Reverse engineering approach for
improving the quality of mobile
applications

Eman K. Elsayed’, Kamal A. EIDahshan?, Enas E. El-Sharawy"* and
Naglaa E. Ghannam'

1 Department of Mathematical and Computer Science, Faculty of Science, Al-Azhar University,
(Girls Branch), Cairo, Egypt

? Department of Mathematical and Computer Science, Faculty of Science, Al-Azhar University,
Cairo, Egypt

3 Computer Department, College of Science and Humanities in Jubail, Imam Abdulrahman Bin
Faisal University, Kingdom of Saudi Arabia

ABSTRACT

Submitted 3 April 2019
Accepted 10 July 2019
Published 19 August 2019

Corresponding author
Naglaa E. Ghannam,
naglaasaeed@azhar.edu.eg

Academic editor
Marta Cimitile

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.212

() Copyright
2019 Elsayed et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Background: Portable-devices applications (Android applications) are becoming
complex software systems that must be developed quickly and continuously evolved to
fit new user requirements and execution contexts. Applications must be produced
rapidly and advance persistently in order to fit new client requirements and execution
settings. However, catering to these imperatives may bring about poor outline decisions
on design choices, known as anti-patterns, which may possibly corrupt programming
quality and execution. Thus, the automatic detection of anti-patterns is a vital process
that facilitates both maintenance and evolution tasks. Additionally, it guides developers
to refactor their applications and consequently enhance their quality.

Methods: We proposed a general method to detect mobile applications’ anti-patterns
that can detect both semantic and structural design anti-patterns. The proposed
method is via reverse-engineering and ontology by using a UML modeling
environment, an OWL ontology-based platform and ontology-driven conceptual
modeling. We present and test a new method that generates the OWL ontology of
mobile applications and analyzes the relationships among object-oriented
anti-patterns and offer methods to resolve the anti-patterns by detecting and treating
15 different design’s semantic and structural anti-patterns that occurred in analyzing
of 29 mobile applications. We choose 29 mobile applications randomly. Selecting

a browser is not a criterion in this method because the proposed method is applied on
a design level. We demonstrate a semantic integration method to reduce the
incidence of anti-patterns using the ontology merging on mobile applications.
Results: The proposed method detected 15 semantic and structural design
anti-patterns which have appeared 1,262 times in a random sample of 29 mobile
applications. The proposed method introduced a new classification of the anti-patterns
divided into four groups. “The anti-patterns in the class group” is the most group that
has the maximum occurrences of anti-patterns and “The anti-patterns in the operation
group” is the smallest one that has the minimum occurrences of the anti-patterns
which are detected by the proposed method. The results also showed the correlation
between the selected tools which we used as Modelio, the Protégé platform, and the
OLED editor of the OntoUML. The results showed that there was a high positive
relation between Modelio and Protégé which implies that the combination between
both increases the accuracy level of the detection of anti-patterns. In the evaluation and

How to cite this article Elsayed EK, ElDahshan KA, El-Sharawy EE, Ghannam NE. 2019. Reverse engineering approach for improving the
quality of mobile applications. Peer] Comput. Sci. 5:¢212 DOI 10.7717/peerj-cs.212

http://dx.doi.org/10.7717/peerj-cs.212
mailto:naglaasaeed@�azhar.�edu.�eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.212
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

analyzing the suitable integration method, we applied the different methods on
homogeneous mobile applications and found that using ontology increased the
detection percentage approximately by 11.3% in addition to guaranteed consistency.

Subjects Software Engineering
Keywords Mobile applications, Reverse engineering, UML, OntoUML, Anti-patterns, Ontology
engineering

INTRODUCTION

Mobile applications take center stage in our lives today. We utilize them anywhere, at any
time and for everything. We use them to peruse websites, shop, search for everything
we need and for basic administration such as banking. For the importance of mobile
applications, their reliability and quality are critical. Like any other applications, the initial
design of mobile applications is affected by bug-settling and the introduction of new
properties, which change the initial design; this can occasionally affect the quality of design
(Parnas, 1994). This aspect is known as software degeneration, which can exist in the form
of design flaws or anti-patterns (Eick et al., 2001).

One of the most important factors in the development of software systems is improving
software quality. The success of software design depends on the availability of quality
elements such as maintainability, manageability, testability, and performance.

These elements are adversely affected by anti-patterns (Afjehei, Chen ¢ Tsantalis, 2019;
Yamashita ¢» Moonen, 2013). Anti-patterns are bad practice in software design. The

automatic detection of anti-patterns is a good way to support maintenance, uncomplicate
evolution tasks, and improve usability. In addition to the general advantages of detecting
anti-patterns, we think that detecting anti-patterns provides developers with a way to

ensure that the detected anti-patterns will not be repeated in applications revisions. Also,
detecting anti-patterns may improve both operational characteristics and user experience.

We note that there are many other approaches interested in detecting anti-patterns in
the code level as introduced by Morales et al. (2016) and Alharbi et al. (2014). However,
it has been noted that anti-pattern detection at the design level reduces many code
anti-patterns and is more general.

According to Raja (2008), engineering is the process of designing, manufacturing,
assembling, and maintaining products and systems. Engineering has two types, forward
engineering, and reverse engineering (RE) as presented by Raja (2008). Chikofsky ¢
Cross (1990) defined RE as the process of analyzing software systems to identify the
components of the systems and the interrelationships between them and presenting the
systems in other forms or at a higher level of abstraction. The term RE according to
our approach, refers to the process of generating UML diagrams followed by generating
OWL ontologies of mobile applications through importing and analyzing the bytecode.

Generally, we can use ontology re-engineering for direct incorporation as an Ontology
development method (Obrst et al., 2014) by allowing the designer to analyze the common
components dependence.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 2/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Designing a pattern of mobile application remains an ongoing research challenge. The
proposed approach aims to detect structural and semantic anti-patterns in the design of
mobile applications as well as to show which method is better for the integration of
applications.

Motivated by the research mentioned above, the major contributions of this paper
are sixfold:

e Presenting a new method for generating OWL ontology of mobile applications.

e Presenting a general method for enhancing the design of a pattern of a mobile
application.

o Illustrating how the proposed method can detect both structural and semantic
anti-patterns in the design of mobile applications.

e Describing how we evaluate the proposed method in 29 mobile applications. Showing
how it detects and treats 15 designs’ semantic and structural anti-patterns that appeared
1,262 times.

e Showing how semantic integration among mobile applications decreases the
occurrences of anti-patterns in the generated mobile application pattern.

o Analyzing the relationships among the object-oriented anti-patterns and the
detection tools.

In the rest of the paper, we subsequently present the related work. Next, we present
some basic definitions, and the details of the proposed approach is described. After
that, the empirical validations of the proposed method are presented, followed by the
results and discussion. Finally, the concluding remarks are given, along with scope for
future work.

RELATED WORKS

Many empirical studies have demonstrated the negative impact of anti-patterns on
change-proneness, fault-proneness, and energy efficiency (Romano et al., 2012; Khomh
et al., 2012; Morales et al., 2016). In addition to that, Hecht et al. (2015a), Chatzigeorgiou &
Manakos (2010), Hecht, Moha & Rouvoy (2016) observed an improvement in the user
interface and memory performance of mobile apps when correcting Android anti-patterns.
They found that anti-patterns were prevalent in the evolution of mobile applications.
They also confirmed that anti-patterns tend to remain in systems through several releases
unless a major change is performed on the system. Many efficient approaches have been
proposed in the literature to detect mobile applications’ anti-patterns.

Some researchers concentrate on ensuring that the soft is free of contradictions
which are called consistency. Alharbi et al. (2014) detected the anti-patterns related to
inconsistency in mobile applications that were only related to camera permissions
and similarities. Joorabchi, Ali ¢ Mesbah (2015) detected the anti-patterns related to
inconsistency in mobile applications using a tool called CHECKCAMP that was able to
detect 32 anti-patterns related to inconsistencies between application versions. Hecht et al.
(2015b) used the Paprika approach to detect some popular object-oriented anti-patterns in

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 3/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

the code of mobile applications using threshold technique. Linares-Visquez et al. (2014)
detected 18 object oriented (OO) anti-patterns in 1,343 Java mobile applications by
using DECOR. This study focused on the relationship between smell anti-patterns and
application domain. Also, they showed that the presence of anti-patterns negatively
impacts software quality metrics; in particular, metrics related to fault-proneness. Yus ¢
Pappachan (2015) analyzed more than 400 semantic Web papers, and they found that
more than 36 mobile applications are semantic mobile applications. They showed that the
existence of semantic helps in better local storage and battery consumption. The detection
of semantic anti-patterns will improve the quality of mobile applications. Palomba

et al. (2017) proposed an automated tool called A DOCTOR. This tool can identify

15 Android code smells. They made an empirical study conducted on the source code of
18 Android applications and revealed that the proposed tool reached 98% precision

and 98% recall. A DOCTOR detected almost all the code smell instances existing in
Android applications. Hecht et al. (2015b) introduced the PAPRIKA tool to monitor the
evolution of mobile application quality based on anti-patterns. They detected the common
anti-patterns in the code of the analyzed applications. They detected seven anti-patterns;
three of them were OO anti-patterns and four are mobile applications anti-patterns.

Reverse engineering is the process of analyzing software systems to identify the
components of the systems and the interrelationships between them and presenting the
systems in other forms or at a higher level of abstraction (Chikofsky ¢ Cross, 1990).

In this paper, we used RE to transfer code level to design level for detecting mobile
applications’ anti-patterns. RE techniques are important for understanding the
construction of the user interface and algorithms of applications. Additionally, we can
know all the properties of the application, its activities, and permissions and can read the
Mainfest.xml of the applications. RE techniques have been used with mobile applications
for many purposes not just for detecting anti-patterns. Song et al. (2017) used RE for
improving the security of Android applications. While Zhou et al. (2018) used the RE
technique to detect logging classes and to remove logging calls and unnecessary
instructions. Also, Arnatovich et al. (2018) used RE to perform program analysis on a
textual form of the executable source and to represent it with an intermediate language
(IL). This IL has been introduced to represent applications executable Dalvik (dex)
bytecode in a human-readable form.

ONTOLOGY AND SOFTWARE ENGINEERING

According to the IEEE Standard Glossary of Software Engineering Terminology-Description
(1990), software engineering is defined as “the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software.”
Also, from the knowledge engineering community perspective, computational ontology
is defined as “explicit specifications of a conceptualization.” According to Calero, Ruiz ¢
Piattini (2006), Happel & Seedorf (2006), the importance of sharing knowledge to
move the software to more advanced levels require an explicit definition to help machines
interpret this knowledge. Happel ¢ Seedorf (2006) decided that ontology is the most
promising way to address software engineering problems.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 4/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Elsayed et al. (2016) proofed the similarities in infrastructures between UML and
ontology components. They proposed checking some UML quality features using ontology
and ontology reasoning services to check consistency and redundancies over UML models.
This would lead to a strong relationship between software design and Ontology
development.

In software engineering, ontologies have a wide range of applications, including model
transformations, cloud security engineering, decision support, search, and semantic
integration (Kappel et al., 2006; Aljawarneh, Alawneh & Jaradat, 2017; Maurice et al., 2017;
Bartussek et al., 2018; De Giacomo et al., 2018). Semantic integration is the process of
merging the semantic contents of multiple ontologies. The integration may be between
applications that have the same domain or have different domains to take the properties
of both applications. We make ontology integration for many reasons: to reuse the
existing semantic content of applications, to reduce effort and cost, to improve the quality
of the source content or the content itself, and to fulfill user requirements that the original
ontology does not satisfy.

PROPOSED METHOD

In this section, we introduce the key components of the proposed method for analyzing the
design of mobile applications to detect design anti-patterns, and for making semantic
integration between mobile applications via ontology reengineering.

The proposed method for anti-pattern detection consists of three main phases and is
summarized in Fig. 1. Also, there is an optional phase called the integration phase.

1. The first phase presents the process of reformatting the mobile application to Java format.

2. The second phase presents the reverse-engineering process. In this phase, we used RE to
reverse the Java code of mobile applications and generating UML class diagram models.
Additionally, many design anti-patterns were detected. The presented reverse
approach is accurate enough to analysis the information that we need about APK to
reverse UML models of the applications.

3. The third phase completes the anti-patterns detection and correction processes.
This phase converts UML mobile application model to OWL ontology, then analyzes
the relationships among object-oriented anti-patterns and offers methods to resolve
the anti-patterns related to semantic and inconsistency. After that, we can regenerate the
Java code of mobile applications. The developer can ensure that anti-patterns in existing
applications will not be repeated in application revisions and may improve both
operational characteristics and user experience.

4. The integration phase is an optional fourth phase. In this phase, we integrate
two applications by merging the OWL ontologies of both applications. From these
two ontologies, we will yield one integrated application for doing both services with
minimum anti-patterns.

We will present in detail the rationale provided for why this integration is needed as an
optional phase if we need.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 5/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

/ | Phl: Reformate Mobile Application to Java Format
Step 1: APK Extraction Step 2: Conversion the
Dalvik executable classes
AFK o META-INF Classes.d
—_ META- —p| Classesdex
id o Res Classes.dex
) o Android Manifest
App
o Classes.dex .
o Resources. arsc Classes dex2jar
l /’ | Ph3: Anti-patterns Dete:tion and Correctien \\
| Ph2: Reverse Java code to UML class diagram model | Semantc Detecticn
Reverse the code
‘ Semantic anti-pzttemns
Detection and Cosrection T
Classes java
™| Ontology
‘ M. SXML Couvert to OWL
\ UML class diagram model Chesker | — > Converer | —¥ Detection and Comection l
Java file
Reasoner Checker
\ Detection znd Correction
\
Figure 1 The proposed method phases. Full-size Kal DOL: 10.7717/peerj-cs.212/fig-1

The integration of mobile applications

The integration process is most for the inclusion of new skill sets for applications
such as IOT or monitoring applications or potentially voice-activation integration into
an existing application. But, here we were interested in presenting a new manner for
homogenous integration to combine the advantages of two mobile applications in a new
pattern. In this section, we provided a rationale for why this integration is needed

and presenting the integration as an extra phase if we need where the other

detection phases do not change. Patterns are advanced methods to develop any mobile
applications. The integration or merging of mobile applications is a good step in mobile
application development. The advantage of the integration of mobile applications is in
responding to the puzzling selection of the appropriate application from a set of
applications. This will achieve the same objective if each application has a different
advantage and the developer wants to start to improve pattern combines all advantage
without anti-patterns.

To clear our idea, we choose two homogenous applications: Viber and WhatsApp.
They are the most popular messaging and Voice Over IP applications. Both Viber and
WhatsApp are similar in services, features, security, and cost. There is plenty to like about
both applications: they produce the same services as end-to-end encryption, support
groups and video calls, support on any operating system, allow transmission of documents
or multimedia, and work over 3G, 4G, and Wi-Fi. Well, both are fantastic in their way, but
which one is better for the developer as a pattern for refinement? We found that Viber
had been offering both video and voice calling for a far longer time than WhatsApp and
has a hidden chat feature. Also, Viber permits the user to play a list of games with
other Viber contacts. However, WhatsApp is popular and easy to use. We can make the
integration of both applications and take the best skills of both.

We imagine that when producing a new application we can directly integrate it to the
old one without replacing.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 6/23

http://dx.doi.org/10.7717/peerj-cs.212/fig-1
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

APK 1 Reversed java

classes 1 Class diagrams merging OWL
Ontology
l -
APK 2 Reversed java Anti-patterns detection ,@
classes 2 N~
Mobile App Semantic
Pattern 4| detection

Figure 2 Merging UML class diagrams of the mobile apps. Full-size K&l DOL: 10.7717/peerj-cs.212/fig-2

In the case of heterogonous integration applications, the developer, for example, may want
to develop a new health care hybrid application. From the website “free apps for me”
(https://freeappsforme.com/), a developer can find at least seven applications for measuring
blood pressure. All of them are free and available on a different platform. There are also at
least 13 diabetes applications. When a developer merge two applications (one for measuring
blood pressure as the “Smart Blood Pressure” application and the other for controlling
diabetes as the “OneTouch Reveal” application), the integration phase will yield one
integrated application for doing both services, with minimum anti-patterns. Then the
developer can add the new relations between these disease controller without conflict.

The integration allows the combination of the skills of both applications to get new
mobile application pattern. These two examples of two types of integration answer the
question of why we need to integrate mobile applications.

We suggest using the integration pattern, then comparing between the two integration
proposed methods to select the suitable one.

The first integration method is for after decompiling the APK of the applications. We
use RE methodology for generating one UML class diagram of both applications. Then we
start the detection of the anti-patterns process for the integrated application (Fig. 2).

The second integration method is through merging the OWL ontologies of both
applications using the Prompt plugin in protégé as the ontology editor as introduced
in Fig. 3.

The implementation
In this section, we propose the implementation of the proposed detection method and
determine which packages are suitable for each phase.

o The first phase: APK files are zip files used for the installation of mobile apps.
We used the unzip utility for extracting the files stored inside the APK. It contained the
AndroidManifest.xml, classes.dex containing the Java classes we used in the reverse
process, and resources.arsc containing the meta-information. We de-compiled the APK
files using apktool or Android de-compiler. Android de-compiler is a script that
combines different tools to successfully de-compile any (APK) to its Java source code

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 7/23

https://freeappsforme.com/
http://dx.doi.org/10.7717/peerj-cs.212/fig-2
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

and resources. Finally, we used a Java de-compiler tool such as JD-GUI to de-compile
the Java classes. JD-GUI is a standalone graphical utility that displays the Java code of “.
class” files. The input of the first phase was the APK file of the mobile application
and the output was the Java classes of the APK application. JD-GUI is accurately enough
to generate the Java code that we use to reverse the models of the applications.

o The second phase: We used a RE approach for generating the UML class diagram
models of the mobile applications. Elsayed, El-Dahshan ¢ Ghannam (2019) compared
between UML tools, the authors found that Modelio 3.6 is a suitable tool for modeling
and detecting UML design anti-patterns. The UML class diagram was generated by
reversing the Java binaries of the mobile app. Detecting anti-patterns in the UML model
is the first step in the detection process. The input of the second phase was classes.java
of the app and the output was the UML class diagram model of the app with a list
of the detected anti-patterns.

o The third phase: By converting the model to XML format, we could generate it as an
OntoUML model in OLED, which is the editor of OntoUML for detecting semantic
anti-patterns. OntoUML is a pattern-based and ontologically well-founded version of
UML. Its meta-model has been designed in compliance with the ontological distinctions
of a well-grounded theory named the unified foundational ontology. OLED editor
also supports the transformation of the OLED file to the OWL ontology of the mobile
app, allowing the detection of inconsistency and semantic anti-patterns using the
“reasoner” ontology in Protégé. Protégé is the broad ontology editor commonly used by

many users.

The integration phase (the fourth optional phase): we propose two methods for
integrating mobile applications. The first method is merging the UML models at the second
phase when we reverse the models from Java code and then completing the detection
phases over the integrated application. The second method is merging the OWL ontologies
of the both applications using a Prompt (Protégé plugin) to generate one OWL ontology
pattern. Figure 4 shows the both applications “Viber and WhatsApp” components
before merging. Figure 5 shows the integrated application; Fig. 5 has three tabs (classes,
slots, and instances) which are the components of the ontology. Every tab shows the
components of its type after integration. Finally, we used “Reasoner in Protégé” to check
the consistency after integration.

EMPIRICAL VALIDATIONS

We assessed our approach by reporting the results we obtained for the detection of
15 anti-patterns on a random sample of 29 popular Android applications downloaded
randomly from the APK Mirror.

Applications under analysis

Table 1 presents the downloaded applications from the APK Mirror. We selected some
popular applications such as YouTube, WhatsApp, Play Store, and Twitter. The size of the
applications included the resources of the application, as well as images and data files

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 8/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

<
P — \
OWL1
Prompt plugin
—_— Semantic
OWL
~—— —®| detection
<
v
OWL 2 l
~ Mobile App
Pattern
_

Figure 3 OWL ontology merging.

Full-size K&] DOT: 10.7717/peerj-cs.212/fig-3

Name I Argl Arg2 |

merge © hitp:finemo.inf ufes briviber3 owliindividualCc @ whatsappfinalIndividualConcept whatsapp

erge ® viber3:TimeSlice viber © whatsappfinal: TimeSlice whatsapp

erge ® viber3:TemporalExtert viber © whatsappfinal: TemporalExtent whatsapp

erge ® viber3:Ohject viber © whatsappfinal.Ohject whatsapp

erge ® viber3:Moment viber © whatsappfinal.Moment whatsapp

erge ® viher3:Moment viber © whatsappfinal:Mode whatsapp

erge ® viher3:FunctionalComplex viber © whatsappfinal:FunctionalComplex whatsapp

erge ® viher3:Collective viber © whatsappfinal:Collective whatsapp

erge ® viher3:Collective viber © whatsappfinal:CollectionsTS whatsapp

erge ® viher3:Quartity viber © whatsappfinal: Quartity whatsapp

erge ® viber3:FunctionalComplexTS viber © whatsappfinal:FunctionalComplexTS whatsap,

erge ® viber3:.CollectiveTS viber © whatsappfinal.CollectiveTS whatsapp

erge ® viber3:.CollectiveTS viber O whatsappfinal.CollectionsTS whatsapp

erge ® viber3:Quartity TS viber © whatsappfinal: Quantity TS whatsapp

erge ® viher3:Relator viber © whatsappfinal:Relator whatsapp

erge ® viher3:RelatorTS viber © whatsappfinal:RelatorTS whatsapp

erge ® viher3:Mode viber © whatsappfinal:Moment whatsapp

erge ® viher3:Mode viber © whatsappfinal:Mode whatsapp

erge ® viber3:ModeTS viber © whatsappfinal ModeTS whatsapp

Figure 4 “Viber and Whatsapp” ontologies before integration in Protégé.

Full-size K&l DOT: 10.7717/peerj-cs.212/fig-4

(Table 1). The research study included the identification and repetition of anti-patterns
across different domains and different sizes.

Case study on “Avast Android Mobile Security”
To explain the proposed method, we presented a snapshot of it in a different case study
“Avast Android Mobile Security.” The case study is one of the 29 mobile applications that

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 000 j9/23

http://dx.doi.org/10.7717/peerj-cs.212/fig-4
http://dx.doi.org/10.7717/peerj-cs.212/fig-3
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

| Result classes | Resul slots rResult instances

merge2

(I @A292_38835016_aba3_43%e_a7ba_3408013b7haa

[=] hitp: /inemo.inf.ufes briwhatsappfinal owlkinvExistentiallyDependentOf--whatsapp_ten

p- (W hitp:/inemo.inf.ufes briwhatsappfinal owlkessentialPartOf

(I http: finemo.inf.ufes briwhatsappfinal owlkessentialPantOf

[=] hitp:/inemo.inf.ufes briwhatsappfinal owl#timeSliceOf--whatsapp_temp

(I @A297_38835016_aba3_43%e_a7ba_3408013b7haa

[=] hitp: inemo.inf.ufes briwhatsappfinal owlkexistentiallyDependentOf--whatsapp_temp
[hitp:/inemo.inf.ufes briwhatsappfinal owlkinseparablePartOf

[=] hitp: /inemo.inf.ufes briwhatsappfinal owl¥partOf--whatsapp_temp

(I http: finemo.inf.ufes briwhatsappfinal.owlkinseparablePantOf

[=) http: ffnemo.inf.ufes briviber3.owlXexistentiallyDependentOf--viber_temp
(I hitp: finemo.inf.ufes briviber3.owl¥mediates
[http: fnemo.inf.ufes briviber3.owl¥inheresin

[hitp:/inemo.inf.ufes briviber3.owlXinvExistentiallyDependentOf

P [hitp:inemo.inf ufes briviber3 . owlkessentialPantOf

[=) http: /fnemo.inf.ufes briviber3.owl¥ohjProperty TS--viber_temp

P [hitp:finemo.inf.ufes briviber3 . owlRexistentiallyDependentOf

p- [hitp:/inemo.inf.ufes briviber3.owlXinvExistentiallyDependertOf

(I hitp:/inemo.inf.ufes briviber3.owl¥existentiallyDependentOf
(I hitp: finemo.inf.ufes briviber3.owlRinseparablePartOf

[hitp: finemo.inf.ufes briviber3 . owlkessentialPartOf

[=) http: ffnemo.inf.ufes briviber3.owl¥partOf--viber_temp

(M hitp: /inemo.inf.ufes briviber3 owlkinseparablePartOf

W @A208_38835016_aba3_439e_a7ba_3408013b7haa

W @A189_38835016_aba3_439e_a7ba_3408013b7haa

Figure 5 The result slots of the ontology after integration in Protégé.

Full-size K&l DOT: 10.7717/peerj-cs.212/fig-5

is proposed in this article for the evaluation of the proposed method. The case study is
downloaded from the APKMirror. The “Avast Android Mobile Security” secures the

devices against phishing attacks from emails, phone calls, infected websites, or SMS

messages. Also, it has many other features as Antivirus Engine, App Lock, Call Blocker,
Anti-Theft, Photo Vault, virtual private network, and Power Save. The reason for choosing
“the Avast Android Mobile Security” application as a case study is that it has the maximum

number of the detected anti-patterns using the proposed method. Using the reverse

methodology, we generated the UML class diagram model of the Java classes in Modelio.
The model includes the classes, subclasses, class attributes, operations, and the associations

between them (Fig. 6).

After generating the UML class diagram of the application in Modelio, we detected
229 repeated anti-patterns in the “Avast Android Mobile Security.” The anti-patterns are
shown in Fig. 7. The number and the location of the anti-patterns were determined.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212

10/23

http://dx.doi.org/10.7717/peerj-cs.212/fig-5
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 The description of the mobile apps under analysis.

Mobile application name Size (MB) Downloads Description of use

Test DPC 4.0.5 3.14 1,076,791 Libraries and demo

Avast 6.5.3 Security 20.71 1,364 Antivirus engine and mobile security

Free-Calls-Messages 31.59 1,537 Communication

Beautiful Gallery 2.3 11.31 497 Photography

Play Store 9.3.4 14.17 6,950 Google Play Store

Wall Paper 1.2.166 2.29 9,730 Personalization

Oasis-Feng/Island 2.5 2.34 822 Privacy protection and parallel running

Netflix-5-4-0-Build 18.81 22,043 Entertainment

Remainder 1.4.02 9.36 3,612 Remainder

Sound-Picker 8.0.0 3.9 2,142 Samsung sound picker

Air-Command 2.5.15 0.82 1,747 Air command

Lifesum-Healthy-Lifestyle 31.4 3,594 Diet plan, food diary, macro calculator,
calorie counter, and healthy recipes

Background-Defocus 2.2.9 345 2,960 Photography

Gasbuddy-Find-Cheap-Gas 29.64 334 Travel and local

Soundcloud-Music-Audio.03.03 332 2,066 Music and audio

Network-Monitor-Mini 1.0.197 2.88 307 Monitor the upload and download
speed per second

Casper Android 1.5.6.6 18.77 383,765 Messaging app snapchat

Line 8.4.0 70.25 260 Communication

Diagnosises 6.96 36 Medical

Viber 7.7.0.21 384 1,628 Communication

WhatsApp 2.17.235 35.81 28,978 Communication

Firefox 56.0 40.62 20,423 Communication

Blue- Email and Calendar 1.9.3.21 43.24 203 Productivity

Google Camera 5.1.011.17 36.48 211,822 Photography

YouTube 13.07 24.13 23,667 Video players

True Caller 8.84.12 23.09 609 Communication

Samsung Gallery 5.4.01 17.61 10,712 Photography

Twitter 7.48.0 35.82 694 News and magazines

Chrome Browser 66.0.3359 41.51 29,129 Communication

There were 10 detected anti-patterns (without repeat): “NameSpaces have the same
name,” “NameSpace is Leaf and is derived,” “NameSpace is Leaf and is abstract,”
“Generalization between two incompatible elements,” “A public association between two

» «

Classifiers one of them is public and the other is privet,” “Classifier has several operations

» «

with the same signature,” “Classifier has attributes with the same name,” “The status

» «

of an Attribute is abstract and class,” “A destructor has two parameters,” and finally

“MultiplicityMin must be inferior to MultiplicityMax.” Figure 8 shows a sample of them.
To convert the UML model to XML format, we converted it into an enterprise

architecture file then converted it to an OLED file. In the “Avast Android Mobile Security”

OLED file, we validated the model for detecting the anti-patterns. The detected

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 11/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

s [€ avast
s [€ android
4 [€ mobilesecurity
« & o
s & cbg
4 00 +a(pOin: Object)
>P p0in: Object
5 throws Exception (from lang)
s & obt
> 00 +a_(p0Oin: Object): boolean
4 aab

D

> O +e(p0in: integer)

aai
ot +p()
(11§ +q0

& abx
0l +a(p0in: long): boolean

D
@ aca

Figure 6 The generated UML class diagram of the case study.

Full-size K&l DOT: 10.7717/peerj-cs.212/fig-6

EE a R1980 The Classifier 'a’ has at least two Attributes or two AssociationEnds with the
=& ViewDecorator, R2260 The Classifier 'ViewDecorator_Factory' has several operations with the same
1 a R2260 The Classifier 'a' has several operations with the same signature.
=4 bxo R2060 There are several namespaces with the same name in the namespace 'bxo’.
14 ra R2260 The Classifier 'ra’ has several operations with the same signature.
4 a R2260 The Classifier 'a' has several operations with the same signature.
=& ProviderOfLazy R2260 The Classifier 'ProviderOfLazy' has several operations with the same signatt
£ a R2260 The Classifier 'a' has several operations with the same signature.
4 b R2260 The Classifier 'b" has several operations with the same signature.
=K R2260 The Classifier 'a’ has several operations with the same signature.
=4 Buffer R2260 The Classifier '‘Buffer’ has several operations with the same signature.
1 il R2260 The Classifier 'il' has several operations with the same signature.
1% o R2260 The Classifier 'o' has several operations with the same signature.
=& StatementExec R2260 The Classifier 'StatementExecutor' has several operations with the same sig
=4 f R2260 The Classifier 'f' has several operations with the same signature.
54 - RIIAN The Claccifier '~ hac cavaral anaratinne with the came cinnatire

Figure 7 Modelio anti-patterns. Full-size K&l DOT: 10.7717/peerj-cs.212/fig-7

anti-patterns in the different apps were: association cycle anti-patterns, Binary relations

with overlapping ends anti-patterns, imprecise abstraction anti-patterns, and relation

composition anti-patterns.

After anti-patterns detection using OntoUML editor, OLED supports the transformation
of OLED file to the OWL ontology. We checked the inconsistency anti-patterns
using the reasoner of the ontology editor (Protégé). The reasoner detected the anti-patterns

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 12/23

http://dx.doi.org/10.7717/peerj-cs.212/fig-6
http://dx.doi.org/10.7717/peerj-cs.212/fig-7
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

A: +INSTANCE: h[0.1]
A: -a:h[*]
i € -h(p0 in: string, pl in: integer)
4 00 +get(): Object
< out: Object
4 00 +get(): g
< out:g
04 +values(): h [*]
00 +valueOf(p0 in: string): h
00 +create(): Factory

Figure 8 The anti-pattern “Classifier has several operations with the same signature.”
Full-size Kal DOI: 10.7717/peerj-cs.212/fig-8

related to inconsistency as (similar name, multiplicity constraints, and cyclic inheritance).
Using the reasoner of ontology over the case study, we detected the anti-patterns in
the classes that have the anti-patterns NameSpaces have the same name, classifier has
several operations with the same signature, classifier has attributes with the same name,
and MultiplicityMin must be inferior to MultiplicityMax, which we detected after
generating the class diagram in Modelio, and detected the anti-pattern (association cyclic)
which was detected via OLED.

The treatment or correction of the detected anti-patterns is classified into the
following:

e Modelio presents the solution as a list of recommendation which developer can do it
manually. In this case study, Table 2 presents the anti-patterns and the method of
correction.

e OLED presents automatic solutions to correct the anti-patterns which we list in Table 3.

e Reasoner in Protégé presents all inconsistency anti-patterns where as Reasoner gives just
the location of the inconsistent classes as in Fig. 9.

RESULTS AND DISCUSSION

We applied our proposed method on a sample of 29 Android applications, which we
downloaded from the APK Mirror. The results present the detected anti-patterns in the
29 mobile applications and the relation between the different types of anti-patterns.

The proposed method detected 15 anti-patterns. The total number of anti-patterns that
appeared in the 29 applications was 1,262 anti-patterns. We classified the anti-patterns
according to their existence in the UML class diagram components. The occurrences of the
anti-patterns are given in Table 4. Every group has the anti-patterns that were detected in

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 13/23

http://dx.doi.org/10.7717/peerj-cs.212/fig-8
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Ten Modelio anti-patterns and their correction way.

The anti-pattern

The method of correction

NameSpaces have the same name
NameSpace is Leaf and is derived
NameSpace is Leaf and is abstract

Generalization between two incompatible
elements

A public association between two Classifiers
one of them is public and the other has
different visibility

Classifier has several operations with the
same signature

Classifier has attributes with the same name

MultiplicityMin must be inferior to
MultiplicityMax

The status of an Attribute is abstract and
class at the same time

A destructor has parameters

Change the name of the conflicting NameSpaces
Make the NameSpace non-final
Make the NameSpace non-final

Change the source or the target in order to link two
compatible elements

Change the visibility of the target class to public

Rename one of the Operations or change their
parameters

Rename the Classifiers Attributes

Change the value of the minimum multiplicity to be
less than the maximum multiplicity

Set only one of the statuses to true

Remove these parameters or remove the destructor
stereotype from the method

Table 3 OntoUML anti-patterns and the correction way.

The anti-pattern

The method of correction

Association cycle

Binary relation with
overlapping ends

Imprecise abstraction

Chang the cycle to be closed or open cycle

Declare the relation as anti-reflexive, asymmetric, and anti-transitive

Add domain-specific constraints to refer to which subtypes of the

association end to be an instance of the other end may be related

Relation composition

Add OCL constraints which guarantee that if there is a relation between

two types and one of them has subtypes, there must be constraints says
that the subtypes are also in a relation with the other type

Relation specialization

Add constraints on the relation between the type and the super-type,

declaring that the type is to be either a specialization, a subset, a
redefinition or disjoint with relation SR

it. For example, the group “Anti-patterns in Operations” presents all anti-patterns that

were detected in the operations using the three tools.

Table 5 shows the detected anti-patterns in each application using the proposed method

and the total number of anti-patterns in the 29 mobile applications.

We found that the “anti-patterns in the class” group is the most commonly detected

anti-pattern in Android applications. The “anti-patterns in operation” is the least

commonly appeared anti-pattern (Fig. 10).

We measured the relations between anti-patterns groups using correlation coefficient.

Correlation coefficient is a statistical measure of the degree to which changing the

value of one variable predict changing to the value of the other. A positive correlation

indicates that the extent to which those variables increase or decrease in parallel. While a

negative correlation indicates the extent to which one variable increases as the other

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212

14/23

http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Computing inconsistent concepts: Querying reasoner for inconsistent concepts and updating Protege-OWL .. |

Reasoner log =
V--@ Check concept consistency

V¥--@ Inconsistent concepts

------ @ best: ArrayListTS is inconsistent]

~~~~~~ D best:ModeTS is inconsimeml

~~~~~~ @ best: TimeSlice is inconsistend

@ best:Mode is inconsistentl

------ B hest: X509CertificateTS is inconsistent]

------ B hest:BuildConfigTS is inconsistertll

------ D best: StringBuilder TS is inconsisteml

~~~~~~ B best: CallbackMapTS is inconsisieml

AAAAAA 1@ bestRTS is inconsistert]

@ best:CollectiveTS is inconsistentl

B hest: Collective is inconsisteml

------ [e hest:MalformedURLExceptionTS is inconsistentl
------ D hest:FieldTS is inconsistentl

------ B hest:HitpURL ConnectionTS is inconsistertll =

Figure 9 The inconsistent classes using reasoner detection.
Full-size K&l DOT: 10.7717/peerj-cs.212/fig-9

Table 4 Occurrences of the anti-patterns in the mobile apps.

The group Percentage of occurrences Total # of
across models occurrences
Anti-patterns in attributes 0.713% 9
Anti-patterns in namespaces 7.210% 91
Anti-patterns in operations 0.396% 5
Anti-patterns in associations 43.898% 554
Anti-patterns in the class 47.78% 603
Total 1,262

decreases. Table 6 presents the correlations between anti-patterns groups. The tool can
detect certain group, it also can detect in parallel the other as attributes anti-patterns with
operations anti-patterns. Also, appearance of attributes anti-patterns in certain
applications indicates the appearance of operations anti-patterns strongly. Then the
correlation between the five groups of anti-patterns is used to know if the existence of any
type of them implies the existence of other type. There was a strong negative correlation
(—0.1) between namespaces anti-patterns and association anti-patterns. Also, a strong
positive correlation (0.8) between attributes anti-patterns and operations anti-patterns.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212

15/23


http://dx.doi.org/10.7717/peerj-cs.212/fig-9
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

79T°1 ST 18 Sv 6 0LT S 6 91 0T 18 S S S 18 s aouereadde jo

143 - - S 6 - - - - - - - I iz I 19SM0IqQ dWOIYD 6T

€ - I 1T 9 61 - - - 1 - - - - z 9 PPMI, 8T

9t 1 - € 6 - - - I - - - - - - 4 Arareny Sunswreg /g

8S - I - s L1 - - - T - - - - z ¢ BED ALY, 97

6€ z € - ¢ € - - - - € - - - i4 C aqnInox st

9¢ 1 I - 8 ST - - I - - - - - 1 6 eIdWe) 98005 $T
HN@EENU

871 - - - T 80T - - - - 1 - - - z St pue rewyg €7

65 I - 8 - - - - 4 I I - - - i4 oF XOpI] 7T

(47 z - 7 - 0¢ - - - 4 - - - - I S ddysyeym 12

69 - s L - 6 - I - - T T - - i4 w BN 0T

4 - - 1 4 - - - - - - - - - - I sasouderq 61

LT I T - 9 - - - - 1 I - - - 1 1 aur] g1

6¢ - - 9 - 0T - - € - - - - - id 9 prospuy rdsed /1
TuIy

S1 - - - ¢ - - - - z 1 - - - z L -IONUON-YIOMPN 91
oIpny-OISnIy

€C (4 1 8 - - - - (4 - - - - - 4 9 -pnoppunog ¢
seny-deay)

1€ € - T ¢ - - I - - z - I - id 1 -pur-Appnqsen 1
wBUOmMQ

s¢ - 9 - - 01 - - - T i4 - - - i4 01 -punoidypeg €1
drhisagry

¥4 z T 1 S - - id - T - - - - T S -Ayeoy-wmsapT Tl

01 - - - - - - - - - - T T 8 @ﬁm&&OUJ&{ 11

4 z - - - - - - - - - - - - I 6 1poid-punog 01

i3 - - s 7 id - - - z 1 - - - id 1 purewRy 6

6L - - - - S S - - - - - z - L 09 PIMG-0-F-S-XIFPON 8

9z € - - - - - - - - i4 - - - z LT pues[/3udg-siseQ /L

L - vy - - - - - - I - - - - I I deq EM 9

8 z w - 9 9 1 € 4 I I I 1 8 o105 kel d g
1T

8 - - - - - - - I - - - - - 4 §  Aweo mynnedg
sadessap

91 - S € - - - 1 1 T - (4 I iz S[ED-2L] ¢
.\QCSUMW udﬁoz

(1j74 € T - - 9 4 - € 8S - T St 6¥1 ploipuy 1seAy ¢

0€ - - 1 9 01 - - I - z - I z L SOy Oda L 1

[P0l sqvduy dwodpy SY OV IAQUId SJdHAL OVVS ddOVd WWLINIW VSHD dn99 VVIN dVIN NSHN OSHD dde arqoy

*dde yoes ur suraped-nue ayy, < 9[qey,

16/23

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212


http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Anti-patterns Occurrences
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00% —
Anti-patterns in Anti-patterns in Anti-patterns in Anti-patterns in Anti-patternsin
Attributes Namespaces Operations Association the Class

m Anti-patterns groups

Figure 10 The occurrences of the detected anti-patterns’ groups.
Full-size K&] DOT: 10.7717/peerj-cs.212/fig-10

Table 6 The correlation among anti-patterns groups.

Anti-patterns Correlation coefficient (r)
Attributes and namespaces —0.049
Attributes and operations 0.884
Attributes and associations 0.196
Attributes and classes 0.342
Namespaces and operations —0.060
Namespaces and associations —-0.121
Namespaces and classes 0.010
Operations and associations 0.345
Operations and classes 0.267
Associations and classes 0.070

Also, we analyzed the correlation between the detection tools of the proposed method
(Table 7). The greatest correlations were between Modelio and Protégé. For assessing
the direct relation between Protégé and Modelio, we calculated the statistical means
of anti-patterns which were detected by each tool (Modelio, Protégé, and OLED) on
29 mobile applications as in Fig. 11. Figure 11 shows the similarity between both the
means of Protégé and Modelio as the result of the correlation. Now, we want to
statistically answer the question “Do we need to use the three tools” and “is there a
relation between them?”

In order for statistical analysis to explain the relation among the three tools and the anti-
patterns’ groups, we used the analysis of variance ANOVA test. This is to determine
whether there are any statistically significant differences between the means of anti-
patterns detection by each one of the tools, and also to determine if there is any relation
between anti-patterns groups and the features of mobile applications.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 17/23


http://dx.doi.org/10.7717/peerj-cs.212/fig-10
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Table 7 The correlation among the three tools.

Systems Correlation Specification
coefficient (r)

Modelio and OntoUml —0.032 There is a reverse correlation between
Modelio and OntoUml
Modelio and Protégé 0.966 There is a direct correlation between

Modelio and Protégé

Protégé and OntoUML —0.060 There is a reverse correlation between
Protégé and OntoUml editor

The means of the detection tools

250
200 f
\
150
f \
! \
100 —5—
so f -\ A A _
1 — _ 4 - . g _ ~—D
0 O Pmgf < R S ,—4’,’—'&:;/' o =0
22 e LE R s E2es8gETLs583838535%
= . o £ = 5 = = A ——
: B ® 3‘m‘f7:v“§8“?:z:-soe<“5c§,:m:g>
s 8fvaZozgaEes &L c> w3 ENO®E
v iy © 5 o & = > e
e s e=8F2YTcezsESos L« & QLLSUC’gO}—m
o 328azs5vwesdxs5ses [=) = @ > < @ o
©c v O > Y s x 37 Z 202 5 9 = T o | A
B TS Y= S =EEST 235 @ Z © 2 =
v c § < » = "I ®ocLc 2R < o = =
2 o m o= ,%’_:_»og - v
°© L w EacB T =2 w
= @ S ST g
< fr > c 2
& 83=
e 2 3
=g Modelic ==@==QLED ==g==Protégeé
Figure 11 The means of the detected tools. Full-size Ka] DOT: 10.7717/peerj-cs.212/fig-11

We use ANOVA to calculate a test (F-ratio) with which we can obtain the probability
P-value (usually taken as P < 0.05) suggests that at least one group mean is significantly
different from the others. The null hypothesis is (all population means are equal).

The alternative hypothesis is (at least one population mean is different from the rest).
Where the degree of freedom (df) between groups is 28 and df within the group is 116.
We found that the significant differences are 0.578, 0.464, and 0.926 for Protégé, Modelio,
and OLED, respectively. This implies that the null hypothesis is false, i.e., all the detection
tools are necessary and required for the detection of the anti-patterns.

The ANOVA statistically proved that there was no concern for the features or the
specifications of the applications; that is, the low F-value meant that the groups are close
together relative to the variability within each group.

We separated the result of integration phase because it is an optional phase. In the case
of homogeneous applications, we found that the number of the detected anti-patterns in
the output application was not the same. The detected anti-patterns using the ontology
integration tool Prompt was less than the number of anti-patterns detected by using the

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 18/23


http://dx.doi.org/10.7717/peerj-cs.212/fig-11
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Anti-patterns number before and after merging.

Mobile apps Viber WhatsApp The integrated Total
app
(Merging UML designs) 49 8 58 115

# of detected anti-patterns
in first method using Modelio

(Merging ontologies) 51 64 13 128
# of detected anti-patterns
in second method using Protégé

Modelio tool. This indicates that semantic integration decreases the increases the accuracy
of detecting anti-patterns in mobile applications. Table 8 shows the number of anti-
patterns in each application in the integration case study (Viber and WhatsApp) and the
number of them in the mobile application pattern after merging. The enhancement using
ontology is approximately by 11.3% in addition to a consistency check.

Where the formula to calculate the increasing percent between two values is

(Second value — First value)

Percent increase = x 100 (1)

(First value)

Substitute in Eq. (1) by

The first value is the total number of anti-patterns according to using Modelio = 115.

The second value is the total number of anti-patterns according to using Prompt = 128.

Then the percent is increased by = 11.3% which implies that using ontology
integration by Prompt (Protégé plugin) instead of using UML integration by Modelio
increases the percent of detection.

Additionally, using ontology to separately refine Viber or WhatsApp as a pattern
enhanced them approximately 4.04% and 89%, respectively, in addition to a consistency
check by “Reasoner.”

CONCLUSIONS

In this paper, we focused on improving the quality of mobile applications. We introduced
a general method to automatically detect anti-patterns not by using specific queries,

but by using Modelio, OLED, and Protégé in a specific order to get positive results.
Also, concerning the related work section, our proposed method is more general than
other methods as the proposed method supports semantic and structural anti-pattern
detection at the design level.

For evaluation of the proposed method, we applied it on a sample of 29 mobile
applications. It detected 15 semantic and structural design anti-patterns. According to the
proposed classification of anti-patterns, “the anti-patterns in the class group” was the
most frequent anti-pattern, and “the anti-patterns in the attribute group” was the least
frequent. From the perspective of anti-patterns detection, the analysis of results also
showed that there is a correlation between the Modelio and Protégé platforms. Also, there
is no correlation between OLED and Protégé and no correlation between Modelio
and OLED.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 19/23


http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

We found that using ontology in the integration phase increases the detection
percentage approximately by 11.3% and guarantees consistency which is assessed by the
reasoner of the ontology. Accordingly, semantic ontology integration has a positive effect
on the quality of the new application. This helped with developing a correct, consistent,
and coherent integrated pattern that has few anti-patterns.

Finally, we recommend that the developer, before using any mobile application
as a pattern, should check the design of the selected application against the
anti-pattern.

When a developer concerned with avoiding certain anti-patterns type, the correlations
between anti-patterns groups, and between tools will help him. Also, the proposed method
considered the issues and problems of developers who are revising Android applications
and integrating new packages of code skill sets. A code review such as the methodology
proposed could be very valuable in terms of not carrying forward existing anti-patterns
and not incorporating new code flawed with poor design. The reverse deeply in OWL
ontology of a mobile application very useful.

In the future, we are going to solve the problem of big ontologies which cannot be
opened in ontology editors as Protégé to complete the detection process. Although,
detection of anti-patterns at the design level is very useful and reduces some anti-patterns
in the code level, we will refine the metric method for detecting code level anti-patterns
on big ontology. Also, we will create a semantic web application for anti-patterns to collect
all detection tools of the two levels and anti-patterns catalog. Finally, the correction
phases in Modelio and Reasoner are still open issues.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Eman K. Elsayed conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, analyzed the data, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft

e Kamal A. ElDahshan authored or reviewed drafts of the paper, approved the final draft.

e Enas E. El-Sharawy conceived and designed the experiments, performed the
experiments.

e Naglaa E. Ghannam conceived and designed the experiments, performed the
experiments, contributed reagents/materials/analysis tools, analyzed the data, prepared
figures and/or tables, performed the computation work, authored or reviewed drafts of
the paper.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 20/23


http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

The features of the downloaded mobile apps and the detected anti-patterns are available
as a Supplemental File. The file shows the relation between the detected anti-patterns
and the detection tools and the relation between anti-patterns groups and the detection
tools.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.212#supplemental-information.

REFERENCES

Afjehei SS, Chen THP, Tsantalis N. 2019. iPerfDetector: characterizing and detecting performance
anti-patterns in iOS applications. Empirical Software Engineering 24:1-30.

Alharbi K, Blackshear S, Kowalczyk E, Memon AM, Chang BYE, Yeh T. 2014. Android apps
consistency scrutinized. In: CHI'14 Extended Abstracts on Human Factors in Computing
Systems, 26 April-01 May 2014, Toronto, Ontario, Canada. New York: ACM, 2347-2352.

Aljawarneh SA, Alawneh A, Jaradat R. 2017. Cloud security engineering. Future Generation
Computer Systems 74:385-392.

Arnatovich YL, Wang L, Ngo NM, Soh C. 2018. A comparison of android reverse engineering
tools via program behaviors validation based on intermediate languages transformation.

IEEE Access 6:12382-12394 DOI 10.1109/access.2018.2808340.

Bartussek W, Weiland T, Meese S, Schurr MO, Leenen M, Uciteli A, Kropf S, Herre H, Goller C,
Lauer W. 2018. Ontology-based search for risk-relevant PMS data. In: Biomedical Engineering
Conference (SAIBMEC), Biennial, South African. Piscataway: IEEE, 1-4.

Calero C, Ruiz F, Piattini M. eds. 2006. Ontologies for software engineering and software
technology. Berlin, Heidelberg: Springer Science & Business Media.

Chatzigeorgiou A, Manakos A. 2010. Investigating the evolution of bad smells in object-oriented
code. In: Seventh International Conference on the Quality of Information and Communications
Technology (QUATIC), Porto, Portugal. Vol. 10. Piscataway: IEEE, 106-115.

Chikofsky EJ, Cross JH. 1990. Reverse engineering and design recovery: a taxonomy.

IEEE Software 7(1):13-17 DOI 10.1109/52.43044.

De Giacomo G, Lembo D, Lenzerini M, Poggi A, Rosati R. 2018. Using ontologies for semantic
data integration. In: Flesca S, Greco S, Masciari E, Sacca D, eds. A Comprehensive Guide through
the Italian Database Research Over the Last 25 Years. Cham: Springer, 187-202.

Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. 2001. Does code decay? assessing the
evidence from change management data. IEEE Transactions on Software Engineering 27(1):1-12
DOI 10.1109/32.895984.

Elsayed E, El-Dahshan K, El-Sharawy E, Ghannam N. 2016. Semantic anti-patterns detection in
UML models based on ontology catalogue. Artificial Intelligence and Machine Learning Journal
16:1687-4846.

Elsayed E, El-Dahshan K, Ghannam N. 2019. Comparative study for detecting mobile
application’s anti-patterns. In: Proceedings of the 8th International Conference on Software and
Information Engineering (ICSIE 2019) ACM P5:13, Cairo, Egypt, April 9-12. Ei Compendex
and Scopus, The British University. Available at http://www.icsie.org/.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 21/23


http://dx.doi.org/10.7717/peerj-cs.212#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.212#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.212#supplemental-information
http://dx.doi.org/10.1109/access.2018.2808340
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/32.895984
http://www.icsie.org/
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Happel H]J, Seedorf S. 2006. Applications of ontologies in software engineering. In: Proceedings of
the Workshop on Semantic Web Enabled Software Engineering (SWESE) on the ISWC, Athens,
GA, USA. 5-9.

Hecht G, Benomar O, Rouvoy R, Moha N, Duchien L. 2015a. Tracking the software quality of
Android applications along their evolution (t). In: Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 9-13 November 2015,
Lincoln, NE, USA. Piscataway: IEEE, 236-247.

Hecht G, Moha N, Rouvoy R. 2016. An empirical study of the performance impacts of android
code smells. In: Proceedings of the International Conference on Mobile Software Engineering
and Systems, Austin, 14-22 May. New York: ACM, 59-69.

Hecht G, Rouvoy R, Moha N, Duchien L. 2015b. Detecting anti-patterns in android apps. In:
Proceedings of the 2nd ACM International Conference on Mobile Software Engineering and
Systems (MOBILESoft), 16-17 May 2015. Piscataway: IEEE, 148-149.

IEEE Standard Glossary of Software Engineering Terminology-Description. 1990. IEEE
Standard Glossary of Software Engineering Terminology. Available at http://iecexplore.ieee.org/
servlet/opac?punumber=2238 (accessed January 2019).

Joorabchi ME, Ali M, Mesbah A. 2015. Detecting inconsistencies in multi-platform mobile apps.
In: IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),

2-5 November 2015. Piscataway: IEEE, 450-460.

Kappel G, Kapsammer E, Kargl H, Kramler G, Reiter T, Retschitzegger W, Wimmer M. 2006.
Lifting metamodels to ontologies: a step to the semantic integration of modeling languages.
In: Proceeding of International Conference on Model Driven Engineering Languages and Systems
(MODELS), Genova, Italy. New York: Springer, 528-542.

Khomh F, Di Penta M, Guéhéneuc YG, Antoniol G. 2012. An exploratory study of the impact
of antipatterns on class change- and fault-proneness. Empirical Software Engineering
17(3):243-275 DOI 10.1007/s10664-011-9171-y.

Linares-Vasquez M, Klock S, McMillan C, Sabané A, Poshyvanyk D, Guéhéneuc YG. 2014.
Domain matters: bringing further evidence of the relationships among anti-patterns, application
domains, and quality-related metrics in Java mobile apps. In: Proceedings of the 22nd
International Conference on Program Comprehension, Hyderabad, 2-3 June 2014. New York:
ACM, 232-243.

Maurice P, Dhombres F, Blondiaux E, Friszer S, Guilbaud L, Lelong N, Khoshnood B, Charlet J,
Perrot N, Jauniaux E, Jurkovic D, Jurkovic JM. 2017. Towards ontology-based decision
support systems for complex ultrasound diagnosis in obstetrics and gynecology.

Journal of Gynecology Obstetrics and Human Reproduction 46(5):423-429
DOI 10.1016/j.jogoh.2017.03.004.

Morales R, Saborido R, Khomh F, Chicano F, Antoniol G. 2016. Anti-patterns and the energy
efficiency of Android applications. arXiv preprint Available at http://arxiv.org/abs/1610.05711.

Obrst L, Griininger M, Baclawski K, Bennett M, Brickley D, Berg-Cross G, Hitzler P,
Janowicz K, Kapp C, Kutz O, Lange C, Levenchuk A, Fran Q, Rector A, Schneider T,
Spero S, Thessen A, Vegetti M, Vizedom A, Westerinen A, West M, Yim PP. 2014.
Semantic web and big data meet applied ontology. Applied Ontology 9(2):155-170.

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A. 2017. Lightweight detection
of Android-specific code smells: the aDoctor project. In: IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 20-24 February 2017. Piscataway:
IEEE, 487-491.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 22/23


http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://dx.doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1016/j.jogoh.2017.03.004
http://arxiv.org/abs/1610.05711
http://dx.doi.org/10.7717/peerj-cs.212
https://peerj.com/computer-science/

PeerJ Computer Science

Parnas DL. 1994. Software aging. In: Proceedings of the 16th International Conference on Software
Engineering ICSE-16, Sorrento, 16-21 May. Piscataway: IEEE, 279-287.

Raja V. 2008. Introduction to reverse engineering. In: Raja V, Fernandes K, eds. Reverse
Engineering. Springer Series in Advanced Manufacturing. London: Springer, 1-9.

Romano D, Raila P, Pinzger M, Khomh F. 2012. Analyzing the impact of anti-patterns on
change-proneness using fine-grained source code changes. In: Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE), Kingston, 15-18 October. Piscataway: IEEE,
437-446.

Song L, Tang Z, Li Z, Gong X, Chen X, Fang D, Wang Z. 2017. AppIS: protect android apps
against runtime repackaging attacks. In: 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS), Shenzhen, China. Piscataway: IEEE, 25-32.

Yamashita A, Moonen L. 2013. Exploring the impact of inter-smell relations on software
maintainability: an empirical study. In: Proceedings of the 2013 International Conference on
Software Engineering, San Francisco, CA, USA. Piscataway: IEEE Press, 682-691.

Yus R, Pappachan P. 2015. Are apps going semantic? A systematic review of semantic mobile
applications. In: Mobile Deployment of Semantic International Workshop MoDeST. Bethlehem:
ISWC, 2-13.

Zhou X, Wu K, Cai H, Lou S, Zhang Y, Huang G. 2018. LogPruner: detect, analyze and
prune logging calls in Android apps. Science China Information Sciences 61(5):1-3
DOI 10.1007/s11432-017-9354-x.

Elsayed et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.212 23/23


http://dx.doi.org/10.1007/s11432-017-9354-x
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.212

	Reverse engineering approach for improving the quality of mobile applications
	Introduction
	Related Works
	Ontology and Software Engineering
	Proposed Method
	Empirical Validations
	Results and Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


