing speed of the j-th virtual machine, and loadtj is the real-
time load of the j-th virtual machine at time t.

In this scheduling model, each virtual machine is represented as

VMj ¼ Vj; loadj; Cj; Mj; IOj
� �

(8)

where Vj is the original definition of the processing speed for the j-th virtual machine, and
loadj represents the load of the j-th virtual machine, with values ranging between [0, 1].

Cj;Mj; IOj respectively represent the CPU, memory and disk I/O resources of the j-th

virtual machine. For this article, Cj;Mj; IOj = 1.

Real-time load model
According to the current environment status, the DRL model determines the
appropriate virtual machines for task allocation and execution. Considering the
diversity and dynamics of task demands and the continuity of tasks, the subsequent
arrival and execution of tasks are influenced by the impact of previously arrived tasks on
the performance of virtual machines. To accurately capture the real server load
dynamics, in this article, the virtual machine global load score in Elsakaan & Amroun
(2024) is adopted as the load caused by task requirements on the virtual machine.
Therefore, the load generated by the resource request of CPU, memory, and disk I/O by
the i-th task is

loadi ¼ a � reqCi þ b � reqMi þ c � reqIOi (9)

subject to aþ bþ c ¼ 1 (9a)

where a, b; and c are the weights of CPU, memory, and disk I/O resource requests in the
generated load respectively.

The main objective of load balancing is evenly distributing tasks among virtual
machines within the system. And ensure that the load borne by each virtual machine on
the cloud platform is relatively balanced while ensuring the successful execution of tasks,
thereby enhancing the overall performance of the system. Consequently, the real-time load
of the j-th virtual machine at the moment t and the corresponding real-time performance
platform average load and load variance are

loadtj ¼ sum loadijTi 2 rtj

n o
(10)

subject to Tres
i � TD

i ; T
a
i < t< TE

i (10a)

loadtavg ¼
1
m

Xm
j¼0

loadtj (11)

loadtvar ¼
1
m

Xm
j¼0

loadtj � loadtavg

� �2

(12)

where rtj is the set of tasks running on the j-th virtual machine at time t, t 2 Ta
1 ; � � � ; Ta

n

� 	
.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 9/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

THE PROPOSED SRP-DRL
Firstly, we propose the SRP-DRL task scheduling framework and the presentation of the
pseudo-code for the DQN-based task scheduling algorithm. Secondly, we elucidate the
specific implementation process of the DRL model, including the employed reinforcement
learning state enhancement method—real-time performance-aware strategy, the design of
particular state-action reward functions, and pseudocode for obtaining task runtime
performance parameters.

SRP-DRL task scheduling framework
The scheduling framework of SRP-DRL is illustrated in Fig. 1. The scheduling framework
is composed of four main modules: (a) the task queue, (b) the DRLmodel, (c) the real-time
performance platform model, and (d) the real-time load model. The corresponding
workflow of the scheduling model is as follows. First, the user sends requests to the task
queue of the scheduling model. Second, the DRL model takes the task information from
the task queue as input. Third, the DRL model obtains real-time performance platform
server status information. Fourth, DRL makes scheduling decisions built on the status
information of the real-time performance platform and assigns a virtual machine to the
task. Fifth, the task runs on the selected virtual machine and evaluates the task running
performance parameters under the deadline (DDL) conditions. Simultaneously, the real-
time load state of the virtual machine group before the real-time performance platform
executes the task is fed into the load model. Finally, the DRL model obtains the reward
value returned depending on a comprehensive evaluation of the task running performance
parameters under the DDL conditions and the real-time load state, which guides the
model’s training.

We choose the DRL model DQN to complete task scheduling, reduce task response
time, and improve server load balancing capability while considering the server’s real-time
performance and delay constraints. DQN is an effective algorithm in DRL. In utilizing
deep neural networks, the method aims to approximate the optimal action-value function
Q�, aiming to obtain the optimal policy for maximizing cumulative rewards.

Q st; atð Þ Q st; atð Þ þ a � rt þ c � max
a2A

Q stþ1; að Þ � Q st; atð Þ

 �

(13)

whereQ st; atð Þ represents theQ-value of executing action at under state st , a is the learning
rate, rt is the immediate reward obtained by the agent executing action at , c is the discount
factor, stþ1 is the newly observed environmental state after executing action at , A denotes
the action space of the DRL model, and max

a2A
Q stþ1; að Þ corresponds to the action value of

the action that maximizes the Q-value in state stþ1. Algorithm 1 describes the pseudocode
for task scheduling based on DQN.

DRL model
Real-time performance-aware strategy

Server load affects the server’s performance, and the server’s real-time performance
directly impacts the efficiency and performance of cloud task execution. In this article, we

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 10/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

use the weighted resource requests of tasks as the server load and the server’s processing
speed as the performance representation of the server. In the real-time performance
platform modeling part of “System Model”, the relationship between server load and
performance is defined as a power function model with a nonlinear relationship. Taking
into account the mutual interference of parallel execution tasks, the execution speed of the
server decreases rapidly as the load increases.

To conduct a more detailed and comprehensive modeling of the state of the currently
proposed task scheduling environment that considers both server load and the impact of
server load on server performance, we normalize the real-time speed of the virtual machine
at time t and add the normalized results to the state space composed of virtual machine
load information at time t. This augmentation aims to enhance the perceptual capabilities
of the DRL model.

norVt ¼ Vt �minVt

max maxVt � minVt; 1ð Þ (14)

where Vt is the real-time processing speed of the virtual machine group at time t, which is
a vector with a length of m, and norVt is the normalized real-time processing speed of the
virtual machine group at time t, with values ranging from 0 to 1.

Detailed design of SRP-DRL

In implementing cloud task scheduling using DRL algorithms, the design of the state space,
action space, and reward function is crucial, as these factors will directly impact the
performance of the algorithmic model. The SRP-DRL method model is elaborated upon in
detail, and its model diagram is depicted in Fig. 2. Furthermore, the algorithm pseudo-code

Real-time Performance Platform ModelReal-time Performance Platform Model

TASK_1TASK_1 TASK_2TASK_2 TASK_3TASK_3 ······

5.Check

6.Reward

5.Observation

DRL

Model

6.Reward

3.State

2.Input Task

4.Select4.Select

1.Send Task

1.Send Task1.Send Task

VM_1 VM_2 VM_3

Real-Time

Load Model

Real-Time

Load Model

User

DDL

Figure 1 Scheduling framework. Image credits: server free icon (created by shin_icons; Flaticon); clock
free icon (created by IYIKON; Flaticon); Group free icon (created by Prosymbols; Flaticon).

Full-size DOI: 10.7717/peerj-cs.2120/fig-1

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 11/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-1
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

is presented for SRP-DRL to obtain task execution performance parameters based on real-
time load and performance.

State space. The state space involved in the reinforcement learning model is crucial for
the performance and adaptability of the algorithm. The proposed SRP-DRL algorithm
considers the effect of server load on performance and introduces a real-time
performance-aware strategy to enhance the model’s perception of environmental states. In
the SRP-DRL algorithm at time t, the model’s state space S is defined as

st ¼ Vt
1;V

t
2; � � � ;Vt

m; load
t
1; load

t
2; � � � ; loadtm

� �
.

Algorithm 1 Task scheduling based on DQN.

Input: Q // Q is task queue

Output: Average load variance, task success rate, and average response time

1 Initialize the environment and set parameters;

2 for epoch do

3 Get state st include real-time performance and load;

4 for each Ti in Q do

5 Select an action at based e-greedy strategy,

6 otherwise at ¼ argmax
aeA

Q st ; a; hð Þ;
7 Execute action at and PerformanceParametersGeneration (Ti, at);

8 Obtain immanent reward rt and new environment state stþ1;

9 Store experience st; at ; rt; stþ1ð Þ to experience replay buffer;

10 if number of tasks executed > learning threshold:

11 Random sampling batch experience using Eq. (13);

12 Update target network parameters after every d rounds of learning;

13 End do;

14 End do;

TASK_1

TASK_2

TASK_N

Transmission

Action

State

Run Queue

Reward

Load

Performance

TASK_1TASK_1TASK_1TASK_1

TASK_3TASK_3TASK_3TASK_3

TASK_8TASK_8TASK_8TASK_8

TASK_9TASK_9TASK_9TASK_9

Figure 2 SRP-DRL model. Image credits: server free icon (created by shin_icons; Flaticon)
Full-size DOI: 10.7717/peerj-cs.2120/fig-2

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 12/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-2
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

Action Space. The action space of a model is the aggregation of virtual machines from
which tasks can be selected, specifically expressed as A ¼ VM1; VM2; � � � ; VMmf g. The
action decision output of the model is a one-hot encoded value in the action space, that is,
one for the virtual machine selected by the model for the task and 0 for the rest. For
example, when the m-th virtual machine is selected, then a ¼ 0; 0; � � � ; 1f g.

Reward Function. To guide the reinforcement learning agent toward optimizing load
balancing, the reward function is defined as

R ¼

�1; Violation of DDL
0:1
Tres

; Not violating DDL and loadtj>load
t
avg

loadtj � loadtavg

��� ���
Tres

; Not violating DDL and loadtj � loadtavg

8>>>>><
>>>>>:

(15)

where Tres represents the response time of task execution, loadtj is the real-time load of the
j-th virtual machine selected by the task at moment t before executing the current task, and

loadtavg is the average load of the real-time performance platform at the moment t when the

current task is not executed.
In SRP-DRL, the real-time load and performance of the server dynamically change

every time, which means that the operating performance parameters such as response
time, load, etc., for the same task under different server loads will also be different. Hence,
it is necessary to obtain the running performance parameters of the task depending on the
real-time load and performance state of the server where the task is selected for execution

Algorithm 2 PerformanceParametersGeneration.

Input: Ti, at , historical task performance parameters, and historical task run queue

Output: Task running performance parameters

1 Compute the loadi occupied by Ti execution;

2 // h is load threshold

3 Gain real-time load of virtual machine loadtj based on at ;

4 if first task OR (fulfill reqCi; reqMi; reqIOi AND (loadtj + loadi) � h):

5 Obtain task running performance parameters;

6 else:

7 Get the task running queue of the virtual machine;

8 Arrange the task running queue in ascending order according to task end time;

9 Calculate task execution time Te
i ;

10 // Traverse the task running queue

11 While unfulfilled reqCi; reqMi; reqIOi OR (loadtj + loadi) > h:

12 Update loadjt, remaining resources and Te
i ;

13 Calculate task running performance parameters;

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 13/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

to instruct the model training. Algorithm 2 describes the pseudocode of the SRP-DRL
method to obtain task running performance parameters.

EXPERIMENT
This section begins with an explanation of the experimental parameter settings and data
generation process and then describes the performance evaluation metrics and baseline
algorithms for experimental validation. Finally, the effectiveness of the proposed method is
verified by comparing it with four other task scheduling methods (Random, Time-Slice
Rotation Round-Robin, Earliest Idle Time First-EITF, and BEST-FIT) in four dimensions:
various number of tasks, varying task arrival rates, different numbers of virtual machines,
and diverse task length standard deviations.

Parameter settings and data generation
In our experiments, the weighted resource requests of tasks is considered as the load
generated when tasks run on virtual machines. In the literature (Cheng et al., 2022), the
authors chose to use a two-layer neural network model to approximate the optimal action-
value function based on simplicity and computational efficiency, and the results show that
this choice can improve scheduling efficiency. To make full use of the advantages of this
model, it is introduced into our research, and at the same time, the overall load balancing
performance can be improved after making necessary hyperparameter adjustments. The
experience replay buffer size is 800, the batch size for mini-batch stochastic gradient
descent is 60, the learning rate is 0.001, the experience replay learning threshold is 500, and
the target network parameter update frequency is 50. For the cloud platform, the virtual
machine load threshold h is 0.95, the initial speed of virtual machines is 500. Regarding the
task execution process, the most crucial thing is the deadline of the task, which in the
experiments was 0.5, dictated by the average length of tasks and the original processing
speed of virtual machines.

The relevant attributes of the randomly generated tasks in the experiment are all
subject to specific probability distributions, as shown in Table 2. The task length li obeys
a normal distribution with an expectation of 200 and a variance of r2; the task
arrival time Ta

i obeys a Poisson distribution with a parameter of k, k is expressed as the
task arrival rate in the text; the resource requests of the task reqCi; reqMi; reqIOi all

Table 2 Experimental data generation process.

Ti Attributes Obey distribution

li N 200; r2ð Þ
Ta
i P kð Þ

reqCi U 0; h½ Þ
reqMi

reqIOi

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 14/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

obey the uniform distribution with a lower limit of 0 and an upper limit of the load
threshold h.

Evaluation indicators
In the experiment, we evaluate the performance of the SRP-DRL scheduling method from
task average response time, task success rate, and server average load variance.

Task average response time. Response time is an essential indicator for measuring load
balancing. It can evaluate the server running status and performance of the real-time
performance platform. It is defined as follows.

Tres
avg ¼

Pn
i¼0

Tres
i (16)

Task success rate. Whether the task responds successfully depends on whether the
remaining resources and load status of the current server are sufficient to meet the task’s
resource requirements and whether the task’s response time can meet the task’s DDL
constraints, that is, Tres � TD. The task success rate can be expressed as

TSR ¼ tasksuc
n

(17)

where, tasksuc is the number of successfully executed tasks, and n is the total number of task
requests in the task queue.

Server average load variance. Load variance can detect the fluctuation degree of server
load and intuitively reflect the load balancing effect of the real-time performance platform.
Under the condition of ensuring a high task success rate, the smaller the load variance, the
more balanced the server load. On the contrary, it means the load is more unbalanced,
which is defined as

avg loadvar ¼ 1
n

Xn
i¼0

loadtvar (18)

Baseline algorithm
In this article, the load-balancing performance of SRP-DRL is evaluated by comparing it to
four baseline algorithms.

Random. The task randomly selects a virtual machine for execution. The algorithm is
simple and fast, but task execution performance cannot be guaranteed.

Round-Robin. Tasks are assigned to virtual machines in turn in order. The algorithm
allocates resources fairly but may result in poor resource utilization.

EITF. The task selects the earliest idle virtual machine to execute the task. The
algorithm reduces waiting times but may result in less efficient use of idle resources.

BEST-FIT. The task dynamically selects the most appropriate virtual machine for
execution based on task requirements and virtual machine status. The algorithm can
effectively utilize resources, but the implementation is more complex and may increase
system overhead.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 15/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

Comparison results and analysis
Different number of tasks. At this experiment, we compare the load-balancing
performance of five scheduling methods with varying numbers of tasks. The number of
tasks is increased from 8,000 to 24,000 with an interval of 4,000. The task arrival rate is 20,
the number of virtual machines is 10, and the standard deviation r of the task length is 20.
The results of the experiment are shown in Fig. 3.

Concretely, Fig. 3A illustrates the task response time, Fig. 3B presents the task success
rate, and Fig. 3C shows the average load variance. In Figs. 3A–3C, as the number of tasks
increases, the average task response time, task success rate, and average virtual machine

TimeResponseAverage(a) TimeResponseAverage(a) Rate Success(b) Rate Success(b)

VarianceLoadAverage(c) VarianceLoadAverage(c)

Figure 3 Comparison of load balancing performance of scheduling methods under different number of tasks.
Full-size DOI: 10.7717/peerj-cs.2120/fig-3

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 16/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-3
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

load variance do not change significantly. Experiments show that the number of tasks has
little impact on the load-balancing performance of the current five task scheduling
variances. As the experiment results are shown in Fig. 3, SRP-DRL is significantly better
than other task scheduling methods in average response time and success rate. However,
the average load variance of the EITF algorithm is lower than that of SRP-DRL. This is
because the success rate of the EITF algorithm is very low, resulting in slight load
fluctuation on the virtual machine during the task scheduling process, ultimately leading to
a lower average load variance for the EITF algorithm. Hence, the comprehensive load
balancing performance of SRP-DRL is better than that of other task scheduling methods.

Different task arrival rates. For this experiment, the load-balancing performance of
five scheduling methods was compared under diverse task arrival rates. The task arrival
rate ranged from 20 to 40 with intervals of 5, the number of virtual machines was 10, the
number of tasks was 8,000, and the standard deviation of task length r was 20. The
findings of the present experiment are shown in Fig. 4.

The quantity of tasks arriving within a specific time frame is determined by the task
arrival rate. The higher the task arrival rate, the more tasks come in a unit of time. In
particular, Fig. 4A indicates task response time, Fig. 4B shows task success rate, and Fig. 4C
represents average load variance. As shown in Figs. 4A–4C, with the increase in task arrival
rate, the average task response time slowly increases, the task success rate is gradually
decreasing, and the average load variance of the virtual machine is gradually decreasing
except for Random and EITF. This is because with more tasks arriving in a unit of time and
the limited processing capacity of virtual machines, the waiting time for tasks increases,
affecting task response time and ultimately leading to task failure beyond the deadline.
Increasing the number of tasks arriving in a unit of time allows for a more effective
distribution of tasks among virtual machines, avoiding overloading or underloading
certain virtual machines, thereby affecting the average load variance of the entire virtual
machine group. Specifically, the average load variance of the SRP-DRL algorithm is lower
than that of the EITF algorithm at a task arrival rate of 40. As shown in the experimental
results in Fig. 4, the comprehensive load balancing performance of SRP-DRL compares
favorably with other task scheduling methods in the three indicators of average response
time, success rate, and average load variance.

Different number of virtual machines. In this experiment, the study compared the
load-balancing performance of five scheduling methods with other numbers of virtual
machines. The number of virtual machines increased from 10 to 18 with an interval of 2,
the task arrival rate was 40, the number of tasks was 8,000, and the task length standard
deviation r was 20. The performance of the experimental results is shown in Fig. 5.

For details, Fig. 5A presents task response time, Fig. 5B illustrates task success rate, and
Fig. 5C indicates the average load variance. From Figs. 5A–5C, with the increase in the
number of virtual machines, the average task response time decays gradually, the task
success rate increases. In contrast, the average load variance of virtual machines increases
slowly, except for the fluctuation of Random and EITF. For this reason, as virtual machines
increase, the system’s ability to process tasks increases, reducing task wait times and
affecting average task response time and success rate. However, maintaining load balance

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 17/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

between virtual machines becomes increasingly challenging, leading to fluctuations in the
average load variance of the virtual machine group. It is shown in Fig. 5 of the experimental
results that SRP-DRL also outperforms other task scheduling methods in terms of
combined load balancing performance regarding average response time, success rate, and
average load variance.

Different task length deviations. Within this experiment, a comparative study on the
load-balancing performance of five scheduling methods was conducted for various task
length standard deviations. The task length standard deviation r ranged from 10 to 50 with

TimeResponseAverage(a) TimeResponseAverage(a) TimeResponseAverage(a) Rate Success(b) Rate Success(b) Rate Success(b)TimeResponseAverage(a) Rate Success(b)

VarianceLoadAverage(c) VarianceLoadAverage(c) VarianceLoadAverage(c)

Figure 4 Comparison of load balancing performance of scheduling methods under different task arrival rates.
Full-size DOI: 10.7717/peerj-cs.2120/fig-4

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 18/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-4
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

intervals of 10, the task arrival rate was 30, the number of tasks was 8,000, and the number
of virtual machines was 10. The outcome of the experiment is shown in Fig. 6.

Specifically, Fig. 6A indicates task response time, Fig. 6B shows task success rate, and
Fig. 6C illustrates the variance in average load. In Figs. 6A–6C, with the increase in task
length standard deviation, the average load variance of virtual machines gradually
increases except for Random. The cause of this is task lengths becomemore diverse with an
increasing standard deviation of task lengths. The load generated by task execution
fluctuates wildly in resource occupancy time (that is, task execution time), making it

TimeResponseAverage(a) TimeResponseAverage(a) TimeResponseAverage(a) Rate Success(b) Rate Success(b) Rate Success(b)TimeResponseAverage(a) Rate Success(b)TimeResponseAverage(a) Rate Success(b)TimeResponseAverage(a) Rate Success(b)

VarianceLoadAverage(c) VarianceLoadAverage(c) VarianceLoadAverage(c)

Figure 5 Comparison of load balancing performance of task scheduling methods under different numbers of virtual machines.
Full-size DOI: 10.7717/peerj-cs.2120/fig-5

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 19/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-5
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

increasingly difficult to maintain load balancing among virtual machines. This is shown in
Fig. 6 of the experimental results, which shows that the integrated load balancing
performance of SRP-DRL was similarly superior to other task scheduling methods in all
three metrics of average response time, success rate, and average load variance. Indeed, the
performance of EITF on the average load variance metric is consistent with the results in
Fig. 3C.

CONCLUSION
This article employs a DRL approach to optimize the load balancing issue in cloud task
scheduling. Considering the effect of server load on performance, we propose a DRL task

VarianceLoadAverage(c) VarianceLoadAverage(c) VarianceLoadAverage(c)

TimeResponseAverage(a) TimeResponseAverage(a) TimeResponseAverage(a) Rate Success(b) Rate Success(b) Rate Success(b)TimeResponseAverage(a) Rate Success(b)TimeResponseAverage(a) Rate Success(b)

Figure 6 Comparison of load balancing performance of task scheduling methods under different task length standard deviations.
Full-size DOI: 10.7717/peerj-cs.2120/fig-6

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 20/25

http://dx.doi.org/10.7717/peerj-cs.2120/fig-6
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

scheduling method based on server real-time performance SRP-DRL. Under latency
constraints, this method reduces task response time and enhances server load balancing
capability. Experimental results indicate that compared to four baseline scheduling
methods, the comprehensive load balancing performance of SRP-DRL outperforms them
regarding average response time, task success rate, and average load variance.. For
example, when the number of virtual machines is 10, the number of tasks is 8,000, the
standard deviation of task length r is 20, and the task arrival rate is 40, compared with
Random, Round-Robin, EITF and BEST-FIT, SRP-DRL achieves the average load variance
is reduced by 29.9%, 20.3%, 4.1%, and 17.5%.

However, the relationship between server load and performance is highly complex.
Metrics measuring server loads, such as CPU utilization, memory usage, and disk I/O,
influence server performance. Accurately measuring and mapping server load to
performance remains a challenging problem. Therefore, in future work, we will emphasize
the precise measurement and mapping relationship between server load and performance,
improving the quality of the reinforcement learning environment for better optimization
of cloud task scheduling issues. In addition, although this article uses a two-layer neural
network model with fixed parameters, which is beneficial to improving load balancing
performance, it may limit the flexibility and adaptability of the DRL algorithm in some
particular scenarios. Therefore, in the future, we will also focus on different network
architectures or hyperparameter settings to improve the DRL algorithm’s performance
further.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China
(No. 52275480), the Science and Technology Project of Guizhou Provincial Department
(No. QKHZYD[2023]002). There was no additional external funding received for this
study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 52275480.
Science and Technology Project of Guizhou Provincial Department: QKHZYD[2023]002.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Jinming Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 21/25

http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

. Shaobo Li conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

. Xingxing Zhang analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

. Fengbin Wu analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

. Cankun Xie performed the computation work, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data utilized in this article is generated randomly during code execution, without
reliance on or analysis of third-party data. The original experimental results and code are
available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2120#supplemental-information.

REFERENCES
Baek J, Kaddoum G, Garg S, Kaur K, Gravel V. 2019. Managing fog networks using

reinforcement learning based load balancing algorithm. In: 2019 IEEE Wireless Communications
and Networking Conference (WCNC). 1–7 DOI 10.1109/WCNC.2019.8885745.

Cao Z, Deng X, Yue S, Jiang P, Ren J, Gui J. 2024. Dependent task offloading in edge computing
using GNN and deep reinforcement learning. IEEE Internet of Things Journal 1–1
DOI 10.1109/JIOT.2024.3404112.

Chen J, Chen S, Wang Q, Cao B, Feng G, Hu J. 2019. iRAF: a deep reinforcement learning
approach for collaborative mobile edge computing IoT networks. IEEE Internet of Things
Journal 6(4):7011–7024 DOI 10.1109/JIOT.2019.2913162.

Chen G, Qi J, Sun Y, Hu X, Dong Z, Sun Y. 2023a. A collaborative scheduling method for cloud
computing heterogeneous workflows based on deep reinforcement learning. Future Generation
Computer Systems 141(1):284–297 DOI 10.1016/j.future.2022.11.032.

Chen Z, Zhang L, Wang X, Wang K. 2023b. Cloud-edge collaboration task scheduling in cloud
manufacturing: an attention-based deep reinforcement learning approach. Computers &
Industrial Engineering 177(1):109053 DOI 10.1016/j.cie.2023.109053.

Cheng Y, Cao Z, Zhang X, Cao Q, Zhang D. 2023. Multi objective dynamic task scheduling
optimization algorithm based on deep reinforcement learning. The Journal of Supercomputing
80(5):6917–6945 DOI 10.1007/s11227-023-05714-1.

Cheng F, Huang Y, Tanpure B, Sawalani P, Cheng L, Liu C. 2022. Cost-aware job scheduling for
cloud instances using deep reinforcement learning. Cluster Computing 25(1):619–631
DOI 10.1007/s10586-021-03436-8.

Cheng M, Li J, Nazarian S. 2018. DRL-cloud: deep reinforcement learning-based resource
provisioning and task scheduling for cloud service providers. In: 2018 23rd Asia and South

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 22/25

http://dx.doi.org/10.7717/peerj-cs.2120#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2120#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2120#supplemental-information
http://dx.doi.org/10.1109/WCNC.2019.8885745
http://dx.doi.org/10.1109/JIOT.2024.3404112
http://dx.doi.org/10.1109/JIOT.2019.2913162
http://dx.doi.org/10.1016/j.future.2022.11.032
http://dx.doi.org/10.1016/j.cie.2023.109053
http://dx.doi.org/10.1007/s11227-023-05714-1
http://dx.doi.org/10.1007/s10586-021-03436-8
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

Pacific Design Automation Conference (ASP-DAC). 129–134
DOI 10.1109/ASPDAC.2018.8297294.

Cheng L, Wang Y, Cheng F, Liu C, Zhao Z, Wang Y. 2024. A deep reinforcement learning-based
preemptive approach for cost-aware cloud job scheduling. IEEE Transactions on Sustainable
Computing 1–12 DOI 10.1109/TSUSC.2023.3303898.

Delasay M, Ingolfsson A, Kolfal B, Schultz K. 2019. Load effect on service times. European
Journal of Operational Research 279(3):673–686 DOI 10.1016/j.ejor.2018.12.028.

Dong T, Xue F, Tang H, Xiao C. 2023. Deep reinforcement learning for fault-tolerant workflow
scheduling in cloud environment. Applied Intelligence 53(9):9916–9932
DOI 10.1007/s10489-022-03963-w.

Dong T, Xue F, Xiao C, Li J. 2020. Task scheduling based on deep reinforcement learning in a
cloud manufacturing environment. Concurrency and Computation: Practice and Experience
32(11):e5654 DOI 10.1002/cpe.5654.

Dubey K, Sharma SC. 2021. A novel multi-objective CR-PSO task scheduling algorithm with
deadline constraint in cloud computing. Sustainable Computing: Informatics and Systems
32(4):100605 DOI 10.1016/j.suscom.2021.100605.

Elsakaan N, Amroun K. 2024. A novel multi-level hybrid load balancing and tasks scheduling
algorithm for cloud computing environment. The Journal of Supercomputing 10:71853
DOI 10.1007/s11227-024-05990-5.

Farimani MK, Karimian-Aliabadi S, Entezari-Maleki R, Egger B, Sousa L. 2024. Deadline-aware
task offloading in vehicular networks using deep reinforcement learning. Expert Systems with
Applications 249:123622 DOI 10.1016/j.eswa.2024.123622.

Gazori P, Rahbari D, Nickray M. 2020. Saving time and cost on the scheduling of fog-based IoT
applications using deep reinforcement learning approach. Future Generation Computer Systems
110(10):1098–1115 DOI 10.1016/j.future.2019.09.060.

Grinsztajn N, Beaumont O, Jeannot E, Preux P. 2021. READYS: a reinforcement learning based
strategy for heterogeneous dynamic scheduling. In: 2021 IEEE International Conference on
Cluster Computing (CLUSTER). 70–81 DOI 10.1109/Cluster48925.2021.00031.

Hu Z, Tu J, Li B. 2019. Spear: optimized dependency-aware task scheduling with deep
reinforcement learning. In: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). 2037–2046 DOI 10.1109/ICDCS.2019.00201.

Huang J, Wan J, Lv B, Ye Q, Chen Y. 2023. Joint computation offloading and resource allocation
for edge-cloud collaboration in internet of vehicles via deep reinforcement learning. IEEE
Systems Journal 17(2):2500–2511 DOI 10.1109/JSYST.2023.3249217.

Jader O, Zeebaree S, Zebari R. 2019. A state of art survey for web server performance
measurement and load balancing mechanisms. International Journal of Scientific & Technology
Research 8:535–543.

Jafarnejad Ghomi E, Masoud Rahmani A, Nasih Qader N. 2017. Load-balancing algorithms in
cloud computing: a survey. Journal of Network and Computer Applications 88(1):50–71
DOI 10.1016/j.jnca.2017.04.007.

Jyoti A, Shrimali M. 2020. Dynamic provisioning of resources based on load balancing and service
broker policy in cloud computing. Cluster Computing 23(1):377–395
DOI 10.1007/s10586-019-02928-y.

Kruekaew B, Kimpan W. 2022.Multi-objective task scheduling optimization for load balancing in
cloud computing environment using hybrid artificial bee colony algorithm with reinforcement
learning. IEEE Access 10(5):17803–17818 DOI 10.1109/ACCESS.2022.3149955.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 23/25

http://dx.doi.org/10.1109/ASPDAC.2018.8297294
http://dx.doi.org/10.1109/TSUSC.2023.3303898
http://dx.doi.org/10.1016/j.ejor.2018.12.028
http://dx.doi.org/10.1007/s10489-022-03963-w
http://dx.doi.org/10.1002/cpe.5654
http://dx.doi.org/10.1016/j.suscom.2021.100605
http://dx.doi.org/10.1007/s11227-024-05990-5
http://dx.doi.org/10.1016/j.eswa.2024.123622
http://dx.doi.org/10.1016/j.future.2019.09.060
http://dx.doi.org/10.1109/Cluster48925.2021.00031
http://dx.doi.org/10.1109/ICDCS.2019.00201
http://dx.doi.org/10.1109/JSYST.2023.3249217
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1007/s10586-019-02928-y
http://dx.doi.org/10.1109/ACCESS.2022.3149955
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

Li P, Xiao Z, Wang X, Huang K, Huang Y, Gao H. 2024. EPtask: deep reinforcement learning
based energy-efficient and priority-aware task scheduling for dynamic vehicular edge
computing. IEEE Transactions on Intelligent Vehicles 9(1):1830–1846
DOI 10.1109/TIV.2023.3321679.

Liu Q, Xia T, Cheng L, Van Eijk M, Ozcelebi T, Mao Y. 2022. Deep reinforcement learning for
load-balancing aware network control in IoT edge systems. IEEE Transactions on Parallel and
Distributed Systems 33(6):1491–1502 DOI 10.1109/TPDS.2021.3116863.

Mangalampalli S, Hashmi SS, Gupta A, Karri GR, Rajkumar KV, Chakrabarti T, Chakrabarti P,
Margala M. 2024. Multi objective prioritized workflow scheduling using deep reinforcement
based learning in cloud computing. IEEE Access 12:5373–5392
DOI 10.1109/ACCESS.2024.3350741.

Mangalampalli S, Karri GR, Kumar M, Khalaf OI, Romero CAT, Sahib GA. 2023. DRLBTSA:
deep reinforcement learning based task-scheduling algorithm in cloud computing. Multimedia
Tools and Applications 83(3):8359–8387 DOI 10.1007/s11042-023-16008-2.

Pang S, Hou L, Gui H, He X, Wang T, Zhao Y. 2024. Multi-mobile vehicles task offloading for
vehicle-edge-cloud collaboration: a dependency-aware and deep reinforcement learning
approach. Computer Communications 213(11):359–371 DOI 10.1016/j.comcom.2023.11.013.

Ran L, Shi X, Shang M. 2019. SLAs-aware online task scheduling based on deep reinforcement
learning method in cloud environment. In: 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
1518–1525 DOI 10.1109/HPCC/SmartCity/DSS.2019.00209.

Rjoub G, Bentahar J, Abdel Wahab O, Saleh Bataineh A. 2021. Deep and reinforcement learning
for automated task scheduling in large-scale cloud computing systems. Concurrency and
Computation: Practice and Experience 33(23):e5919 DOI 10.1002/cpe.5919.

Shafiq DA, Jhanjhi NZ, Abdullah A. 2022. Load balancing techniques in cloud computing
environment: a review. Journal of King Saud University—Computer and Information Sciences
34(7):3910–3933 DOI 10.1016/j.jksuci.2021.02.007.

Shi Y, Hu Z, Lu Z. 2021. Optimized dynamic load balance method based on ant colony
optimization algorithm. In: 2021 IEEE 9th International Conference on Computer Science and
Network Technology (ICCSNT). 70–73 DOI 10.1109/ICCSNT53786.2021.9615474.

Sun C, Yang T, Lei Y. 2022. DDDQN-TS: a task scheduling and load balancing method based on
optimized deep reinforcement learning in heterogeneous computing environment. International
Journal of Intelligent Systems 37(11):9138–9172 DOI 10.1002/int.22983.

Swarup S, Shakshuki EM, Yasar A. 2021. Task scheduling in cloud using deep reinforcement
learning. Procedia Computer Science 184(2):42–51 DOI 10.1016/j.procs.2021.03.016.

Tong Z, Chen H, Deng X, Li K, Li K. 2020. A scheduling scheme in the cloud computing
environment using deep Q-learning. Information Sciences 512(12):1170–1191
DOI 10.1016/j.ins.2019.10.035.

Tong Z, Deng X, Chen H, Mei J. 2021. DDMTS: a novel dynamic load balancing scheduling
scheme under SLA constraints in cloud computing. Journal of Parallel and Distributed
Computing 149(4):138–148 DOI 10.1016/j.jpdc.2020.11.007.

Toumi H, Brahmi Z, Gammoudi MM. 2022. RTSLPS: real time server load prediction system for
the ever-changing cloud computing environment. Journal of King Saud University—Computer
and Information Sciences 34(2):342–353 DOI 10.1016/j.jksuci.2019.12.004.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 24/25

http://dx.doi.org/10.1109/TIV.2023.3321679
http://dx.doi.org/10.1109/TPDS.2021.3116863
http://dx.doi.org/10.1109/ACCESS.2024.3350741
http://dx.doi.org/10.1007/s11042-023-16008-2
http://dx.doi.org/10.1016/j.comcom.2023.11.013
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00209
http://dx.doi.org/10.1002/cpe.5919
http://dx.doi.org/10.1016/j.jksuci.2021.02.007
http://dx.doi.org/10.1109/ICCSNT53786.2021.9615474
http://dx.doi.org/10.1002/int.22983
http://dx.doi.org/10.1016/j.procs.2021.03.016
http://dx.doi.org/10.1016/j.ins.2019.10.035
http://dx.doi.org/10.1016/j.jpdc.2020.11.007
http://dx.doi.org/10.1016/j.jksuci.2019.12.004
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

Wang Z, Goudarzi M, GongM, Buyya R. 2024.Deep reinforcement learning-based scheduling for
optimizing system load and response time in edge and fog computing environments. Future
Generation Computer Systems 152(6):55–69 DOI 10.1016/j.future.2023.10.012.

WuQ,Wu Z, Zhuang Y, Cheng Y. 2018. Adaptive DAG tasks scheduling with deep reinforcement
learning. In: Vaidya J, Li J, eds. Algorithms and Architectures for Parallel Processing. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 477–490
DOI 10.1007/978-3-030-05054-2_37.

Zhou Z, Li F, Zhu H, Xie H, Abawajy JH, Chowdhury MU. 2020. An improved genetic algorithm
using greedy strategy toward task scheduling optimization in cloud environments. Neural
Computing and Applications 32(6):1531–1541 DOI 10.1007/s00521-019-04119-7.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2120 25/25

http://dx.doi.org/10.1016/j.future.2023.10.012
http://dx.doi.org/10.1007/978-3-030-05054-2_37
http://dx.doi.org/10.1007/s00521-019-04119-7
http://dx.doi.org/10.7717/peerj-cs.2120
https://peerj.com/computer-science/

	Deep reinforcement learning task scheduling method based on server real-time performance
	Introduction
	Related work
	System model
	The proposed srp-drl
	Experiment
	Conclusion
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

