
Submitted 5 April 2024
Accepted 19 May 2024
Published 26 June 2024

Corresponding author
Simo Sun, sunsimo@mail.gufe.edu.cn

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.2118

Copyright
2024 Sun et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Analyzing reciprocity dynamics in supply
chains of public goods: a stochastic
evolutionary game approach
Simo Sun1, Man Wang2 and Yi Lei3

1 School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, China
2 School of Management Science, Guizhou University of Finance and Economics, Guiyang, China
3Guizhou Leading Network Technology Services Co. Ltd, Guiyang, China

ABSTRACT
To start with an infinitely repeated game of supply chains of public goods, a stout
reciprocity mechanism is introduced into income games to build a matric dynamic
equation. The conventional evolutionary gamemethod is employed to propose amodel
called the evolutionary game for the cooperative strategy of both the manufacturer and
the seller groups in the supply chain of public goods. Also, white Gaussian noise (WGN)
is added to reflect random interference in the evolution process. Then, a stochastic
dynamic system is established, and Ito’s differential equation is used to analyze both
sides’ strategy evolution in a game, interpret changes in system stability when random
disturbance is added, and finally test the influence of different situations on the system
stability by running a numerical simulation. The research shows that the stronger the
reciprocity coefficient is, and the system is subjected to random interference, the greater
the strategy choice change in players’ decision-making procedures when the repeated
game of public goods is conducted.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Computer Vision, Social Computing
Keywords Public goods, Repeated game, Dynamics, Itô differential equation, K-moment stability

INTRODUCTION
Public goods are a sort of commodity. In The Pure Theory of Public Expenditure, published
in 1954, (Samuelson, 1954) an American economist, indicated that public goods are
products and services that several people utilize in the same period. Public goods do not
have rivals when they are consumed or used and are not excludable in advantage.

A large amount of data on public goods in experimental games, as outlined by Cardenas
& Carpenter (2008), confirms that complete rationality in human behavior is not a strong
assumption. Chen, Ye & Wang (2012) indicated that individuals do not show complete
rationality and choose one of the options when preferences are a concern. Individuals
cooperate ubiquitously when, for example, environmental protection grows as an issue.
Generally, residents living in rural areas raise money to fix water canals and buy cleaning
services when public resources or public goods are not on time. These actions helped form
repeated or multiple-stage games of participants since individuals are aware of the result
of collective benefits greater than the total of individual ones when cooperation is in use.
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Hence a synergistic effect occurs. Friedman showed in 1971 that the result of any Nash
equilibrium can be constructed in a perfect equilibriumof repeated games (Friedman, 1971)
when the Pareto condition dominates the original game. In 1976, Aumann and Shapley
suggested the replacement of the ‘‘Nash Equilibrium’’ with ‘‘Subgame Perfect Equilibrium’’.
The reasons explained by theorists why cooperations emerged and maintained based on
varied perspectives. Robert (1981) believes that the repeated game of complete information
is pertinent to the evolution of the fundamental structure of interactions between agents
and proves that cooperation, altruism, revenge, and threat are the outcomes of bounded
rationality in real situations. The most proper means to promote cooperation is to employ
the robust reciprocity theory (Rand, Dreber & Elingsen, 2009) to expect future interests
in a long-term repeated game. Cooperation can be formed and maintained by building a
reasonably stout reciprocity mechanism for games on any public goods where cooperative
equilibrium cannot be formed.

Evolutionary games present a robust theoretical framework to explain how to promote
and keep cooperation. However, players may not always maintain the same rationality
when strategies are adjusted in real-life situations. Besides, conventional evolutionary
game models cannot reflect the effects of uncertain factors such as information opacity
and income volatility. Foster & Young (1990) proposed the Stochastic Stable Strategy (SSS)
concept in 1990 when studying stochastic issues in evolutionary games. Then, many
scholars proposed different stochastic evolutionary game models (Michihiro, George &
Rafael, 1993; Christine et al., 2004; Lorens & Martin, 2006; Wallace & Young, 2015). So far,
stochastic games have become a hot research topic for game theorists. In 2018, Ji et al.
(2018) studied the game model of the random public goods in finite groups. Li, Zichun &
Hui (2020) considered the impact of random perturbation payment on the equilibrium
point in the evolutionary game model.

However, few studies investigate the long-term benefits and stochastic issues in the
repeated game of public goods. More up-to-date research regarding reciprocity dynamics
in supply chains and evolutionary game theory in the literature (Ahmad, Shah & Al-Fagih,
2023;Hao et al., 2022). Therefore, the work and innovation of the article introduce a strong
reciprocity mechanism in the long-run benefits of the game based on the repeated games
of the manufacturer and seller groups in the supply chains of public goods, proposing a
model called the evolutionary game to cooperate between these groups in the supply chain
of public goods based on the classical evolutionary game models by adding WGN to reflect
random interference in the game process (Sun, Wang & Xue, 2016; Li & Xin, 2017; Sheng
& Chen, 2019;Wang & Xia, 2019). The cooperative evolution process of manufacturer and
seller group are analyzed to interpret changes in system stability with random disturbances,
and finally examining the effects of different situations on stability through numerical
simulations. More up-to-date research regarding the latest research can be found (Saeedi
et al., 2024; Ghanei, Contreras & Cordeau, 2023; Bilancini et al., 2024; Okada, 2023).
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Table 1 A payoff matrix of a repeated game.

Seller group

C (y) D (1−y)

Manufacturer group C (x) A1
1−ω ,

A2
1−ω

B1(1−ω)−δω
1−ω , (B2−δ)(1−ω)−δω1−ω

D (1−x) (C1−δ)(1−ω)−δω
1−ω , C2(1−ω)−δω1−ω D1+

−δ

1−ω ,D2+
−δ

1−ω ,

REPEATED GAME EVOLUTION MODEL OF PUBLIC GOODS
Model assumptions
Scenarios of a game for strategy interactions between the manufacturer group and seller
group in the supply chains of public goods are assumed to follow:

1. Both manufacturer and seller groups are affected by the long-term payoff of an
infinitely repeated game, which implies that every time the two groups conduct behavioral
interactions in a game, there are only two strategies to choose from, cooperation and
betrayal, and the two groups have different benefits when they choose different strategies
when games are played on public goods.

2. Both groups adopt the ‘‘cold trigger’’ mechanism in the repeated game process.
For example, after the first game is run, if the manufacturer group chooses to betray
while the seller cooperates in the first round, then the seller group will adopt a ruthless
trigger strategy, namely, the betrayal strategy for all. Accordingly, in the second round,
the manufacturer group will choose cooperation, and the seller will select defection. The
benefits of the seller groups’ cooperative strategy and the manufacturers’ defection strategy
are expressed by the present value of the long-term benefits.

3. Parameter assumption (Simo et al., 2021): δ(1>δ>0) characterizes the strong
reciprocity penalty coefficient, ω(1>ω> 0) denotes the discount factor, x designates
the likelihood that the manufacturer group picks the cooperative (C) strategy, and y shows
that of the seller group. D represents the defection strategy. A1, A2, B1, B2, C1, C2, D1, D2

characterize the payoffs of a game between the two groups.
According to the hypothesis, the strong reciprocity mechanism establishes the return

matrix of the asymmetric repeated game between the manufacturer and seller groups in
the supply chains of public goods. Table 1 presents the mathematical expressions.

Dynamic system
Equation (1) implies that dynamic systems exist for the manufacturer group and seller
group in the supply chains of public goods.
dx
dt
= x(1−x)(UC

1 −U
D
1 )

dy
dt
= y

(
1−y

)(
UC
2 −U

D
2
) (1)

where
UC
1 =

A1
1−ωy+(1 −y)

B1(1−ω)−δω
1−ω , UD

1 =
(C1−δ)(1−ω)−δω

1−barω y+(D1+
−δ
1−ω ) (1 −y);

UC
2 =

A2
1−ωx+

C2(1−ω)−δω
1−ω (1 −x), UD

2 =
(B2−δ)(1−ω)−δω

1−ω x+(D2+
−δ
1−ω ) (1 −x).
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According to the stable equilibrium of the dynamic system, Eq. (1) has five equilibrium
points (0,0), (0,1), (1,0), (1,1) and ( (D2−C2−δ)(1−ω)

A2+δω+(D2−B2−C2)(1−ω)
, (D1−B1−δ)(1−ω)
A1+δω+(D1−B1−C1)(1−ω)

),
respectively.

According to the arrow analysis method of the pure strategy of the Nash Equilibrium,
when A1

1−ω>
(C1−δ)(1−ω)−δω

1−ω , A2
1−ω>

(B2−δ)(1−ω)−δω
1−ω , namely, A1>C1(1−ω) −δ, A2>B2(1−ω)

−δ, Eq. (1) has a stable equilibrium point at (0,0), and also an optimal equilibrium
point. The outcome shows a stable Eq. (1) strategy when the internal environment is
deterministic. Nevertheless, owing to the complexity of public goods’ supply chains and
the external uncertainty, random factors disturb decision-makers. Therefore, the question
‘‘Is the strategy (0,0) still stable with the influence of random factors?’’ needs to be answered.
If it is stable, then what are the conditions? To this end, factors characterized as random
disturbance influence stability that needs to be discussed.

The non-negativity of 1−x , 1−y in Eq. (1) does not affect the evolution result of the
strategy equilibrium. Therefore, Eq. (1) is changed to the following dynamic system for
better discussion.{
dx = x (t )([A1+δω+(D1−B1−C1)(1−ω)]y (t )− (D1−B1−δ)(1−ω))dt
dy = y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x (t )− (D2−C2−δ)(1−ω))dt

(2)

The stochastic dynamical system after adding WGN into Eq. (2) is defined by

dx = x (t )([A1+δω+(D1−B1−C1)(1−ω)]y(t )− (D1−B1−δ)(1−ω))dt+

σx(t )dw(t ) (3)

dy = y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω))dt+

σ y (t )dw(t ) (4)

where σ denotes the random disturbance intensity. According to the group evolution
dynamics (Sheng & Chen, 2019), let σ [x (t )] = x(t )(1−x(t )), w(t ) denote the standard
Brownian motion; dw(t ) represents the WGN and follows the normal distribution
N (0,4t ). Then, the dynamical system represents the strategy transformation of the
manufacturer and seller groups with random disturbances, respectively.

REPEATED RANDOM EVOLUTION MODEL AND STABILITY
OF PUBLIC GOODS SUPPLY
According to the analysis in Section ‘Dynamic System’, when the parameters satisfy
A1>C1(1−ω)−δ, A2>B2(1−ω)−δ the conditions, Eq. (1) has a stable equilibrium point at
(0,0), but when the system is subject to random disturbance, the question ‘‘Is the strategy
(0,0) still stable?’’ needs to be answered. Random disturbance influences stability, so the
zero solution stability of stochastic differential equation is conceptualized.

Definition 1 (Cobbl, 1985; Zhang, Xue & Zhou, 2019; Xu, Liu & Qian, 2011; Hu, Huang
& Wu, 2008): Let the stochastic process X ={X(t), t ≥0} be the solution to the initial value
problem of the following It ô differential equation,

{
dX(t)= f(t,X(t))dt+g(t,X(t))dBt ∀t≥ 0
X(t0 )= x0
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If there is a negative k-moment Liapunov exponent in X (t ), i.e., lim
t→∞

t−1lnE|X(t)|k<0,
then the equation’s solution is said to be stable in terms of the k-expected moment
exponent; if limt→∞t−1lnE|X(t)|k>0, then the solution is unstable.

To use Lemma 1 to find the stability of the solution,
Lemma 1 (Cobbl, 1985; Zhang, Xue & Zhou, 2019; Xu, Liu & Qian, 2011; Hu, Huang &

Wu, 2008): Let the random process X ={X(t),t ≥0} be the solution of the initial value
problem in Eq. (5),{
dX(t)= f(t,X(t))dt+g(t,X(t))dBt ∀t≥ 0
X(t0 )= x0

(5)

where V(t,x) is a continuously differentiable mapping with c1,c2 positive real numbers that
lead to

c1|x|k≤V (t ,x)≤ c2|x|k. (6)

(1) If there exists a positive constant γ such that LV(t,x) ≤ - γV(t,x), the solution of the
initial value problem of the It ô differential equation is called exponentially stable in terms
of the k-expected moment, i.e., lim

t→∞
t−1lnE|X(t)|k<0.

(2) If there is a positive constant γ that makes LV(t,x) ≥ γV(t,x), the solution of the
initial value problem of It ô differential equation is said to be exponentially unstable to the
k-expected moment, that is, lim

t→∞
t−1lnE|X(t)|k>0.

where LV(t,x) = Vt(t,x)+ Vx(t,x) f(t,x)+ 1
2g

2(t,x) V(x,x)(t,x).
According to Lemma 1, sufficient conditions for the exponential stability of the k-

expected moment of the zero solution in the stochastic system are attained.
Proposition 1 For the stochastic differential Eq. (3),

dx = x (t )([A1+δω+(D1−B1−C1)(1−ω)]y− (D1−B1−δ)(1−ω))dt+σx(t )dw(t )

There exist c1 = c2 =1, k =1, γ =1 and Liapunov equation V (t,x) = x(t ),
When (1) A1+δω+(D1−B1−C1)(1−ω) =0, δ≤D1−B1− 1

1−ω , or
(2) A1+δω+(D1−B1−C1)(1−ω)>0, δ<min{D1−B1− 1

1−ω ,
C1−A1−1

1−A1ω+ω−ωω
}or

(3) A1+δω+(D1−B1−C1)(1−ω)<0, δ≥D1−B1− 1
1−ω , the expected moment of the

equation’s zero solution is exponentially stable.
When (4) A1+δω+(D1−B1−C1)(1−ω) =0, δ≥D1−B1+ 1

1−ω , or
(5) A1+δω+(D1−B1−C1)(1−ω)>0, δ≥D1−B1+ 1

1−ω , or
(6) When A1+δω+ (D1−B1−C1)(1−ω)<0, δ >max{D1−B1+ 1

1−ω ,1−A1+C1(1−
ω)}, the k-expected moment of the equation’s zero solution is exponentially unstable.

Prove: Considering the stochastic differential Eq. (3)
Assume that the Liapunov function V(t,x)= x(t ), c1 = c2 =1, k =1 exists which satisfies

Eq. (5) in lemma1, and there is LV(t,x)= f(t,x)= x(t)([A1+δω+(D1−B1−C1)(1−ω)]y(t)−
(D1−B1−δ)(1−ω)). According to Lemma 1, if γ =1 makes Lv(t,x) ≤ − V(t,x), then, the
zero-solution k-expected moment of the equation is exponentially stable, so

LV(t,x)= f(t,x)= x(t )([A1+δω+(D1−B1−C1)(1−ω)]y(t )−(D1−B1−δ)(1−ω))≤
−x(t ),
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Therefore, x(t)([A1+δω+ (D1−B1−C1)(1−ω)]y(t)− (D1−B1−δ)(1−ω)+1) ≤0
As x(t) ∈ [0,1], so long as
[A1+δω+ (D1−B1−C1)(1−ω)]y(t)− (D1−B1)−δ) (1−ω)+1 ≤0.
Therefore, the following situations are discussed:
(1) When A1+ δω+ (D1−B1−C1)(1−ω) =0, there is (D1−B1− δ)) (1−ω)≥ 1,

namely D1−B1−
1

1−ω ≥ δ;
(2) When A1+δω+ (D1−B1−C1)(1−ω)>0,
and when y(t) =0时, there is (D1−B1−δ)) (1−ω)≥ 1,即δ≤D1−B1−

1
1−ω .

and if y(t) =1, A1+δω+ (D1−B1−C1)(1−ω)− (D1−B1−δ)) (1−ω)+1 ≤0, then
δ(1−A1ω+ω−ωω)+A1−C1+1 ≤0, namely δ ≤ C1−A1−1

1−A1ω+ω−ωω
.

Therefore: δ<min{D1−B1−
1

1−ω ,
C1−A1−1

1−A1ω+ω−ωω
}, D1−B1−

1
1−ω ≥ δ.

(3) When A1+δω+ (D1−B1−C1)(1−ω)<0, then, there is (D1−B1−δ) (1−ω)−1
≤0, (D1−B1− δ)) ≤ 1

1−ω , δ ≥D1−B1−
1

1−ω , (D1−B1− δ) (1−ω)− 1>0, that is,
D1−B1−δ > (1−ω).

On the other hand, from lemma 1 , if there is γ =1, such that LV(t,x)= f(t,x)≥x(t), the
k-expected exponential moment of the initial value problem’s solution of It ô differential
equation is unstable. It can be obtained from

LV(t,x) = f(t,x) = x(t)[A1+δω+(D1−B1−C1)(1−ω)]y(t)− (D1−B1− δ)(1−
ω)≥x(t)

that
x(t)([A1+δω+(D1−B1−C1)(1−ω)]y(t)− (D1−B1−δ)(1−ω)−1)≥0
As x(t) ∈ (0,1), so long as
[A1+δω+(D1−B1−C1)(1−ω)]y(t)− (D1−B1−δ)(1−ω)−1≥0;
Therefore, the following situations are discussed:
(4) When A1+ δω+ (D1−B1−C1)(1−ω) = 0, −(D1−B1− δ)(1−ω)− 1 ≥0,

(D1−B1−δ) ≤ −1
1−ω , δ≥D1−B1+

1
1−ω .

(5) When 当 A1+ δω+ (D1−B1−C1)(1−ω)>0, (D1− B1− δ)(1−ω)+ 1 ≤0,
δ≥D1−B1+

1
1−ω ;

(6) When A1 + δω+ (D1−B1−C1)(1−ω)<0, and when y(t) = 0, there is
(D1−B1−δ)(1−ω)+1 ≤ 0, that is: δ≥D1−B1+

1
1−ω .

and when y(t) =1, there is A1+δω+ (D1−B1−C1)(1−ω)− (D1−B1−δ)(1−ω)−
1≥0, and δ+A1−C1(1−ω)−1≥0, that is: δ≥ 1−A1+C1(1−ω);

So: δ >max{D1−B1+
1

1−ω ,1−A1+C1(1−ω)}
Proposition 2 is obtained similarly.
Proposition 2 For the stochastic differential Eq. (4)
For dy = y(t )([A2+ δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2− δ)(1−ω))dt +

σ y(t )dw(t ), there are c1 = c2 =1, k =1, γ =1 and the Liapunov function V(t,y) = y(t),
when

(1) A2+δω+ (D2−B2−C2)(1−ω) =0, δ ≤ D2−C2−
1

1−ω , or
(2) A2+δω+ (D2−B2−C2)(1−ω)>0, δ<min{D2−C2−

1
1−ω , A2−B2(1−ω)−1}, or

(3) when A2+δω+(D2−B2−C2)(1−ω)<0, δ ≤ D2−C2−
1

1−ω , the expected moment
of the zero solution of the equation is exponentially stable when

(4) A2+δω+ (D2−B2−C2)(1−ω) =0, δ≥D2−C2+
1

1−ω , or
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(5) A2+δω+ (D2−B2−C2)(1−ω)>0, δ≥D2−C2+
1

1−ω , or
(6) A2+δω+(D2−B2−C2)(1−ω)<0, δ >max{D2−C2+

1
1−ω ,1−A2+B2(1−ω)}, the

zero solution of the equation is exponentially unstable with the k moment.
To prove, consider the stochastic differential Eq. (4)
Assume that the Liapunov function V(t,y) = y(t), then there is c1 = c2 =1, k =1, which

satisfies Eq. (6) in Lemma 2, and there is LV(t,y) = f(t,y) = y(t)([A2+ δω+ (D2−B2−

C2)(1−ω)]x(t)−(D2−C2−δ)(1−ω)). From Lemma 2, if there is γ =1, such that Lv(t,y)
≤ − V(t,y), then the zero-solution k-expected moment of the equation is exponentially
stable, and therefore, there is

LV(t,y)= f(t,y)= y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω))≤
−y(t ),

and therefore, y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω)+1)
≤0

As y(t) ∈ (0,1), so long as
[A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω)+1 ≤0
Therefore, the following situations are discussed.
(1) When A2+δω+ (D2−B2−C2)(1−ω) = 0, there is −(D2−C2−δ)(1−ω)+1 ≤0,

namely: D2−C2−δ≥
1

1−ω , then D2−C2−
1

1−ω ≥ δ ;
(2) When A2+δω+ (D2−B2−C2)(1−ω)>0,
Suppose that x(t)= 0, if there is−(D2−C2−δ)(1−ω)+1≤ 0, then D2−C2−

1
1−ω ≤0.

When x(t) =1, if there is A2+δω+ (D2−B2−C2)(1−ω)− (D2−C2−δ)(1−ω)+1
≤0, then there is A2−B2(1−ω)−1−δ≥0, that is: δ ≤ A2−B2(1−ω)−1.

So δ ≤min{ D2−C2−
1

1−ω , A2−B2(1−ω)−1}
(3) When A2+ δω+ (D2−B2−C2)(1−ω)<0, (D2−C2− δ)(1−ω)≥1, namely:

D2−C2−
1

1−ω ≥ δ

On the other hand, according to lemma 1 , if there is γ =1, such that LV(t,x) = f(t,x)
≥x(t), the k-expected moment exponent of the initial value problem solution of It ô
differential equation is said to be unstable. It can be obtained from

LV(t,y)= f(t,y)= y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω))≥y(t).
That y (t )([A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω))−1≥0
As y(t) ∈ (0,1), so long as
[A2+δω+ (D2−B2−C2)(1−ω)]x(t )− (D2−C2−δ)(1−ω)−1≥0
Therefore, the following situations are discussed.
(4) When A2+δω+ (D2−B2−C2)(1−ω) =0, −(D2−C2−δ)(1−ω)−1≥0, namely,

D2−C2+
1

1−ω ≤ δ.
(5) When A2+δω+ (D2−B2−C2)(1−ω)>0, −(D2−C2−δ)(1−ω)−1≥0, namely,

D2−C2+
1

1−ω ≤ δ.
(6) When A2+δω+ (D2−B2−C2)(1−ω)<0,
Let x(t ) =0, and there is −(D2−C2−δ)(1−ω)−1≥0, that is: D2−C2+

1
1−ω ≤ δ.

When x(t )=1, and there isA2+δω+(D2−B2−C2)(1−ω)−(D2−C2−δ)(1−ω)−1≥
0, so A2−B2(1−ω)+δ−1≥ 0, that is: δ≥ 1−A2+B2(1−ω)

and therefore, δ≥max{ D2−C2−
1

1−ω , 1−A2+B2(1−ω)}.
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From Propositions 1 and 2, if the parameters satisfy any one of the exponential stability
conditions 1 through 3 of the zero solution k-expected moment, the stochastic dynamic
system’s equilibrium point (0,0) is constituted of Eqs. (3) and (4), respectively, and is
exponentially stable in terms of the k-expectedmoment, that is, (0,0) is still an evolutionarily
stable strategy under random disturbances. Likewise, if the parameters satisfy any one of
the conditions of Propositions 4 through 6, the equilibrium point of the system (0,0) for
the k-expected moment is exponentially unstable.

NUMERICAL SIMULATION
To describe intuitively the differential equations’ evolution process, the dynamic evolution
process is simulated for distinct parameters. From the income matrix, assuming that the
incomes of the manufacturer and seller groups in the repeated game of public goods
take different parameter values. Then, the numerical simulation of the evolutionary game
process is executed using the combination of these different parameters. The following two
situations are mainly considered for numerical simulation:

Scenario 1 In the stable evolution process of cooperative interaction, Set A1= 2, δ = 0.4,
ω = 0.5, D1= 3, B1= 0, C1= 4, A2= 4.5, D2= 3.8, B2= 2.5, C2= 1, then the parameters
satisfies

Proposition 1 and Condition 2) A1+δω+(D1−B1−C1)(1−ω)>0, δ= 0.4<min{D1−

B1− 1
1−ω ,

C1−A1−1
1−A1ω+ω−ωω

} =1 and
Proposition 2 and Condition 2) A2+δω+ (D2−B2−C2)(1−ω)>0, δ= 0.4<min{D2−

C2−
1

1−ω , A2−B2(1−ω)−1} = 0.8,且 A1>C1(1−ω) −δ, A2>B2(1−ω) −δ.
Then, the equation’s zero-solution k-expected moment is stable exponentially, and the

stochastic system will evolve from (1,1) to the stable strategy (0,0).
Numerical simulation 1: Numerical simulation is carried out according to the parameter

values in case 1, and the random interference intensity is taken as σ =0, 0.25, 0.75, and 2,
respectively. The cooperative strategy’s evolution process is simulated for the manufacturer
and seller groups and is presented in Fig. 1.
1. Figures 1A shows that when there is no random disturbance in the system, the strategies

of the manufacturer and seller groups evolve to a stable equilibrium state of cooperative
strategy after some time passes. This is mainly because their subjective cognition and
information mastery rationally limit the players. Still, manufacturers and sellers have
gradually mastered commodity and shopping characteristics and becomemore rational
through market operation. Rational players can only benefit from cooperation.

2. Figures 1B depict that as the system is subject to less random disturbance, the
cooperation strategy of the manufacturer and seller groups will fluctuate and then
evolve to a stable equilibrium state of cooperation. Due to the players’ rational
limitations in subjective cognition and information mastery, there will be inconsistent
strategic judgments when the system is affected by uncertain and random events, such as
emergencies, thus resulting in inconsistent decision-making and volatile cooperation
strategy. This also aligns with objective facts since rational players can benefit only
through cooperation.
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Figure 1 Numerical simulation of the evolution process.Numerical simulation of the evolution process
of the cooperative strategy of the manufacturer and seller groups.

Full-size DOI: 10.7717/peerjcs.2118/fig-1

3. Figures 1C and 1D show that when the random interference is intense, the cooperation
strategy of the two groups fluctuates wildly and will deviate from the cooperative
strategy (1,1) and evolve to the equilibrium steady state of betrayal policy (0,0). This
is because the entirely rational players are subject to greater random interference,
making them unable to control their loss of income from random interference such as
emergencies. The greater the strength of random interference, the faster the rational
players choose a betrayal strategy, and only in this way can the players reduce the losses
caused by random interference and obtain the maximum profit.
Numerical simulation 2: In case 1, only the strong reciprocity coefficient, δ= 0.6, in the

repeated game is changed, and the values of other parameters and the strength of random
interference still take σ = 0, 0.25, 0.75, and 2, respectively. The cooperative strategy’s
evolution process is simulated for the manufacturer and the seller groups and can be seen
in Fig. 2.
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Figure 2 Numerical simulation of the evolution process.Numerical simulation of the evolution process
of the cooperative strategy of the manufacturer group and the seller group.

Full-size DOI: 10.7717/peerjcs.2118/fig-2

(4) When Figs. 1 and 2 are compared, the larger the strong reciprocity coefficient δ
is, the more the evolution of the cooperation strategy fluctuates with the same random
interference intensity, which indicates that the manufacturer group and the seller group
pay more attention to the impact from the strong reciprocity coefficient on their earnings
when making decisions.

Scenario 2 The evolution process of cooperative interaction is unstable, set A1= 3, δ
= 0.4, ω = 0.5, D1 = 1, B1 = 4, C1 = 4.4, A2 = 3, D2 = 1.5, B2 = 4.5, C2 = 5, then the
parameters satisfies

Proposition1 and Condition 6) A1+δω+ (D1−B1−C1)(1−ω)<0, δ >max{D1−B1+
1

1−ω }, 1−A1+C1(1−ω)} and
Proposition 2 and Condition 6) When A2 + δω+ (D2 − B2 − C2)(1− ω)<0,

δ >max{D2−C2+
1

1−ω ,1−A2+B2(1−ω)},且 A1>C1(1−ω) −δ, A2>B2(1−ω) −δ,
Where the system’s zero-solution k-expected moment is unstable exponentially, the

random system will not evolve from (1,1) to the stable policy (0,0).
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Figure 3 Numerical simulation of the evolution process.Numerical simulation of the evolution process
of the cooperative strategy of the manufacturer and the seller group.

Full-size DOI: 10.7717/peerjcs.2118/fig-3

Numerical simulation 3: Numerical simulation is carried out according to the parameter
values in case 2, and the random interference intensity is taken as σ = 0, 0.25, 0.75, and 2,
respectively. The cooperative strategy’s evolution process is simulated for the manufacturer
and seller groups and is presented in Fig. 3.

(5) Figures 3A and 3B indicate that when there is no or a little random interference in
the system, the strategies of the manufacturer and seller groups will soon evolve to a stable
equilibrium state of cooperative strategy. This is mainly because rational game players can
quickly grasp the market operating rules, and cooperation will result in the maximum
benefit.

(6) Figures 3C and 3D show that the larger the random interference intensity, the larger
the fluctuation of the cooperation strategy of the two groups would be, and it is unable
to evolve from state (1,1) to (0,0). As the parties of the game cannot predict the market
environment that randomly occurring factors will impact, the decision-making processes
of the manufacturers and seller groups are always swaying.
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Figure 4 Numerical simulation of the cooperative strategy evolution.Numerical simulation of the co-
operative strategy evolution process of the two groups.

Full-size DOI: 10.7717/peerjcs.2118/fig-4

Numerical simulation 4: In case 3, only the strong reciprocity coefficient δ= 0.6 in the
repeated game is changed, and the values of other parameters and the strength of random
interference still take σ = 0, 0.25, 0.75, 2, respectively. The cooperative strategy’s evolution
process is simulated for the two groups and is depicted in Fig. 4.

(7) When Fig. 3 and 4 are compared, the larger δ, the more significant fluctuation of
the cooperation evolution strategy in the case of the same random interference intensity,
which means that the two groups pay more attention to the effect of the strong reciprocity
coefficient on their earningswhendecisions aremade, so their hesitation ismore prominent.

CONCLUSION
This article investigates the evolution process of manufacturers’ and sellers’ behavior
strategies in the public goods supply chain. Due to the large period and space in public
goods projects and the many factors involved, various uncertainties exist in the operation
of public goods. To fully reflect the real state of the system, the manuscript begins with
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the repeated game between the manufacturer group and the seller group in supply chains
of public goods. It introduces a strong reciprocity mechanism for in-game revenue. It
also builds a model called the evolutionary game for the cooperative strategy of the
manufacturer and the seller groups by implementing the conventional evolutionary game
method. Then, WGN is added to establish a stochastic dynamic system, and the k-moment
of the cooperative strategy is simulated to investigate the evolution process.

Research shows that the cooperation strategy of manufacturers and sellers will fluctuate
and then stabilize after some time passes when random interference occurs. The players
will adopt a cooperative strategy when the strong reciprocity coefficient of betrayal is small.
On the other hand, when it is large, the players will adopt a betrayal strategy. Thus, the
greater the random interference intensity, the faster it evolves to equilibrium. Namely,
the stronger the reciprocity coefficient and the strength of random interference to the
system, the greater the changes in selecting strategies when the decision-making processes
of players in the repeated game of public goods are under consideration.

According to the research results, the following suggestions are put forward to manage
the supply chains of public goods:

(1) To overcome the influence of random factors not directly related to the system
but external factors, manufacturers and sellers should pay close attention to the impact
of market policies and emergencies and reduce the influence of uncertainties stemming
from external factors. Currently, the exchanges and cooperation between manufacturers
and sellers need to be strengthened for common information sharing and give benefits
to the people to maximize the supply chain’s overall revenue in line with the principle of
cooperating for a win-win situation.

(2) To make the supply chain of public goods run stably, it is necessary to strengthen the
behavior supervision of manufacturers and sellers through the effect of a strong reciprocity
policy, to avoid one party choosing a betrayal strategy to maximize individual benefits.

The limitation of the research is that WGN is used to represent randomness. However,
other types of randomness could be more realistic in modeling real cases. Instead of using
real datasets, we implement simulation data. Even though it is out of the scope of the
research, real datasets can provide more reliable results.
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