
Enhancing bug allocation in software
development: a multi-criteria approach
using fuzzy logic and evolutionary
algorithms
Chetna Gupta1,* and Varun Gupta2,3,*

1 Jaypee Institute of Information Technology, Noida, India
2Department of Economics and Business Administration, University of Alcala, Alcalá de Henares,
Madrid, Spain

3 Multidisciplinary Research Centre for Innovations in SMEs (MrciS), GISMA University of
Applied Sciences, Potsdam, Germany

* These authors contributed equally to this work.

ABSTRACT
A bug tracking system (BTS) is a comprehensive data source for data-driven
decision-making. Its various bug attributes can identify a BTS with ease. It results in
unlabeled, fuzzy, and noisy bug reporting because some of these parameters,
including severity and priority, are subjective and are instead chosen by the user’s or
developer’s intuition rather than by adhering to a formal framework. This article
proposes a hybrid, multi-criteria fuzzy-based, and multi-objective evolutionary
algorithm to automate the bug management approach. The proposed approach, in a
novel way, addresses the trade-offs of supporting multi-criteria decision-making to
(a) gather decisive and explicit knowledge about bug reports, the developer’s current
workload and bug priority, (b) build metrics for computing the developer’s capability
score using expertise, performance, and availability (c) build metrics for relative bug
importance score. Results of the experiment on five open-source projects (Mozilla,
Eclipse, Net Beans, Jira, and Free desktop) demonstrate that with the proposed
approach, roughly 20% of improvement can be achieved over existing approaches
with the harmonic mean of precision, recall, f-measure, and accuracy of 92.05%,
89.04%, 90.05%, and 91.25%, respectively. The maximization of the throughput of
the bug can be achieved effectively with the lowest cost when the number of
developers or the number of bugs changes. The proposed solution addresses the
following three goals: (i) improve triage accuracy for bug reports, (ii) differentiate
between active and inactive developers, and (iii) identify the availability of developers
according to their current workload.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Software
Engineering
Keywords Evolutionary algorithms, Bug tracking system, Software development

INTRODUCTION
The problem of assigning bugs is a challenging task aiming to identify potential developers
based on bug meta-data features, the developer’s performance profile, and other concerns
such as workload schedule, technical aspects, and related documentation. Large software
projects, including industrial and open-source projects, use bug tracking systems (BTS)

How to cite this article Gupta C, Gupta V. 2024. Enhancing bug allocation in software development: a multi-criteria approach using fuzzy
logic and evolutionary algorithms. PeerJ Comput. Sci. 10:e2111 DOI 10.7717/peerj-cs.2111

Submitted 2 January 2024
Accepted 16 May 2024
Published 18 June 2024

Corresponding authors
Chetna Gupta,
chetnagupta04@gmail.com
Varun Gupta,
varun.iit13@gmail.com

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2111

Copyright
2024 Gupta and Gupta

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2111
mailto:chetnagupta04@�gmail.�com
mailto:varun.�iit13@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2111
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

like Bugzilla (https://www.bugzilla.org/) to manage bug fixing. Effective bug assignment
needs a plethora of information about reported bugs, their priority, severity, the pool of
available developers, and information about their ability, experience, workload,
availability, schedules, and bug report dependencies, among other things (Zhang et al.,
2017; Soltani, Hermans & Bäck, 2020). Some of these parameters, such as severity and
priority, are subjective and determined by the user’s or developer’s intuition rather than by
a clear-cut framework. Many people who report software problems do not know the
precise technical terms used in software development, which makes the bug unlabeled,
vague, and noisy. It is considered a complex, multi-criteria decision-making process. Any
mistake in this regard will cause an increase in overall bug-fixing time. In large open-
source projects with a high number of daily bug reports, bug triagers find it challenging to
keep track of all the developers and their progress. Thus, bug triagers face the dilemma of
“How to select a potential developer from the pool of available developers for bug
assignments under numerous constraints and achieve a timely and effective bug resolution
solution?”

In addition to the traditional method of manually assigning bugs to appropriate
developers, the literature provides an exhaustive array of approaches for semi- or fully
automating the bug assignment process. These techniques are based on machine learning,
social network analysis, tossing based on the graph, fuzzy logic, games in software
development, operational research, and information retrieval, etc., to perform automatic
text summarization, duplicate detection, bug triaging, component prediction, severity/
priority prediction, etc., (Sajedi-Badashian & Stroulia, 2020; Nagwani & Suri, 2023). These
approaches try to minimize the effort, bug tossing length, and time required for bug
resolution. To our knowledge, the literature lacks studies supporting multi-criteria
decision-making for assigning a bug to the most potential developer, focusing on
automated hybrid methods. The proposed approach considers (a) metrics for computing
developer’s capability (or expertise) score concerning relative performance in the past
along with their availability status; (b) metrics for the relative bug score value; and (c)
focusing on how to increase software developer’s motivation. Decisive and explicit
knowledge about the developer’s performance profile and bug importance are computed
from meta-features of the bug reports. It helps focus on the maintenance process to
manage projects more effectively and efficiently.

The proposed approach uses intuitionistic fuzzy sets (IFS) (Atanassov, 1986) and a
multi-objective evolutionary algorithm—particle swarm optimization (MPSO), to
recommend appropriate developers. A multi-purpose evolutionary algorithm (EA) serves
multiple optimization objectives at the same time, such as multi-objective optimization,
solution exploration, noise robustness, complexity handling, and scalability. In bug
assignment processes, it balances competing objectives such as bug severity and developer
responsibilities while navigating noisy environments and tackling complex problems
quickly. The algorithm scales well for large-scale activities, making it a useful tool for
optimizing bug assignment processes and other comparable tasks. Multi-objective
evolutionary algorithms (MOEAs) efficiently balance conflicting goals in bug assignment,
analyze trade-offs, tackle complexity, navigate uncertainties, and scale well for large-scale

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 2/27

https://www.bugzilla.org/
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

tasks. It is a collaborative approach wherein it builds metrics of developer’s capability
scores to provide ranking to available developers based on their performance, expertise,
and availability from the pool of developers. It is a relative performance score value that
helps analyze the relationship between the developer’s capability concerning bug
assignment tasks taken in the past. Next, a bug value score metric is computed using
Intuitionistic fuzzy sets. From the available list of multi-criteria decision models, IFS is a
powerful method that leverages the benefits of uncertain and vague human decisions
clearly and intuitively, a scalar value that considers both the best and worst options, simple
and easy to use with good computational efficiency. In the past, fuzzy logic-based
approaches have not considered multi-criteria to compute bug value scores. Therefore,
maximizing the developer’s capability and bug scores to achieve a successful bug
assignment is the objective. Next, it optimizes the two score lists (of developers and bugs)
using an evolutionary algorithm (particle swarm optimization). Optimization helps find
the best value of decision variables, which will be used to measure a decision's effectiveness.
Overall, the proposed approach benefits the proposed approach handles two significant
issues: differentiating between active and inactive developers and confusion over the
assignment of bugs. It will further reduce bug-fixing delays and will prevent re-assignment
problems.

The proposed method is applied and tested on five well-known open-source bug
repositories. The results are compared to the state-of-the-art approaches to evaluate the
best prediction accuracy and address the issue of reduced bug tossing length. The proposed
work’s performance is evaluated against the results of the fuzzy logic-based Bugzie model
(Tamrawi et al., 2011). The proposed solution aims to reduce triagers’ effort by addressing
the increase in daily bug reports, particularly in large-scale open-source projects. With a
rising number of bug reports flooding bug repositories, each bug must be triaged, resulting
in lengthier repair times and a higher probability of reassignment. Automated bug triage
provides a way to reduce the stress on triagers and speed up the procedure for fixing them
(Nagwani & Suri, 2023). The following are the main contributions of this article:

. The use of fuzzy logic and an evolutionary algorithm is proposed as a new technique to
improve the quality of the bug assignment.

. A metric is built to gather precise and explicit knowledge of the developer's capability
score. Intuitionistic fuzzy logic is applied to multiple criteria to handle uncertainty and
the vagueness of expert judgment to compute the bug value score of each bug. These two
values will serve as input to the automatic process.

. With the proposed approach, maximization of the throughput of the bug and the
assignment can be achieved concurrently by creating a balance between multiple
selection and assignment criteria. It uses the evolutionary algorithm (particle swarm
optimization) for selecting potential developers who can provide robust solutions with
reduced overheads in cost, time of bug fixing, and bug tossing length.

. The proposed solution addresses the following three goals: (i) improve triage accuracy
for bug reports, (ii) differentiate between active and inactive developers, and (iii) identify
the availability of developers according to their current workload.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 3/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Specifically, the following research questions are investigated.
RQ1: How effective is a multi-objective particle swarm optimization (MPSO) based bug

assignment technique?

(a) Can it improve the expert’s manual assignments to minimize bug tossing length and
timely resolution of bugs?

(b) How costly is it to compute developers’ capability score, use IFS to compute bug value
score, and run the multi-objective PSO-based approach in terms of accuracy?

RQ2: How valid and feasible are the solutions provided by a proposed approach, from:

(a) The human expert’s perspective?

(b) What is the successful assignment rate?

RQ3: How helpful is the incentive mechanism in minimizing backlogs and overall
predicted bug-fixing time?

The rest of the article is organized as follows: “Related Work” provides a discussion of
existing literature, followed by a discussion of the proposed approach in “Proposed
Approach”. “Multi-Objective Particle Swarm Optimization for Solving Bug Assignment
Problem” discussed the multi-objective particle swarm algorithm, followed by the results.
“Empirical Validation” presents the conclusion and future work.

RELATED WORK
The bug triaging problem has been the subject of several theories, some of which
emphasize machine learning and information retrieval, auction-based, and social network
approaches. In contrast, others emphasize fuzzy logic (Soltani, Hermans & Bäck, 2020;
Nagwani & Suri, 2023). When it came to automating the software bug-triaging approach,
machine learning (ML) techniques were the first to be considered by researchers. Machine
learning approaches (Tamrawi et al., 2011; Bhattacharya, Neamtiu & Shelton, 2012;
Shokripour et al., 2015; Jonsson et al., 2016; Xia et al., 2017; Jiechieu & Tsopze, 2020;Mohsin
& Shi, 2020; Tran et al., 2020) match the new bug report with the characteristics closest to a
set of bug reports fixed by a developer for a recommendation. From the literature listed, it
can be concluded that most often, machine learning’s classification technique (Jiechieu &
Tsopze, 2020; Mohsin & Shi, 2020) is employed for bug triaging, and performance
measures for classification tasks, including accuracy, precision, recall, and F1-measure, are
used to assess the effectiveness of the proposed techniques. In a study of various machine
learning techniques for detecting software flaws, Tran et al. (2020) discovered that the
random forest classifier performs better than other techniques. Although machine learning
(ML) is a widely used technology, gaining better performance is still a concern that
encourages researchers to improve the current technologies (Nagwani & Suri, 2023). As
reported by researchers, the accuracy achieved using machine learning algorithms ranges
from 44.4% to 86.09%, with 86% being the highest level of precision.

Some previous research has attempted to match developer profiles’ competence to a
set of characteristic attributes to recommend developers who match their profile

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 4/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

(Nagwani & Suri, 2023; Jahanshahi et al., 2021; Liu et al., 2022)—the most complex
challenge in such matching is labeling bug reports with insufficient or missing label
information. Research has shown that using different aspects, such as the decision
classifier, feature selection, tossing graphs, and incremental learning, impacts bug-triaging
efficiency. Numerous machine learning techniques are employed in the literature to
comprehend software bug reports and their attributes (Kashiwa & Ohira, 2020), along with
their causes, such as dependencies between bugs (Jahanshahi et al., 2021; Almhana,
Kessentini & Mkaouer, 2021; Pan et al., 2022; Jahanshahi & Cevik, 2022) and invalid and
unreproducible bug reports (Gundersen, Coakley & Kirkpatrick, 2022; Wu et al., 2020).

Researchers have also explored techniques based on information retrieval to automate
the bug-assigning process (Tamrawi et al., 2011; Shokripour et al., 2015; Xia et al., 2017;
Aung et al., 2022). Bug reports are viewed as documents that are altered in these
techniques. These methods use feature vectors to describe textual information in bug
reports, which is then processed to determine which developers should be considered. The
key idea is to assign a bug to a developer with comparative skill in dealing with a specific
type of bug based on the developers’ previous work. The most popular presentations in IR-
based approaches are TF-IDF (term frequency—inverse document frequency), text
mining, and text similarity techniques. Guo et al. (2020) used Word2vec, a natural
language processing system, to summarize bugs and CNN to implement it. To increase the
accuracy of bug assignments, a few researchers have employed extra information like
components, products, severity, and priority (Xia et al., 2017; Zhao et al., 2019; Yadav,
Singh & Suri, 2019).

Additionally, the researchers have suggested topic models for better software issue
triaging. The topic model latent Dirichlet allocation (LDA) approach is used in Zhao et al.
(2019) to identify a suitable developer. They use the LDA approach to calculate the
similarity of bug reports and combine it with multiple attribute information to filter out
inconsistencies. To obtain a closer supervised subject distribution, Xia et al. (2017)
suggested a model adding additional supervision information to the LDA. However, there
are fears that bug reports will be labeled with insufficient, missing, or redundant label
information, resulting in the loss of context information. Another concern is the cost of
using machine learning or information retrieval techniques.

There is limited work that addresses the developers involvement in the bug assignment
process. It owes to the fact that there are so many developers that there is no way to know
who is available, who has left the job, or who has the skill or potential to solve a given bug.
In this regard, Xuan et al. (2017) suggested a semi-supervised text categorization algorithm
to recommend that developers flag erroneous developer situations in current bug report
data. Their method combines the naive Bayesian and expectation-maximization
approaches. Gupta, Inácio & Freire (2021), along with Jahanshahi et al. (2021), Jahanshahi
& Cevik (2022), and Gupta & Freire (2021), are among a few researchers who have
proposed approaches taking into account the developer’s involvement while allocating
bugs. An auction-based blockchain framework is proposed byGupta & Freire (2021). Their
work uses a blockchain-based incentive system for assigning bugs. Individual developers

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 5/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

can choose the bug reports that best suit their tastes and availability to provide reliable fixes
with less expense and bug-fixing time.

Xuan et al. (2012) use social networking approaches to prioritize developers by
analyzing developer information. To assign bugs depending on the developer’s priority,
they looked at three primary influencing factors: product characteristics, time fluctuation,
and noise tolerance. A developer’s social network depicts social interactions and personal
relationships among software developers in social network-based methodologies. The
developer’s expertise is calculated based on the network’s numerous influencing elements,
which include software developer relationships and bug reports for the prospective
developers (Zhang et al., 2013; Alazzam et al., 2020). The main issue with these strategies is
that creating association graphs and aggregating data from various sources is difficult
(Alazzam et al., 2020). Modeling social network analysis-based techniques is challenging
since they use graph data structures for developer-bug relationships. Because of this, the
computing time is longer.

Tossing graph-based techniques (Bhattacharya, Neamtiu & Shelton, 2012; Chen, Wang
& Liu, 2011; Jeong, Kim & Zimmermann, 2009; Bhattacharya & Neamtiu, 2010) are
another group of approaches mentioned in the literature. The tossing paths of previously
repaired bug reports are considered in these approaches. To improve the accuracy of bug
report assignments, Jeong, Kim & Zimmermann (2009) used the transfer graph to describe
the bugs the current developer could not repair and the information that the bug report
passed on to other developers. By examining transfer graphs mixed with various features,
Bhattacharya & Neamtiu (2010) presented an enhanced assignment accuracy approach
based on Sajedi-Badashian & Stroulia (2020). One of the most severe issues in bug triaging
is bug tossing, which accounts for around 93% of all bug reports tossed at least once.

The literature presents multiple solutions using mathematical and optimization
approaches (Wei et al., 2018; Kashiwa & Ohira, 2020; Kumar et al., 2020b), including a few
recent ones. The researchers primarily focus on creating mathematical formulations and
objective functions to handle software bug triaging using mathematical modeling and
optimization-based techniques. The advantages of these techniques include the potential
for performance modeling and the ability to scale them by considering additional data and
features when mathematically modeling bug-triaging processes. Most software bug
features are textual, and fuzzy logic is the discipline closely resembling textual situations
and is motivated by human intelligence. Fuzzy logic is the ideal method for determining
the relationship between each developer and software issues because modern software
development is based on a multi-developer, multi-tasking team. The fuzzy sets-based
algorithm calculates the membership score of developers for specific topics based on bug
parameters (Xia et al., 2017; Chawla & Singh, 2015). Using fuzzy logic and similarity
measurements, these methods classify bug reports into bugs and non-bugs.

From the literature using fuzzy logic-based approaches, it can be concluded that by
managing the various causes of software issues, fuzzy logic performs better than machine
learning algorithms and offers a more significant number of developers to the triager for
fixing newly reported bugs. Software defects are investigated and analyzed using fuzzy
similarity measures (Liu et al., 2020; Coletti & Bouchon-Meunier, 2019), classified

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 6/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

(Chen et al., 2019; Pandolfo et al., 2020). In addition, models for triaging bugs based on
fuzzy logic are created (Tamrawi et al., 2011; Elbeltagi, Hegazy & Grierson, 2005). Tamrawi
et al. (2011) suggested a bug distribution technique based on fuzzy sets and developer
caching. Additionally, previous research did not allocate problems based on critical criteria
that considered the total developer’s capability and knowledge. One of the main issues with
distinguishing active and inactive developers is the lack of sufficient research on the
availability of developers in the literature. This study fills in the gaps and suggests a hybrid
bug-triaging approach.

PROPOSED APPROACH
The proposed approach is an iterative method that can handle single and multiple human
decision-makers (triagers) and different preference criteria. An idiosyncrasy of this
approach is the use of IFS and evolutionary algorithms to reduce the manual effort, that is,
the amount of information processing required from bug triagers to decide who a
particular bug is to be allocated among the developers. A finite number of bugs B = {b1,
b2…..bn} and a finite number of developers D = {d1, d2…..dn} is considered for bug
assignment. The foremost requirement of the presented approach is to have a simple and
fast process of analysis yielding accurate and trustworthy results. If both of these
conditions are not met, the process is unlikely to be used in the bug-triaging process.
Literature has established that of all the criteria, three main factors are the quality of bug
resolution, the developer taking the average time to fix the bug, and the priority of bug
report. For a successful bug resolution, the quality of bug resolution must be maximized,
time-to-fix must be minimized, and the priority of bug reports should be maximized.
Figure 1 sketches the proposed bug assignment process.

As shown in Fig. 1, the features of both developer profiles and bug reports are studied—
the benefit of analyzing and addressing bug reassignment issues. Later, score values for
both are calculated using the proposed capability score and bug value score (discussed next
in this section). These scores are then sorted to form the priority list, which is inputted into
the algorithm to optimize results.

In this article, a multi-objective particle swarm optimization (MPSO) algorithm is used
because it has a better success rate, quality of the solution, and processing time in
comparison to other evolutionary algorithms such as ant-colony systems, memetic
algorithms, genetic algorithms, and shuffled frog leaping (Wei et al., 2018). The initial
investigation focused on five key databases: Mozilla, Eclipse, NetBeans, Jira, and Free
Desktop. It was found that bug reports across these databases share common labels and
attributes, including bug description, comments, attachments, dependencies, bug ID,
creation date, reporter name, product, components, priority, platform, assignee name, bug
history, bug status, keywords, version, operating system, and severity.

As discussed in related work, the existing methods do not explicitly consider multiple
features and the amount of workload a developer can handle in a given time. It may result
in work overload for a few developers. However, these techniques have recommended
appropriate developers or produced effective results in shortening bug fixing or tossing
length. To tackle this problem, in this article, developers’ capability, bug importance, and

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 7/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

availability of a developer are considered using a multi-criteria approach. The results are
optimized to recommend the appropriate developer for the reported bug. Based on the
count of bug fixes relating to the component indicated in the reported bug, the proposed
method measures bug-fixing competence and performance in addition to their current
workload. The following steps are followed:

Developer’s capability score
An in-depth analysis of developers’ performance and expertise in resolving the bug is
considered. Developers are ranked according to their relative performance in handling bug
resolution in the past. A list of features is extracted for each developer as a function of their
profile expertise regarding bugs handled. The capability score (Dcap) is defined as the
percentage of successfully resolved bug reports (SR(bi)) with the total number of bug reports
(T(bi)) handled, mathematically formulated in Eq. (1). Total bug reports include both
successful and unsuccessful reports handled.

Dcap ¼ ðSR bið Þ=T bið ÞÞ � 100 (1)

In short, the proposed approach provides the solution to the problem of automated bug
triaging using the following essential philosophy: “Who has the most bug-fixing capability
score (relative score) for (i) current workload (ii) the relative performance of handling bug
fixing record in the past.” Developers will be ranked based on their capability score values
from a filtered list. This ensures that a developer can always be selected or recommended
with a possibility of 1, even in the worst-case scenario where there is no suitable developer
available. Algorithm I discuss the steps followed to build the capability score of available
developers.

In step 4 (referring to Algorithm I), the upper and lower threshold values are computed:
A developer can handle a limited number of bugs in a day or month. The value of the
current load (total bug-fixing cost assigned) refers to the load a developer is handling. This
parameter is used as a parameter to set the upper threshold. The lower threshold is the
minimum amount of workload a developer is handling. It also includes inactive
developers. The threshold values for both upper and lower are already set in advance. In
experimentation, the same threshold values for all developers are considered, but in
practice, these can be altered depending on the number of bugs or the project.

Figure 1 Bug assignment process using the proposed method.
Full-size DOI: 10.7717/peerj-cs.2111/fig-1

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 8/27

http://dx.doi.org/10.7717/peerj-cs.2111/fig-1
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Bug value computation
Bug value computation refers to the process of assessing the importance and impact of
bugs in software development. It involves analyzing various parameters such as bug
complexity, volatility, time to fix, severity, priority, effort, and tossing information to
determine the value or significance of each bug in the bug resolution process. This
computation helps bug triager’s prioritize bug resolution effectively and allocate resources
accordingly. A multi-objective model is considered on the following features extracted
from the available bug repository: bug complexity, volatility, time to fix, severity, priority,
effort, and associated tossing information. Based on the definition of various parameters of
standard bug reports, Let B be a set containing n bugs, and for each bug bi ∈ B let,

For effective bug resolution, it is essential to perform bug report estimations and access
their potential payoffs before allocating them to developers. No two bug reports are the
same; each is unique in what it sets out to achieve and unique in the multitude of
parameters that form its existence. Usually, bug triagers face difficulty in deciding or
identifying which bug is to be assigned to which developers. Frequently, a problem that
seems simple initially turns out to be more complex or technically challenging to solve.

Algorithm I: Compute capability algorithm

1. Compile a list of developers and the number of bugs allocated in the past.

2. Generate a separate list of bug-fixing data.

3. Filter the results for each developer using the attributes listed below:

a. Fetch: Get the fixer information and bug description from the data (title, keywords, product name, and component).

b. Maxalloc: the maximum number of bugs assigned so far. It consists of the following:

i. Bugs assigned

ii. Bugs resolved/tossed

c. Current load: the number of currently assigned bug reports. It also represents the status of a developer as active or inactive.

4. Filter developers according to the capacity to take the new load (developers are isolated using an upper and lower threshold value).

5. Compute capability score using Eq. (1).

C(bi) It is the complexity of the bug.

V(bi) It represents its volatility, the approximate time over which it cannot be changed.

Tm(bi) Estimated time/duration for resolving a specific bug. It is influenced by factors such as the environment, support for infrastructure, etc.

S(bi) Is the degree of the impact a bug can have on the system

P(bi) Is the priority of fixing the bug

E(bi) Estimated effort required to resolve bugs within constraints of the environment and technical skill required.

Tn(bi) When a bug/feature is not resolved or missed within a specified time and duration. It is the number of times the bug is tossed to another
developer.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 9/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Different perspectives and approaches to reporting bugs and assigning them can lead to
varied outlooks. Therefore, predictions cannot rely solely on linguistic values assigned to
bug report labels. Hence, using multi-criteria decision analysis, the Intuitionistic Fuzzy
Logic (Atanassov, 1986) measure is used to interleave human actions. The primary reason
for using intuitionistic fuzzy logic over linguistic values is that it can handle uncertainty
and vagueness. It is significantly closer to how people (in this case, bug triager) put across
and use their insight to rank any item (here, bug). In the context of intuitionistic fuzzy logic
systems (IFS), bug value computation is utilized as part of a multi-criteria decision analysis
framework. Bug value computation within an IFS setting involves assigning linguistic
variables to the various parameters of bugs (such as complexity, volatility, severity, etc.,)
and then applying fuzzy logic techniques to analyze these variables.

If we look closely at linguistic values, IFS is an extension of linguistic values, describing
linguistic variables in a detailed manner. Hence, it is rational and practical to use IFS to
predict risk to avoid uncertainly grasping these values by the decision-makers. The values
for these criteria are fetched from bug reports. A brief overview of the functionality of IFS
(Atanassov, 1986) is discussed below:

In IFS, the inputs are in the form of membership and non-membership and are defined
as:

F ¼ fx;mF xð Þ; tF xð Þjx 2 Fg
with a degree of membership and non-membership for the element x as

mF : X : ½0; 1�
x 2 X ! mFðxÞ 2 ½0; 1�
and

tF : X : ½0; 1�
x 2 X ! tFðxÞ 2 ½0; 1�
such that all values of x in X will be confirmed in the following equations

0 � mFðxÞ þ tFðxÞ � 1 (3)

hesitation index is defined as,

pF xð Þ ¼ 1� mF xð Þ � tF xð Þ (4)

such that for every x ∈ X

0 � pF xð Þ � 1 (5)

The degree of membership of any element, x, can also be re-formulated in the closed
interval range as:

llF ; l
u
F

� � ¼ lF; lF þ pF½ � (6)

the evaluation of the alternative xj ∈ X with respect to the attribute ai ∈ A is an
intuitionistic fuzzy set, where Xij ¼ f<xj;mij; yijg. In the intuitionistic indices pij = 1 − mij,

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 10/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

υij the larger pij represents a higher hesitation margin of the decision maker as to the
“excellence” of the alternative xj ∈ X concerning the attribute ai ∈ A whose intensity is
given by mij. These intuitionistic indices are significant as they are used to calculate the best
final and the worst-case result. Using Eq. (6), decision-makers can adjust their evaluation
by adding the value of the intuitionistic index. As shown in Eq. (6), the evaluation lies in a
closed interval, where llij ¼ lij and, l

u
ij = lij þ pij = 1 − υij. Also, 0 ≤ llij ≤ luij ≤ 1 for all xj ∈

X and ai ∈ A. To attain values from bug reporters, form criteria, intuitionistic fuzzy set Bij
can be represented as:

Bij ¼ fri; cj; mij; vijg (7)

where 0 ≤ µij ≤ 1,0 ≤ υij ≤ 1 and 0 ≤ µij + υij ≤ 1
also, 0 < i ≤ n and 0 < j ≤ m

where n = total number of bugs in the given set; m = total number of criteria, µij & υij
represents the degree of membership and non-membership for the bugs bi ∈ B for the
criteria cj ∈ C. The higher hesitation index value represents the higher hesitation of the bug
reporter to decide upon bi ∈ B for the criteria cj ∈ C.

pij ¼ 1� mij � tij (8)

where 0 < i ≤ n and 0 < j ≤ m
Given intuitionistic fuzzy values, each criterion is assigned a weight. For each alternative

bug bi ∈ B, the optimal rank value can be computed using the following equation:

max pi ¼
Xm
j¼1

aijvj

()
(9)

such that: i = (1,2,3……….n)

llij � aij � luij (10)

xl
j � xj � xu

j (11)Xm
j¼1

xj ¼ 1

To compute optimal rank value using Eq. (9), two linear programming equations can be
derived:

min pli ¼
Xm
j¼1

llijxj

()
(13)

such that:

xl
j � xj � xu

jPm
j¼1

xj ¼ 1

8<
:

9=
; (14)

and

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 11/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

max pui ¼
Xm
j¼1

luijxj

()

such that:

xl
j � xj � xu

jPm
j¼1

xj ¼ 1

8<
:

9=
;

for each i = (1, 2, 3…n)
Solving the above two linear programming equations using the Simplex Method, the

following optimal solution of the criteria weights can be computed.

xi0 ¼ xi0
1; x

i0
2 ;x

i0
3 :x

i0
m

� �
and

xi00 ¼ xi00
1 ;x

i00
2 ;x

i00
3 ::xi00

m

� �

With the help of these optimal values of weights for criteria, the optimal solutions for
the rank value of the bug can be found as follows:

pl
0
i ¼

Xm
j¼ 1

llix
i0
j ¼

Xm
j¼ 1

lijx
i0
j (15)

and

pu
00

i ¼
Xm
j¼ 1

lui x
i00
j ¼ 1�

Xm
j¼ 1

tijx
i00
j (16)

for each i = (1, 2, 3…n)
The comprehensive values of all the alternatives according to the equations listed above

will be different because of the different values of the weight vectors. Hence, all the bugs in
‘B’ are non-inferior to each other, and the objective function can be pli can be re-written for
every bug bi ∈ B as

min plt ¼

Pn
i¼ 1

Pm
j¼ 1

llijxj

n

8>><
>>:

9>>=
>>; (17)

also,

max plt ¼

Pn
i¼1

Pm
j¼1

luijxj

n

8>><
>>:

9>>=
>>; (18)

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 12/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

xl
j � xj � xu

jPm
j¼1

xj ¼ 1

8<
:

9=
;

Using these weight vectors, the final optimal value for all the alternatives can be
obtained with the following formula:

bi ¼

Pm
j¼1

luijx
0
j

1þPm
j¼1

luij � llij
� �

x0
j

(19)

Equation (19) is rewritten using Eqs. (15) and (16), defining the lower and upper
intervals of the priority value of the bug. Here, bi represents the final optimal value of the
bug, which can be calculated by using the distance between the intervals of the
membership value of the bug concerning every criterion luij and the weight of the criteria.
Using this method, bug triagers provided values for the degree of membership and non-
membership for every bug according to the number of criteria considered.

The degree of membership and non-membership can lie anywhere within the interval
[0, 1]. The 0 value represents the value that does not belong to the given fuzzy set, and 1
represents the value that entirely belongs within the fuzzy set. Any value between 0 and 1
represents the degree of uncertainty that the value belongs in the set. In short, the following
is the crucial outcome: “Which is the most important bug of all the reported bugs which
requires urgent attention?”

Illustrative example
Consider an illustrative example of having ten bugs to be considered for assignment. Using
intuitionistic inputs, the hesitation index and optimal weights for each criterion are
computed using linear programming presented in Table 1. The values of membership (M)
and non-membership (NM) used are as follows:

{C1:M = 0.25; NM = 0.6}, {C2:M = 0.1; NM = 0.65}, {C3:M = 0.35; NM = 0.5}, {C4:M =
0.2; NM = 0.5}, {C5:M = 0.35; NM = 0.5}, {C6:M = 0.7; NM = 0.1}, {C7:M = 0.3; NM = 0.5}.

Referring to Table 1, decision-makers (here, bug triage) provide inputs for computing
the bug priority values based on the selected criteria for each bug. The bug triagers will
specify the membership degree and non-membership degree values for a bug for each
criterion in the range of 0–1.

In case of more than one bug triager or decision-maker, aggregated score value of
weights will be considered. Here, C1–C7 represents the criteria as C(bi), V(bi), Tm(bi),
S(bi), P(bi), E(bi), and Tn(bi), respectively. These intuitionistic inputs help in computing
the hesitation index and optimal weights of each criterion through linear programming.
The criteria weights and inputs provided by the bug triager are reported in Table 1. These
are used to calculate the optimum ranks of each bug according to Eq. (18) obtained above.
The weights of these criteria are computed using the Simplex method (refer to Table 2) to
compute the optimal rank of the bugs.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 13/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

As discussed in “Introduction”, these criteria are company/project dependent and may
vary per project specification. The weights have been computed using values of
membership (M) and non-membership (NM) mentioned above and using Eqs. (13) and
(14). These weights are finally used to compute pu and pl according to Eqs. (15) and (16).
Table 3 presents the results of the final rank values for each bug.

MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
SOLVING BUG ASSIGNMENT PROBLEM
Given the bug value rank and developers’ capability score rank, a particle swarm
optimization algorithm is used to solve the bug assignment problem in an automated
manner. The multi-objective PSO (MPSO) algorithm tries to find the best solution for
defined multi-objectives by progressing towards optimizing a problem iteratively by
improving the candidate solution.

Traditional optimization approaches require different problem functions and must be
repeated several times to identify solutions. In recent years, the multi-objective
optimization evolutionary algorithm has attracted scholarly interest as a popular method
for solving multi-objective optimization problems involving several conflicting objectives.
The particle’s position is defined as a single solution, and its position is changed according
to its own experience and that of its neighbors. The main objective is to direct the particle
towards the most favorable fitness value of the particular solution/particle. The position of
the ps(i) is changed by adding a velocity v(i) to it as mentioned in the following equations:

Table 1 Bug membership and non-membership values.

Bugs C1 C2 C3 C4 C5 C6 C7

M NM M NM M NM M NM M NM M NM M NM

B1 0.5 0.3 0.55 0.25 0.6 0.3 0.15 0.65 0.15 0.65 0.45 0.35 0.65 0.15

B2 0.45 0.1 0.5 0.05 0.45 0.5 0.65 0.15 0.65 0.15 0.5 0.4 0.3 0.4

B3 0.25 0.35 0.2 0.55 0.5 0.4 0.35 0.5 0.35 0.5 0.5 0.4 0.5 0.4

B4 0.1 0.75 0.55 0.25 0.35 0.55 0.5 0.4 0.5 0.4 0.35 0.4 0.3 0.4

B5 0.05 0.75 0.35 0.25 0.5 0.3 0.65 0.25 0.65 0.25 0.5 0.25 0.5 0.25

B6 0.6 0.1 0.35 0.3 0.65 0.2 0.5 0.45 0.5 0.45 0.5 0.35 0.25 0.35

B7 0.3 0.5 0.25 0.55 0.1 0.7 0.6 0.2 0.6 0.2 0.3 0.6 0.3 0.6

B8 0.4 0.5 0.75 0.1 0.8 0.05 0.8 0.1 0.8 0.1 0.5 0.4 0.35 0.4

B9 0.4 0.45 0.25 0.6 0.1 0.75 0.6 0.25 0.5 0.2 0.1 0.7 0.2 0.5

B10 0.7 0.2 0.75 0.1 0.8 0.05 0.8 0.1 0.85 0.1 0.85 0.1 0.75 0.15

Note:
B1 to B10, Example 10 Bugs; C1–C7, Criteria 1 to 7; M, Membership values; NM, Non membership values.

Table 2 Weights of criterion solved using the simplex method.

N M c1 c2 c3 c4 c5 c6 c7

10 7 0.2 0.15 0.12 0.12 0.15 0.16 0.1

Note:
N, Number of Bugs; C1, Complexity; C2, Volatility; C3, Estimated Time; C4, Degree of impact; C5, Priority; C6,
Estimated Effort; C7, Tossed.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 14/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

v iþ 1ð Þ ¼ w � v ið Þ þ c1 � randð Þ � pbest � ps ið Þð Þ þ c2 � randð Þ � gbest � ps ið Þð Þ (20)

ps iþ 1ð Þ ¼ present ið Þ þ v ið Þ (21)

The position vector ps represent the current particle (solution). Velocity v is the particle
velocity and is defined as the factor by which the priority value of the bug will change. pbest
and gbest are those priority vectors considered as the optimal or best solution of the
iteration. rand () is a random number ranging from 0–1 such that rand() ∈ [0,1], c1 is a
cognitive parameter, which denotes the particle’s last position visited, c2 is a social
parameter, which highlights information gathered about the neighboring best position
from social interaction. w is the inertia weight that controls the convergence behavior of
PSO. For calculating approximate position values of all particle positions, ps = (p1,p2,p3…
pn), Eqs. (20) and (21) are used. All particle continuous position values are converted to
discrete vectors dis(ps) = (d1, d2, d3..dn) by applying the smallest position value (Gupta &
Freire, 2021). Every particle here has n-dimensional space, n bugs for allocation to m
developers, and has the following fitness functions: (a) maximizing capability score, (b)
maximizing bug value score. Every particle will be assessed considering these fitness
functions and all Pareto optimal solutions stored in a log using Eq. (22).

FA presentð Þ ¼
Xm
n¼1

wtnfn presentð Þð Þ; f8 ðpsÞ e Logg (22)

where FA is the final analysis, m is the number of objective functions and wtn is the
preference weight for every objective function fn presentð Þ. Pareto optimal solutions are
ranked (log members) based on the number of functions that they minimize and
maximize. Then gbest(n) is randomly chosen from the top ten. Table 4 represents one of the
possible solutions where developers are assigned bugs after converting position values to
discrete values. It can be seen that d7, d9, d10, d1, d4, d8….dm are chosen to be assigned to
bugs b1…bn respectively. The particle position represents developers to whom specific
bugs will be assigned, and the number represents the developer number.

Table 3 Bug triager’s bug priority values.

Bugs pu pl pu-pl βa Normalized value

B1 0.38 0.43 0.05 1.05 0.36

B2 0.23 0.50 0.27 1.27 0.18

B3 0.44 0.36 0.08 1.08 0.41

B4 0.47 0.37 0.10 1.10 0.42

B5 0.36 0.43 0.07 1.07 0.33

B6 0.30 0.49 0.19 1.19 0.25

B7 0.48 0.35 0.13 1.13 0.42

B8 0.25 0.62 0.37 1.37 0.18

B9 0.49 0.31 0.18 1.18 0.42

B10 0.12 0.78 0.66 1.66 0.07

Note:
b = Represents the final optimal value of the bug.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 15/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Empirical validation
In this section, we aim to prove the efficiency of our automated multi-objective bug
assignment method. The evaluation consists of two parts: (1) an experimental study
conducted on five significant databases, namely, Mozilla, Eclipse, NetBeans, Jira, and
Freedesktop, and (2) a user study in which interviews with experts (bug triagers) were
conducted to analyze their feedbacks and assess the feasibility of the approach in terms of
simplicity and processing speed; yielding accurate and trustworthy results. Acquiring the
ground truth ranking involves analyzing historical data from bug reports and developer
performance metrics. Successful matches entail effective bug resolutions meeting
requirements, while unsuccessful matches result in unresolved bugs. Continuous
evaluation ensures accuracy and relevance.

Data collection and experimental setup
Features such as bug ID, summary, bug reporter, comments, components, priority, severity
time stamp, etc., were extracted from bug reports. The bug reports from the following bug
repositories, namely, Mozilla, Eclipse, Jira, Freedesktop, and NetBeans are considered
along with their resolution status (labels) as RESOLVED, FIXED, CLOSED, and
VERIFIED. The data is extracted from January 1, 2011, until November 30, 2022. The total
developers count, keywords, product names, and component names were also extracted
from each bug repository. All of these are well-known and well-established bug
repositories. Existing studies have used these datasets to analyze bug reports. Because of
this, this article uses the same dataset to validate the results obtained. Table 5 presents the
statistics of the final filtered data. The filtered data consists of (a) bugs with known fixing
times and (b) bugs having no outlier value as a fixing time. The collected data is pre-
processed, and all stop words are removed.

Further, the noise from the dataset is reduced, and model execution is increased by
eliminating (a) developers with less than 10 fixes (Xia et al., 2017), (b) frequently appearing
words (more than 50% that appeared), and (c) too infrequently (less than ten times). The
following procedure is followed for recommendation:

. Step 1: Parameter setting

� Initialize the upper and lower thresholds and the current load value for each filtered
developer.

� Obtain the developers’ capability and value scores every time a new bug is reported.
The relevant features will be extracted, and the filtered results will be updated to
compute both the score values. It is entirely an automated process. For providing

Table 4 Final bug assignment after ith iteration.

Bugs b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Developers 7 9 10 1 4 8 5 3 2 6

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 16/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

bugs, membership, and non-membership value ranges are already fixed in advance
to assign these values.

. Step 2: Optimization

� The multi-objective PSO will use two inputs, the bug value rank, and the developers’
capability score rank, to build the best solution by maximizing the capability score
and bug value score and employing Eq. (22).

� On successful bug assignment, the value of the objective variable (xij) will be set to 1
otherwise 0 such that xij ∈ {0, 1}.

. Step 3: Updating developers and bug list

� Update current load and Maxalloc

� Bug data with status as assigned.

. Step 4: Perform constraints check:

� Recommendation of only a few experienced developers matching expertise: This is
tackled by setting a flag whenever the count of assignments for a developer (i.e.,
current load value) reaches the upper threshold value.

� Multiple recommendations to only a few developers: This is tackled by ensuring
that at least one developer is recommended such that xij ≤ 1

. Step 5: Repeat all steps for the next allocation

To simulate a real-life scenario, 80% of the data is used as the training set and the
remaining 20% as the test set. The accuracy rate is used as the evaluation index to analyze
the successful computation and ranking of developers and bugs @k accuracy, where k =
Top 1 to Top 10. Since the analysis involves several criteria, this article uses several
similarity measures to evaluate the performance of the proposed approach. An exhaustive
comparison of performance is conducted against several benchmark classifiers, namely,
Naive Bayes (NB), support vector machine (SVM), C4.5, and random tree (RT) under the
same datasets. These classifiers are implemented by using Weka. The results are presented
in Table 6.

Table 5 Statistics of filtered data.

Projects Filtered bugs Developers Components Product Reporters

Mozilla 9,581 145 375 21 1,509

Eclipse 8,390 70 32 10 1,100

Jira 9,882 75 45 9 1,147

Freedesktop 9,641 80 245 37 3,500

NetBeans 9,820 65 260 40 1,723

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 17/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Performance measure
The performance measures utilized are as follows:

(a) Bug assignment rate: This metric assesses the successful assignment of bugs to potential
developers. It’s computed as Bg/Bt, where Bg represents the successfully assigned bugs, and
Bt is the total number of bugs to be assigned. A higher assignment rate indicates greater
algorithm effectiveness.

(b) Accuracy: This measure represents the ratio of correctly predicted observations to the
total observations.

(c) Precision: Referring to the fraction of relevant instances among the retrieved instances.

(d) Recall: This measures the fraction of retrieved relevant instances among all relevant
instances. Precision and recall collectively gauge the measure of relevance.

(e) F-measure: This metric signifies the test accuracy and is derived from precision and
recall values. It’s calculated as: f-measure = (2 * Precision * Recall)/(Precision + Recall).

RESULTS AND DISCUSSION
This section presents the results and discusses the computed results for all performance
measures discussed in section VB. Firstly, the result analysis is the proposed ranking
function is presented.

Table 6 Top-1 to Top-10 accuracies of various classifiers.

Bug repository Classifier Top-1% Top-2% Top-3% Top-4% Top-5% Top-6% Top-7% Top-8% Top-9% Top-10%

Mozilla NB 25.78 30.19 35.45 36.79 42.71 47.08 50.63 56.15 59.80 61.48

SVM 27.02 32.69 45.07 55.97 57.23 63.49 69.40 70.69 72.35 75.57

C4.5 26.40 32.47 37.86 52.43 55.91 57.32 58.26 64.00 65.94 70.03

RT 25.81 35.31 36.43 39.51 39.55 43.37 43.54 46.37 66.72 69.17

Eclipse NB 29.14 31.32 34.00 37.52 40.61 48.69 54.11 58.59 63.60 68.23

SVM 32.12 37.54 44.34 50.38 57.47 66.42 69.48 72.13 77.52 78.19

C4.5 30.37 37.20 47.76 55.89 60.12 67.81 69.89 72.87 74.92 74.23

RT 25.98 27.60 33.92 40.49 40.93 48.48 62.80 64.04 69.42 70.15

Jira NB 26.25 29.15 37.57 41.47 48.09 58.38 63.70 64.76 65.15 66.47

SVM 28.99 36.99 38.80 39.30 44.04 59.51 69.92 76.08 81.68 82.69

C4.5 29.70 39.20 42.23 44.26 44.45 52.68 61.39 62.23 70.40 71.95

RT 28.92 62.60 78.47 41.08 57.20 43.90 44.17 22.50 72.75 66.11

Freedesktop NB 27.41 32.16 40.72 43.98 44.70 59.67 62.39 63.83 67.21 69.17

SVM 26.54 26.76 28.15 39.17 55.53 56.58 78.78 79.34 81.59 83.60

C4.5 32.84 38.72 41.80 45.63 48.36 53.99 56.20 59.93 61.23 67.61

RT 25.02 30.05 41.40 43.75 49.56 50.14 53.51 59.59 60.83 69.32

NetBeans NB 29.31 33.11 33.15 37.25 49.53 56.32 57.92 63.00 67.13 69.23

SVM 29.32 35.50 41.33 43.53 50.07 57.94 64.21 69.90 73.12 79.91

C4.5 28.09 30.29 43.05 51.27 55.82 56.42 60.20 61.93 65.79 67.28

RT 25.96 30.70 35.77 49.19 52.04 56.10 57.17 61.06 62.83 68.74

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 18/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

The overall accuracy of ranks generated by the proposed approach
(RQ1)
Figure 2 shows developers’ successful computation and ranking using the developer’s
capability score. A total of 400 test data sets were used to compute precision, recall, and f-
measure. The first column, “x,” describes the rank matching “x.” For example, ‘5’ means
rank matching top 1 to 5. Similarly, Fig. 3 shows the successful computation and ranking of
bugs using the bug score. Thus, it can be concluded that the proposed approach can rank
developers and bugs successfully.

Figure 2 Developer rank accuracy. Full-size DOI: 10.7717/peerj-cs.2111/fig-2

Figure 3 Bug rank accuracy. Full-size DOI: 10.7717/peerj-cs.2111/fig-3

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 19/27

http://dx.doi.org/10.7717/peerj-cs.2111/fig-2
http://dx.doi.org/10.7717/peerj-cs.2111/fig-3
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Assignment rate (RQ2)
This experiment measures the algorithm’s effectiveness for a successful bug assignment to
the potential developer. Two types of result analysis are presented: (i) performances with a
varying number of developers and (ii) performances with a varying number of bug reports
to be assigned. Figures 4 and 5 show the results of each analysis. In Fig. 4, each point on the
graph represents a bug report. The x-axis represents the number of bug reports, and the y-
axis represents the number of developers assigned to each bug report. The graph shows

Figure 4 Performance with a varying number of developers.
Full-size DOI: 10.7717/peerj-cs.2111/fig-4

Figure 5 Performance with the varying number of a bug report to be assigned.
Full-size DOI: 10.7717/peerj-cs.2111/fig-5

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 20/27

http://dx.doi.org/10.7717/peerj-cs.2111/fig-4
http://dx.doi.org/10.7717/peerj-cs.2111/fig-5
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

how the number of developers assigned changes as the number of bug reports increases. It
can be seen that the successful allocation rate of the proposed approach is always 1 (100%).
It shows that the proposed approach can effectively allocate bugs to various developers
with the lowest cost when the number of developers changes. In this experiment, the
number of bugs is fixed, and the performance is evaluated by increasing the number of
developers with a regular increment of 5.

Referring to Fig. 5, bugs to developers can be allocated effectively with the lowest cost
when the number of bugs changes. In this experiment, the number of developers is fixed,
and the performance is evaluated by increasing the number of bug reports with a regular
increment of 4.

Comparison with other state-of-the-art approaches (RQ3)
A comparison study was conducted between the proposed approach and other existing
state-of-the-art approaches. The theoretical result analysis focuses mostly on the accuracy
parameter (given in Table 7) and is presented chronologically. The proposed work’s

Table 7 Comparison with other state-of-the-art approaches.

Existing approach Dataset used Performance

Almhana, Kessentini &
Mkaouer (2021)

Eclipse, Mozilla Accuracy 77.43% (Eclipse), 77.87% (Mozilla)

Jonsson et al. (2016) Eclipse Accuracy 92.99%

Zhang et al. (2013) Eclipse, Firefox Precision 60%, recall 3% (Eclipse),
Precision 51%, recall 24% (Firefox)

Guo et al. (2020) Eclipse, Mozilla Accuracy 53.10% (Eclipse), 56.98% (Mozilla)

Alazzam et al. (2020) JDT-Debug, Firefox Accuracy 89.41% (JDT-Debug), 59.76% (Firefox)

Chen, Wang & Liu (2011) Eclipse, Mozilla Accuracy 84.45% (Eclipse), 55.56% (Mozilla)

Kashiwa & Ohira (2020) Eclipse, Mozilla Accuracy 60.40% (Eclipse), 46.46% (Mozilla)

Bhattacharya, Neamtiu &
Shelton (2012)

Industry Accuracy 89%

Jeong, Kim & Zimmermann
(2009)

Eclipse, Mozilla, Ant,
TomCat6

MRP 0.28 (Eclipse), 0.28 (Mozilla), 0.35 (Ant), 0.35 (TomCat6)
MAP 56.42 (Eclipse), 44.49 (Mozilla), 36.48 (Ant), 36.54 (TomCat6)

Guo et al. (2018) Eclipse Reduced data set’s rate-3.96% greater than the original data set’s rate.

Kashiwa (2019) Eclipse, Mozilla, and
GNOME.

Analyzing the severity of bug reports should perform better.

Kukkar et al. (2023) Eclipse, GCC, and Mozilla Accuracy attained 81.7%

Pan et al. (2022) Mozilla Accuracy 92.99%

Kashiwa & Ohira (2020) Eclipse, GCC, and Mozilla Bug fix duration reduced by 35–41%

Gupta, Inácio & Freire
(2021)

GitHub Harmonic mean of precision 92.05, recall 89.21%, f-measure 85.09%, and accuracy
attained 93.11%

Gupta & Freire (2021) Ethereum Reduced cost and time of bug fixing.

Kukkar et al. (2023) Eclipse, Firefox,
OpenFOAM, Mozilla

Improved by an average of 4%, 10%, and 12%

Proposed approach Mozilla, Eclipse, NetBeans,
Jira, OpenStack

Accuracy 92.42% (Mozilla), 92.72% (Eclipse), 90.38% (NetBeans), 91.34% (Jira), 89.38%
(Freedesktop).
Average accuracy 91.25%, Average precision 92.05%, Average Recall 89.04%, Average
f-measure 90.05% and Average BTL 87.51%

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 21/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

performance is evaluated against the results of the fuzzy logic-based Bugzie model
(Tamrawi et al., 2011). Overall, it is clear that the performance measure of the proposed
method is significantly higher than the Bugzie model (Tamrawi et al., 2011), with an
average accuracy of 91.25%. The comprehensive evaluation of the proposed approach with
five open-source projects confirms that effective bug triaging can be performed if both
developers and bug ranks are considered. The system’s overall accuracy for all datasets and
processes is around 90 ± 2%. Results indicate that using the proposed method can achieve
high triage accuracy and reduced bug tossing length effectively.

User study (RQ2)
To answer RQ2, a survey was conducted with 54 industry experts with 10 to 35 years of
experience. 65% of these experts were males, 60% were between 30 and 45, and 30% were
between 46 and 58. 5% were under 26 years old, and 5% were elderly (55 years and over).
Only decision-makers, such as project managers, were involved. Responses on 55-point
Likert scale were recorded for seven questions to measure the respondent’s score. Likert is
an ordered scale from which respondents can choose one option that best presents their
view. A total of five represents strongly agree, whereas one represents strongly disagree. An
additional “do not know” option was added to reduce the noise in the response data. The
survey questions were directly mapped to the objective of the presented approach,
answering the question, “Can the proposed approach effectively perform bug assignment
quantitatively and without ambiguity?” Specifically, the following questions were
formulated to capture the response.

Table 8 presents the descriptive statistical reliability analysis of survey results. It can be
seen that there is adequate internal consistency with Cranach’s alpha of the overall scale as
0.980. It indicates that each response is significantly correlated with the other. A value
greater than 0.70 is considered suitable for the acceptance of the reliability of results. The
key takeaways are as follows: (a) the existing methods tend to recommend bugs to only a
few developers in comparison to the proposed approach that distributes the bugs among

Table 8 Summary of descriptive statistical reliability analysis of survey results.

Variable Mean Standard
deviation

Cranach’s
alpha (α)

a) Is the proposed solution good enough for bug assignments? Does it make sense, in general? 2.43 1.30 0.940

b) Are there any constraints or dependencies which make solution infeasible and to what extend? 3.13 1.21

c) Is it costly to use this solution in practice in terms of long process, fetching data, processing data etc.? 3.02 1.24

d) Can we effectively automate the bug assignment process using proposed solution by taking explicit inputs
(mentioned in proposed solution)?

2.69 1.27

e) Do think more data/information should be considered without which the use of the proposed solution is
difficult?

3.02 1.24

f) If you change your input during execution - how the proposed solution affects your choice? Do you think
it’s a positive thing to incorporate?

2.69 1.27

g) In comparison to existing practices followed in your organization, do you think this approach will make a
difference in the bug assignment?

3.13 1.33

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 22/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

developers such that at least one developer is recommended; (b) Assignments are made to
make sure that each developer is able to fix the bug before the next release; (c) Unlike
existing methods, our methodology considers many aspects such as developer expertise,
performance, and bug value.

CONCLUSION, LIMITATIONS, AND FUTURE SCOPE
This article presents a novel multi-criteria automated bug assignment approach to improve
the quality of bug assignments in large software projects. It is a two-fold process that uses
an evolutionary algorithm and intuitionistic fuzzy logic in a novel way to address trade-offs
of supporting decision-making. It builds metrics for computing the developer’s capability
and metrics for the relative importance score of the bug. Besides this, an incentive
mechanism for the developer’s motivation is provided. Meta-features gather decisive and
explicit knowledge about the developer’s performance profile and bug importance from
bug reports. Results of experiment evaluation on five open-source projects (Mozilla,
Eclipse, NetBeans, Jira, and Free desktop) demonstrate that the proposed approach
outperforms other approaches and achieves the harmonic mean of precision, recall, f-
measure, BTL reduction, and accuracy of 92.05%, 89.04%, 90.05%, 87.51%, and 91.25%
respectively with overall system accuracy of around 90 ± 2%. With the proposed approach
maximization of the throughput of the bug, an assignment can be achieved effectively with
the lowest cost when the number of developers or several bugs changes. Thus, the
presented approach is simple, easy to use, and yet powerful in improving (a) the bug
assignment process and (b) handling uncertainty and vagueness of expert judgment by
creating a balance between multiple selection and assignment criteria using an
evolutionary algorithm and intuitionistic fuzzy logic with reduced overhead in cost and
time of bug fixing.

The proposed solution handles two significant issues (i) differentiating active and
inactive developers and confusion over the assignment of bugs and (ii) identification of
availability of developers according to their workload. Active developers are the ones who
frequently and actively participate in the bug-triaging process. In contrast, inactive
developers have not contributed to bug resolution for a long time by reducing bug-fixing
delays and preventing re-assignment problems. One of the limitations of the proposed
approach is that it does not handle the load balancing of developers in bug triaging.
Although it determines the available developer, it does not distribute it evenly among
available developers. In the future, we would like to address this issue.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Varun Gupta is an Academic Editor for PeerJ Computer Science

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 23/27

http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Author Contributions
. Chetna Gupta conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Varun Gupta conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File.
- The Bug Report Assignment dataset is available at GitHub: https://github.com/

anonymous-programmers/BugReportAssignment.
- YUI 3: The Yahoo User Interface Library is available at GitHub: http://github.com/yui/

yui3
- The Julia Programming Language is available at GitHub: http://github.com/julialang/

Julia
- Elasticsearch is available at GitHub: http://github.com/elastic/elasticsearch
- Salt is available at GitHub: http://github.com/saltstack/salt.
- Rails is available at GitHub: https://github.com/rails/rails.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2111#supplemental-information.

REFERENCES
Alazzam I, Aleroud A, Al Latifah Z, Karabatis G. 2020. Automatic bug triage in software systems

using graph neighborhood relations for feature aug-mentation. IEEE Transactions on
Computational Social Systems 7(5):1288–1303 DOI 10.1109/TCSS.2020.3017501.

Almhana R, Kessentini M, Mkaouer W. 2021. Method-level bug localization using hybrid multi-
objective search. Information and Software Technology 131(5):106474
DOI 10.1016/j.infsof.2020.106474.

Atanassov KT. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20(1):87–96
DOI 10.1016/S0165-0114(86)80034-3.

Aung TWW, Wan Y, Huo H, Sui Y. 2022. Multi-triage: a multi-task learning framework for bug
triage. Journal of Systems and Software 184(12):111133 DOI 10.1016/j.jss.2021.111133.

Bhattacharya P, Neamtiu I. 2010. Fine-grained incremental learning and multi-feature tossing
graphs to improve bug triaging. In: 2010 IEEE International Conference on Software
Maintenance. Piscataway: IEEE, 1–10 DOI 10.1109/ICSM.2010.5609736.

Bhattacharya P, Neamtiu I, Shelton CR. 2012. Automated, highly-accurate, bug assignment using
machine learning and tossing graphs. Journal of Systems and Software 85(10):2275–2292
DOI 10.1016/j.jss.2012.04.053.

Chawla I, Singh SK. 2015. An automated approach for bug categorization using fuzzy logic. In:
Proceedings of the 8th India Software Engineering Conference DOI 10.1145/2723742.2723751.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 24/27

http://dx.doi.org/10.7717/peerj-cs.2111#supplemental-information
https://github.com/anonymous-programmers/BugReportAssignment
https://github.com/anonymous-programmers/BugReportAssignment
http://github.com/yui/yui3
http://github.com/yui/yui3
http://github.com/julialang/Julia
http://github.com/julialang/Julia
http://github.com/elastic/elasticsearch
http://github.com/saltstack/salt
https://github.com/rails/rails
http://dx.doi.org/10.7717/peerj-cs.2111#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2111#supplemental-information
http://dx.doi.org/10.1109/TCSS.2020.3017501
http://dx.doi.org/10.1016/j.infsof.2020.106474
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/j.jss.2021.111133
http://dx.doi.org/10.1109/ICSM.2010.5609736
http://dx.doi.org/10.1016/j.jss.2012.04.053
http://dx.doi.org/10.1145/2723742.2723751
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Chen R, Guo S-K, Wang X-Z, Zhang T-L. 2019. Fusion of multi-rsmote with fuzzy integral to
classify bug reports with an imbalanced distribution. IEEE Transactions on Fuzzy Systems
27(12):2406–2420 DOI 10.1109/TFUZZ.2019.2899809.

Chen L, Wang X, Liu C. 2011. An approach to improving bug assignment with bug tossing graphs
and bug similarities. Journal of Software 6(3):420 DOI 10.4304/jsw.6.3.421-427.

Coletti G, Bouchon-Meunier B. 2019. Fuzzy similarity measures and measurement theory. In:
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Piscataway: IEEE, 1–7.

Elbeltagi E, Hegazy T, Grierson D. 2005. Comparison among five evolutionary-based
optimization algorithms. Advanced Engineering Informatics 19(1):43–53
DOI 10.1016/j.aei.2005.01.004.

Gundersen OE, Coakley K, Kirkpatrick C. 2022. Sources of irreproducibility in machine learning:
a review. ArXiv preprint DOI 10.48550/arXiv.2204.07610.

Guo S, Chen R, Wei M, Li H, Liu Y. 2018. Ensemble data reduction techniques and multi-
RSMOTE via fuzzy integral for bug report classification. IEEE Access 6:45934–45950
DOI 10.1109/ACCESS.2018.2865780.

Guo S, Zhang X, Yang X, Chen R, Guo C, Li H, Li T. 2020. Developer activity motivated bug
triaging: via convolutional neural network. Neural Processing Letters 51(3):2589–2606
DOI 10.1007/s11063-020-10213-y.

Gupta C, Freire MM. 2021. A decentralized blockchain oriented framework for automated bug
assignment. Information and Software Technology 134(5):106540
DOI 10.1016/j.infsof.2021.106540.

Gupta C, Inácio PR, Freire MM. 2021. Improving software maintenance with improved bug
triaging. Journal of King Saud University-Computer and Information Sciences 34:8757–8764
DOI 10.1016/j.jksuci.2021.10.011.

Jahanshahi H, Cevik M. 2022. S-DABT: schedule and dependency-aware bug triage in open-
source bug tracking systems. Information and Software Technology 151(4):107025
DOI 10.1016/j.infsof.2022.107025.

Jahanshahi H, Chhabra K, Cevik M, andBaþar A. 2021. DABT: a dependency-aware bug triaging
method. In: Evaluation and Assessment in Software Engineering. 221–230.

Jeong G, Kim S, Zimmermann T. 2009. Improving bug triage with bug tossing graphs. In:
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering. 111–120
DOI 10.1145/1595696.

Jiechieu KFF, Tsopze N. 2020. Skills prediction based on multi-label resume classification using
CNN with model predictions explanation. Neural Computing and Application 33:5069–5087
DOI 10.1007/s00521-020-05302-x.

Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P. 2016. Automated bug assignment:
ensemble-based machine learning in large scale industrial contexts. Empirical Software
Engineering 21(4):1533–1578 DOI 10.1007/s10664-015-9401-9.

Kashiwa Y. 2019. RAPTOR: release-aware and prioritized bug-fixing task assignment
optimization. In: 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Piscataway: IEEE, 629–633.

Kashiwa Y, Ohira M. 2020. A release-aware bug triaging method considering developers’
bug-fixing loads. IEICE Transactions on Information and Systems 103(2):348–362
DOI 10.1587/transinf.2019EDP7152.

Kukkar A, Lilhore UK, Frnda J, Sandhu JK, Das RP, Goyal N, Kumar A, Muduli K, Rezac F.
2023. ProRE: an ACO-based programmer recommendation model to precisely manage software

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 25/27

http://dx.doi.org/10.1109/TFUZZ.2019.2899809
http://dx.doi.org/10.4304/jsw.6.3.421-427
http://dx.doi.org/10.1016/j.aei.2005.01.004
http://dx.doi.org/10.48550/arXiv.2204.07610
http://dx.doi.org/10.1109/ACCESS.2018.2865780
http://dx.doi.org/10.1007/s11063-020-10213-y
http://dx.doi.org/10.1016/j.infsof.2021.106540
http://dx.doi.org/10.1016/j.jksuci.2021.10.011
http://dx.doi.org/10.1016/j.infsof.2022.107025
http://dx.doi.org/10.1145/1595696
http://dx.doi.org/10.1007/s00521-020-05302-x
http://dx.doi.org/10.1007/s10664-015-9401-9
http://dx.doi.org/10.1587/transinf.2019EDP7152
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

bugs. Journal of King Saud University-Computer and Information Sciences 35(1):483–498
DOI 10.1016/j.jksuci.2022.12.017.

Kumar R, Khan AI, Abushark YB, Alam MM, Agrawal A, Khan RA. 2020b. A knowledge-based
integrated system of hesitant fuzzy set, AHP and TOPSIS for evaluating security-durability of
web applications. IEEE Access: Practical Innovations, Open Solutions 8:48870–48885
DOI 10.1109/ACCESS.2020.2978038.

Liu Q, Huang H, Xuan J, Zhang G, Gao Y, Lu J. 2020. A fuzzy word similarity measure for
selecting top-k similar words in query expansion. IEEE Transactions on Fuzzy Systems 29:2132–
2144 DOI 10.1109/TFUZZ.2020.2993702.

Liu Y, Qi X, Zhang J, Li H, Ge X, Ai J. 2022. Automatic bug triaging via deep reinforcement
learning. Applied Sciences 12(7):3565 DOI 10.3390/app12073565.

Mohsin H, Shi C. 2020. SPBC: a self-paced learning model for bug classification from historical
repositories of open-source software. Expert Systems with Applications 167:113808
DOI 10.1016/j.eswa.2020.113808.

Nagwani NK, Suri JS. 2023. An artificial intelligence framework on software bug triaging,
technological evolution, and future challenges: a review. International Journal of Information
Management Data Insights 3(1):100153 DOI 10.1016/j.jjimei.2022.100153.

Pan W, Ming H, Yang Z, Wang T. 2022. Comments on using $ k $ k-core decomposition on class
dependency networks to improve bug prediction model’s practical performance. IEEE
Transactions on Software Engineering 48(12):5176–5187 DOI 10.1109/TSE.2022.3140599.

Pandolfo G, D’Ambrosio A, Cannavacciuolo L, Siciliano R. 2020. Fuzzy logic aggregation of
crisp data partitions as learning analytics in triage decisions. Expert Systems with Applications
158:113512 DOI 10.1016/j.eswa.2020.113512.

Sajedi-Badashian A, Stroulia E. 2020. Guidelines for evaluating bug-assignment research. Journal
of Software: Evolution and Process 32(9):1 DOI 10.1002/smr.2250.

Shokripour R, Anvik J, Kasirun ZM, Zamani S. 2015. A time-based approach to automatic bug
report assignment. Journal of Systems and Software 102(3):109–122
DOI 10.1016/j.jss.2014.12.049.

Soltani M, Hermans F, Bäck T. 2020. The significance of bug report elements. Empirical Software
Engineering 25(6):5255–5294 DOI 10.1007/s10664-020-09882-z.

Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN. 2011. Fuzzy set and cache-based approach
for bug triaging. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. New York: ACM, 365–375
DOI 10.31274/etd-180810-1814.

Tran HM, Le ST, Van Nguyen S, Ho PT. 2020. An analysis of software bug reports using machine
learning techniques. SN Computer Science 1(1):1–11 DOI 10.1007/s42979-019-0004-1.

Wei M, Guo S, Chen R, Gao J. 2018. Enhancing bug report assignment with an optimized
reduction of training set. In: Knowledge Science, Engineering and Management: 11th
International Conference, KSEM 2018, Changchun, China, August 17–19, 2018, Proceedings, Part
II 11 (pp. 36-47). Cham: Springer International Publishing.

Wei M, Guo S, Chen R, Gao J. 2018. Enhancing bug report assignment with an optimized reduction
of training set. Vol. 11062. Maui County, Hawai’i, United States: LNAI.

Wu X, Zheng W, Pu M, Chen J, Mu D. 2020. Invalid bug reports complicate the software aging
situation. Software Quality Journal J(1):1–26 DOI 10.1007/s11219-019-09481-2.

Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN, Wang X. 2017. Improving automated bug
triaging with specialized topic model. IEEE Transactions on Software Engineering 43(3):272–297
DOI 10.1109/TSE.2016.2576454.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 26/27

http://dx.doi.org/10.1016/j.jksuci.2022.12.017
http://dx.doi.org/10.1109/ACCESS.2020.2978038
http://dx.doi.org/10.1109/TFUZZ.2020.2993702
http://dx.doi.org/10.3390/app12073565
http://dx.doi.org/10.1016/j.eswa.2020.113808
http://dx.doi.org/10.1016/j.jjimei.2022.100153
http://dx.doi.org/10.1109/TSE.2022.3140599
http://dx.doi.org/10.1016/j.eswa.2020.113512
http://dx.doi.org/10.1002/smr.2250
http://dx.doi.org/10.1016/j.jss.2014.12.049
http://dx.doi.org/10.1007/s10664-020-09882-z
http://dx.doi.org/10.31274/etd-180810-1814
http://dx.doi.org/10.1007/s42979-019-0004-1
http://dx.doi.org/10.1007/s11219-019-09481-2
http://dx.doi.org/10.1109/TSE.2016.2576454
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

Xuan J, Jiang H, Ren Z, Yan J, Luo Z. 2017. Automatic bug triage using semi-supervised text
classification. ArXiv preprint DOI 10.48550/arXiv.1704.04769.

Xuan J, Jiang H, Ren Z, Zou W. 2012. Developer prioritization in bug repositories. In: 2012 34th
International Conference on Software Engineering (ICSE). 25–35
DOI 10.1109/ICSE.2012.6227209.

Yadav A, Singh SK, Suri JS. 2019. Ranking of software developers based on expertise score for bug
triaging. Information and Software Technology 112(5):1–17 DOI 10.1016/j.infsof.2019.03.014.

Zhang T, Chen J, Jiang H, Luo X, Xia X. 2017. Bug report enrichment with application of
automated fixer recommendation. IEEE Workshop on Program Comprehension 3:230–240
DOI 10.1109/ICPC.2017.28.

Zhang W, Wang S, Yang Y, Wang Q. 2013. Heterogeneous network analysis of developer
contribution in bug repositories. In: 2013 International Conference on Cloud and Service
Computing. 98–105 DOI 10.1109/CSC.2013.23.

Zhao H, Zheng J, Xu J, Deng W. 2019. Fault diagnosis method based on principal component
analysis and broad learning system. IEEE Access 7:99263–99272
DOI 10.1109/ACCESS.2019.2929094.

Gupta and Gupta (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2111 27/27

http://dx.doi.org/10.48550/arXiv.1704.04769
http://dx.doi.org/10.1109/ICSE.2012.6227209
http://dx.doi.org/10.1016/j.infsof.2019.03.014
http://dx.doi.org/10.1109/ICPC.2017.28
http://dx.doi.org/10.1109/CSC.2013.23
http://dx.doi.org/10.1109/ACCESS.2019.2929094
http://dx.doi.org/10.7717/peerj-cs.2111
https://peerj.com/computer-science/

	Enhancing bug allocation in software development: a multi-criteria approach using fuzzy logic and evolutionary algorithms
	Introduction
	Related work
	Proposed approach
	Multi-objective particle swarm optimization for solving bug assignment problem
	Results and discussion
	Conclusion, limitations, and future scope
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

