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ABSTRACT
Given the prevalent issues surrounding accuracy and efficiency in contemporary stereo-
matching algorithms, this research introduces an innovative image segmentation-
based approach. The proposedmethodology integrates residual and Swim Transformer
modules into the established 3D Unet framework, yielding the Res-Swim-UNet image
segmentation model. The algorithm estimates the disparateness of segmented outputs
by employing regression techniques, culminating in a comprehensive disparity map.
Experimental findings underscore the superiority of the proposed algorithm across all
evaluated metrics. Specifically, the proposed network demonstrates marked improve-
ments, with IoU and mPA enhancements of 2.9% and 162%, respectively. Notably,
the average matching error rate of the algorithm registers at 2.02%, underscoring its
efficacy in achieving precise stereoscopic matching. Moreover, the model’s enhanced
generalization capability and robustness underscore its potential for widespread
applicability.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Social Computing
Keywords Stereo matching, 3D virtual vision, Image segmentation, 3DUnet

INTRODUCTION
Binocular stereo vision represents a prominent domain within 3D virtual vision, boasting
extensive applications across various fields such as 3D measurement, autonomous vehicle
navigation, 3D reconstruction, and target tracking (Jiang, 2022). The foundation of
binocular stereo-vision technology encompasses crucial components such as camera
calibration and 3D reconstruction, with the stereo-matching algorithm serving as
the paramount stage within this comprehensive framework (Li, Liu & Wang, 2022).
Consequently, the quest for precise and efficient stereo-matching algorithms enables
the establishing of a robust binocular stereo-vision system and propels the advancement
of 3D virtual vision.

Based on different optimization techniques, traditional stereo-matching algorithms
can be categorized into global, local, and semi-global matching algorithms (SGM), with
the latter being based on the former algorithm (Yan, Yang & Zhao, 2022). For example,
in a study by Kim, Kwon & Ko (2014), a proposed stereo-matching algorithm leverages
confidence propagation to model the stereo-matching process as a Markov network.
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Through iterative optimization via confidence propagation, the algorithm significantly
enhances matching accuracy. Bumsub et al. (2014) introduces a stereo-matching algorithm
based on steady-state matching probability, which dynamically adjusts the window size and
achieves rapid matching speed, albeit with a trade-off of reduced performance in object
edge regions. Additionally, Chuang, Ting & Jaw (2018) presents a progressive SGM cost
aggregation scheme incorporating penalty adjustment and edge information, effectively
preserving geometric edges and improving overall matching quality. However, traditional
stereo-matching methods have inherent limitations and cannot incorporate carefully
designed constraints, consequently impacting their performance to some extent. With the
continuous development of deep learning, the fusion of convolutional neural networks and
stereo-matching has yielded remarkable results (Qi & Liu, 2022). For instance, Zbontar &
LeCun (2016) proposes a feature extraction approach using a weight-sharing network,
simultaneous matching cost calculation, and similarity determination of extracted
features from the left and right images via a fully connected layer. Another method
presented in Luo, Schwing & Urtasun (2016) calculates feature similarity using dot product,
replacing the earlier fully connected layer and enhancing operational efficiency. In recent
years, these approaches have constantly improved from various perspectives, including
algorithm stability, integration of semantic information, and operational efficiency
enhancement (Chen et al., 2015). Nevertheless, these algorithms still require complex
post-processing stages and manual design methods to handle exceptional areas and values,
limiting their overall performance.

To minimize the need for manual intervention, a recent publication (Mayer et al.,
2016) introduces an end-to-end stereo-matching model that incorporates the entire
stereo-matching process within a unified network structure, eliminating the requirement
for manual involvement. This model utilizes an ‘‘encoder–decoder’’ architecture and
employs a large synthetic dataset to train the network model. Several algorithms that
leverage large datasets have emerged to enhance algorithmic performance from various
perspectives. For example, in Kendall et al. (2017), 3DCNN makes more intuitive feature
comparisons, combines contextual information, and integrates information from multiple
angles to improve results. In Zhang et al. (2021), a spatial pyramid pool is designed to
expand the acceptance field of the network. Methods such as deep separable convolution,
spatial pyramid pool and feature fusion are adopted to improve the performance, and the
results are better than those of many advanced segmentation methods. In Li, Zhao & Yan
(2022), an attention mechanism was added to the stereo matching network, and combined
with the stereo matching algorithm of hybrid extended convolution, the high matching
accuracy and speed under unsupervised conditions were verified. In the Du, El-Khamy &
Lee (2019), it is proposed that hole convolution be used to extend the acceptance field of the
network and an efficient feature extractor be adopted to propose a weight-stacked acyclic
multiscale network, showing accurate parallax estimation. Liang et al. (2021) optimizes
the residual to improve the parallax map and incorporates deeper feature information to
enhance accuracy. In Yao et al. (2021), images of different resolution levels are segregated
and independently processed, with the resulting outputs subsequently fused. A novel
adaptive matching approach is introduced in Xu et al. (2022), introducing a new cost
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function that can be broadly applied to most networks. The accuracy and convergence
rate of the algorithm is improved in Cheng et al. (2020) through the introduction of a
novel search method. Liu, Yu & Long (2022) integrates local features, edges, and semantic
information to obtain more precise disparity maps.

Although significant strides have been achieved in stereo-matching algorithms, many
of these methods are contingent upon pre-trained models utilizing extensive datasets. The
necessity of pre-training on large datasets followed by fine-tuning presents an inherent
complexity, as these models comprise numerous parameters and are not readily applicable
to small-sample data. This study proposes an adaptive window stereo-matching algorithm
based on an enhanced 3DUNet segmentation network to improve precision and efficiency
in stereo matching. Experimental results reveal a notably low matching error rate. The key
innovations of this study are as follows:
(1) Integrating a Residual module and Swim Transformer module into the 3DUNet depth

neural network led to the development of the Res-Swim-UNet image segmentation
model. This model facilitates accurate segmentation of stereo images.

(2) Introduction of the Soft Argmin operation to estimate the parallax of the Res-Swim-
UNet segmentation results, thereby achieving precise stereo image matching.

(3) Experiments were carried out on different stereoscopic images to compare various
models, and several different evaluation indicators achieved good experimental results,
respectively.
The structure of this article unfolds as follows: ‘Stereo Matching Algorithm based on

Image Segmentation’ outlines the proposed stereo-matching algorithm, while ‘Experiment
and Analysis’ provides experimental validation of the algorithm’s efficacy. Finally,
‘Conclusion’ offers a comprehensive summary of the article’s content and presents
prospects for future research directions.

STEREO MATCHING ALGORITHM BASED ON IMAGE
SEGMENTATION
Image segmentation model based on improved 3DUNet
The 3DUNet is a renowned semantic segmentation network that serves as an extension of
the UNet architecture. While its fundamental principle is akin to UNet, it distinguishes
itself by utilizing 3D convolutions instead of 2D convolutions. This network has found
widespread application in image segmentation across various domains (Yu et al., 2022).

Figure 1 illustrates the network structure, featuring convolution templates of sizes 64,
128, 256, 512, and 1,024. The feature map undergoes downsampling via 2 × 2 maximum
pooling and applying the ReLU activation function. In the decoding network, the feature
map is progressively upsampled and convolved to restore the original image size and
channel count. The decoder and encoder are connected through a skip connection,
enabling the fusion of feature maps. The fused feature map is further convolved and passed
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Figure 1 3DUNet network structure.
Full-size DOI: 10.7717/peerjcs.2114/fig-1

through a 1 × 1 convolution layer with C outputs, where C represents the number of
channels or image segmentation categories.

The proposed Res-Swim-UNet model comprises an encoder, decoder, bottleneck layer,
and skip connections. The encoder comprises six convolution layers, two residual modules,
and four maximum pooling layers. This configuration facilitates extracting image features
and downsampling, resulting in five feature maps. The skip connections concatenate the
encoder’s multiscale feature maps with the decoder. The decoder exhibits a symmetric
structure to the encoder, comprising six convolution layers and two residual modules. The
final layer incorporates a 1 × 1 × 1 convolutional layer and sigmoid activation functions
to generate prediction probability maps. The bottleneck layer is situated at the lowest
point of the U-shaped architecture, where the feature resolution is at its minimum. To
optimize the computational cost of the Swim Transformer module, this study incorporates
only two modules into the bottleneck layers, considering that the calculation cost of
Swim Transformer modules increases linearly with resolution. This approach leads to an
improved model with enhanced performance. Figure 2 provides a detailed illustration of
the model’s structure.

The conventional Transformer relies on multi-head self-attention modules to establish
global interdependencies, enabling the system to extract and analyze global information
better. By contrast, the Swim Transformer is designed on the principle of a mobile window
and is composed of contiguous sub-modules. Figure 3 shows a detailed illustration of its
structure.

Each submodule within the Swim Transformer comprises a normalization layer,
a multi-head self-attention module, a residual connection, and a two-layer Multilayer
Perceptron (MLP). Window Multi-head Self-Attention (W-MSA) and Shifted Window
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Multi-head Self-Attention (SW-MSA) are employed for two consecutive submodules of
the Swim Transformer. Formulas (1) to (4) calculated the Swim Transformer module in
detail.

ẑ l =WMSA
[
LN

(
z l−1

)]
+z l−1 (1)

z l =MLP
[
LN

(
ẑ l
)]
+ ẑ l (2)

ẑ l+1= SWMSA
[
LN

(
z l
)]
+z l (3)

z l+1 =MLP
[
LN

(
ẑ l+1

)]
+ ẑ l+1 (4)

where, ẑ l respectively, represent the W-MSA module and MLP module for the module
output, LN represents layer normalization, where the self-attention module can be

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2114 5/15

https://peerj.com
https://doi.org/10.7717/peerjcs.2114/fig-2
http://dx.doi.org/10.7717/peerj-cs.2114


LN

1lz 

W-MSA 
ˆlz

LN MLP



LN

lz

SW-MSA

1ˆlz 

LNMLP

1lz 

 

Figure 3 The module structure of the Swim Transformer.
Full-size DOI: 10.7717/peerjcs.2114/fig-3

expressed as Formula (5).

Attention(Q,K ,V )= Softmax(
QKT
√
d
+B)V (5)

where, Q,K ,V ∈ RM 2
×d represents three matrices, which are obtained from the input

characteristic map through three convolution layers. KT is the transpose matrix of K ,d is
the scaling factor set to 64 in the experiment, B is a learnable offset parameter.

Parallax regression
The Res-Swim-UNet model utilizes regression to estimate the segmentation results and
employs the fully differentiable Soft Argmin operation (Li, Zhao & Yan, 2022) to yield
smooth disparity estimation outcomes. This operation involves calculating the probability
of each pixel in the segmented image belonging to various parallax values. The matching
cost volume is then processed using 3DCNNand upsampled to obtain thematching cost for
each pixel across all parallax values. The prediction cost is negated and regularized using a
Softmax operation, resulting in the probability of each pixel belonging to different parallax
values. Finally, the parallax values are weighted and summed using the corresponding
probability values to determine the parallax value at each pixel, as depicted in Formula (6).

d =
Dmax∑
d=0

d×σ (−Cd) (6)

where d represents the predicted parallax value, Cd represents Matching costs under
parallax d,σ (.) represents the Softmax operation, and its mathematical expression is

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2114 6/15

https://peerj.com
https://doi.org/10.7717/peerjcs.2114/fig-3
http://dx.doi.org/10.7717/peerj-cs.2114


shown in Formula (7).

σ
(
zj
)
=

ezj∑K
k=1ezk

(7)

where j = 1,2,...,K . The result of the converted output by Softmax is always in the range
[0, 1], and the sum of all results is equal to 1, so they show a probability distribution.

Loss function
Given that the smooth L1 loss function demonstrates strong robustness and low sensitivity
to outliers (Xu et al., 2022), this study has adopted it as the fundamental loss function, as
presented in Formula (8).

L(d.d̂)=
1
N

.N∑
n=1

Ls1(dn,d̂n) (8)

Ls1(x)=

{
0.5x2,|x| < 1
|x| −0.5

}
(9)

where N represents the total number of pixels, dn represents the true parallax value, d̂n
and represents the predicted parallax value. In general, it minimizes the sum L(d.d̂) of the
absolute differences between the target value dn and the estimate d̂n.

A deep supervision training approach is deployed to supervise the network’s final output
and the results obtained from intermediate levels of the network. More precisely, apply a
corresponding loss function, such as a cross-entropy loss function, to the output of each
layer, compare the loss value of each layer to the real label, perform parallax regression
on the volume output of each encoding and decoding structure, and calculate the loss
value, backpropagate according to the loss value, update the network parameters, and thus
improve the performance of the entire network. The final loss value is the weighted sum of
the loss values from each level, as illustrated in Formula (10).

Loss=
M∑
i=1

wiLi(d.d̂) (10)

were wi represents the weight of losses at different levels, M represents the number of
supervised levels. After experiments, M = 3 each layer’s corresponding weight parameters
are between 0.5–1.0.

EXPERIMENT AND ANALYSIS
Data set and parameter setting
To evaluate the effectiveness and robustness of the proposed algorithm, Comparative
experiments were carried out on different stereoscopic image pairs (https://zenodo.
org/records/45114). All the comparison experiments were conducted under the same
environment and hyperparameter settings.

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2114 7/15

https://peerj.com
https://zenodo.org/records/45114
https://zenodo.org/records/45114
http://dx.doi.org/10.7717/peerj-cs.2114


Table 1 Matching parameters.

Parameter α β γ λc TGx/y TCensus

Value 0.10 0.45 0.45 9.6 8 8

Table 2 Comparison of model segmentation performance.

Network name IoU mPA FPS

UNet 0.886 0.929 33.3
UNet++ 0.901 0.942 35.2
3DUNet 0.923 0.954 49.1
ResUNet 0.936 0.972 52.3
Ours 0.965 0.988 65.6

All experiments were conducted using the Python language, and computation and the
OpenCV visual library facilitated compilation. All pixel values were normalized to the
range [0, 1.0]. Parameters utilized in the experiments are listed in Table 1. To calculate the
mismatching rate, detailed data from mismatching pixels was obtained by comparing each
pixel in the resulting parallax map to the corresponding pixel in the standard parallax map,
which is calculated by Formula (11):

PPBM =
1
N

∑
(x,y)

[∣∣dc(x,y)−dt (x,y)∣∣>δd]. (11)

The parameters in the equation have the same meanings as those in Table 1, where N is
the number of effective pixels in the image area, dc(x,y) is the disparity map calculated for
stereo matching algorithm; dt (x,y) is the true parallax map provided for the dataset, δd is
the parallax threshold, which is taken as 1 in the experiment, that is, when the difference
between the parallax value calculated by the stereomatching algorithm and the true parallax
value is greater than 1, the pixel point is regarded as a mismatched point. The specific step
is to give two graphs with different marks, search for the most matched points on the polar
line, calculate the similarity of each search window, and finally calculate the parallax.

Comparison of segmentation performance
The segmentation model’s performance plays a vital role in the overall matching effect
of the proposed algorithm, given its sequential segmentation and matching approach. To
validate the effectiveness of the introduced residualmodule and SwimTransformermodule,
a comparison was conducted between the Res-Swim-UNet model proposed in this study
and other models, including UNet, UNet++, 3DUNet, and ResUNet. The evaluation of
segmentation performance encompassed metrics such as the intersection-over-union ratio
(IoU), mean pixel accuracy (mPA), and frames per second (FPS) (Yu et al., 2022; Rahman
et al., 2022). The comprehensive comparison results of the five models are presented in
Table 2, while Fig. 4 depicts the mPA curve over 600 iterations.

Table 2 and Fig. 5 illustrate that the model proposed in this study outperformed the
other models across all three evaluation metrics. Although the improvement in mPA was
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Figure 4 Comparison of different salt and pepper noise.
Full-size DOI: 10.7717/peerjcs.2114/fig-4

not particularly significant compared to the othermodels, themodel in this article exhibited
superior generalization ability and robustness. By incorporating the residual connection
and Swim Transformer, the network in this article demonstrated improvements of 2.9%
in IoU and 162% in mPA. Moreover, it achieved an FPS of 65.6/s, representing a 25.4%
enhancement over the ResUNet network, which solely utilized the residual module
for optimization. These results conclusively demonstrate the effectiveness of the Swim
Transformer module proposed in this article, as it successfully enhances the accuracy and
efficiency of the image segmentation model.

Comparison of matching performance of different algorithms
To assess the matching performance of the algorithm proposed in this article, a comparison
was conducted with the classic Adaptive Weight and RT Census algorithms (Deng et al.,
2023; Chen et al., 2023). Table 3 presents the mismatch rates of the various algorithms.
Based on the test results, the proposed algorithm achieved an average mismatch rate of
2.04%, surpassing the performance of the other two algorithms. Thus, the proposed model
effectively enhances the matching accuracy.

In order to further examine the higher-resolution image matching, we perform stereo
matching on standard stereo image pairs of Adirondack (resolution: 718 × 496), Pipes
(resolution: 735 × 485), Motorcycle (resolution: 741 × 497), and ArtL (resolution 694 ×
554), employing the errormatching rate of non-occluded area (Nonocc), all areas (All), and
discontinuous area (Disc) as evaluation indices. The experimental results are tabulated in
Table 4. Our observations from Table 4 lead to the conclusion that the matching accuracy
of the algorithm in this article is high and that it is also suitable for stereo matching of
high-resolution images.
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Full-size DOI: 10.7717/peerjcs.2114/fig-5

Table 3 Comparison of mismatch rate.

Algorithm name Conse Teddy Venus Tsukuba Average

Adapt Weight 16.42 7.21 7.86 8.32 9.95
RT Census 10.12 12.46 0.89 2.85 6.58
Ours 3.99 3.21 0.67 0.23 2.02

Table 4 Matching results of adirondack, pipes, motorcycle, artL.

Evaluating indicator Adirondack Pipes Motorcycle Artl

Nonocc 0.0109577 0.0492873 0.224144 0.0281561
Disc 0.0844523 0.467321 0.207226 0.377693
All 0.0251666 0.1571 0.0618214 0.14966

Anti-noise test
In addition, 5%, 10%, 15%, and 20% pepper and salt noise and Gaussian noise with
standard deviation were added to the standard test images of Tsukuba, Venus, Teddy, and
Cones. The two algorithms above, compared in ‘Comparison of matching performance of
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Figure 6 Comparison of different standard deviation Gaussian noise.
Full-size DOI: 10.7717/peerjcs.2114/fig-6

different algorithms’, were utilized to calculate and obtain the unoptimized disparity map
and subsequently compute the mismatch rate. The resulting experimental outcomes are
presented in Figs. 5 and 6.

Based on the data presented in Figs. 5 and 6, it can be observed that the Adapt
Weight algorithm consistently exhibited a high mismatch rate when subjected to salt
and pepper noise, indicating its vulnerability to noise interference. On the other hand,
the proposed algorithm showcased superior robustness to such noise. In Gaussian noise,
both the proposed algorithm and the RT Census algorithm outperformed the Adapt
Weight algorithm. In conclusion, the algorithm proposed in this article demonstrates
enhanced noise tolerance without compromising the accuracy of the resulting disparity
map, surpassing the performance of both the Adapt Weight and RT Census algorithms.

Discussion
The advancement of convolutional neural network architectures in image segmentation,
coupled with the availability of sizeable standardized stereo datasets, has led to extensive
research on stereo-matching algorithms based on deep learning. Many of these algorithms
now achieve accuracy comparable to that of depth sensors. Compared to traditional
stereo matching methods that rely on manually designed features, deep learning-based
3D matching algorithms have significantly improved accuracy. Considering the parallax
continuity constraint in stereo matching, which states that there should be no abrupt
changes in parallax between the center pixel and its neighboring pixels, except at the image
boundary, the image can be divided into segments assuming continuous parallax within
each segment. The encoder–decoder network based on 3D convolution offers advantages
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such as a simple structure, strong scalability, and ease in balancing precision and speed.
Therefore, this study combines the classical image segmentation network, 3DUNet,
with the stereo-matching algorithm. A new parallax computation network is proposed by
incorporating residual and Swim Transformer modules to adjust the network structure and
optimize performance. This fusion approach has two advantages in experiments: it ensures
adherence to the parallax continuity constraint. It reduces the algorithm’s time complexity
by operating at the superpixel level rather than the pixel level. The encoder–decoder
network, also known as the hourglass structure, exhibits powerful feature extraction and
data dimension reduction capabilities, making it well-suited for stereo-matching tasks.
With the continuous progress of social science and technology, three-dimensionalmatching
technology is advancing rapidly. The improvement in the accuracy and speed of matching
algorithms has expanded their application scenarios. Against this backdrop, studying the
variations in stereo matching is significant. Stereo matching is crucial in obtaining depth
information through image matching in 3D reconstruction, stereo navigation, non-contact
ranging, and various other technologies. Although stereo matching is widely utilized,
numerous unresolved issues remain, making it a challenging and prominent topic in
computer vision in recent years.

Although the experimental comparison was not carried out on different data sets in this
article, the model could learn more data patterns when there were enough data samples,
select meaningful features in feature selection, and reduce overfitting. The pre-trained
model was adopted as initialization, and fine-tuning was performed from convergent
points to increase the model’s generalization ability.

As an engineering problem, stereo matching involves various factors that affect its
accuracy and speed during implementation. No single complex algorithm can address
all aspects of stereo matching. This article focuses on the core steps of image pixel
segmentation and matching in stereo matching and improves the image segmentation
network by integrating it into the stereo matching algorithm. Experimental results have
demonstrated the effectiveness of the proposed approach. Therefore, it can be concluded
that the algorithm presented in this article can assist researchers in establishing more
effective binocular stereo-vision systems and contribute to advancing related fields.

CONCLUSION
The article introduces a novel adaptive window binocular stereo-matching algorithm
incorporating image segmentation. The algorithm leverages the Residual and Swim
Transformer modules within a 3DUN segmentation model to accurately segment the
input images. It further utilizes the Soft Argmin operation to estimate the parallax of
the segmented images, leading to improved stereo-matching results. Compared with the
traditional plane matching algorithm, the three-dimensional matching method in this
article plays a crucial role in obtaining depth information through image matching. The
experimental results show that compared with other models, the proposed algorithm
has better results on different evaluation indexes, improving the image segmentation
network and having higher segmentation accuracy and lower mismatch rate, which ensures
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accurate and stable stereo-matching performance. Experimental results demonstrate that
the proposed algorithm achieves high segmentation accuracy and low mismatch rates,
guaranteeing precise and stable stereo-matching performance. In future work, the authors
aim to enhance the segmentationmodel to achieve evenmore accurate results. Additionally,
they seek to improve the quality of stereo matching further. These advancements will
contribute to developing more sophisticated and effective binocular stereo-vision systems.
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