
Submitted 13 February 2024
Accepted 19 May 2024
Published 28 June 2024

Corresponding author
Yu-Wei Chang, ychang@nccu.edu.tw

Academic editor
Antonio Jesus Diaz-Honrubia

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.2119

Copyright
2024 Chen and Chang

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Missing data imputation using
classification and regression trees
Cheng-Yang Chen and Yu-Wei Chang
Department of Statistics, National Chengchi University, Taipei, Taiwan

ABSTRACT
Background. Missing data are common when analyzing real data. One popular
solution is to impute missing data so that one complete dataset can be obtained for
subsequent data analysis. In the present study, we focus on missing data imputation
using classification and regression trees (CART).
Methods. We consider a new perspective on missing data in a CART imputation
problem and realize the perspective through some resampling algorithms. Several ex-
isting missing data imputationmethods using CART are compared through simulation
studies, and we aim to investigate the methods with better imputation accuracy under
various conditions. Some systematic findings are demonstrated and presented. These
imputation methods are further applied to two real datasets: Hepatitis data and Credit
approval data for illustration.
Results. The method that performs the best strongly depends on the correlation
between variables. For imputingmissing ordinal categorical variables, the rpart package
with surrogate variables is recommended under correlations larger than 0 with missing
completely at random (MCAR) and missing at random (MAR) conditions. Under
missing not at random (MNAR), chi-squared test methods and the rpart package
with surrogate variables are suggested. For imputing missing quantitative variables,
the iterative imputation method is most recommended under moderate correlation
conditions.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science
Keywords Classification and regression trees, Missing data, Missing data imputation, Resampling

INTRODUCTION
We encounter missing data when we analyze real data. Simply deleting all elements
with missing data results in biased estimates under the missing not at random (MNAR)
mechanism (Rubin, 1976). Recent studies have either imputed missing data so that the
dataset would be complete and common statistical methods could be applied (c.f., Little &
Rubin, 2002) or proposed models with missing data as one response category (e.g., Chang,
Hsu & Tsai, 2021; Debeer, Janssen & De Boeck, 2017; Kapelner & Bleich, 2015; Twala, Jones
& Hand, 2008). In the present study, we concentrate on the studies that explored imputing
missing data.

Suppose there are N elements and P variables in total. Denote X be an N by P data
matrix. Assume that the first Pm columns of X , denoted as Xm, are variables with some
missingness, while the remaining P −Pm columns, denoted as Xc , are variables with
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complete data. Imputation can be carried out simply using the mean or mode of a variable
or using the mean of all observed data of an element. In contrast, imputation of missing
data using assisted parametric or nonparametric models is another popular approach.
Classification and regression trees (CART; Breiman et al., 1984) are popular modeling
approaches developed in recent decades and have also been utilized as assisted models for
imputation of missing data. In the present study, we focused on missing data imputation
using CART. Rahman & Islam (2013) and Stekhoven & Bühlmann (2012) suggested a
framework in which, for each variable xp, for p= 1,...,Pm, we build a binary-splitting
CART model with xp as the response variable and all the other variables as the candidate
set of splitting variables (denoted as Sp) for imputing missingness in xp. We follow that
framework in the current study. All the elements with observed values for the response
variable xp form the training dataset at the CART building stage. Missing data on xp are
then imputed using the prediction based on the fitted CART model.

When more than one variable has missing data, there might be some missing data on
Sp for the elements in the training dataset. A key difference between different CART-based
imputation methods is how they address missing data on Sp. One approach is to exclude
elements with some missingness on Sp at the CART building stage (Nikfalazar et al., 2020;
Rahman & Islam, 2013). A similar idea is to use elements with no missing data on one
candidate split variable to compute an impurity measure for the variable (Kim & Loh,
2001). Although each candidate split variable may take different sets of elements into
account, Kim & Loh (2001) found that the approach functioned well on their proposed
CART algorithm. As an alternative, several studies have proposed iterative procedures
for incorporating elements with missingness on Sp when building a CART. For each of
the variables in Xm, Burgette & Reiter (2010) suggested building a CART for the variable
based on all the ‘‘complete variables’’. Since variables are imputed sequentially in their
procedure, imputed variables can be treated as complete when following variables are to be
imputed. Xu, Daniels & Winterstein (2016) realized the concept of sequential imputation
from a different point of view. They decomposed the joint model for the variables in Xm

into a sequence of conditional models and built a Bayesian additive regression trees (BART;
Chipman, George & Mcculloch, 2010) for each conditional model. In contrast, Stekhoven &
Bühlmann (2012); Ramosaj & Pauly (2019) iteratively imputed variables in Xm based on
building random forests (for each variable) until convergence is achieved. They avoided
the missingness on Sp by assigning initial values for all missing data.

An alternative to iterative imputation is to send elements that are missing on a split
variable to a child node according to certain criteria. This step is important in imputation
since, otherwise, the number of elements in the lower layer decreases so that the CART
buildings are less efficient. Several criteria have been proposed under this framework. The
majority rule is a common criterion (c.f. Kim & Loh, 2001; Rodgers, Jacobucci & Grimm,
2021). Elements with missingness on a split variables are sent to a child node with more
elements. Another popular method is the surrogate split method (c.f., Breiman et al.,
1984; Hapfelmeier, Hothornb & Ulma, 2012; Kim & Loh, 2001; Quinlan, 1993; Therneau &
Atkinson, 2009). In particular, for each split variable, a sequence of surrogate split variables
is found based on their similarity to the original split variable. For an element with missing
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data on the split variable, those surrogate split variables are considered in order, and the
first non-missing surrogate split for the element is used so that the element can be sent to
one child node and can be further included in the modeling in the next layer of the CART.
Whenever the element is missing on all surrogates, Therneau & Atkinson (2009) suggested
sending the element to the majority child node. Another interesting point of view is to
treat the missingness of one variable as one additional category of the variable (Kapelner &
Bleich, 2015; Twala, Jones & Hand, 2008). When determining some split points, we should
further assign the category ‘‘missingness’’ to one of the child nodes.

In the present study, we focus on CART-based methods for imputation of missing data
and conducted imputation for variables in turn. We aim to investigate which methods
perform better under various conditions. Following Rahman & Islam (2013) and Stekhoven
& Bühlmann (2012), we considered mixed-type data. In particular, both quantitative and
ordinal categorical variables exist in a dataset.We propose a newperspective onmissing data
imputation using CART and realize the perspective through proposing two resampling-
based algorithms for sending elements with missingness on a split variable to one of its
child nodes. Algorithm 1 performs random assignments for elements with missing values
on the splitting variable to either child nodemultiple times, and the assignments are further
utilized for selecting the best split of its child nodes based on impurity measures, in order to
improve CART fittings at the model building stage. Algorithm 2 extends the first algorithm
in the following manner. In Algorithm 2, the random assignments at a child node are
inherited from the resulting random assignments of its parent node. Following each set of
random assignments at the parent node, there is a resulting set of elements at each of child
nodes, and the random assignments for the subsequent child nodes depend on the set of
elements. The details of the two algorithms are arranged in ‘Missing Data Imputation Based
on CART’. In addition, we conducted simulation studies to compare existing CART-based
imputation methods under various conditions in ‘Simulation studies’. For illustration,
these methods were further applied to two real datasets: Hepatitis data and Credit approval
data, and the results can be found in ‘Real data analysis’.

There are interesting findings in our simulation studies. The method that performs the
best highly depends on the correlation between variables. The chi-squared tests in Loh
& Shih (1997) and Kim & Loh (2001) in combination with the two proposed algorithms
achieve better imputation accuracy when correlations between quantitative variables are
around 0. The multiple imputation by chained equations (MICE; Raghunathan et al.,
2001) method and the R package rpart with surrogate variables generally work better
under correlations ρ > 0 with missing completely at random (MCAR) and missing at
random (MAR) conditions, when we impute missing ordinal categorical variables. Under
MNAR, methods based on the chi-squared tests methods are recommended. For imputing
missing quantitative variables, the iterative imputation method in Stekhoven & Bühlmann
(2012) in a CART version and the MICE method generally perform better under moderate
correlation conditions. These findings provide some practical guidelines for choosing a
good imputation method with higher imputation accuracy in future real data analysis.

Chen and Chang (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2119 3/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2119


Algorithm 1 a resampling-based (RE) algorithm for the elements with missing
values on a subsequent split variable
Input: data matrix X ; a variable to be imputed: xp; some missingness on variable
xq.
Initialization: Start with the root node t where it has been determined to be fur-
ther split, and its split variable has been determined as xq. Suppose that Vt ,q 6=
∅. If some child node of t , tL or tR, is to be further split, consider the followings.
Step 1: (repeat resamplings H times)

for h in 1 :H do
for b in Vt ,q do (b is an element at node t )

Randomly assign b to tL or tR;
end for

Vt ,q,h,L← all elements in Vt ,q that are assigned to tL;
Vt ,q,h,R←Vt ,q \Vt ,q,h,L;
Refer the results of the sampling as Bh.
end for

Step 2: (Determine the split variables and split points for tL)
for h in 1 :H do

Compute an impurity measure based on both (i)Wt ,q,L, defined as the
set of the elements assigned to tL according to xq and (ii) Vt ,q,h,L.

end for
Choose the variable, denoted as xqL , with the smallest impurity measure
among all Sp and Bh, h= 1,...,H , as the split variable for node tL.

Split points are determined similarly.
Split variables and split points for tR are determined similarly.

Step 3: (the issues of sending elements to child nodes for node tL)
for b inWt ,q,L do

if b is missing on xqL do
Randomly assign b to tLL or tLR , the child nodes of tL.

end if
end for
Deal with the issues of sending elements to child nodes for tR similarly.

Step 4: Consider t ← tL and t ← tR, respectively, and then repeat Steps 2 and 3
until no end nodes is to be further split.
Output: a CART built for xp, and all elements in the training dataset of X being
sent to one of end nodes.

MATERIALS AND METHODS
Missing data imputation based on CART
In the current section, we first introduce two proposed resampling algorithms in
‘Resampling-based CART imputation methods’. We will then outline the CART-based
missing data imputation methods in the literature that we compare in ‘Other CART-based
imputation methods’.
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Algorithm 2 a hierarchical resampling-based (H-RE) algorithm for the elements
with missing values on a subsequent split variable
Input: data matrix X ; a variable to be imputed: xp; some missingness on vari-
able xq.

Initialization: Same as Algorithm 1.
Step 1: Same as Algorithm 1.
Step 2: Same as Algorithm 1.
Step 3: (the issues of sending elements to child nodes for node tL)

The resampling at node tL is based on the results of the resampling at its
parent node t .
for h in 1 :H do

Based on the h-th resampling of node t in Step 1, the set of elements at
node tL is Vt ,q,h,L∪Wt ,q,L.
Determine child nodes for elements in Vt ,q,h,L ∪Wt ,q,L with respect to
the split variable xqL . For the elements which are in Vt ,q,h,L∪Wt ,q,L and
are missing on xqL , conduct resampling once:

for b in Vt ,q,h,L∪Wt ,q,L do
if b is missing on xqL do

Randomly assigned b to tLL or tLR , the left or right child node of
tL;

end if
end for
VtL,qL,h,LL←all elements assigned to tLL at this stage;
VtL,qL,h,LR←Vt ,q,h,L∪Wt ,q,L \VtL,qL,h,LL .

end for
Deal with the issues of sending elements to child nodes for tR similarly.

Step 4: Consider t ← tL and t ← tR, respectively, and then repeat step 2 and 3
until no end nodes is to be further split.
Output: a CART built for xp, and all elements in the training dataset of X being
sent to one of end nodes.

For a data matrix X , variables with missing data are imputed in turn. For each variable
xp in Xm, we build a classification tree when xp is an ordinal categorical variable. When xp
is a quantitative variable, a regression tree is built. The steps for building a CART include
determining a split variable, selecting a split point, assigning elements to child nodes, and
determining stopping rules. The classical CART fitting procedure involves determining
split variables and split points via the Gini index (GI) for categorical response variables xp
and the residual sum of squares (RSS) for continuous response variables xp (c.f., Breiman et
al., 1984; James et al., 2013). As noted in Loh & Shih (1997) and Kim & Loh (2001), several
earlier algorithms for determining split variables resulted in selection bias, in the sense
that some algorithms preferred categorical split variables, others preferred continuous split
variables, and algorithms tended to select split variables with more missing data. To solve
the selection bias problem, Loh & Shih (1997) and Kim & Loh (2001) suggested to separate
the determination of a split variable and some split points into two steps and proposed the
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use of a chi-squared test to determine a split variable (referred to as the CHI method in the
present study). In particular, for each variable in Sp, a chi-squared test is conducted with
respect to xp. A smaller p-value of the test indicates some higher relationship between the
variable and xp; thus, the variable with the smallest p-value is the suggested split variable.
A numerical variable should first be discretized into four categories, and the chi-squared
test can be applied. For a given split variable based on the chi-squared test, the split points
are determined through the usual GI or RSS methods.

Resampling-based CART imputation methods
Consider a node t where it has been determined to be further split, and its split variable
has been determined as xq. Denote Vt ,q as the collection of all elements at node t with
missingness on xq. When the number of elements in Vt ,q is large, the CART constructions
at lower layers are not efficient since few elements are available at the nodes of lower layers.
It is important to address such missing data in CART constructions. In the current section,
we introduce our new perspective on missing data in a CART imputation problem and
explore how to realize this perspective through two resampling algorithms.

When an element is not missing on the splitting variable xq, the observed data lead the
element to either the left child node of t (denoted as tL) or the right child node of node
t (denoted as tR). In other words, one of them is the truth. On the other hand, when an
element is missing on the splitting variable, the true underlying value, if the value could be
observed, still leads the element to either child node. This idea motivated us to conduct the
random assignment in the current study. For each of the elements in Vt ,q, we randomly
assign it to the tL or tR child node, and some of the assignments would be correct. The
advantage of sending elements with missingness on split variables to child nodes is that as
many elements as possible are retained for CART buildings in the lower layers of a tree.
We implement the idea in Algorithms 1 and 2.
Algorithm 1 (RE Algorithm):

In Algorithm 1, we repeat random assignments for elements in Vt ,q H times so that
those elements with missing splitting variables are still utilized in determining some split
variable and split point for child node tL (or tR). Hopefully, those correct assignments
among H random assignments could lead to better fitted CART models. That is, the split
variable for the child node of t can be determined with a better impurity measure. In the
numerical experiments in ‘Simulation studies’ and ‘Real data analysis’, we set H = 20.

Since all the elements in Vt ,q are sent to one of the child nodes, tL or tR, they can be
incorporated at the stage of determining split variables for tL or tR. The determination of
split variables is still based on common impurity measures. In determining a split variable
for tL or tR, since we haveH random assignments, the impurity measures are evaluated over
allH random assignments and over all the candidate sets Sp. The methods for determining
the split points for tL or tR are the same as usual CART algorithms. The details are arranged
in the table for Algorithm 1. In Step 2, to determine the split variables for tL, compute H
impurity measures for one candidate split variable. In particular, the h-th measure, for
h= 1,...,H , is based on both (i) Wt ,q,L, defined as the set of the elements assigned to tL
according to xq and (ii) Vt ,q,h,L, those sent to tL according to resampling. There are some
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remarks for Step 3: when elements in Wt ,q,L is missing on xqL (i.e., VtL,qL), we cannot
send these elements to child nodes of tL, and therefore, we have to repeat the resampling
procedure in Step 1 with respect to VtL,qL ∪Vt ,q. Besides, the resampling set for a node tL
should be the union of the sets V ′s of all the parent nodes of tL. In the following, we refer
to this resampling-based algorithm as the RE algorithm, where RE is the abbreviation for
resampling. The idea of randomly sending elements which are missing on one split variable
to child nodes is similar to the on-the-fly imputation (OTFI) method in Ishwaran et al.
(2008). The differences between the OTFI and RE algorithms are as follows: we repeated the
random assignmentH times and search for the best assignment at the stage of determining
the splitting of its child nodes, while the OTFI method conducted the random assignment
once. In addition, we implemented the idea of random assignment in CART settings while
Ishwaran et al. (2008) and Tang & Ishwaran (2017) conducted some random assignment
in a random forest model.
Algorithm 2 (H-RE Algorithm):

In the RE algorithm, the resampling for node t and the resampling for the child node
tL (or tR) are conducted separately. That is, the resulting resamplings of a node t are not
inherited by its child nodes. We further consider certain hierarchy between the resamplings
for node t and that for its child nodes in Algorithm 2. Algorithm 2 is referred to as a
hierarchical-resampling algorithm, abbreviated as the H-RE algorithm.

Steps 1 and 2 of Algorithm 2 are the same as those in Algorithm 1. The resampling
at one node is nested in one previous layer of the tree. For the resampling at node tL,
we simply trace the H resampling results Vt ,q,h,L, h= 1,...,H , of its parent node, t . For
Vt ,q,h,L, we take the union withWt ,q,L, the set of elements assigned to tL according to xq. We
concentrate on the elements in Vt ,q,h,L∪Wt ,q,L with missing values on xqL , and resampling
is conducted once for each h. The results are assigned to child nodes tLL and tLR . There
are H resamplings at Step 3, and the candidate sets to be resampled, Vt ,q,h,L∪Wt ,q,L with
missing on xqL , in theH resamplings differ between resamplings. The elements in VtL,qL,h,LL
are further utilized in determining the split variables for tLL and tLR . The procedure is
summarized in Algorithm 2, referred to as the H-RE algorithm.

Other CART-based imputation methods
One purpose of the study is to compare CART-based imputation methods and explore
which methods perform better. In this section, we outline all the methods implemented in
the current study. Some of them are newly proposed methods in ‘Resampling-based CART
imputation methods’, and some are existing methods in the literature or package. For ease
of mention, they are referred to asM1 toM9 in the following.

The R package rpart, developed based on Breiman et al. (1984), is a popular package
for building CART models. In the package, an element missing on its subsequent split
variable is sent to one of the child nodes based on the popular surrogate variable method
(Breiman et al., 1984; Hapfelmeier, Hothornb & Ulma, 2012; Kim & Loh, 2001, Quinlan,
1993; Therneau & Atkinson, 2009).

M1: R package rpart with surrogate variables.
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1As suggested by one reviewer.

As mentioned in the beginning of ‘Missing data imputation based on CART’, the GI
(RSS) and CHI are two common methods for selecting split variables and split points.
According to the literature and what we proposed in ‘Resampling-based CART imputation
methods’, we have three methods for sending elements which are missing on a split variable
to one of the child nodes: (i) majority rule (c.f. Rodgers, Jacobucci & Grimm, 2021); (ii) the
RE algorithm; and (iii) the H-RE algorithm. In combination, we have the six following
CART-based methods for imputing missing data:

M2: GI (RSS) + majority rule,
M3: GI (RSS) + RE algorithm,
M4: GI (RSS) + H-RE algorithm,
M5: CHI + majority rule,
M6: CHI + RE algorithm,
M7: CHI + H-RE algorithm.
For a fair comparison with previous CART-based imputationmethods, we implemented

the iterative imputation method in Stekhoven & Bühlmann (2012) in a CART version; this
method is referred to asM8. In particular, inM8, each variable in Xm is iteratively imputed
based on the construction of CART models, where all the other variables in X are potential
splitting variables. The procedures iterate until the imputations are the same between
iterations for each missingness. With proper initials, we do not have to worry about the
missingness on Sp when we build a CART for imputing xp since all variables are imputed
in the previous iteration; therefore, all imputed values together with observed data form
‘‘complete data’’ for Sp.

M8: Implementing the iterative imputation method in Stekhoven & Bühlmann (2012) in
a CART version.

In addition to the above eight imputation methods, MICE is another popular method,
and it was also incorporated in our comparison1. As an extension of themultiple imputation
method (Rubin, 1987), MICE (Raghunathan et al., 2001) was capable to deal with data sets
where more than one variable with missingness. Burgette & Reiter (2010) suggested to
adopt CART as the assisted model in the MICE algorithm, and we included this setting
for comparison since its popularity. Wang et al. (2022) found that MICE with CART
outperformed MICE with random forest and MI with some other machine learning
methods in terms of imputation accuracy in survey data and some simulated data. Akande,
Li & Reiter (2017) focused on categorical data and found that MICE with CART obtained
better imputation accuracy than MICE with generalized linear models. This method is
calledM9, and it is implemented using the R package mice with the cart option.

M9: R package mice with the cart option.
Simulation studies were conducted to compare these methods. The simulation designs

are illustrated in ‘Simulation Studies’, and results are demonstrated in ‘Results for
simulation studies’.

Simulation studies
Two questions addressed by these simulation studies are as follows: (i) Which imputation
method results in better imputation accuracy than other methods? (ii) Does the
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performance depend on the conditions of the data? To answer the second question, we
examined the effects of the correlation between variables and missing mechanisms on the
efficiency of missing data imputation. The simulation settings are outlined in ‘Simulation
settings’, and the results of the simulations are presented in ‘Results for simulation studies’.
The advantage of conducting the simulation in ‘Simulation studies’ is that we simulated
the observed data ourselves, and thus could control the correlations between variables.
In this way, we were able to demonstrate the effects of correlations on the efficiency of
imputation.

Simulation settings
The number of variables was fixed at 15 (Ramosaj & Pauly, 2019), and the number of
observations was fixed at 500. Following Beaulac & Rosenthal (2020); Rahman & Islam
(2013), and Stekhoven & Bühlmann (2012), we studied the case in which both quantitative
and ordinal categorical variables are presented in a dataset. Variables 1 to 8 are quantitative,
and variables 9 to 15 are ordinal categorical. Since there were many aspects to be examined,
we considered three simulation studies, and each of studies had its purpose. We illustrate
the three studies in the followings.

Study 1: In Study 1, we aimed to investigate whether some crucial aspects have impacts
on imputation accuracy, and which imputation methods performed better under various
conditions. The following factors were considered. (i) There are 4 different correlations
between variables. (ii) There are three types of missing mechanisms: MCAR, MAR, and
MNAR. (iii) There are missing data on two types of variables: quantitative and ordinal
categorical variables (Ramosaj & Pauly, 2019).

There are a total of 4 × 3 × 2 conditions.
To generate the data, there were four settings for the correlations between variables:

0, ±0.3, ±0.5, and ±0.7. Take the setting ±0.5 as an example; the correlation between
each pair of variables was approximately ±0.5. For brevity, we used ρ = 0.5 for the
case ρ =±0.5 hereafter. Following Ramosaj & Pauly (2019), the quantitative variables
were generated through a multivariate normal distribution. The ordinal categorical
variables were generated via the standard approach, in which there were some underlying
continuous variables and the observed ordinal categorical variableswere somediscretization
of the continuous variables. The settings of correlations regarding ordinal categorical
variables indicate (i) the correlations between underlying continuous variables and (ii) the
correlations between one underlying continuous variable and one variable among variables
1 to 8. Among the seven ordinal categorical variables, there were five binary variables and
two variables with three categories. The ratios between categories for the seven variables
were 6:4, 6:4, 6:4, 5:5, 5:5, 3:3:4, and 4:3:3.

To generate missingness in the above simulated data, we considered MCAR, MAR, and
MNAR (Rubin, 1976). For the missingness of one variable Y1, let yi1 be the observation of
subject i on variable Y1, and let Zi be a binary indicator denoting whether Yi1 is missing
(Zi= 1) or not (Zi= 0). Denote Y2 and Y3 as other variables in the dataset. When

P
(
Zi= 1|yi1,yi2,yi3

)
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does not depend on the value of yi2 and yi3, Y1 is called MCAR. In contrast, MAR on Y1
refers to the case that its missingness depends on the value of some other variables, say yi2
and yi3, but does not depend on its own value yi1. That is,

P
(
Zi= 1|yi1,yi2,yi3

)
= P

(
Zi= 1|yi2,yi3

)
for all subject i.

MNAR on Y1 indicates the case that its missingness depends on its own value, yi1, but
does not depend on the value of some other variables, say yi2 and yi3. Specifically,

P
(
Zi= 1|yi1,yi2,yi3

)
= P

(
Zi= 1|yi1

)
for all subject i.

We considered missing data on quantitative and ordinal categorical variables. Missing
quantitative variables were set at variables 1, 3, 5, 7, and 8. Missing ordinal categorical
variables were set at variables 9, 11, 12, 13, and 15. The missing rate was controlled at 10%
in Study 1. That is, for each of the above variables, there were 10% missing data.

To generate MCAR, each observation was determined missing-or-not, independently
with other observations, with missing rate 10%. To generate missing data under the MAR
mechanism, the missingness of the above 10 variables was set to depend on variable 2, 4, 2,
2, 4, 6, 6, 4, 6, and 2, respectively; the smaller the values on variable 2 (or 4, 6), the higher
the probabilities of missingness on the above 10 variables. To generate MNAR mechanism
on one categorical variable, the probability of missing was set to be higher on its first
category. For MNAR mechanism on one quantitative variable, the missing probability was
set to be higher on its first 30% percentiles.

For each of the 4 ×3× 2 conditions, we generated 100 replicates (i.e., 100 datasets)
independently. Each of the datasets was imputed respectively using the 9 methods in
‘Other CART-based imputation methods’.

Study 2: In Study 1, the missing rate was controlled at 10% in various conditions. We
further manipulated the missing rate as a factor in Study 2, and we investigated whether the
phenomenon observed in Study 1 remained the same under different missing rates. Three
levels of missing rates, 10%, 20%, and 30%, were considered in Study 2, and we focused
on quantitative variables.

Study 3: In Study 3, we investigated whether the rankings of accuracy for different methods
showed similar patterns under different sample sizes. In Study 3, we further examined
sample sizes equivalent to 500 and 1,000, and we focused on the following conditions:
missing rate 10% and missing on quantitative variables.

All the simulations were conducted using the R software (Beaulac & Rosenthal, 2020),
and the simulation results are presented in the next section.

RESULTS
Results for simulation studies
The imputation performances for quantitative and ordinal categorical variables were
summarized so that we were able to compare the imputation accuracy across methods.
For quantitative variables, we evaluated the imputation performance by comparing the
imputed values to true data (the values in the generated data) in terms of the Root Mean
Squared Error (RMSE). For xi,p, the value of Subject i on variable p, let x̂i,p denote its
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imputation. The RMSE for variable Xp for one dataset is

RMSEp=

√√√√ 1
|Dp|

∑
i∈Dp

(
xi,p− x̂i,p

)2
,

whereDp is the collection of indices of subjects who are missing on variable Xp in the whole
dataset and |Dp| is the total number of elements in collection Dp. The smaller RMSEp is,
the better the method.

For ordinal categorical variables, we summarized the imputation accuracy via the
proportion of correct classifications (PCC). The PCC for variable Xp for one dataset is

PCCp=
1
|Dp|

∑
i∈Dp

I{xi,p=x̂i,p},

where I{·} is the indicator function. The larger PCCp is, the better the method.
We summarized the imputation performance for quantitative and ordinal categorical

variables in the following two subsections. An interesting founding was that the imputation
accuracy not only differed among methods M1 to M9 but also differed to a certain degree
between variables. Therefore, we summarized the imputation performance for each of the
10 variables separately. That is, for each of the 10 variables, RMSEp or PCCp was averaged
over the 100 replicates.

Imputation performance for quantitative variables
The imputation performances for variables 1, 3, 5, 7, and 8, the quantitative variables with
missing values, are organized in Figs. 1 to 4. In particular, we arranged RMSEp for the
same ρ across all MCAR, MAR, and MNAR conditions in one figure. For example, all the
results under ρ=0 are given in Fig. 1. To obtain better visualization for distinguishing the
rankings between methods, all RMSEp values under one method are linked using a line. In
particular, under each variable and each method, we averaged RMSEp over 100 replicates.
The mean and standard deviation, taken over 100 replicates, of RMSEp for each variable
and each method are reported in the Tables S1 to S4. In the followings, we report the
simulation results and outline the method(s) with the best or better imputation accuracy.

We include MICE in the comparison since it is a popular method. As remarked by
Hapfelmeier, Hothornb & Ulma (2012), the imputation of MICE is based on multiple trees
and takes the average of them while the imputations by other methods are based on
single tree. On the basis of the argument, they noted that it was not quite fair to compare
MICE to single-tree methods after their comparison. Stekhoven & Bühlmann (2012) made
another important remark regarding MICE: though MICE was popular, its strength was
to provide some uncertainty measure of imputation, and it was not primarily designed for
constructing single imputation value. Based on these reasons, we arrange the presentation
of ‘Imputation performance for quantitative variables’ and ‘Imputation performance for
ordinal categorical variables’ in the following manners. We first discuss results about MICE
(M9) versus all the other eight methods (M1 to M8) to present an overall view on how the
single-tree methods perform, compared with the multiple-trees method (MICE). We then
narrow the comparison to single-tree methodsM1 toM8 for a fair comparison.
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(B) 

 

(C) 

 

 

Figure 1 The imputation performances for quantitative variables 1, 3, 5, 7, and 8 under the condition
correlation= 0, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The RMSEp under
methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1: rpart with
surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS) + H-RE al-
gorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8: iterative im-
putation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-1

Overall speaking, for all nine methods involving the three types of missing mechanisms,
the imputation accuracy increases as the correlation ρ increases; this phenomenon is
expected since the greater the correlation between variables is, the more information can
be borrowed from each other when searching for efficient split variables for imputation;
thus, imputation accuracy should increase with correlation.
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(C) 

 Figure 2 The imputation performances for quantitative variables 1, 3, 5, 7, and 8 under the condition
correlation= 0.3, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The RMSEp under
methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1: rpart with
surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS) + H-RE al-
gorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8: iterative im-
putation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-2

First, we present the comparison between MICE (M9) and all the other eight methods
(M1 to M8). According to Fig. 1, M9 generally works worse than M1 to M8 when there
is no correlation (ρ =0), and the phenomena remain the same across the three types of
missing mechanisms. M9 has some advantage when the correlation between variables is
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 Figure 3 The imputation performances for quantitative variables 1, 3, 5, 7, and 8 under the condition
correlation= 0.5, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The RMSEp under
methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1: rpart with
surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS) + H-RE al-
gorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8: iterative im-
putation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-3

low (ρ= 0.3). For the conditions with higher correlations (ρ= 0.5 or 0.7), there is no clear
pattern whetherM9 works better thanM1 toM8 or not.

Second, we concentrate on all the single-tree methods (M1 toM8) for a fair comparison.
An interesting and important finding is that which method performs the best depends on
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 Figure 4 The imputation performances for quantitative variables 1, 3, 5, 7, and 8 under the condition
correlation= 0.7, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The RMSEp under
methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1: rpart with
surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS) + H-RE al-
gorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8: iterative im-
putation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-4

the correlation between variables. When there is no correlation (ρ=0), the CHI methods
(M5 toM7) generally perform better than the other five methods, according to Fig. 1. Loh &
Shih (1997) and Kim & Loh (2001) remarked that their proposed CHI method is selection
unbiased when there is no correlation among variables and when there are no missing
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data in the dataset. Here, we further found out that the CHI methods (M5 to M7) also
outperform the other five methods in terms of imputation accuracy when missing data are
present; this advantage is related to the nice properties of selection unbiasedness, where
all the other variables are equally selected as split variables when there is no correlation
between them. Better selection of split variables by the CHI methods at the training stage
could result in better predictions at the testing stage, and the predictions are adopted as
imputed values in the CART imputation framework. This is our interpretation about the
results of CHI methods. AmongM5 toM7 under ρ=0, the RE or the H-RE algorithm (M6

and M7) performs slightly better than the majority rule (M5) for sending elements to a
child node. We suspect that the advantage of the CHI methods with the RE and the H-RE
algorithms is related to that the two algorithms search across many possible assignments
and choose the one with best impurity measure so that some better predictions are attained
under the condition of ρ=0.

When some correlation exists between variables and under ρ= 0.3 and 0.5, the iterative
imputationmethod (M8) generally outperforms the other seven single-treemethods (M1 to
M7) across all the five variables and the three types of missing mechanisms, based on Figs.
2 and 3. There are some nice interpretations about the results. The iterative imputation
method not only tries to extract information (the middle correlation between variables)
from other variables when building a CART but also improves some imputation through
iterations. According to Figs. 2 to 4, the iterative improvement in M8 is important when
the correlation between variables is in the moderate (ρ= 0.3 and 0.5). In such cases,M2 to
M4 (the GI/RSS methods, majority rules, and the resampling strategies) might not impute
missing data as effectively as iterative imputation method (M8). In contrast, the iterative
improvement does not improve much when the correlation is as high as ρ= 0.7 since the
high correlation between variables can be fully utilized in building one CART and iterations
are not necessary. In addition, when ρ = 0.7, the rpart package with surrogate variables
(M1),M2 toM4, andM8 function equally well, and none of them has an apparent advantage
over the others.What is more, the commonmethod,M1, also yields fair performance under
moderate correlations.

Imputation performance for ordinal categorical variables
The imputation performances for ordinal categorical variables are presented in this
subsection. Some missing data exist on variables 9, 11, 12, 13, and 15, and the imputation
accuracy is summarized in Figs. 5 to 8 for conditions ρ = 0, 0.3, 0.5, and 0.7. Since there
are simply 2 or 3 categories, some methods achieve the same imputation results in many
replicates; therefore, the PCCps are similar across many methods. The imputation accuracy
for missing ordinal categorical variables under the nine methods is rather close to each
other, compared to the imputation accuracy for missing quantitative variables. In contrast,
the imputation accuracy differs greatly between variables, and the variables differ in the
number of categories and the ratios between categories.

First, we compare the imputation performance between MICE (M9) and all the other
eight methods (M1 to M8). According to Figs. 5 to 8, the imputation accuracy of M9 is
generally worse, or sometimes about the same, than M1 to M8, across all the correlations
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 Figure 5 The imputation performances for ordinal categorical variables 9, 11, 12, 13, and 15 under the
condition correlation= 0, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The PCCp

under methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1: rpart
with surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS) + H-
RE algorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8: itera-
tive imputation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-5

× types of missing× variables. Thus, we conclude thatMICEwith CART as assistedmodels
is not suitable for imputing categorical variables.

Second, we focus on all the single-treemethods (M1 toM8) for a fair comparison. Similar
to the imputation results for quantitative variables, the imputation accuracy increases when
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 Figure 6 The imputation performances for ordinal categorical variables 9, 11, 12, 13, and 15 under the
condition correlation= 0.3, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The
PCCp under methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1:
rpart with surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS)
+ H-RE algorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8:
iterative imputation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-6

we increase the correlation ρ. In addition, when ρ > 0 is combined with MCAR and MAR,
M1 generally performs slightly better than do the other methods, as shown in Figs. 6 to
8. Under MNAR, no method outperforms the other methods under various conditions.
However, when we concentrate on the best method for each of the conditions, they are
generally M6, M7 and M1, according to Figs. 5 to 8. The results highlight the advantages
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 Figure 7 The imputation performances for ordinal categorical variables 9, 11, 12, 13, and 15 under the
condition correlation= 0.5, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The
PCCp under methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1:
rpart with surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS)
+ H-RE algorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8:
iterative imputation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-7

of the RE or H-RE algorithms. When we fix one of the correlation settings (ρ = 0.3, 0.5,
or 0.7) and compare PCCp across the three types of missing mechanisms, we find that
the MAR always has a better PCCp than does its MCAR or MNAR counterpart, which
can be interpreted as follows: the missingness of a variable xp under MAR depends on
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 Figure 8 The imputation performances for ordinal categorical variables 9, 11, 12, 13, and 15 under the
condition correlation= 0.7, missing rate 10%,N = 500, and (A) MCAR, (B) MAR, (C) MNAR. The
PCCp under methodsM1 toM9 are plotted respectively for each of the variables. Imputation methods:M1:
rpart with surrogate variables;M2: GI (RSS) + majority rule;M3: GI (RSS) + RE algorithm;M4: GI (RSS)
+ H-RE algorithm;M5: CHI + majority rule;M6: CHI + RE algorithm;M7: CHI + H-RE algorithm;M8:
iterative imputation;M9:mice with cart option.

Full-size DOI: 10.7717/peerjcs.2119/fig-8

some variable xq in Sp. In the simulations, we frequently selected xq as a splitting variable
for imputing the missing data on xp; therefore, the imputation accuracy under MAR is
generally better.
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Imputation performance for study 2
The imputation performances in terms of RMSEp under various conditions with the 20%
and 30% missing rates are illustrated, respectively, in Figs. S1 to S4 and in S5 to S8. The
correspondingmean and standard deviation, over 100 replicates, ofRMSEp are summarized
Tables S9 to S16.

We still concentrate on the performance of MICE (M9) versus other methods at first.
The results under the 20% and 30% missing rates are similar to the results under the
10% missing rate, according to Figs. S1 to S8. As a summary, M9 works better than other
methods under ρ= 0.3, and it works worse than others under ρ=0.

Second, we focus on the comparison of M1 to M8, as what we did in ‘Imputation
performance for quantitative variables’ and ‘Imputation performance for ordinal
categorical variables’.

The CHI methods with the RE and the H-RE algorithms (M6 andM7) generally perform
well when there is no correlation (ρ = 0) and the data are under 20% and 30% missing
rates, according to Figs. S1 and S5. The findings are quite consistent with the findings
in ‘Imputation performance for quantitative variables’ under the 10% missing rate. In
addition, the GI (RSS) with the H-RE algorithm (M4) also work well under ρ= 0 and 20%
and 30% missing rates, and it shows the advantage of the H-RE algorithm.

Under the 20%and 30%missing rates and underρ= 0.3 and 0.5, the iterative imputation
method (M8) generally performs than the other seven single-tree methods (M1 to M7),
according to Figs. S2, S3, S6, and S7. The phenomenon is similar to what we observed
under the 10% missing rate. The rpart package with surrogate variables (M1) also results
in rather good imputations under these correlations.

Quite consistent with our findings under the 10% missing rate, the rpart package
with surrogate variables (M1), classical GI (RSS) methods (M2 and M3), and the iterative
imputation method (M8) all function quite well when ρ= 0.7 and missing rates equal 20%
and 30%, based on Figs. S4 and S8.

Imputation performance for study 3
For the condition sample sizes equivalent to 1,000, the mean and standard deviation, taken
over 100 replicates, of RMSEp are given in Table S17 to S20. The settings of Study 3 and
those of Study 1 differ in their sample size. The results of Study 3 are generally consistent
with the findings under Study 1. We focus on the comparison of the standard deviations
in Tables S1 to S4 and S17 to S20. These tables demonstrate nice properties that standard
deviations, taken over 100 replicates, of RMSEp decrease as we increase the sample size
for each of the conditions (correlations × types of missing × variables). This fits our
expectation because of the following reasons. When we increase the sample size, better split
variables can be found at the CART-building stage, and therefore, imputations should be
more robust over replications. The results suggest us to increase the sample size as possible
for imputing one dataset in real applications.

Real data analysis
We further applied the imputation methods to two real datasets from the Repository
of Machine Learning Databases at the University of California Irvine (Merz & Murphy,

Chen and Chang (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2119 21/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-3
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119#supp-4
http://dx.doi.org/10.7717/peerj-cs.2119


1996): Hepatitis data and Credit approval data. Following Hapfelmeier, Hothornb & Ulma
(2012), we considered two studies of missing data imputation to real data. First, for existing
missing data, we imputed missing data using the eight methods and compared the imputed
values. Second, we further generated additional missing values in the observed datasets,
imputed both the existing and generated missing data, and evaluated the imputation
performance of the generated missingness. In the real data analysis, we focused on the
comparison of single-imputation methods for missing data imputation. Since MICE were
some aggregation ofmultiple imputation values (Hapfelmeier, Hothornb & Ulma, 2012), we
simply consideredM1 toM8 in this section for a fair comparison. The second study differs
from the simulation study in ‘Simulation studies’ in two aspects: (i) in the simulations, we
generated the observed data and knew the true underlying distributions and correlations
among variables; (ii) in the real data analysis, we encountered two kinds of missing data,
and the type of missing mechanisms for the original missingness was unknown.

Hepatitis data
The Hepatitis data consisted of 155 observations and 20 variables, six of which were
quantitative and 14 of which were categorical. The variables included class (the outcome
of the disease), age, sex, antivirals, fatigue, liver firm, and so on. There were 15 variables
with missing data. For each of variables, we computed the proportions of missing, and the
proportions were generally between 0.6% and 7%. There were three variables with higher
missing proportions: 10% for albumin, 18% for alk phosphate, and 43% for protime.
The correlations between quantitative variables were generally between 0.12 and 0.45 and
between −0.12 and −0.45. All 14 categorical variables were binary variables.

We first imputed the original missing data. Interestingly, all eight imputation methods
resulted in the same imputation for most of the missing data, and therefore, we omit the
results here.

We generated missing data on quantitative variables 15 (bilirubin), 16 (alk phosphate),
and 17 (sgot) and generated missing data on categorical variables 4 (steroid), 6 (fatigue),
7 (malaise), 10 (liver firm), and 12 (spiders). The proportions of missing included at this
stage was 15%. We repeated the procedure of generating missing data 100 times randomly
and independently. Both the original missing data and the generated missing data in each
of the 100 resulting datasets were imputed respectively using the eight methods.

For setting the MAR, the missingness of quantitative variables 15 to 17 was arranged to
depend on variable 18 since their absolute correlations with variable 18 were higher: the
smaller the values of variable 18, the greater the probability of missing for variables 15 to 17.
According to the correlations between variables, the missingness on categorical variables
4, 6, 7, 10, and 12 were arranged to depend on variable 9, 8, 8, 9, and 5, respectively. When
the dependent variables were in the first category, the probabilities of missing on variables
4, 6, 7, 10, and 12 were set to be greater than those when the dependent variables are in the
second category.

For setting MNAR, the probabilities of missing on quantitative variables 15 to 17 were
arranged to increase when the original values decreased. For the first category of variables
4, 6, 7, 10, and 12, the probabilities of missing were set to 0.05, 0.25, 0.05, 0.05, and 0.05,
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respectively. The probability of missing for the second category were assigned so that
generated missing proportion was 15% for each variable.

The imputation accuracy for missingness of quantitative variables is summarized in
Table S21. For each of the 100 datasets where we generated missing data under MAR or
MNAR, we found out the method that achieved the best imputation among the eight
methods and summarized over the 100 datasets in terms of the number of datasets where
the method achieved the best performance. The method with the highest number under a
condition is marked with a rectangle. There were some ties where more than one method
achieved the best results at the same time; therefore, the total number of a row in Table S21
is sometimes greater than 100. The imputation results for the missingness on categorical
variables are organized in a similar manner in Table S22.

A method with higher counts is regarded as better. According to the results in Table S21,
there is no method that performs better than all the others under all conditions. The
CHI methods (M5 to M7) perform better on more datasets for variables 15 and 17. This
phenomenon is believed to be related to the fact that the correlations between variables
15–17 are around 0.2. According to the simulation studies, the CHI methods perform well
under conditions with lower correlations. The real data are more complicated than the
simulated data since we do not know the missing mechanisms of the original missingness;
therefore, there might be mixed types of missingness in real data. The iterative method
(M8) and the rpart package with surrogate variables (M1) also work well on more datasets
for variables 15 and 16, respectively. In addition, we do not have to worry about how to
send an element with a missing split variable to one of the child nodes in this dataset since
none of the three methods is better than the other two methods.

With respect to the imputation tomissing categorical variables, there are many ties in the
imputation, according to Table S22, and these phenomena are similar to what we found in
the simulation studies. Overall, which method works better depends on the variables. The
CHI methods (M5 to M7) perform better on variables 4 and 6, while the iterative method
(M8) and the rpart package with surrogate variables (M1) work better on variables 10 and
12.

To summarize the results for both quantitative and categorical variables, we suggest the
following different imputation methods for different variables in the Hepatitis data: the
CHI methods for variables 4, 6, and 17; the GI (RSS) methods for variable 7; the iterative
method for variable 15; and the rpart package with surrogate variables for variables 10, 12,
and 16.

Credit approval data
There are 690 observations and 16 variables in the Credit approval data. Among the 16
variables, six of the variables are quantitative, and the other 10 variables are categorical.
Because of confidentiality, the meanings of variables were not released by UCI. We simply
used the variable id for our analysis and demonstrated the imputation results. For the
six quantitative variables, the absolute values of correlations were generally between 0.2
and 0.4, while some of the correlations were 0.019 and −0.080. Therefore, the correlation
structure between variables were more similar to the condition ρ= 0.3 in our simulations.
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There were seven variables with some missingness, and the proportion of missingness of a
variable ranged between 0.9% and 1.9%. Another feature which made the Credit approval
data different from the Hepatitis data was that one of the categorical variables (variable
6) was with 14 categories, and there were nine categories in another categorical variable
(variable 7).

We generated missing data under the MAR and MNAR mechanisms in the following
settings. We generated missing data for quantitative variables on variables 2, 3, and 11;
missing data for categorical variables were generated on variables 4, 9, 10, 12, and 13.

To generate MAR, the missingness on variables 2, 3, and 11 were set to be related to
the values of variable 8. The probabilities of missing on variables 2, 3, and 11 were set to
be higher when the values of variable 8 were smaller. For generating MAR on categorical
variables 4, 9, 10, 12, and 13, they were arranged to depend on the values of variables 5,
16, 16, 5, and 5, respectively. When the dependent variables were in the first category, the
probabilities of missing on variables 4, 9, 10, 12, and 13 were set to be higher; when the
probabilities of missing were set to be smaller when in the second category.

To generate MNAR on quantitative variables 2, 3, and 11, we arranged greater missing
probabilities when their original variable values were smaller. For variables 4, 9, 10, 12,
and 13, the probabilities of missing on the first category were set to be higher than the
probability of missing on the second category. All the remaining settings were the same as
the settings for the Hepatitis data in ‘Hepatitis data’ and were omitted here.

The imputation results for the generated missingness on quantitative variables and
categorical variables are reported in Tables S23 to S24, respectively, in terms of the number
of datasets, among the 100 generated missing datasets, where the method achieved the
best performance. The rpart package with surrogate variables (M1) performs better on
some variables (variables 2 and 11), based on Table S23. The results consist with what we
observed for variable 16 in Hepatitis data. Regarding the imputation results for categorical
variables, there are many ties, and the imputation performances still depend on variables.
For variables 4 and 10, most methods perform equally well. The iterative method (M8)
performs better on variable 9. In addition, some imputation performances not only depend
on variables but also depend on the types ofmissingmechanisms:M1 performs better under
MAR on variable 12 and under MNAR on variable 13; CHI methods (M6 and M7) work
well under MAR on variable 13;M2 performs slightly better under MNAR on variable 12.

To sum up the imputation studies of the two real data, the imputation of real data
are rather complicated. None of the eight methods can outperform all the others, and
the imputation sometimes not only depend on variables but also depend on the types of
missingmechanisms. Sincewe donot know the types ofmissingmechanisms for the original
missing data in the real data, there might be mixture types of missing mechanisms in our
imputation studies for real data. Combined with what we learned in the simulation studies,
the imputation results for real data are some combined effects of different correlations
between variables, different types of missing mechanisms, and the ratios of categories for
one categorical variable.
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DISCUSSION AND CONCLUSIONS
In the present study, we compared several CART-based missing data imputation methods
under various conditions and aimed to find out the method(s) with best imputation
accuracy. The methods in comparison included the rpart package with surrogate variables,
GI (RSS)methods, CHImethods, the proposed resampling algorithms, iterative imputation
methods, and MICE. Overall, we present the following findings, contributions, and
suggestions. To our limited knowledge, this is the first study to bring all these methods
together and to examine some conditions for comparing imputation efficiency. An
important finding is that the method that performs the best strongly depends on the
correlation between variables, which is rarely considered and examined in the literature. For
example, Hapfelmeier, Hothornb & Ulma (2012) and Rahman & Islam (2013) conducted
the typical missing data studies where real data were adopted in numerical studies so
that correlations between variables could not be manipulated as a factor in their studies.
Ramosaj & Pauly (2019) concentrated on a specific correlation in their simulation settings.
Xu, Daniels & Winterstein (2016) focused on various regression-type relationship between
variables in their simulation, and the correlations between variables were in amore complex
structure. The implication of our findings: future researches about the CART-based
missing data imputation are recommended to include the correlation between variables
as one factor in simulation studies. To future real data analysis, we would recommend to
choose imputation methods depending on the correlation between variables so that better
imputation accuracy can be achieved.

In addition, we also propose a new perspective on missing data in a CART imputation
problem and realize the perspective in the RE and H-RE algorithms in the current study.
We find that the CHI methods with RE and H-RE algorithms are useful when correlations
between quantitative variables are close to 0. The results provide future data analysis some
useful message: when the correlations between variables are low, CHI methods with RE
and H-RE algorithms are suggested for imputation because of their imputation accuracy.

For imputingmissing ordinal categorical variables,MICE (M9) generally performs worse
than the other eight methods and thus does not be recommended.When we concentrate on
single-tree methods for a fair comparison, the rpart package with surrogate variables (M1)
is recommended under ρ > 0 with MCAR and MAR conditions, based on our simulation
results. Similar findings have been shown in Hapfelmeier, Hothornb & Ulma (2012), where
they examined the imputation efficiency on real data (with unknown correlations and
missing mechanisms) and found that the rpart package functioned well, compared to
other single-tree imputation methods. Under MNAR,M6, M7 andM1 are suggested.

For imputing missing quantitative variables, we start with the condition under 10%
missing rate and summarize findings in the followings. These findings provide useful
guidelines to future imputation applications. The imputation methods one chooses should
depend on the correlations between variables, in order to achieve higher imputation
accuracy. MICE (M9) is recommended under correlations around 0.3 (ρ = 0.3). The
iterative imputation method (M8) is most recommended under ρ = 0.5 since it is robust
across various variables and missing mechanisms. There were some related findings
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in literature, where Stekhoven & Bühlmann (2012) also found that iterative imputation
methods generally performed well in various datasets. We would like to emphasize one key
difference between their settings and those in the current study: they concentrated on real
data so that the correlations between could not be controlled in their numerical study. In
the current study, we find that the imputation performance of onemethod actually depends
on the correlations between variables, and the iterative imputation method generally work
well under moderate correlation conditions. In addition, Hapfelmeier, Hothornb & Ulma
(2012) found that MICE was especially suitable in MAR settings. Our findings suggest
that the imputation performance of MICE depends on the correlations between variables.
The linkage to literatures further highlights the need to consider the correlations between
variables in further researches. The imputation accuracy of the commonly used method,
the rpart package with surrogate variables (M1), is slightly worse than that of M8 under
moderate correlation conditions but is also acceptable. When the correlation is increased
to a high level (ρ = 0.7), the RMSE of M1, M8, classical GI (RSS) methods (M2 to M4),
and M9 are at some comparable scales, and all of them are acceptable. When there is no
correlation (ρ =0), the CHI methods M5 to M7 generally perform better than the other
six methods. Loh & Shih (1997) and Kim & Loh (2001) remarked that their proposed CHI
method is selection unbiased when there is no correlation among variables and when there
are no missing data in the dataset. In the present study, we further found out that the CHI
methodsM5 toM7 also outperform the other six methods when missing data exist. How to
send elements with missing split variables to one of the child nodes is an issue. According
to the results in Fig. 1 to Fig. 4, when we fix one method for selecting split variables (GI,
RSS, or CHI), the resampling methods (RE or H-RE algorithm;M3,M4,M6,M7) generally
work better under ρ =0, while the majority methods (M2, M5) generally function better
under ρ= 0.3 and 0.7. We suggest selecting among the majority rule, the RE algorithm, or
the H-RE algorithm according to the correlations between variables. What’s more, all the
above phenomena are consistent across different missing rates and sample sizes, according
to simulation studies 2 and 3.

On the basis that the imputation efficiency depends on the correlation between
variables, we suggest first computing correlations between variables and then choosing
one imputation method with the best imputation accuracy based on the resulting variable
correlations when analyzing real data. For ordinal categorical variables, the type of missing
mechanism is further required to select one good imputation method. Given that the type
of missing data mechanism may be unknown in real data, we would suggest selecting a
more robust method. In specific, under ρ > 0, we can use M1 for categorical variables
and M8 and M9 for quantitative variables because its imputation accuracy under various
conditions is generally in good or moderate levels. Under ρ close to 0, CHI methods are
recommended.

In the present study, we followed the framework that treats each variable with
missingness as a response variable and sequentially impute it (Rahman & Islam, 2013;
Stekhoven & Bühlmann, 2012). Other CART-based imputation methods exist, for example,
the proximity imputation in Breiman (2003) andTang & Ishwaran (2017). They considered
the similarity between subjects in a so-called proximity matrix and imputed missing
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data using a subject with the highest similarity or using a weighted average of observed
values. Their work presents another interesting framework for imputation, and all of the
investigations in the current study can be further applied in the framework.
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