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The focus of the research is on the label-constrained time-varying shortest route query
problem on time-varying communication networks. To the best of our knowledge, research
on this issue is still relatively limited, and similar studies have the drawbacks of low
solution accuracy and slow computational speed. In this study, a Wave Delay Neural
Network (WDNN) framework and corresponding algorithms is proposed to effectively solve
the label-constrained time-varying shortest routing query problem. This framework
accurately simulates the time-varying characteristics of the network without any training
requirements. WDNN adopts a new type of wave neuron, which is independently designed
and all neurons are parallelly computed on WDNN. This algorithm determines the shortest
route based on the waves received by the destination neuron (node). Furthermore, the
time complexity and correctness of the proposed algorithm were analyzed in detail in this
study, and the performance of the algorithm was analyzed in depth by comparing it with
existing algorithms on randomly generated and real networks. The research results
indicate that the proposed algorithm outperforms current existing algorithms in terms of
response speed and computational accuracy.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:05:86505:1:1:NEW 31 Dec 2023)

Manuscript to be reviewedComputer Science



A wave delay neural network for solving1

label-constrained shortest route query on2

time-varying communication networks3

Bing Han1, Qiang Fu1, and Xinliang Zhang1
4

1China National Institute of Standardization, Beijing, China5

Corresponding author:6

Qiang Fu1
7

Email address: fuqiang@cnis.ac.cn8

ABSTRACT9

The focus of the research is on the label-constrained time-varying shortest route query problem on time-

varying communication networks. To the best of our knowledge, research on this issue is still relatively

limited, and similar studies have the drawbacks of low solution accuracy and slow computational speed. In

this study, a Wave Delay Neural Network (WDNN) framework and corresponding algorithms is proposed

to effectively solve the label-constrained time-varying shortest routing query problem. This framework

accurately simulates the time-varying characteristics of the network without any training requirements.

WDNN adopts a new type of wave neuron, which is independently designed and all neurons are parallelly

computed on WDNN. This algorithm determines the shortest route based on the waves received by the

destination neuron (node). Furthermore, the time complexity and correctness of the proposed algorithm

were analyzed in detail in this study, and the performance of the algorithm was analyzed in depth by

comparing it with existing algorithms on randomly generated and real networks. The research results

indicate that the proposed algorithm outperforms current existing algorithms in terms of response speed

and computational accuracy.
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INTRODUCTION23

The shortest route query problem is a classic combinatorial optimization challenge, aiming to identify24

the most efficient route (minimizing cost or reducing delay) from a source node to a destination node.25

Solutions to this problem find extensive applications in communication networks (Wang et al., 2009;26

Gomathi and Martin Leo Manickam, 2018), transportation network (Fu et al., 2006; Neumann, 2016),27

engineering control (Nip et al., 2013; Lacomme et al., 2017), and many other areas.28

The shortest route query problem was initially formulated by Dijkstra (Dijkstra, 1959) in the 1950s.29

Subsequently, numerous enhanced algorithms were introduced to address this problem in time-invariant30

networks (Xu et al., 2007; Zhang and Liu, 2009). During that period, modifications to this problem were31

also proposed, including the label-constrained shortest route query on time-invariant networks (Zhang32

et al., 2021; Likhyani and Bedathur, 2013; Barrett Chris, 2008). While demonstrating certain advantages33

in time-invariant networks, these methods still face challenges when applied to solving the shortest route34

query problem in time-varying networks.35

The time-varying network (also known as the time-dependent network) is a dynamic network, which36

widely exists in the real world (Huang et al., 2022). Compared to the traditional static networks, the37

time or cost of one data packet traveling an arc in the time-varying network is not constant but changes38

over time, which depends on the departure time from the start node and may be denoted by a piecewise39

function. Recently, some problems based on time-varying networks have attracted extensive attention,40

such as the traveling salesman problem (Cacchiani et al., 2020), maximum flow problem (Zhang et al.,41

2018), minimum spanning tree problem (Huang et al., 2015), project scheduling problems (Huang and42

Gao, 2020), etc. The shortest route query problem on time-varying networks was first studied by Cook43

and Halsey (Cooke and Halsey, 1966), who proposed a Bellman-based iterative algorithm to solve the44

unconstrained time-varying shortest delay route problem. Since then, this kind of problem has also been45
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studied by Huang and Wang (Huang and Wang, 2016), Wu et al. (Wu et al., 2016), Huang et al. (Huang46

et al., 2017), Wang et al. (Wang et al., 2019) etc.47

Similiar to the time-invariant networks (Feng and Korkmaz, 2013), the shortest route query problem48

with constraints also exists in time-varying networks. To the best of our knowledge, the research on49

the constrained time-varying shortest route query problem mainly focuses on the reachiability on time-50

varying networks, such as delay-constrained time-varying minimum cost path problem (Cai et al., 1997;51

Veneti et al., 2015), and more (Chen et al., 2022; Peng et al., 2020; Chen and Singh, 2021; Gong et al.,52

2023; Heni et al., 2019; Yang and Zhou, 2017). Choosing the appropriate path is crucial for optimizing53

network performance in communication networks. The constrained shortest route problem allows for54

the introduction of specific constraints in path selection Ruß et al. (2021), such as bandwidth, latency,55

load balancing Peng et al. (2022), etc., to meet the specific needs of the network and improve the overall56

efficiency of the network. Different applications and services have different requirements for network57

performance. The constrained shortest route problem can be used to ensure that specific quality of service58

standards, such as low latency and high bandwidth, are met when selecting paths in a network, thereby59

improving user experience. In the case of limited computing resources, the constrained shortest route60

problem helps to effectively manage network resources. By considering constraints, certain paths can61

be avoided from being too crowded, thereby improving network availability and resource utilization62

efficiency. However, there is limited research on the label-constrained time-varying shortest route query63

problem (LTSRQ).64

The label-constrained shortest route query problem is of great importance in time-varying commu-65

nication networks, especially in achieving efficient, reliable, and low-latency network communication.66

It is specifically manifested in: (1) Load balancing and resource optimization: Nodes and links in67

communication networks may have different performance characteristics. By considering constraints such68

as bandwidth and latency, path selection can be optimized to achieve load balancing, avoid overcrowding69

of certain paths, and improve the utilization of network resources. (2) Security: By considering label70

constraints, a path can be designed to ensure the security of data during transmission and prevent security71

threats such as man-in-the-middle attacks. (3) Multipath transmission and traffic engineering: The72

label-constrained shortest route problem can be used for multipath transmission and traffic engineering,73

dynamically selecting the path that is most suitable for the current network state to improve the overall74

performance of the network.75

Neural network technology has been proven to be more efficient than traditional mathematical methods76

in various fields. (Huang et al., 2022)(Adnène et al., 2022)(Zulqurnain et al., 2022) Particularly in the77

investigation of the shortest route problem in time-varying networks, neural network technology, with its78

robust parallel computing and timing simulation capabilities, has demonstrated outstanding performance.79

Existing research results have substantiated the feasibility and progressive nature of neural network80

technology when compared to traditional mathematical methods in addressing path-related problems81

in time-varying networks. Therefore, in this paper, a wave delay neural network (WDNN) framework82

is proposed to solve the LTSRQ. The purpose of LTSRQ is to find a route from the source node to the83

destination node having the shortest delay with a NP-hard complexity, and meet the label threshold.84

For example, in certain wireless broadcast networks, where the limited capacity of wireless devices85

necessitates selective signal reception and processing, labels are commonly employed for signal filtering.86

Specifically, in scenarios where the payload is associated with specific time intervals, the time required87

for signal processing and forwarding is generally directly proportional to the payload. As a result, such88

wireless broadcast networks can be categorized as labeled time-varying networks. The labeled-constrained89

time-varying shortest route query problem in this context aims to identify a path within the network90

that facilitates the transmission of signals with specific labels from the source to the destination. The91

proposed Wave Delay Neural Network (WDNN) is built on auto wave neurons, allowing for parallel92

computation. WDNN proves effective in addressing the Label-Constrained Time-Varying Shortest Route93

Query (LTSRQ), arriving at the global optimal solution. Notably, unlike conventional neural networks94

that necessitate training, the proposed WDNN operates without any training requirements.95

In general, our novelty and contributions can be summarized in the following two aspects:96

• Wave Delay Neural Network (WDNN) Framework: A framework for Wave Delay Neural97

Networks (WDNN) is proposed to resolve the LTSRQ, which composed of autonomously designed98

and training-free wave neurons. These wave neurons are adept at handling the time-varying lengths99

of dynamic edges, allowing for optimal departure time selection. By assigning a state type to100
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Table 1. Explanation of Symbols in WDNN

Symbols Explanation

TS The start time of a time window.

TE The end time of a time window.

TL Tthe length of arc in a time window.

Ln The label set of a node n.

lene(t) The length of a time-varying arc.

VP The set of nodes on path P.

EP The set of arcs on path P.

LP The set of label of nodes on path P.

M A large integer.

αi The arrival time of ith node on the path P.

τi The departure time of ith node on the path P.

t The current time.

V P
i The set of all precursor neurons of neuron i.

V F
i The set of all successor neurons of neuron i.

∆t A step (unit) of iteration.

s The root neuron (source node).

z The destination neuron (destination node).

ts The earliest time from the source node is allowed.

Lc The constrained label set.

Li The label set of neuron i.

Lr
i The recorded label set of neuron i.

Y t
k,i A wave from neuron k to i at time t.

Pt
k,i The path from neuron k to i at time t.

At
k,i The arrival time of the wave from neuron k to i at time t.

Lt
k,i The label of the wave from neuron k to i at time t.

Pr
i The path recorded by neuron i.

Ar
i The set of the arrival time of each wave recorded.

Lr
i The label set of recorded paths.

TWi,q(t) The time window of arc (i,q) at time t.

each neuron to restrict wave reception, the framework successfully implements label-constrained101

processing. Due to the adoption of parallel computation and an optimal emission time selection102

mechanism for neurons, this method can rapidly obtain the global optimal solution to the label-103

constrained time-varying shortest route query problem. It plays a crucial role in delay-sensitive104

communication networks.105

• The effectiveness of the proposed algorithm is assessed through a thorough analysis of time106

complexity and a correctness proof. Performance evaluation is conducted from two perspectives:107

the number of nodes and the number of time windows. The experimental results demonstrate that108

the proposed algorithm is capable of effectively addressing the label-constrained shortest routing109

query problem in time-varying networks.110

To enhance the understanding of this article, Table 1 provides a summary of symbols used in the111

definition section and the neural network architecture design section. The rest of this paper is organized112

as follows. Section 2 introduces the preliminary knowledge that WDNN requires. In the third section, a113

newly designed neural network framework, auto wave neuron, and algorithm for solving LTSRQ were114

proposed, and the time complexity and correctness of the proposed algorithm were analyzed, which is115

also the main focus of this study. Next, we conduct our experiments and evaluations in Section 4. Finally,116

the Section 4 makes a conclusion of this paper in brief.117
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PRELIMINARIES118

To ensure clarity and understanding in this study, the clear definitions will be provided for the key concepts119

involved. By carefully and precisely defining our concepts, it aim to ensure that our analysis is rigorous120

and well-informed, contributing to a comprehensive understanding of the study’s foundations and findings.121

Definition 1 (Time window) Huang et al. (2022): A triple (TS,TE ,TL) is defined as a time window if122

and only if the TE > TS, and where the TS is the start time of time window, the TE is the end time of time123

window, the TL is a constant number that denotes the length of arc in this time window.124

Definition 2 (Time-varying function) Huang et al. (2022): A piecewise function f (t) is defined as a125

time-varying function if and only if t is a time variable. If to devide the time-varying function, it can be126

divided into multiple time windows. That is to say, a time-varying function is a functional representation127

of one or more time windows.128

Definition 3 (Label Node): A node is defined as a label node if and only if it has at least one label.129

The label set of a node n is denoted as Ln.130

Simply put, a labeled node refers to a node that has certain attributes. If the label attribute of node A131

is ”a”, it means that only signals with the label ”a” can be received and forwarded by node A, thereby132

reducing network resource occupation and information dissemination range. In communication networks,133

labels can be used to label the types of signals that a node can receive and send.134

Definition 4 (Time-varying arc) (Huang et al., 2022): An arc e = (u,v) is defined as a time-varying135

arc if and only if its length lene(t) is a time-varying function.136

In communication networks, time-varying arcs are employed to depict the varying time required for137

the same data to complete transmission at different time periods over the same communication connection.138

This variability in transmission time can be attributed to factors such as network congestion, leading to139

delays in data transmission. The use of time-varying arcs allows for a more nuanced representation of the140

dynamic nature of data transmission in communication networks.141

Definition 5 (Time-varying network) (Huang et al., 2022): A directed network G(V,E,TW ) is142

defined as a time-varying network if and only if there is at least one time-varying arc, where the V is the143

set of nodes, the E is the set of arcs, the TW is the set of time windows of nodes.144

Definition 6 (Time-varying path): A path P(VP,EP,LP) is defined as a time-varying path if and only145

if αi +ωi = τi. Where, the VP is the set of nodes on path P; the EP is the set of arcs on path P; and the LP146

is the set of label of nodes on path; the αi and τi are the arrival time and departure time of ith node on the147

path, respectively; and ωi g 0 is the waiting time at ith node.148

For any time-varying path P(VP,EP,LP), where the VP = {v1,v2, . . . ,vn+1}, and the EP = {e1,e2, . . . ,en},149

the LP = Lv1
∪Lv2

∪ ...∪Lvn+1
, the length of path P is equal to lenP = ∑

n
i=1 (dei

(τi)+ωi) = αn+1− τ1.150

Definition 7 (Label-constrained time-varying shortest route query problem, LTSRQ): Given a151

time-varying network G, a LTSRQ Q = (s,z, ts,L
c) is to find a time-varying path P from s to z, such that:152

1) the LP ∈ Lc; 2) the lenP f lenP′ . Where, the s is source node, the z is destination node, the Lc is the153

constrained label set, the P′ is any satisfied label-constrained path from node s to node z on network G.154

Its mathematical model is:155

min ∑
i∈V,(i, j)∈E

xi · leni, j(t)

s.t.
n

∑
j=1,(1, j)∈E

x1, j−
n

∑
j=1,( j,1)∈E

x j,1 = 1

n

∑
j=1,(n, j)∈E

xn, j−
n

∑
j=1,( j,n)∈E

x j,n =−1

n

∑
j=1,(i, j)∈E

xi, j−
n

∑
j=1,( j,i)∈E

x j,i = 0, i ̸= 1, i ̸= n

xi, j = 0,(i, j) ∈ E

l ∈ Li,∀l ∈ Lc

(1)

WDNN ARCHITECTURE156

In this section, the architecture of the proposed Wave Delay Neural Network is initially presented, followed157

by the introduction of a Wave Delay Neural Network algorithm for addressing the shortest route problem158

within the context of time-varying network label constraints. furthermore, two theorems is provided to159

analyze the time complexity and correctness of the proposed algorithm.160
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Design of WDNN161

The wave delay neuron network is an auto wave neuron-based neural network. Using WDNN to address162

LTSRQ, the structure of WDNN depends on the topology of the time-varying network, i.e., each node and163

arc on the time-varying network respectively correspond to a neuron and a link (synapse) that between164

two neurons. The operating mechanism of the wave delay neural network is as follows: first, activate165

the root neuron. For non-root neurons, they will only be activated after receiving valid waves (waves166

that comply with their own label constraints); only activated neurons can generate concurrent waves; the167

neural network stops running when it reaches the given delay threshold, and the destination neuron selects168

the shortest route among all the received waves, which is the label-constrained time-varying shortest169

route.170

Auto wave is the medium for neurons to transmit information, which also is regarded as the data171

packet. As a data packet transmission on an arc, there are delay and cost associated with a wave travel the172

corresponding synapse, where the delay is calculated by the synapse and the label is calculated by the173

neuron that sent the wave. Each wave contains three information, namely Pt
g,i, At

g,i, and Lt
g,i.174

Fig. 1 shows a general auto wave neuron’s structure. Each auto wave neuron consists of seven parts:175

input, wave receiver, wave filter, state updater, wave generator, wave sender, and output. The illustration176

and function of each part as following:177

1. Input: The input of neurons is usually composed of multiple ports used to receive waves sent by178

other neurons. The number of input ports often depends on the in-degree of the neuron.179

2. Wave Receiver: The wave receiver is used to receive, cache, and decode auto waves. The wave180

receiver layer consists of several sub receivers, whose number depends on the number of input181

ports, which also enables each input port to correspond to one sub receiver one by one. When a182

neuron receives a wave at the current moment, Pt
g,i, At

g,i, and Lt
g,i in its corresponding sub receivers183

will be assigned based on the information of the wave; if no waves are received, then Pt
g,i, At

g,i, and184

Lt
g,i will be assigned an initial value. Where, the Pt

g,i is used to cache the path in the wave sent by185

neuron g to current neuron i, the At
g,i is used to cache the arrival time of the wave, and the Lt

g,i is186

used to cache the labels in the wave.187

Pt
g,i =

�

Pt
g,i, Receive a wave Y t

g,i at time t.

null, Not receive a wave at time t.
(2)

188

At
g,i =

�

At
g,i, Receive a wave Y t

g,i at time t.

M, Not receive a wave at time t.
(3)

189

Lt
g,i =

�

Lt
g,i, Receive a wave Y t

g,i at time t.

null, Not receive a wave at time t.
(4)

3. Wave Filter: Wave filters are used to filter the data in the wave receiver. Firstly, based on the190

label information of the wave, select the wave that the current neuron can process, next determine191

whether the wave type meet the constrained label, and then determine whether the type of wave has192

been received. If the wave type is not a type that the current neuron can recognize or not meet the193

label constrain or has already received the type of wave, so the wave will be abandoned (since the194

length of the first received wave must be the shortest, only the earliest arriving wave needs to be195

recorded.).196

4. State Updater: The state updater is used to update and record the latest state of the current neuron.197

It includes three sub modules: Pr
i , Ar

i and Lr
i , which are used to update and record the current198

shortest route sequence, the arrival time of the wave, and the label of the received wave.199

5. Wave Generator: The wave generator is used to calculate the values of new auto waves. It consists200

of three parts: Pt
i,q, At

i,q, and Lt
i,q, q ∈V F

i , their expressions are as following:201











Pt
i,q = p j←{i, t}

At
i,q = t + len(TWi,q(t))

Lt
i,q = l j

(5)

Where, the l j ∈ Lr
i is the one of label momerized by current neuron.202
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6. Wave Sender: The wave sender is used to encode and send waves, which may be regarded as the203

inverse process of the wave receiver. It consists of Pt
i,q, At

i,q, and Lt
i,q, q ∈V F

i .204

7. Output: The output is the port of auto wave output to successor neurons. Its function is similar to205

the axon site of biological neurons. The number of output ports depends on the current neuron206

output.207

Figure 1. The structure of a general neuron on WDNN.

WDNN Algorithm208

The underlying idea of using WDNN to solve LTSP according to the following mechanisms: 1) initialize209

all neurons and activate the root neuron; 2) all non-root neurons receive auto waves, update neuron’s state210

at special time step; 3) all activated neurons generate auto waves and send to its successor neurons at211

special time step; 4) the shortest path depends on the wave that arrive destination neuron earliest and212

satisfied the label constrain Lc. Note that, the condition for activate non-root neuron is that the wave213

receiver receives one or more waves. The detailed procedures of the WDNN algorithm are summarized as214

shown in algorithm 1-3. All symbols that used in Algorithm 1-3 are summarized in Table 1.215

Algorithm 1216

WDNN217

Input: V , E, L, s, d, ∆t, k, Lc;218

Output: report label-constrained shortest route;219

1: t = ts; /*Initialize neuron timer.*/220

2: initializing each neuron by using INA;221

3: while Lr
d == /0 and t− ts <= k do222

4: update each neuron by using UNA;223

5: t = t +∆t; /*Iterative update of neuron timer.*/224

6: end while225

7: report the shortest route Pt
d .226

Algorithm 2227

Initializing neuron algorithm (INA)228

Input: i, d, t;229

Output: Pr
i , Ar

i , Lr
i ;230

1: if (i = r) then /* Initializing root neuron */231

2: set Pr
i = Pr

i ← i;232

3: set Ar
i = Ar

i ← t;233

4: set Lr
i = Li;234

5: end if235

6: if (i ̸= d) then /* Initializing non-root neuron */236

7: set Pr
i = /0;237
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8: set Ar
i = /0;238

9: set Lr
i = /0;239

10: end if240

Algorithm 3241

Updating neuron algorithm (UNA)242

Input: i, Li, Lc, Lr
i , t, V F

i , V P
i , Y t

f ,i; /* f ∈V P
i .*/243

Output: Y t
i,q; /* q ∈V F

i . */;244

1: for f ∈V P
i do /*Receive waves sent by precursor neurons.*/245

2: if Y t
g,i ̸= /0 then246

3: set Pt
f ,i = Pt

f ,i ∈ Y t
f ,i;247

4: set At
f ,i = At

f ,i ∈ Y t
f ,i;248

5: set Lt
f ,i = Lt

f ,i ∈ Y t
f ,i;249

6: else/*No wave received, set receiver to initial value.*/250

7: set Pt
f ,i = /0;251

8: set At
f ,i = M;252

9: set Lt
f ,i = /0;253

10: end if254

11: if Lt
f ,i ∈ Li and Lt

f ,i ∈ Lc then /*Determine whether the received wave satisfies the label255

constraints of the current neuron and whether this type of wave has been received.*/256

12: if not Lt
f ,i ∈ Lt

I then257

13: Pr
i = Pr

i ← Pt
f ,i;258

14: Ar
i = Ar

i ← At
f ,i;259

15: Lr
i = Lr

i ← Lt
f ,i;260

16: end if261

17: end if262

18: end for263

19: for j ∈V F
i do /*Send waves to each succeeding neuron.*/264

20: set At
i,q = t + len(TWi,q(t));265

21: set Pt
i,q = p j←{i, t};266

22: set Lt
i,q = l j;267

23: set Y t
i,q = {P

t
i,q,A

t
i,q,L

t
i,q};268

24: end for269

Time Complexity of WDNN270

Theorem 1. Let n be the number of nodes on the time-varying network, the m is the number of all arcs,271

the V P
i be the number of the neuron i’s input arcs, the V F

i be the number of the neuron i’s output arcs,272

k be the arrival time of destination node on output path, and ∆t is the step (unit) of iteration. The time273

complexity of WDNN is equal to O
�

2k
∆t
·m+n

�

.274

Proof: The WDNN algorithm consists of four main steps (step 1: line 1; step 2: line 2; step 3: line275

3-6; step 4: line 7), the time complexity of step 1 and step 4 are all equal to O(1) due to without loop,276

iteration or recursion. The step 2 and step 3 are relatively complicated operations, the detailed analysis as277

following:278

As to step 2 in WDNN, all neurons need to call INA for initializing. The times for running INA279

depends on the number of neurons in the neural network. Furthermore, the INA does not contain loop.280

Then, the time complexity of this step is equal to O(n).281

The step 3 in WDNN is a loop, the number of iterations of the loop is limited by the k. Then, each282

neuron needs to run UNA for update at each time, which times depends on the number of neurons on283

the neural network. As to UNA, each neuron needs to send a wave to its precurssors and successors,284

its complexity is determined by V P
i +V F

i . Therefore, the time complexity of this step is equal to285

O
�

(k/∆t) ·∑n
i=1 V P

i +V F
i

�

.286

In summary, the time complexity of the WDNN algorithm is equal to:287
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O

�

n+
k

∆t
·

n

∑
i=1

mi

�

= O

�

n

∑
i=1

�

1+
k

∆t
·
�

V P
i +V F

i

�

�

�

= O

�

2k

∆t
·m+n

�

(6)

It is worth noting that WDNN is a parallel algorithm, all neurons on the neural network are calculated288

in parallel. Therefore, in an ideal situation, the number of neurons does not affect the algorithm execution289

speed, the theoretical time complexity of WDNN algorithm is equal to O
�

1+ k
∆t
·
�

V P
i +V F

i

��

.290

Correctness of WDNN291

Theorem 2. The first auto-wave that arrives at the destination neuron and satisfies the label constraint292

determines the shortest route from root neuron to destination neuron.293

Proof: Let x1, x2, and x3 be the precursor neurons of neuron z (see Figure 2). If the first auto-wave that294

received by neuron z is sent by neuron x1, then the delay is TP1
+wx1

+TP2
, the label set is {a,b,c}. If295

the second auto-wave that received by neuron z is sent by neuron x2, then the delay is TP3
+wx3

+TP4
,296

the label set is {a,b}. If the third auto-wave that received by neuron z is sent by neuron x3, then the297

delay is TP5
+wx3

+TP6
, the label set is {a,b}. Because the destination neuron z will no longer receive298

the auto-wave after receiving the auto-wave that meets the label threshold, so if the second automatic299

wave is received, it is apparent that the label {c} is not in the constrained label set; if the third auto-wave300

is received by neuron z, it is apparent that TP3
+wx3

+TP4
> TP5

+wx3
+TP6

, in reality, it contradicts the301

algorithmic process. In summary, Theorem 2 is correct.302

Figure 2. Prove the Theorem 2.

EXPERIMENTAL RESULTS AND DISCUSSION303

To evaluate the performance of the proposed algorithm, the performance of WDNN is compared with the304

well-known Yang’s algorithm (Yang) (Yang and Zhou, 2017), Veneti’s algorithm (Veneti) (Veneti et al.,305

2015), Tu’s algorithm (Tu) (Tu et al., 2020) on 120 randomly generated label time-varying networks using306

public network generation tools Random with different number of nodes and on two public real dataset Neu-307

ral Network(N-Net) and Internet Network (I-Net)(https://www.diag.uniroma1.it/challenge9/download.shtml).308

The structure of each dataset is shown in the Table 2. The space complexity of WDNN, Veneti, Yang309

and Tu are O((k/∆t) ·n), O((k/∆t) ·n), O(n) and O(n · e), respectively; the time complexity of WDNN,310

Veneti, Yang and Tu respectively is O
�

2k
∆t
·m+n

�

, O((k/∆t) · (n+m)), O(n2) and O(n2).311

The performance of proposed algorithm are evaluated from two aspects: number of nodes and number312

of time windows. In all experiments, without loss of generality, each experiment will be conducted N = 20313

times, and the source and destination nodes will be randomly selected in each repeated experiment. All314

programs and instances running a machine with Intel Xeon(R) Gold 5218R CPU and 64G RAM, and all315

programs are implemented in C#.316

For convenience, the relative error (RE) as an index to compare the performance of Yang, Veneti, Tu,317

and WDNN. The calculate expression of RE is as following:318

RE =
N

∑
i=1

�

|CV
i −OV

i |

OV
i

�

/N (7)
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Table 2. The Structure of Each Dataset

Dataset Number of Nodes Number of Edges Number of Time-windows Length of Edge

50 50 400 [1,5] [1,20]

100 100 800 [1,5] [1,20]

150 150 1200 [1,5] [1,20]

200 200 1600 [1,5] [1,20]

N-Net 4941 13203 [1,5] [1,20]

I-Net 22962 96872 [1,5] [1,20]

Table 3. Relative Error of Algorithms on Datasets with Different Nodes

Algorithm Number of Nodes

50 100 150 200

Veneti 0.383 0.131 0.283 0.237

Yang 0.191 0.219 0.123 0.201

Tu 0.019 0.025 0.026 0.027

WDNN 0.000 0.000 0.000 0.000

Where, the CV
i is the calculated value of ith experiment, and the OV

i is the optimal value of ith experiment.319

Effect of different nodes320

In this experiment, the performance of the proposed algorithm is evaluated by varying number of nodes321

between 50 to 200. Table 3 shows the effectiveness of the proposed algorithm and existing algorithms in322

solving 40 randomly generated label time-varying networks with different nodes. As shown in Table 3,323

compared to Yang, Veneti and Tu, the proposed algorithm obtain the optimal solution of the problem,324

while Yang algorithm has a relative error ratio between 0.123 and 0.219, the Veneti algorithm has a relative325

error ratio between 0.131 and 0.383, and the relative error ratio of Tu algorithm is shown a increasing326

trend from 0.019 to 0.027. And it can be seen that the change in the number of nodes does not affect the327

accuracy of the Veneti, Yang and WDNN algorithms. This is because changes in the number of nodes328

only cause changes in the network size, while the degree and edge length between nodes do not have any329

significant changes, as the number of nodes does not affect the accuracy of the three algorithm. However,330

as the network size increases (the number of nodes increases), the error ratio of Tu Algorithm is showing331

an upward trend, which means that Tu is not suitable for label-constrained shortest route solving on large332

time-varying networks. Furthermore, the reason why the algorithm proposed in this paper can obtain the333

optimal solution on label time-varying networks with different number of nodes (network size) is that334

the neural network maps each node to a neuron, and changes in network size only cause changes in the335

network size, that is, an increase in the number of neurons, so it does not affect the performance of the336

algorithm. The compute time with different nodes are shown in Figure 3.337

In terms of computational time, although the proposed algorithm has a slightly slower computational338

speed than Yang algorithm when the network size is small (between 50 and 150 nodes), the loudness339

speed of WDNN is actually better than Yang, Veneti and Tu algorithms when the network size is large. It340

is because that the Yang algorithm adopts a heuristic search mechanism similar to the Dijkstra algorithm,341

which does not require synchronization in the time dimension. On large scale networks, the advantages of342

the proposed algorithm are presented due to the parallel computation of each neuron. The Veneti and Tu343

algorithms requires a lot of computation time due to the need to handle a large scale number of labels. In344

summary, although the proposed algorithm is slightly slower than Yang algorithm on smaller networks, it345

has better solution accuracy. On larger networks, the proposed WDNN outperforms existing algorithms in346

terms of response speed and solution accuracy.347

Effect of different time windows348

In this experiment, the performance of the proposed algorithm is evaluated by varying number of time349

windows between 1 to 5. Table 4 shows the effectiveness of the proposed algorithm and existing algorithms350

in solving 50 randomly generated label time-varying networks with different time windows. As shown351

in Table 4, compared to Yang, Veneti and Tu, the proposed algorithm obtain the optimal solution of the352
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Figure 3. The Compute Time with Different Nodes.

Table 4. Relative Error of Algorithms on Datasets with Different Time Windows

Algorithm Number of Time Windows

1 2 3 4 5

Veneti 0.380 0.270 0.236 0.150 0.120

Yang 0.158 0.160 0.157 0.188 0.211

Tu 0.000 0.021 0.023 0.025 0.028

WDNN 0.000 0.000 0.000 0.000 0.000

problem, while Yang algorithm has a relative error ratio of 0.15 to 0.22, the Veneti algorithm has a relative353

error ratio of 0.12 to 0.38, and the relative error ratio of Tu from 0 to 0.028. Figure 4 shows the relative354

error trend of the four algorithms when the number of time windows for each arc changes from 1 to 5.355

From Figure 4, it can be seen that the proposed algorithm can obtain the optimal solution on time-varying356

networks with different number of time windows. The relative error of Yang and Tu algorithms increases357

with the increase of the number of time windows. Although the relative error of Veneti algorithm shows a358

decreasing trend, there is still an error of over 0.1 at 5 time windows. Figure 5 shows the compute time359

trend of the proposed WDNN, Yang, Veneti and Tu algorithms on a network with varying number of time360

windows. As shown in Figure 5, both WDNN, Yang and Tu algorithms show an upward trend with the361

increase of the number of time windows. This is because as the number of time windows increases, the362

algorithm needs to consume a certain amount of time when selecting a time window. Although the query363

time of the Veneti algorithm does not show an upward trend, this is because the time spent selecting the364

time window is relatively small compared to the search path of the Veneti algorithm, so it is not shown.365

Furthermore, the speed at which the proposed algorithm increases with the number of time windows366

is smaller than that of the Yang and Tu algorithms, while the Veneti algorithm has a computation time367

that is one order of magnitude higher than the proposed algorithm. In the case of more time windows,368

the proposed algorithm still has the best performance. In summary, the proposed algorithm has better369

performance compared to existing algorithms with varying time windows.370

Experimental results on large-scale networks371

This experiment will evaluate the performance of the proposed algorithm on large-scale real-world372

networks. Tables 5 and 6 show the response times of the proposed WDNN algorithm and Veneti, Yang,373
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Figure 5. The Compute Time with Different Time Windows.

and Tu algorithms on real networks N-Net and I-Net, respectively, for solving the time-varying label-374

constrained shortest route problem on subnets with different number of time windows. Meanwhile,375

Figures 6 and 7 respectively show the relative errors of the WDNN algorithm and Veneti, Yang, and Tu376

algorithms in solving the time-varying label-constrained shortest route problem on subnets with different377

number of time windows in these two real networks. From Table 5, it is evident that in the N-Net network378

with approximately 4000 nodes, the proposed algorithm shows a significant improvement in computational379

speed compared to Veneti and Yang algorithms. Furthermore, compared to Tu algorithm, the computational380
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Table 5. The Compute Time (ms) with Different Time Windows for N-Net Dataset

Algorithm Number of Time Windows

1 2 3 4 5

Veneti 4011.81 4567.63 4382.80 4534.41 4582.48

Yang 69259.23 73693.86 62957.29 71008.40 65617.65

Tu 334.51 416.62 353.41 391.93 360.54

WDNN 172.59 169.16 158.19 161.26 162.71
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Figure 6. The Relative Error with Different Time Windows for N-Net Dataset.

Table 6. The Compute Time (ms) with Different Time Windows for I-Net Dataset

Algorithm Number of Time Windows

1 2 3 4 5

Veneti 26789.26 27723.212 27076.32 26779.87 25608.23

Yang 22011.51 22287.60 21343.86 20870.71 20851.77

Tu 28820.42 30466.24 26013.79 22377.93 23775.95

WDNN 1516.66 1424.55 1585.39 1431.50 1250.00

speed of WDNN has also increased by about twice. In an I-Net network with approximately 20000 nodes,381

it can be clearly observed from Table 6 that the proposed algorithm shows a significant improvement382

in computational speed compared to Veneti, Yang, and Tu algorithms. This result indicates that the383

proposed algorithm is better suited for label-constrained time-varying shortest routing query problems on384

large-scale networks. Through the comprehensive analysis of Figures 6 and 7, it can be concluded that385

the proposed WDNN does not decrease accuracy as the number of time windows increases, and always386

maintains the ability to query the optimal solution. This is because WDNN is able to flexibly choose the387

most suitable departure time based on the time window to ensure earlier arrival at the next node. However,388

other algorithms lack a time window selection mechanism, and as the number of time windows increases,389

the query error shows an upward trend.390
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Figure 7. The Relative Error with Different Time Windows for I-Net Dataset.

CONCLUSION391

In this study, a framework for solving the Label-Constrained Time-Varying Routing Query (LTSRQ)392

on time-varying networks is proposed using a Wave Delay Neural Network (WDNN). The WDNN393

is comprised of self-designed 7-layer auto wave neurons, enabling parallel computing. Unlike other394

intelligent or neural network algorithms, the proposed neural network operates as an intelligent algorithm395

without the need for training. This mitigates the issue of slow response speed associated with training,396

diminishing the impact of network size (number of nodes) on model performance and considerably397

expediting the solution process on complex networks. In comparison to existing algorithms, the proposed398

WDNN demonstrates the capability to obtain the global optimal solution and provides interpretability.399

Through experiments conducted on 120 time-varying networks with varying node numbers and time400

windows randomly generated using the public network generation tool Random, as well as on real401

networks N-Net and I-Net, it is observed that the WDNN outperforms existing algorithms such as Veneti,402

Yang, and Tu. This offers substantial evidence for the effectiveness of WDNN in addressing the LTSRQ403

problem.404

In practical applications, multiple uncertain properties often characterize networks, and the label-405

constrained shortest route query problem on time-varying networks in uncertain environments has not been406

addressed by the proposed Wave Delay Neural Network (WDNN). In future work, attention should be407

directed towards improving the structure of neural networks or neurons to enhance algorithm adaptability408

in uncertain and time-varying environments, including aspects of fuzziness and randomness. When409

enhancing neurons, the primary focus should be on refining their wave filters, state updates, and wave410

generators. Wave filters play a crucial role in determining the efficiency of pathfinding, while state411

updates and wave generators influence the accuracy of pathfinding. For fuzzy time-varying environments,412

the addition of fuzzy simulation units is recommended to handle fuzzy edge lengths. In the case of413

randomly time-varying environments, incorporating a random simulation unit is advisable to calculate414

the probability distribution of the path. These enhancements will contribute to the overall robustness and415

applicability of the proposed WDNN in handling uncertainties within network environments.416
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