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ABSTRACT
Efficiency, safety and cost are three major evaluation indexes of warehouse operation.
However, the uncertainty of efficiency, safety and cost factors will lead to economic
losses and waste of resources. The purpose of this study is to propose a novel
parameterized neutrosophic objective–proportionate genetic algorithm model (PNO–
PGA) to optimize the above three objectives. There are three main contributions of
this study. Firstly, a novel score function of neutrosophic sets (NSs) is proposed to
effectively integrate the fuzziness of efficiency, safety and cost to avoid the evaluation
result being too idealized. Secondly, a novel proportionate genetic algorithm is applied
to adaptively realize the iteration and inheritance processes. Finally, two parameters are
proposed tomake the algorithmmodel flexibly adapt to different types of environments
and problems. Then, an example is used to compare the new method with genetic
algorithm (GA). The result shows that PNO-PGA has better problem-solving ability in
warehouse operation than GA.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Multi-objective optimization, Neutrosophic fuzzy set, Genetic algorithm, Aggregating
operator, Warehouse operation

INTRODUCTION
With the rapid development of warehouse operations, the three objectives of efficiency,
safety and cost constitute the core part of warehouse operation. Therefore, improving
efficiency, reducing risks and increasing costs have received the attention of enterprises
and researchers. Much exploratory research in the field of multi-objective have been
done in the last few years. Tanabe & Ishibuchi (2020) established a set of 16 practical
Multi-Objective optimization (MOO) problems with bounded constraints to make the
performance evaluation more realistic. Castonguay et al. (2023) takes the modified MOO
model to identify potential gains in efficiency in animal production. At present, the MOO
method, which utilizes the robust optimization of the expectation and variance of the
minimum function, is widely used in many fields, such as flood control of reservoirs (Liu &
Luo, 2019), integrated energy system of buildings (Wang et al., 2020), corporate governance
(Jung & Choi, 2022), risk-related resources scheduling (Zuo, Zio & Xu, 2023), etc.
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Meanwhile, genetic algorithm (GA) has become an important method to solve MOO
problem.Costa-Carrapiço, Raslan & González (2019) provided the first substantial evidence
base for evaluating the potential of MOO by using GA. The performance of GA is improved
by combining the advantages of different algorithms. In addition, GA can optimize the
model, by using artificial neural network combing (Yan et al., 2019), sorting cuckoo
search algorithm (Aparna & Swarnalatha, 2023) and simulation (Perez-Tezoco et al., 2023)
together. The potential for improving MOO is realized by using GA technology. Salata
et al. (2020) proposed a method for optimizing existing buildings structure by using GA
technologies. Recently, Dogan et al. (2022) generalize a sludge biomass ash composting
model based on deep neural network and genetic algorithm for sludge biomass ash
composting optimization in the co-disposal process of dewatered sludge and biomass fly
ash. Moreover, Chen, Jia & He (2023) put forward a novel bi-level multi-objective genetic
algorithm to solve the integrated assembly line balancing and part feeding problem.

Many studies that apply simplified neutrosophic sets (NSs) to MOO show great research
value. As a new fuzzy set, NSs use to improve the MOO model. Thereafter, Rashno,
Minaei-Bidgoli & Guo (2020) proposed a clustering algorithm based on the NSs theory
and a data uncertainty by exploring data density characteristics of the NSs. Alpaslan
(2022) proposed a new NS-based complete local binary pattern hybrid method for texture
classification. Hassan, Darwish & Elkaffas (2022) used Type-2 NSs to solve the medical
database deadlock problem in real time. The existing study showed that, scholars have
made significant progress in NSs, and how to make the objective function realistic has
become a research hotspot. However, there are few researches on heuristic algorithms with
multi-objective model which can adjust the weight flexibly by using NSs and expand the
application ranges of the algorithm.

Simplified NSs have many advantages in handling uncertain information, and many
scholars have conducted extensive research on this topic. Ye (2014) proposed a series of
improved cosine similarity measures on simplified NSs. Peng et al. (2014) established a
particular method for ordering to solve problems demand multi-criteria decision-making
based on the outranking relation of simplified NSs. Kilic & Yalcin (2020) proposed a
multiple stages methodology for sustainability performance evaluation by using NSs.
Huang et al. (2021) aimed at the problem of ranking two single-valued neutrosophic sets
(SvNSs) and proposed a method of ranking SvNSs values based on relative measures.

Moreover, the latest researches regarding to neutrosophic aggregation operators have
also been reviewed.Wu et al. (2018) introduced a series of Hamacher aggregation operators
on NSs. Garg & Nancy (2019) referred a new notion of possibility linguistic SvNSs. Liu &
Li (2019) put forward generalized Maclaurin symmetric mean operators on NSs. Yang,
Fu & Han (2023) developed a novel multi-criteria decision-making approach by using
complying with the defined aggregation operators. Kamran et al. (2023) introduced
an Einstein aggregation operator to handle uncertainties in the data. To advance the
understanding of MOO problems, there are still certain issues, including reducing the
computational cost of MOO problem and the effect of operators on target weights.

In a word, the extensive research and the aforementioned research results provide
the theoretical basis for this study; moreover, scholars have made significant progress in
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MOO problems and the solutions adopted. However, the research on warehouse operation
management is not yet complete enough to structure a more complete framework to
address the impacts and challenges of efficiency, safety, and cost on warehouse operation.
Therefore, this study takes warehouse operation effectiveness as the object of research, and
then, the efficiency, safety, and cost factors of production activities affecting enterprises
are quantified. Meanwhile, it seems there is a contradictory and fuzzy relationship between
efficiency, safety, and cost. When safety and efficiency are improved, costs may be
significantly reduced as a result of optimized processes and reduced risk. However,
improvements in safety may also have implications for both efficiency and cost. Moreover,
changes in cost can directly drive alterations in efficiency and safety. Therefore, this study
takes warehouse operation effectiveness as the object of research, and then, the efficiency,
safety, and cost objectives of production activities affecting enterprises are quantified.

Specifically, this study combines the data processing ideas ofNSs and heuristic algorithms
together, and proposes a specific neutrosophic objective–proportionate genetic algorithm
model (PNO–PGA). For convenience, the main research contributions are as follows:
Firstly, this study is based on the concept of NSs, which integrates three different objectives
of safety, efficiency, and cost affecting the production activities of enterprises to make the
different objectives achieve compatible effects. Secondly, based on the NS, a generalized
score function is introduced and applied to the proportional genetic algorithm to establish
the PNO–PGA model, which provides a reference for evaluating and optimizing the
production activities of enterprises. Finally, this study goes through a numerical example
and calculates the model. Simulation software is used to compare the modified case with
the unmodified case to get realistic results, and then verify the validity of the model.

The contents of this study are organized as follows: In ‘‘Preliminaries’’, the basic concepts
of MOO, NSs, GA, and score functions of NSs are introduced. In ‘‘Optimization Method’’,
the application of the generalized score function on SvNSs are described, and establish
a parameterized neutrosophic goal-proportional genetic by using NSs. In ‘‘Illustrative
Exemplicification’’, the effectiveness of the PNO-PGAmodel is validated using an example.
In ‘‘Conclusion’’, the full text is summarized.

PRELIMINARIES
Definition 1: Denote a universal set as X, for any given x ∈X , denote

f (x)=
(
f1(x),f2(x),...,fk (x)

)
, (1)

e (x)= (e1(x),e2(x),...,em(x)), (2)

where x = [x1,x2,...,xn]T ∈ X , x−i ≤ xi ≤ x+i ,wheras x
−

i and x+i are all crisp numbers.
Then, a generalized MOO problem is described as following

minf (x)=
(
f1(x),f2(x),...,fk(x)

)
, (3)
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s.t .e (x)= (e1(x),e2(x),...,em(x))≥ 0. (4)

Theoretically, it is difficult to find accurate feasible solutions for NP optimal problems
in limited time. Then, the existing heuristics algorithms seek near-optimal solutions at a
low cost, and GA is one of these heuristic algorithms. The specific definition of classical
GA is as follows (Lei et al., 2005).

Definition 2: AGA is a kindof heuristic algorithm to solve optimizationproblems of both
constrained and unconstrained. By referring the natural selection process in biology, the GA
modifies one member of all individual solutions generation after generations. In each step,
the new individuals for the next generation are generated by randomly selecting individuals
from the current generation and using them as parents. Time and time again, the optimal
solution can be obtained through population evolution. Through summary and induction,
the aforementioned statement can be expressed as GA= (C,E,P0,M ,8,0,9,N ), where
Crepresents the coding methods of individuals, E represents the evaluation function of the
fitness value of individuals, P0 represents the initial state of population, M represents the
size of population, 8 represents the operator for selection, 0 represents the operator for
crossover, 9represents the operator for mutation, N represents the end condition of GA.
For convenience, a brief flow chart of GA is shown as Fig. 1.

In the following, the concept of classical single-valued NS is introduced. It is noteworthy
that this kind of fuzzy set has been widely used in medical diagnosis (Peng et al., 2014),
decision making (Sodenkamp, Tavana & Caprio, 2018), and image process (Das et al.,
2017), etc.

Definition 3: Assume that Y is a point space with a generic member represented by y .
A truth membership function TA

(
y
)
, an indeterminacy membership function IA

(
y
)
, and

a falsity membership function FA
(
y
)
form a single-valued neutrosophic set (SvNSs) A on

Y , where TA
(
y
)
,IA
(
y
)
, and FA

(
y
)
are all mapping function from Y to [0,1], whereas

0≤TA
(
y
)
+ IA

(
y
)
+0A

(
y
)
≤ 3.

Then, a SvNSs A is denoted as A
(
y
)
=
{〈
x,TA

(
y
)
,IA
(
y
)
,FA

(
y
)〉∣∣y ∈Y }.

The single-valued neutrosophic element in A is designated as a= 〈TA,IA,FA〉. for
convenience.

Definition 4: (Guo, Şengür & Ye, 2014) Assume that Y contains two single-valued
neutrosophic components, denoted as

a1 =
〈
TA
(
y1
)
,IA
(
y1
)
,FA

(
y1
)〉
, (5)

a2 =
〈
TA
(
y2
)
,IA
(
y2
)
,FA

(
y2
)〉
. (6)

Then, a classical similarity score between a1 and a2 isproposed as

S(a1,a2)=

(
TS
(
y1
)
·TS

(
y2
)
+ IS

(
y1
)
· IS
(
y2
)
+FS

(
y1
)
·FS
(
y2
))(√

T2
S
(
y1
)
+ I2S

(
y1
)
+F2

S
(
y1
)
·

√
T2
S
(
y2
)
+ I2S

(
y2
)
+F2

S
(
y2
)) . (7)

In the following section, a novel PNO–PGA is proposed to solve MOO problem.
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Figure 1 Classical GA process.
Full-size DOI: 10.7717/peerjcs.2117/fig-1

OPTIMIZATION METHOD
GSF on SvNSs
Inspired by Guo, Şengür & Ye (2014), a kind of GSF on SvNSs is introduced as follows.

Definition 5: Assume that a is a single-valued neutrosophic components on Y , it is
denoted as

a=
〈
TA
(
y
)
,IA
(
y
)
,FA

(
y
)〉
. (8)

Then, a kind of GSF on a is denoted as

S(a)= f
(
TA
(
y
)
,γ
)
, (9)

where f ′TA
> 0, f ′γ > 0, f

(
TA
(
y
)
,γ
)
∈ [0,1], whereas

γ = cos
〈(
TA
(
y
)
,IA
(
y
)
,FA(Y )

)
,(1,0,0)

〉
. (10)

It is noteworthy that S(·) is composed of two independent variables, where one is TA
(
y
)

which indicates the modulus, whereas the other is γ which indicates the degree of similarity
between a and 〈1,0,0〉.

Definition 6: Suppose a is a single-valued neutrosophic number on Y , it can be denoted
as

a=
〈
TA
(
y
)
,IA
(
y
)
,FA

(
y
)〉
. (11)
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Then, a specific GSF on a is denoted as

SF (a)=TA
(
y
)
·γ =TA

(
y
)
·

Tλ
A

(
y
)√

T2λ
A

(
y
)
+ I2λ

A

(
y
)
+F2λ

A

(
y
) , (12)

where λ is a positive integer which represents the decision-maker’s subjective attitude
towards extremely large or small values. Obviously, S′F ,TA

> 0, S′F ,γ > 0, SF (·,·)∈ [0,1].
Especially, when the weight vector for 〈T,I,F〉 is given as 〈w1,w2,w3〉, SF (a) can be
expressed as

SF (a)==
TA
(
y
)
·
(
w1TA

(
y
))λ√(

w1TA
(
y
))2λ
+
(
w2IA

(
y
))2λ
+
(
w3FA

(
y
))2λ . (13)

PNO-PGA
On the basis of combining GA and NS theories, a novel heuristic algorithm is proposed.
For convenience, the studied problem will be introduced firstly.

(i) Problem introduction
In the production activities of enterprises, there are a variety of objectives to be considered,
where efficiency, safety and cost are the three most important goals. For convenience, the
measurement values of efficiency, safety and cost are denoted as E, S, and C , respectively.
Assume that E, S, and C are all bounded. Assume that there is a production project which
has a collection of infinite alternatives. For convenience, the collection of alternatives is
denoted as X, and the corresponding representative alternative is denoted as x . Denote
x = [x1,x2,...,xn]T , where x−i ≤ xi≤ x+i , x

−

i and x+i are all crisp numbers. For any given
x ∈X , it gets a vector of E (x), S(x), and C (x). Here, as E (x) and S(x) get larger, the value
C (x) decreases, and the corresponding alternative x is better. Denote the constraints in the
given optimization problem as

e (x)= (e1(x),e2(x),...,em(x))≥ 0. (14)

Denote

f ∗(x)= (E (x),S(x),C (x)). (15)

Then, a generalized MOO problem is described as

minf ∗(x)= (−E(x),−S(x),C(x)), (16)

s.t .e (x)= (e1(x),e2(x),...,em(x))≥ 0. (17)
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(ii) Problem analysis
To solve the aforementioned problem, the three objectives are explored before calculation.
For any given alternative x ∈X , it gets a vector (E (x),S(x),C (x)). Obviously, the larger
E (x) or S(x), the better; the smaller C (x), the better. Furthermore, S(x)has an effect
on E (x) and C (x). During production operations, when S(x) is a small number, the
management’s attention is usually distracted by safety issues. To ensure the safety of
production, the management will reduce the efficiency appropriately, which means the
credibility of E (x) will be reduced in real production. Meanwhile, when S(x) is a small
number, potential accident risks increases in the production process of industry, and these
accident risks will be converted into the opportunity cost of production of enterprises,
leading to the increase of C (x). To eliminate the dimensional information from the
data, E (x),S(x), and C (x) should be normalized. For convenience, this study denotes
the normalized results as EN (x),SN (x), and CN (x), respectively. Here, EN (x) ∈ [0,1],
SN (x)∈ [0,1], CN (x)∈ [0,1]. Then, it can be obtained that 1−SN (x) is the potential risk
of industry production. In this situation, the vector

Gx0 =〈EN (x),1−SN (x),CN (x)〉 (18)

is suitable to be dealt with as a simple neutrosophic number, and the set X issuitable to be
dealt with as a SvNSs, it gets

XG={(x,〈EN (x),1−SN (x),CN (x)〉)|x ∈X }. (19)

Here, for any given x ∈ X , by using Eq. (13), it gets its corresponding GSF value. By
using the generalized score value, this study could optimize the given MOO problem.

(iii) Parameterized PNO–PGA
Based on the problem analysis and by referring Definition 2, the introducedMOO problem
(Eq. (17)) can be solved, and the detailed steps are shown as follows.

Step 1: For any given feasible solution x for Eq. (17), by using C in SGA, code x and
convert it into a vector x ′ which is the representation of a feasible solution.

Step 2: Generate the initial population P0 by using x ′, and denote the population size of
P0 as M . Denote X0={x01,x02,...,x0M }, where x0m(1≤m≤M) represents an individual.
Denote P0=

{
x ′01,x

′

02,...,x
′

0M
}
, where x ′0m(1≤m≤M) is a vector which is corresponding

to x0m. The novel PNO–PGA will start the iteration with P0. Set the iteration variable as n,
and set the number of iterations as N .

Step 3: For any given x0m(1≤m≤M) in X0, its corresponding E (x0m), S(x0m), and
C (x0m) according to the actual condition in production practice are calculated. For the
dangerous goods transport scenario mentioned in this article, E (x0m), S(x0m), and C (x0m)
according to Eqs. (39), (40), and (41) are calculated. Then, it gets the vector

Vx0m = (E (x0m),S(x0m),C (x0m)). (20)

For the whole initial population P0, it gets a set of GP0 . For convenience, the set is
denoted as

VP0 =
{
Vx01,Vx02,...,Vx0M

}
. (21)
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Denote
EMAX ,0={E (x01),E (x02),...,E (x0M )},
SMAX ,0={S(x01),S(x02),...,S(x0M )},
CMAX ,0={C (x01),C (x02),...,C (x0M )}.

(22)

For any given m(1≤m≤M). Denote
EN (x0m)= E (x0m) ·

(
EMAX ,0

)−1
,

SN (x0m)= S(x0m) ·
(
SMAX ,0

)−1
,

CN (x0m)=C (x0m) ·
(
CMAX ,0

)−1
.

(23)

Then, it gets a NS G0=〈EN ,1−SN ,CN 〉. For any given x0m(1≤m≤M), by using Eq.
(23), it gets a neutrosophic number

Gx0m =〈EN (x0m),1−SN (x0m),CN (x0m)〉 (24)

and a set

XG={(x,〈EN (x),1−SN (x),CN (x)〉)|x ∈X }. (25)

Step 4: For any given Gx0m (1≤m≤M), by using Eq. (13), its corresponding GSF value
can be obtained as SF

(
Gx0m

)
. Thereafter, by using SF (·), a monotonic descending sequence

according to SF (·) is obtained as

l0F = SF
(
Gx0m1

)
,SF

(
Gx0m2

)
,...,SF

(
Gx0mM

)
, (26)

where m1,m2,...,mM isa permutation of 1,2,...,M .
Set a positive integer M∗(M∗<M). By using M∗, X0 is divided into two parts, where

one is

X01=
{
x0m1,x0m2,...,x0mM∗

}
, (27)

and the other is

X02=
{
x0mM∗+1,x0mM∗+2,...,x0mM

}
. (28)

Step 5: By using certain crossover operator 0, X01 is transferred to X ′01, where

X ′01 =
{
x ′0m1

,x ′0m2
,...,x ′0mM∗

}
. By using mutation operator 9, X02 is transferred to X ′02,

where X ′02 =
{
x ′0mM∗+1

,x ′0mM∗+2
,...,x ′0mM

}
. Denote X ′0 =

{
X ′01,X

′

02
}
by using SF (·), a

monotonic descending sequence is obtained as

l ′0F = SF
(
Gx ′0m1

)
,SF

(
Gx ′0m2

)
,...,SF

(
Gx ′0mM

)
. (29)

For any given m(1≤m≤M), denote

SF
(
Gx1k

)
=max

{
SF
(
Gx0mk

)
,SF

(
Gx ′0mk

)}
, (30)

denote the corresponding set of feasible solution X1, where X1= {x11,x12,...,x1M }, and
denote the 1 st optimal solution as x11.
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Step 6: If N 6= 1, then, turn to Step 3; and denote n= 2, denote
E ′MAX ,1=max

{
EMAX ,0,EMAX ,1

}
,

S′MAX ,1=max
{
SMAX ,0,SMAX ,1

}
,

C ′MAX ,1=max
{
CMAX ,0,CMAX ,1

}
.

(31)

Denote
EN
(
x1,m

)
= E

(
x1,m

)
·
(
E ′MAX ,1

)−1
,

SN
(
x1,m

)
= S

(
x1,m

)
·
(
S′MAX ,1

)−1
,

CN
(
x1,m

)
=C

(
x1,m

)
·
(
C ′MAX ,1

)−1
.

(32)

Then, turn to Step 4, Step 5, Step 6 in turn. If n<N , turn to Step 3; and denote n= n+1,


E ′MAX ,n=max

{
E ′MAX ,n−1,EMAX ,n

}
,

S′MAX ,n=max
{
S′MAX ,n−1,SMAX ,n

}
,

C ′MAX ,n=max
{
C ′MAX ,n−1,EMAX ,n

}
.

(33)

Denote
EN
(
xn,m

)
= E

(
xn,m

)
·
(
E ′MAX ,n

)−1
,

SN
(
xn,m

)
= S

(
xn,m

)
·
(
S′MAX ,n

)−1
,

CN
(
xn,m

)
=C

(
xn,m

)
·
(
C ′MAX ,n

)−1
.

(34)

Then, turn to Step 4, Step 5, Step 6 in turn. If t<N , turn to Step 3; if else, select
the final optimal solution as xN1. It is noteworthy that there is a series of virtual NSs
which is structured by Eq. (22), and is denoted as Vn= {〈En,1−Sn,Cn〉|n= 1,2,...,N }.
For any given individual xn,m, the neutrosophic number corresponding to it is denoted
as Vn,m=

〈
EN
(
xn,m

)
,1−SN

(
xn,m

)
,CN

(
xn,m

)〉
. For ease of understanding, please refer to

Fig. 2.

(iv) Supplement explanations
(1) In Step 3, by using Eqs. (22)–(23) and (34), a series of NSs are structured. The
characteristic of the proposed NSs is that they converge to a fuzzy set. Details on this
convergence are introduced in the following theorem.

Theorem 1: For any given n≤N , m≤M ,M =+∞, it gets a neutrosophic number

Vn,m=
〈
EN
(
xn,m

)
,1−SN

(
xn,m

)
,CN

(
xn,m

)〉
. (35)

Denote

lim
n→+∞

Vn,m=

〈
lim

n→+∞
EN
(
xn,m

)
,1− lim

n→+∞
SN
(
xn,m

)
, lim
n→+∞

CN
(
xn,m

)〉
. (36)

Then, it gets that limn→+∞Vn,m, limn→+∞EN
(
xn,m

)
, limn→+∞SN

(
xn,m

)
, and

limn→+∞CN
(
xn,m

)
all exist.

Proof: By using Eq. (31), it gets E ′MAX ,1, S
′

MAX ,1, C
′

MAX ,1 all increase monotonically
as n increases, while E

(
x1,m

)
, S
(
x1,m

)
and CN

(
x1,m

)
are positive crisp values. Then, by

using monotone bounded theorem, it gets limn→+∞EN
(
xn,m

)
, limn→+∞SN

(
xn,m

)
, and
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Figure 2 Novel PNO-PGA process.
Full-size DOI: 10.7717/peerjcs.2117/fig-2

limn→+∞CN
(
xn,m

)
all exist. Moreover, by using Eq. (36), it gets that limn→+∞Vn,m exists.

(2) In Step 3, the neutrosophic fitness value is calculated by using Eq. (13). Like other
classical score functions, Eq. (13) has its scope of application and defects. In specific
optimization environment, users need to choose the appropriate score function according
to their own practice. (3) In Step 4, the neutrosophic fitness value for each feasible solution
is calculated by using Eq. (2). In this step, the parameter λ can reflect the subjective attitude
of the customer towards the relationship between efficiency, safety and cost. (4) In Step 4,
for any given Gx0m (1≤m≤M), SF (·) isused to calculate the neutrosophic fitness function
value. Since SF (·) is obtained by using fuzzy technology, for the same feasible solution,
it can get different neutrosophic fitness function values in different iteration times. The
reason for this phenomenon is that EMAX ,SMAX and CMAX are all variables in Eq. (22). (5)
In Step 5, by suing SF (·) and M∗, the individuals are divided into two parts, where one
part is to be crossover processed, and the other is to be mutated. Here, it is noteworthy to
point out that crossover and mutation are probabilistic in classical GA, while crossover and
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Table 1 Results comparison.

Algorithms PNO-PGA Basic GA

Maximum convergence iterations 461 280
Mean convergence iterations 389 237.55
Standard deviation of convergence iterations 40.37 41.66
Maximum CPU time(s) 415.17 469.47
Mean CPU time(s) 405.59 416.23
Standard deviation of CPU time (s) 6.39 25.05

mutation are proportional in PNO–PGA. Especially, the crossover rate is M∗/M , while
the mutation rate is 1−M∗/M . Moreover, the selected crossover individuals all take part
in the crossover process, while the selected mutation individuals all take part in mutation
process, which makes full use of the computing power of modern computer and reduce
the occurrence opportunity of premature.

The differences between the proposed PNO–PGA and the GA are listed in Table 1.

ILLUSTRATIVE EXEMPLIFICATION
Exemplification introduction
To illustrate a MOO problem in warehouse operation, we cited the data which were
collected as previously described in Zhang et al. (2023). Assume that the length, width, and
entrance width of the warehouse are 64 m, 17.5 m, and 4 m respectively. And there are 14
points inbound and points outbound. Not only should a distance of 12 m between two
container vehicles but also a distance from the warehouse to the container truck be 2 m.
For convenience, the inbound point is denoted as 1i(1≤ i≤ 14), the outbound point is
denoted as ∇j

(
1≤ j ≤ 14

)
. In general, the work flow of the forklift is as follows. Firstly, the

hazardous goods are transported from containers by the operating forklifts. Secondly, the
goods are unloaded by forklifts to the inbound point. Thirdly, the outbound goods should
be discharged onto the outbound container by an empty forklift traveling to the outbound
port. Assuming that there are three forklifts responsible for both inbound and outbound
hazardous materials transfer. The forklift turns back to the inbound container and prepares
the next inbound activity. For convenience, the chain of the above operations is named as
a closed-loop storage chain. The forklifts work on successive chains until operations are
over. According to Sun et al. (2021), the original warehouse layout structure diagram is
shown in Fig. 3.

The distance for forklifts to travel to finish a closed-loop storage chain depends on the
location of the point incoming and the point outbound. For any given 1i and ∇j , there
is a corresponding closed-loop storage chain whose distance is denoted as lij . Denote the
distance of all pairs of

(
1i,∇j

)(
1≤ i,j ≤ 14

)
as L=

(
lij
)
14×14 where the incoming point

is represented by the row in L, while the outgoing point is represented by the column in
L. To simplify the calculation, the original distances of the closed-loop storage chains are
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Figure 3 The original warehouse layout structure diagram.
Full-size DOI: 10.7717/peerjcs.2117/fig-3

normalized by using the function

l ′pik1 ,qjk2
=

lpik1 ,qjk2 −minS1,S2∈M lpiS1 ,qj S2
maxS1,S2∈M lpiS1 ,qj S2 −minS1,S2∈M lpiS1 ,qj S2

∨0.1. (37)

For any given l ′pi1 ,qj1
,l ′pi2 ,qj2

,l ′pi3 ,qj3
, the similarity degree r ′ on them can be obtained as

r ′= 1−

∣∣(l ′pi1,qj1− l ′pi2,qj2) ·(l ′pi1,qj1− l ′pi3,qj3) ·(l ′pi2,qj2− l ′pi3,qj3)∣∣(
max

{
l ′pi1,qj1 · l

′pi2,qj2 · l
′pi3,qj3

})3 . (38)

Denote the fixed cost for operation management per hour as Cr , denote the normal
speed index of the forklifts as τv , denote the time cost of the operation as Ct =Cr ·τ

−1
v · l

′,

denote the influence factor of variable speed on operation time as τα, denote the influence
factor of variable speed on fuel cost as τβ, anddenote the normal fuel cost index for forklift
to travel as Cf . Then, according to field survey, the efficiency optimization model can be
expressed as

γ1= (τv)
−1

14∑
is=1

14∑
jt=1

xisjt · l
′

isjt −τα ·
(
C3
14

)−1
·

14∑
is,jt=1

(
xis,jt ,1 ·xis,jt ,2 ·xis,jt ,3 · r

′(
pi1 ,qj1

)
,
(
pi2 ,qj2

)
,
(
pi3 ,qj3

)),
s.t .

14∑
is=1

xisjt = 1,
14∑
jt=1

xisjt = 1,
14∑
is=1

xis,jt ,1= 1,
14∑
jt=1

xis,jt ,1= 1,

14∑
is=1

xis,jt ,2= 1,
14∑
jt=1

xisjt ,2= 1,
14∑
is=1

xis,jt ,3= 1,
14∑
jt=1

xisjt ,3= 1,

xis,jt ,1 6= xis,jt ,2 6= xis,jt ,3,xisjt ∈ {0,1},xis,jt ,1 ∈ {0,1},xis,jt ,2 ∈ {0,1},xis,jt ,3 ∈ {0,1}.

(39)
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The safety optimization model can be expressed as

γ2=
(
C3
14
)−1
·

14∑
is,jt=1

(
xis,jt ,1 ·xis,jt ,2 ·xis,jt ,3 · r

′(
pi1 ,qj1

)
,
(
pi2 ,qj2

)
,
(
pi3 ,qj3

)
)
,

s.t .
14∑
is=1

xisjt = 1,
14∑
jt=1

xisjt = 1,
14∑
is=1

xis,jt ,1= 1,
14∑
jt=1

xis,jt ,1= 1,

14∑
is=1

xis,jt ,2= 1,
14∑
jt=1

xisjt ,2= 1,
14∑
is=1

xis,jt ,3= 1,
14∑
jt=1

xisjt ,3= 1,

xis,jt ,1 6= xis,jt ,2 6= xis,jt ,3,xisjt ∈ {0,1},xis,jt ,1 ∈ {0,1},xis,jt ,2 ∈ {0,1},xis,jt ,3 ∈ {0,1}.

(40)

The cost optimization model can be expressed as

γ3=Cf

14∑
is=1

14∑
jt=1

xisjt · l
′

isjt +τβ ·
(
C3
14

)−1
·

14∑
is,jt=1

(
xis,jt ,1 ·xis,jt ,2 ·xis,jt ,3 · r

′(
pi1 ,qj1

)
,
(
pi2 ,qj2

)
,
(
pi3 ,qj3

)),
s.t .

14∑
is=1

xisjt = 1,
14∑
jt=1

xisjt = 1,
14∑
is=1

xis,jt ,1= 1,
14∑
jt=1

xis,jt ,1= 1,

14∑
is=1

xis,jt ,2= 1,
14∑
jt=1

xisjt ,2= 1,
14∑
is=1

xis,jt ,3= 1,
14∑
jt=1

xisjt ,3= 1,

xis,jt ,1 6= xis,jt ,2 6= xis,jt ,3,xisjt ∈ {0,1},xis,jt ,1 ∈ {0,1},xis,jt ,2 ∈ {0,1},xis,jt ,3 ∈ {0,1}.

(41)

Optimization process using PNO–PGA
In this subsection, the introduced operation optimization problem would be solved
by using the proposed novel PNO–PGA model. First of all, a series of parameters are
obtained according to production practice. Specifically, in Eq. (21), it values that τv = 3.5,
τα = 0.6; in Eq. (41), it values that Cf = 2.4, τβ = 0.3. Then, by using the proposed PNO–
PGA model, the problem is solved in the following manner.

Step 1: For any given feasible solution xfor Eq. (17), code x and convert it into a vector
x ′ whose size is 14 and is a permutation from 1 to 14.

Step 2: Generate the initial population P0 by using x ′, and denote the population size
of P0 asM . Denote X0 =

{
x0,1,x0,2,...,x0,200

}
, where x0m(1≤m≤ 200) represents an

individual. Denote P0 =
{
x ′0,1,x

′

0,2,...,x
′

0,200
}
, where x ′0m(1≤m≤ 200) is a vector which

is corresponding to x0m. Denote Group number= 200, cross rate= 0.8 and mutation rate
= 0.2. The novel PNO–PGA will start the iteration with P0. Set the iteration variable as
n, and set the number of iterations as N = 500. Here L′ is a distance between 14 inbound
and 14 outbound warehouses.
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L′=



0.13 0.18 0.13 0.24 0.28 0.28 0.32 0.34 0.54 0.51 0.57 0.54 0.77 0.77

0.09 0.18 0.13 0.21 0.25 0.25 0.28 0.31 0.51 0.47 0.54 0.51 0.77 0.73

0.09 0.18 0.13 0.18 0.21 0.21 0.25 0.28 0.47 0.43 0.51 0.47 0.77 0.73

0.62 0.59 0.60 0.80 0.62 0.19 0.19 0.19 0.44 0.41 0.47 0.41 0.44 0.41

0.09 0.18 0.13 0.18 0.21 0.21 0.25 0.28 0.47 0.43 0.51 0.47 0.77 0.73

0.58 0.55 0.58 0.77 0.13 0.15 0.13 0.19 0.41 0.38 0.44 0.38 0.40 0.38

0.55 0.52 0.55 0.74 0.09 0.12 0.13 0.19 0.38 0.34 0.41 0.34 0.37 0.34

0.55 0.52 0.55 0.74 0.09 0.12 0.13 0.19 0.38 0.34 0.41 0.34 0.37 0.34

0.44 0.41 0.41 0.44 0.06 0.06 0.09 0.03 0.19 0.19 0.19 0.22 0.23 0.20

0.41 0.38 0.38 0.41 0.03 0.03 0.03 0.01 0.13 0.15 0.19 0.19 0.20 0.17

0.31 0.28 0.28 0.31 0.01 0.01 0.03 0.01 0.09 0.12 0.19 0.15 0.17 0.13

0.81 0.78 0.81 1 0.35 0.38 0.35 0.41 0.55 0.58 0.55 0.15 0.13 0.19

0.75 0.72 0.75 0.93 0.29 0.32 0.29 0.34 0.49 0.52 0.49 0.09 0.06 0.12

0.78 0.75 0.78 0.96 0.32 0.35 0.32 0.39 0.52 0.55 0.52 0.12 0.09 0.15



.

Step 3: For any given three individual x0m(1≤m≤ 200) in P0, calculate its correspond-
ing E (x0m), S(x0m), and C (x0m) according to Eqs. (39), (40), and (41), respectively. Then,
it gets a vector Vx0m , a set of GP0 , a set VP0, three parameters EMAX ,0, SMAX ,0, CMAX ,0.

Thereafter, for any givenm(1≤m≤ 200), by using Eq. (23), it gets a vector Gx0m and a
set XG.

Step 4: For convenience, denote λ = 2. For any given Gx0m (1≤m≤ 200), by using
Eq. (13), its corresponding GSF value can be obtained as SF

(
Gx0m

)
. Thereafter, by using

SF (·), a monotonic descending sequence is obtained as l0F , wherem1,m2,...,m200 isa
permutation of 1,2,...,200. Here, set a positive integerM∗ = 160. By usingM∗, X0 is
divided into two parts, where one is X01 with 160 elements, whereas the other is X02with
40 elements.

Step 5: By using certain crossover operator, X01 is transferred to X ′01, where X
′

01 ={
x ′0m1

,x ′0m2
,...,x ′0m160

}
,. By using mutation operator X02 is transferred to X ′02, where

X ′02 =
{
x ′0mM∗+1

,x ′0mM∗+2
,...,x ′0m40

}
. Denote X ′0 =

{
X ′01,X

′

02
}
by using SF (·), a monotonic

descending sequence is obtained as l ′0F . For any givenm(1≤m≤ 200), it gets SF
(
Gx1k

)
by using Eq. (30). Then, denote its corresponding set of feasible solution X1, where
X1=

{
x1,1,x1,2,...,x1,200

}
, anddenote the 1 st optimal solution as x1,1.

Step 6: If n 6= 500, turn to Step 3. By calculating, it gets E ′MAX ,1, S
′

MAX ,1, C
′

MAX ,1,

EN
(
x1,m

)
, SN

(
x1,m

)
, CN

(
x1,m

)
. Then, turn to Step 4, Step 5, Step 6 in turn. If n+1< 500,

turn to Step 3; and denote n= n+ 1. Then, it gets E ′MAX ,n, S
′

MAX ,n, C
′

MAX ,n, EN
(
xn,m

)
,

SN
(
xn,m

)
and CN

(
xn,m

)
. Then, turn to Step 4, Step 5, Step 6 in turn. If n< 500, turn to

Step 3; if else, select the final optimal solution as x ′500,1.
The aforementioned program is experimented. At last, it gets the optimal vector as

x ′500,1=
[
12 9 14 5 13 4 10 11 1 2 7 6 8 3

]
.
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Figure 4 Neutrosophic fitness values.
Full-size DOI: 10.7717/peerjcs.2117/fig-4

Then, the optimal feasible solution for the given question is obtained as

x500,1=

[
1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 9 14 5 13 4 10 11 1 2 7 6 8 3

]
.

It is noteworthy that the serial number of inbound locations is represented by the first
row of numbers in x500,1, while the serial number of outgoing locations is represented by
the second row of numbers in x500,1.

Description of calculation process
In this subsection, some peculiar characteristics in the calculation process in the previous
subsection are described. (1) In each generation, there is a maximum neutrosophic fitness
value SF

(
Gxn,m1

)
where n= 1,2,...,500. It shows that SF

(
Gxn,m1

)
converges. More details

please see Fig. 4. From Fig. 4, in the process of element and set coevolution, the feasible
solution is optimized which illustrates the strategy of combining crossover and mutation
effectively avoid the problems of premature convergence and local optimal solutions,
thereby it improving the efficiency and accuracy of the optimization process.
(2) In each generation, there is a feasible solution xn,m1 which is corresponding to
SF
(
Gxn,m1

)
. By Eqs. (21)–(23), E

(
xn,m1

)
, 1−S

(
xn,m1

)
and C

(
xn,m1

)
are all obtained. The

curve of E
(
xn,m1

)
please see Fig. 5; the curve of 1−S

(
xn,m1

)
please see Fig. 6; the curve of

C
(
xn,m1

)
please see Fig. 7. Specifically, Figs. 5, 6 and 7 show that E

(
xn,m1

)
, S
(
xn,m1

)
and

C
(
xn,m1

)
all converge which illustrates the novel proposed PNO–PGA is effective.

(3) In each generation, NS there are three maximum values in each domain, i.e., EMAX ,n,

1−SMAX ,n, and CMAX ,n. By using functions similar to Eq. (22), they are all obtained. The
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Figure 5 E(Xn,m1)for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-5

Figure 6 1-S(Xn,m2) for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-6
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Figure 7 C(Xn,m3) for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-7

curve of EMAX ,n please see Fig. 8; the curve of (1−S)MAX ,n please see Fig. 9; the curve of
CMAX ,n please see Fig. 10. Specifically, Figs. 8, 9 and 10 show that EMAX ,n, (1−S)MAX ,n,
and CMAX ,n all converge which illustrates the definition of s is effective. (4) In the
proposed PNO–PGA, there are two key parameters, i.e., λ andM∗. On the one hand,
when the customer cares more about emergency situation, the parameter λ should be
valued as a large number. To the contrary, when the customer cares more about normal
production, the parameter λ should be valued as a small number. On the other hand,
when the customer thinks the complexity of the research problem is strong, especially
when the nonlinearity of the model is strong, the parameterM∗ should be valued as a
small number. To the contrary, when the customer thinks the complexity of the research
problem is weak, especially when the linearity of the model is strong, the parameterM∗

should be valued as a large number.
(5) The introduced MOO problem can also be solved by using classical GA. However,
comparing with classical GA, the proposed PNO–PGA has stronger search and anti-
precocity ability. Specifically, the crossover and variation in PNO–PGA are executed by in
proportion rather than probability, so that the population generally evolved over and over
again. The comparison between the quality of the first-generation individuals and that of
the last-generation individuals in the mutation area is shown in Fig. 11. The performance
of the classical GA and the PNO-PGA in Mean convergence iterations and Standard
deviation of CPU time are compared and analyzed by applying the benchmark test case
ten times with 500 iterations per iteration, respectively. The experimental results show
that the Mean convergence iterations of classical GA was 237.55 times, and PNO-PGA
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Figure 8 Emax,n for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-8

Figure 9 (1-S)max,n for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-9
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Figure 10 Cmax,n for each generation.
Full-size DOI: 10.7717/peerjcs.2117/fig-10

exceeded GA 152 times, which demonstrates that PNO-PGA is more stable in searching
ability and more accurate in finding the global optimal solution. In the Standard deviation
of CPU time, PNO-PGA’s 6.39 s is shorter than that of classical GA’s 25.05 s by 18.66 s.
it is noteworthy that PNO-PGA is more excellent than classical GA in terms of search
efficiency. The reliability and utility of the algorithm’s performance enable it not to be
affected by input data or other factors. The experimental comparison results of PNO-PGA
and GA are shown in Table 1.

CONCLUSION
In this study, a kind of neutrosophic objective optimization thought is proposed whose
characteristic is to dialectically monitor the whole process of optimization activities by
using neutrosophic thought. According to this thought, a novel parameterized PNO-
PGA is proposed. Finally, through an example, the validity of the proposed PNO-PGA
is verified, and the proposed PNO-PGA has three main characteristics.

Firstly, compared with traditional GA, the proposed PNO-PGA cleverly utilizes NSs
to deal with the three main objectives of industrial production, i.e., efficiency, safety, and
cost. The advantage is that it is more adaptable to more fuzzy and generalized situations.

Secondly, the improved GA can explore the potential solution space better through
proper crossover and variation proportion, maintain population diversity, and avoid the
search process from falling into premature, locally convergent scenarios.
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Figure 11 Evolutionary effects of individuals in variation area.
Full-size DOI: 10.7717/peerjcs.2117/fig-11

Thirdly, based on the characteristics of the problem and the progress of the algorithm,
parameterized GA can flexibly modify the weights of the objective function, dynamically.
In addition, To integrate subjective and objective information by using the two parame-
ters effectively.

The proposed PNO–PGA is an important cornerstone. By using this algorithm, NS
theory and optimization theory have been held together tightly for the first time. In
the future, similar to PNO–PGA, it can deduce a series of algorithms for MOO such
as neutrosophic objective-neural networks, neutrosophic objective-particle swarm
optimization, neutrosophic objective-ant colony algorithm, etc.

The model expands the range of objective value options by aggregating vectors of ob-
jectives and changing the weights. The model can integrate objective values, dialectically
monitor the whole process of optimization activities, and have potential applications in
business management, vehicle routing problems, and so on. For the different optimiza-
tion objectives of decision makers in different scenarios, the specific implementation
means in terms of weight selection are different, and the actual optimization situation
is obtained through practical investigations. In the future, further optimization of GA
is planned to expand its applicability in the whole process of optimization. Moreover,
the model can be optimized more by using other aggregation operators and can be more
realistic in other industries and engineering fields.
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