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ABSTRACT
Fine-tuning is an important technique in transfer learning that has achieved significant
success in tasks that lack training data. However, as it is difficult to extract effective
features for single-source domain fine-tuning when the data distribution difference
between the source and the target domain is large, we propose a transfer learning
framework based on multi-source domain called adaptive multi-source domain
collaborative fine-tuning (AMCF) to address this issue. AMCF utilizes multiple source
domain models for collaborative fine-tuning, thereby improving the feature extraction
capability of model in the target task. Specifically, AMCF employs an adaptive multi-
source domain layer selection strategy to customize appropriate layer fine-tuning
schemes for the target task among multiple source domain models, aiming to extract
more efficient features. Furthermore, a novel multi-source domain collaborative loss
function is designed to facilitate the precise extraction of target data features by
each source domain model. Simultaneously, it works towards minimizing the output
difference among various source domain models, thereby enhancing the adaptability
of the source domain model to the target data. In order to validate the effectiveness
of AMCF, it is applied to seven public visual classification datasets commonly used
in transfer learning, and compared with the most widely used single-source domain
fine-tuning methods. Experimental results demonstrate that, in comparison with the
existing fine-tuning methods, our method not only enhances the accuracy of feature
extraction in the model but also provides precise layer fine-tuning schemes for the
target task, thereby significantly improving the fine-tuning performance.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks
Keywords Transfer learning, Fine-tuning, Multi-source domain collaborative fine-tuning,
Fine-tuning layer selection, Feature extraction, Target task, Source domain models

INTRODUCTION
Transfer learning is an importantmachine learning technique that aims to utilize knowledge
already acquired in the source domain to assist in the learning of related but different target
tasks. This method has achieved significant success in a variety of tasks for which training
data is insufficient or of poor quality (Pan & Yang, 2010; Zhuang et al., 2021). Model
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fine-tuning, as a commonly used transfer learning technique, effectively improves the
learning performance by transferring the parameters of the pre-trained neural network
(NN) model from the source domain to the target task and fine-tuning them (Rasheed
et al., 2023; Li et al., 2023a). Such fine-tuning techniques are already successfully used in
various fields such as computer vision (Dai et al., 2023), natural language processing (Chi
et al., 2023), speech recognition (Chen & Rudnicky, 2023), recommendation systems (Liao
et al., 2022), and medical diagnosis (Li et al., 2023b).

During the fine-tuning process, the source domain model is usually pre-trained on a
large-scale dataset (e.g., ImageNet;Yamada & Otani, 2022) and its parameters are replicated
in the targetmodel. In order tomake themodel better adapt to the target task, its parameters
are usually fine-tuned to improve its alignment with the target task. However, most of
current research focuses on the single-source domain fine-tuning problem, i.e., transferring
a single source domain model for a specific target task and fine-tuning it (Pan & Yang,
2010), as shown in Fig. 1.When this strategy is adopted, themodel performance is primarily
determined by the selection of parameters during the fine-tuning process. Accordingly,
parameters that are pertinent to the target task should remain unchanged to help extract
features common. Parameters that are irrelevant or potentially detrimental to the model’s
performance should be fine-tuned to enhance the model’s adaptive capacity. However,
this requires accurate determination of the correlation between the source domain model
and the target task, which can be challenging and further complicates the selection of
appropriate fine-tuning parameters. Traditional methods for addressing this issue rely
on expert experience or trial-and-error methods (Zhuang et al., 2021). Some researchers
have implemented transfer learning by fine-tuning all layers of the model, known as full
or standard fine-tuning (Dosovitskiy et al., 2021; Kornblith, Shlens & Le, 2019). Although
this method is effective in improving the model performance compared to that achieved
when the NN model is trained de novo, it may lead to overfitting when the source domain
model is large and the target dataset is small (Xuhong, Grandvalet & Davoine, 2018). To
address this problem, some researchers proposed fine-tuning a subset of layers only
(Peters, Ruder & Smith, 2019; Xu et al., 2021; Shen et al., 2021). However, even this strategy
necessitates expert knowledge to determine which layers require fine-tuning, or this is done
by trial-and-error.With the increasing scale of NNmodels, traditional fine-tuningmethods
not only become expensive but may also fail to provide precise fine-tuning schemes for the
target task. Therefore, solving the problem of adaptive fine-tuning in large-scale models
has become an important research focus.

In order to address the issue of large model scale and difficulty in selecting fine-tuning
layers, optimization-based fine-tuning methods are proposed to adaptively select the
layers that need to be fine-tuned (Wang, Chen & Ghamisi, 2022; Nagae et al., 2022; Lee
et al., 2023). This approach reduces the cost of fine-tuning and enhances the alignment
between the source domain model and the target task. Optimization-based fine-tuning
methods model the problem of selecting fine-tuning layers as an optimization problem
with decision variables and iteratively optimizes to find appropriate layer fine-tuning
schemes for the target task. Optimization-based methods can be further categorized
into policy network-based and evolution optimization-based fine-tuning methods. The
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Figure 1 Graphical representation of the single-source domain fine-tuning process.
Full-size DOI: 10.7717/peerjcs.2107/fig-1

former train an additional NN to make binary decisions for each layer in the source
domain model, segregating those that need to be fine-tuned from those that do not
(Wang, Chen & Ghamisi, 2022; Jang et al., 2019). While this method quickly provides
suitable layer fine-tuning schemes for the target task, the optimization of policy networks
based on discrete parameter training requires extensive training support. Therefore,
when applying gradient descent directly, optimization can usually only be achieved by
estimating approximate gradients. This, in turn, affects the accuracy of the fine-tuning
schemes (Guo et al., 2020). On the other hand, evolution optimization-based fine-tuning
methods consider each fine-tuning scheme as an individual member of a population and
find suitable layer fine-tuning schemes for the target task through population evolution
(Nagae et al., 2022; Wen, Peng & Ting, 2021; de Lima Mendes et al., 2021). This method
avoids gradient computation and enables accurate search for fine-tuning schemes. The
aforementionedmethods apply to single-source domainmodel fine-tuning. This method is
suitable when the data distribution in the source and target domains is very similar. It helps
the model learn the key features of the target task. However, when there is a significant data
distribution difference between the source and the target domain, existing single-source
domain fine-tuning methods often struggle to extract sufficient key feature information
and experience performance degradation.

Spurred by the current deficiencies, this article proposes an adaptive multi-source
domain collaboration fine-tuning framework (AMCF). The AMCF aims to address the
issue that existing single-source domain fine-tuning methods struggle to extract effective
features when there are significant differences in data distribution between the source
and target domains. AMCF combines multiple source domain models for fine-tuning to
enhance the ability of the model to extract key features from the target task. To determine
the appropriate fine-tuning layer for multiple source domain models, an adaptive multi-
source domain layer selection strategy (AMLS) is designed. AMLS dynamically selects the
layer for fine-tuning and freezing in each source domain model based on the disparity
between the target task and the source task, allowing the model to extract more key feature
information. Moreover, to address the challenge posed by the variations among multiple
source domain models, which hinder the extraction of effective features for the target task,
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a multi-source domain collaborative loss function (MC-loss) is proposed. The objective of
MC-loss is to minimize the disparities in the outputs of the various source domain models,
thereby enhancing the accuracy of the features extracted by the models for the target task.
The main contributions of this work are summarized below:

(1) We propose an adaptive multi-source domain collaborative fine-tuning framework,
which effectively enhances the feature extraction capability of the model through
collaborative fine-tuning of multiple source domain models. This is in contrast to the
current fine-tuning methods that mainly focus on fine-tuning a single source domain
model to the target domain, making it challenging to extract essential feature information
for the target task when there are significant differences in data distribution between the
source and target domains.

(2) We also propose an adaptive multi-source domain layer selection strategy that
dynamically provides suitable layer fine-tuning schemes for the target task using multiple
source domain models, enabling the model to extract more essential feature information.

(3) Amulti-source domain collaborative loss function has been proposed, which aims to
enhance the adaptability of each source domain model to the target task while minimizing
the disparities between outputs of different source domain models, enabling the model to
extract key feature information more accurately.

The remainder of this article is presented in four sections. ‘Related work’ covers related
work. ‘Adaptive multi-source domain collaborative fine-tuning framework’ introduces
the adaptive multi-source domain collaborative fine-tuning framework, which includes
the adaptive multi-source domain layer selection strategy and the multi-source domain
collaborative loss function. The experiments carried out on publicly available visual
classification datasets to verify the utility of the proposed framework are presented in
‘Experimental design and analysis of the obtained results’. This article concludes with
‘Conclusion’, and offer suggestions for future work in this domain.

RELATED WORK
Recently, the field of fine-tuning has experienced significant advancements, as evident from
numerous publications that can be broadly categorized into those related to traditional
methods and optimization-based methods. In the brief literature review provided below,
we will focus on the work most closely related to this article.

Traditional fine-tuning methods
During the fine-tuning process, the selection of fine-tuning layers directly impacts the
model’s performance on the target task (Yosinski et al., 2014). Traditional fine-tuning
methods focus on determining which layers need to be fine-tuned through expert
experience and manual trial-and-error. In this regard, some researchers have chosen
to fine-tune all layers for training on the target task, an method known as full fine-tuning
or standard fine-tuning (Chen et al., 2020; Raffel et al., 2020). For example, Dosovitskiy
et al. (2021) transferred a pre-trained Visual Transformer (ViT) model to multiple
small-scale datasets and fine-tuned all the layers with good results. Moreover, Raghu
et al. (2020) transferred a pre-trained source domain model to the task of classifying

Feng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2107 4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2107


epileptic seizure types from available electroencephalograms and fine-tuned all the model’s
layer parameters, which significantly improved its performance. As a part of their work,
Kornblith, Shlens & Le (2019) conducted extensive experiments and determined that the
source domain model accuracy when applied to the source task is strongly correlated with
the accuracy transferred to the target task, highlighting the significance of source domain
knowledge for the target task. In order to enhance the stability of fine-tuning, Qiu et al.
(2023) proposed anOrthogonal Fine-Tuning (OFT)method, which employs an orthogonal
transformation to fine-tune model parameters, enabling the pre-trained model to adapt to
downstream tasks without altering the model’s hyperspherical energy. However, when the
amount of data related to the target task is small and the source domain model is large, the
standard fine-tuning approach easily lead to overfitting.

To address the issue of overfitting duringmodel fine-tuning, some researchers have opted
for freezing specific layers and fine-tuning only a subset of the model. For example, Basha
et al. (2021) effectively improved model generalizability to multiple image classification
tasks by fine-tuning the last few layers of the source domain model and freezing the
remaining layers. However, this approach still requires manual setting of the number of
fine-tuned layers. To address this issue, Zunair, Mohammed & Momen (2018) utilized a
transfer learning technique and applied it to the Bengali digit classification problem. After
conducting several experiments, these authors demonstrated that the best classification
accuracy can be attained by selecting the first input layer and the last fully connected
layer of the source domain model as the fine-tuning layers. Similarly, Ghafoorian et al.
(2017) achieved the best performance in a transfer learning task for magnetic resonance
imaging (MRI) segmentation by fine-tuning only the first six layers of the source domain
model. While these results are encouraging, as the size of convolutional neural networks
(CNNs) increases, relying on manual human trial-and-error input to determine the layer
parameters that need to be fine-tuned becomes time consuming and costly. Therefore,
there is a need to develop automated methods for accurately selecting the layers to be
fine-tuned.

Optimization-based fine-tuning methods
Optimization-based fine-tuning is an adaptive parameter selection method that models
the fine-tuning layer selection as a combinatorial optimization problem which is solved
through iterative optimization. Currently available methods based on this approach can
be categorized into policy network-based methods and evolutionary optimization-based
methods. The former treat the decision of whether to fine-tune each layer parameter of
the source domain model as a binary variable and rely on an additional NN to determine
a suitable fine-tuning scheme for the target task (Jang et al., 2019; Guo et al., 2019; Chen
et al., 2023). In their work focusing on image classification tasks, Guo et al. (2019) utilized
a recurrent gate network to make binary decisions on fine-tuning each layer during the
fine-tuning process. On the other hand, Chen et al. (2023) introduced a user-specific
adaptive fine-tuning method (UAF) that determines which layers of the source domain
model to fine-tune for each input, whereby layer selection was accomplished using an
additional policy network. To enhance model performance, Jang et al. (2019) proposed
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a transfer learning method based on meta-learning techniques to adaptively determine
which layers should be fine-tuned or frozen. Policy network-based methods are superior
to traditional fine-tuning methods as they can quickly predict fine-tuning schemes suitable
for the target task. While these approaches not only reduce costs but also significantly
enhance the performance of fine-tuned models, this necessitates training a large number
of discrete parameters. Moreover, due to the discreteness and non-differentiability of the
fine-tuning parameter selection problem, directly applying gradient descent may affect the
accuracy of the fine-tuning scheme (Guo et al., 2019).

These issues can be mitigated by applying the evolutionary optimization-based fine-
tuning method, as it treats each fine-tuning scheme as an individual in the population. It
searches for the best fine-tuning scheme through operations such as iterative population
selection, crossover, and mutation. Vrbančič & Podgorelec (2020) used the differential
evolution algorithm to solve the combinatorial optimization problem of selecting the
fine-tuning layer and determine the optimal fine-tuning scheme.Wen, Peng & Ting (2021)
proposed a two-stage evolutionary transfer learning method to address the challenge of
adapting the model structure to the target task in transfer learning. This method optimizes
the selection problem of the fine-tuning layer by applying multi-objective optimization
during the fine-tuning stage. Genetic algorithms have also been utilized to address the
fine-tuning layer selection problem. For instance, they were adopted by Nagae et al.
(2022) and de Lima Mendes et al. (2021) to identify effective layers suitable for fine-tuning,
whereby the fine-tuning scheme was optimized using different initialization and crossover
strategies. Additionally, Hasana, Ibrahim & Ali (2023) developed a genetic algorithm to
select modules for fine-tuning in source domain models that are typically composed of
multiplemodules. As shown above, the evolutionary optimization-basedmethods eliminate
the need for gradient computation and can accurately identify fine-tuning schemes that
are suitable for the target task.

However, the above methods are only suitable for fine-tuning a single source domain
when the distribution difference between the source domain and the target domain is
small. To extract more effective features for the target task, our work mainly focuses
on collaborative fine-tuning of multiple source domain models, given that the learning
performance when the method is applied to the target task can be further improved by
jointly fine-tuning multiple source domain models. The following section will introduce
the proposed adaptive multi-source domain collaborative fine-tuning framework in
detail.

ADAPTIVE MULTI-SOURCE DOMAIN COLLABORATIVE
FINE-TUNING FRAMEWORK
Overview of the proposed framework
Most existing fine-tuning methods focus on fine-tuning individual source domain models
to the target domain. However, accurately extracting effective features from the target
domain can be challenging when there is a significant difference in data distribution
between the source and the target domain (the large difference in the feature distribution
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Figure 2 Framework diagram of the proposed adaptive multi-source domain collaborative fine-tuning
(AMCF), where ‘‘AMLS’’ represents the proposed adaptive multi-source domain layer selection strat-
egy, ‘‘CE loss’’ represents the cross-entropy loss function, and ‘‘Dif loss’’ represents the difference loss
function.

Full-size DOI: 10.7717/peerjcs.2107/fig-2

and category label distribution between the source dataset and the target data). We
address this issue by proposing an adaptive multi-source domain collaborative fine-tuning
framework (AMCF) for collaborative fine-tuning of multiple source domain models,
depicted in Fig. 2. AMCF conducts collaborative fine-tuning through multiple source
domains. Compared to using a single source domain, this approach increases the chances
for the model to provide more feature information for downstream target tasks. For
example, source domain model 1 may lack certain key feature information of the target
task (with significant distribution differences), but source domain model 2 may contain
such information. Therefore, the proposedmethod aggregates this information to help learn
better features and improve model performance. The AMCF can dynamically determine
which layers should be fine-tuned and frozen for multiple source domain models. The
layers chosen for fine-tuning are updated during training, while the layers chosen for
freezing retain their parameter values. The selection of fine-tuning layers is accomplished
via an adaptive multi-source domain layer selection strategy (AMLS), whereby the target
data is processed by each source domain model to produce an output value. To reduce
the discrepancies in output values yielded by different source domain models, we take
the average of N output values to obtain the predicted label. In fact, the core principle of
the AMCF lies in the collaborative fine-tuning between different source domain models.
By utilizing multiple source domain models, it is possible to extract more comprehensive
features that can aid in the training of the target domain. Furthermore, by computing the
difference loss between various source domain models, the features extracted by the model
can be more precise, thus enhancing the model’s performance on the target task.

The AMCF consists of two main components: (1) an adaptive multi-source domain
layer selection strategy (AMLS); (2) a multi-source collaborative loss function (MC-loss).
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Adaptive multi-source domain layer selection strategy
During the fine-tuning process, certain layers in the source domain model can extract
features that are shared between the source and the target domain. These helpful network
layers for the target task should be frozen to enhance generalization ability, while the
network layers that are not beneficial for the target task should be fine-tuned to help
the model adapt to the target task. Therefore, it is crucial to choose the right layers for
fine-tuning in order to achieve optimal model performance. However, due to the large
number of source domain models, each model may have dozens or even hundreds of
layers, making it difficult to efficiently select the layers that need to be fine-tuned. To
address this problem, we propose an adaptive multi-source domain layer selection strategy
(AMLS) that can automatically search for appropriate layer fine-tuning schemes from the
vast model layers based on the differences between the target and the source domain. By
employing AMLS, we can effectively identify the layers that require fine-tuning, rather than
indiscriminately fine-tuning all layers, thereby enhancing the model performance on the
target task.

We assume that the layers near the initial layer of the source domain model help
extract shared features between the source domain and the target domain. Accordingly,
we keep these layers frozen, while considering the layers closer to the final layer of the
source domain model (which are more susceptible to specific tasks) for fine-tuning.
This is accomplished by combining the characteristics of individual models and utilizing
the particle swarm optimization (PSO) algorithm to search for the optimal number
of fine-tuning layers for multiple source domain models. PSO is currently one of the
most popular metaheuristic algorithms, as it is simple to implement and has strong
global search capabilities (Zeng et al., 2022). When selecting fine-tuning layers for
multiple source domain models, we assume that there are N such models, denoted as
{W (1),W (2),...,W (N )

}. LetW (j)
={W (j)

1 ,W (j)
2 ,...,W (j)

ρj } represents the jth source domain
model, and W (j)

k represents the kth layer parameters of the model W (j).ρj represents the
total number of layers in model W (j). The encoding form of the individuals (candidate
solutions) in the problem of selecting fine-tuning layers for multiple source domainmodels
can be described as follows:

xi= (xi,1,xi,2,...,xi,N ) (1)

where xi represents the ith individual in population, as well as the fine-tuning scheme for
the corresponding layers of N models. xi,j represents the number of fine-tuned layers in
the jth source domain model, and xi,j ∈ {0,1,...,ρj}. Moreover, xi,j = ρj indicates that all
layers ofW (j) are fine-tuned. Conversely, xi,j = 0 indicates that all layers ofW (j) are frozen.
In order to evaluate the quality of each individual, we use the classification accuracy of
the target task corresponding to individual xi as the fitness value. Specifically, the fitness
function f for individual xi is represented as follows:

f (xi)=Acc({Ŵ (1),Ŵ (2),...,Ŵ (N )
};Dt ) (2)

where

Ŵ (j)
=W (j)

−η
∂Ltotal

∂W (j) �M (j),j = 1,2,...,N (3)
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M (j)
k =

{
0,k ≤ ρj−xi,j,k= 1,2,...,ρj
1,other

(4)

where M (j)
={M (j)

1 ,M
(j)
2 ,...,M

(j)
ρj } represents a mask matrix that corresponds one-to-one

with the parameters dimensions of modelW (j), which is mainly used to freeze or fine-tune
parameters; Ŵ (j) denotes the model fine-tuned by the source domain model W (j), using
the mask matrixM (j); andM (j)

k represents the mask value corresponding to all parameters
W (j)

k in the kth layer of the source domain modelW (j). WhenM (j)
k = 0, it indicates that the

parameters in this layer are frozen (i.e., not being fine-tuned), whereas M (j)
k = 1 indicates

that the parameters in this layer need to be fine-tuned to adapt to the target task. The
value of M (j)

k is determined by the individual xi.Ltotal represents the multi-source domain
collaborative loss function (MC-loss) proposed in this article (as discussed in the next
section).Acc({Ŵ (1),Ŵ (2),...,Ŵ (N )

};Dt ) represents the classification accuracy of the target
task Dt , which is obtained by fine-tuning the corresponding layer parameters based on
individual xi in the framework of Fig. 2. To reduce computational cost, the number of fine-
tuning epochs for each individual is manually set to themaxEpoch (in this case, it is set to 5).
Overall, our goal is to search for a individual x∗ that maximizes the fitness value as much as
possible.

In the PSO, each particle has its own position (candidate solution) xi and velocity vi,
which are continuously updated based on the guidance of individual historical best and
the global best of the population, respectively, by applying the following expressions:

v(t+1)i,d =α∗v(t )i,d + c1r1(pi,d−x
(t )
i,d )+ c2r2(pg ,d−x

(t )
i,d ) (5)

x(t+1)i,d = x(t )i,d +v
(t+1)
i,d (6)

where x(t )i,d and v(t )i,d denote the position and velocity, respectively, of the ith individual
in the t th generation population within the dth dimension; pi,d and pg ,d respectively
represent the historical optimal position of the ith individual on the dth dimension and
the global optimal position of the population; r1 and r2 are random numbers ranging
from 0 to 1; α denotes the inertia weight; c1 and c2 represent the individual learning
factors.
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Algorithm 1 : Adaptive multi-source domain layer selection strategy.

Input: The source domain modelsW (1),W (2),...,W (N ); target data Dt ; population size
n; the max iteration number G of the population.
1. Randomly generate populations with n individuals: (vi,xi),i= 1,...,n.
2. Initialize the individual optimal solution: pi = xi,i= 1,...,n; the population optimal
solution:
pg = x1.

3. for i= 1 to G do
4. for j = 1 to n do
5. for k= 1 to N do
6. Calculate mask matrixM (k) according to xj,k using Eq. (4).
7. Fine-tune modelW (k) maxEpoch epochs on target data Dt using Eq. (3).
8. end for
9. Calculate fitness value ϕj of jth individual xj using Eq. (2).
10. if ϕj better than pj then
11. pj = xj .
12. if ϕj better than pg then
13. pg = xj .
14. end if
15. end if
16. end for
17. x∗= pg .
18. Update all individual velocity v values using Eq. (5).
19. Update all individual position x values using Eq. (6).
20.end for
Output: the optimal layer fine-tuning scheme x∗.

The AMLS is described in Algorithm 1. As can be seen from the presented steps,
we first randomly generate a population with n individuals and initialize the velocity
v ={vi,i= 1,...,n} and the position x ={xi,i= 1,...,n} (line 1). Each individual’s position
xi represents the layer fine-tuning scheme corresponding to N source domain models.
Next, the individual best solution pi,i= 1,...,n and the population best solution pg of n
individuals are initialized respectively (line 2). Then, the masking matrixM (k),k= 1,...,N
corresponding toN source domainmodels is calculated based on each individual’s position
information (lines 6–8), and theN source domain models {W (1),W (1),...,W (N )

} are fine-
tuned maxEpoch times using the MC-loss function. The fitness value of each individual
is calculated separately using Eq. (2), and the individual optimal position pj and the
population optimal position pg are updated (lines 9–13). The current population optimal
position pg is assigned to the optimal layer fine-tuning scheme x∗, and the individuals’
velocities and positions are updated using Eqs. (5) and (6). After G iterations of updates,
the optimal layer fine-tuning scheme x∗ for N source domain models is obtained.
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The time complexity of Algorithm 1 is primarily determined by the population size
n, the maximum number of iterations G, the number of source domain models N , and
the number of fine-tuning epochs maxEpoch. Initializing the particle swarm step requires
setting a fine-tuning state for each layer of each model, resulting in a time complexity of
O(n∗N ). During the fitness evaluation step, each particle’s performance is evaluated on
the target dataset, requiring fine-tuning each model for maxEpoch epochs. So the time
complexity of this part is O(n∗G∗N ∗maxEpoch) because fitness evaluation is needed in
each iteration. The update of particle positions and velocities step has a time complexity of
O(n∗G∗N ), as each particle’s position and velocity need to be updated in every iteration.
Thus, the total time complexity of Algorithm 1 is the sum of the above steps, which can be
simplified toO(n∗G∗N ∗maxEpoch). This complexity indicates that the time complexity of
Algorithm 1 primarily depends on the population size, the maximum number of iterations,
the number of models, and the number of fine-tuning epochs.

Multi-source domain collaborative loss function
Based on the AMLS, we can fine-tune the corresponding layers in multiple source domain
models. However, when the differences between multiple source domain models are too
large, it becomes challenging for the model to accurately extract key feature information for
the target task. Therefore, inspired by the multi-source domain adaptation method (Zhu,
Zhuang & Wang, 2019), we propose a multi-source domain collaborative loss (MC-loss)
function to enhance the capability of multiple source domain models in extracting crucial
features for the target task. Different from the previously reported multi-source domain
adaptation methods, the method proposed in this article does not require source domain
data, as it solely relies on the pre-trained source domain models, making its application
more efficient.

In this article, MC-loss function mainly consists of two parts: cross-entropy (CE) loss
and difference (Dif) loss. We utilize cross-entropy loss to enhance the accuracy of feature
extraction by multiple source domain models for the target task. However, when there are
significant differences between multiple source domain models, using only cross-entropy
loss is not sufficient. As shown in the left half of Fig. 3, the features extracted from the three
source domain models are feature 1, feature 2, and feature N (corresponding to output
1, output 2, and output N in Fig. 2). Among these features, only feature 2 is good, while
the others are poor. Therefore, the extracted features in the end will also be influenced
by these poor features. To address this issue, we design a difference loss function that
aims to minimize the discrepancy between the outputs of various source domain models.
By minimizing the difference loss, poor features (such as feature 1 and feature N ) will
gradually approach superior features (such as feature 2), as shown in the right half of
Fig. 3. It is worth noting that due to the previous cross-entropy loss, good features will not
move closer to bad features at this time. Therefore, the extracted features will gradually
converge to excellent features in the end. The resulting multi-source domain collaborative
loss function–a combination of the cross-entropy loss and the difference loss–can be

Feng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2107 11/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2107


Figure 3 The role of the multi-source domain collaborative loss function.
Full-size DOI: 10.7717/peerjcs.2107/fig-3

mathematically represented as follows:

Ltotal =

N∑
k=1

LCE,k+βLDif (7)

where

LCE,k =−
1
|Dt |

|Dt |∑
i=1

C∑
j=1

yi,j logOk
i,j (8)

LDif =
1
|Dt |N

|Dt |∑
i=1

N∑
k=1

∥∥Ok
i − Ōi

∥∥2
2 (9)

where LCE,k represents the cross-entropy loss of model W (k) on the target dataset Dt ;
Ok
i,j denotes the output value of the jth dimension of the ith sample in model W (k); yi,j

represents the true label of the ith sample belonging to the jth class; C is the total number
of classes in the target dataset; |Dt | represents the total number of samples in the target
task; β is a hyperparameter; ‖∗‖22 represents the 2-norm of ∗; LDif denotes the difference
loss between the outputs of N source domain models; Ok

i represents the output of the ith
sample on modelW (k); and Ōi represents the average value of the outputs obtained by the
ith sample in N source domain models.

In summary, our total loss function consists of the LCE,k and LDif loss functions.
Reducing the LCE,k loss will improve the accuracy of feature extraction from the source
domain models on the target data. However, due to significant differences between the
source domain models, those with lower accuracy will impact the averaged predicted
labels. Building on the LCE,k loss, by reducing the LDif loss, these lower accuracy models
will gradually converge towards the higher accuracy models, significantly improving the
accuracy of the final averaged predicted labels.
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EXPERIMENTAL DESIGN AND ANALYSIS OF THE OBTAINED
RESULTS
In order to verify the effectiveness of the proposed AMCF in solving the parameter
fine-tuning problem in transfer learning, three sets of experiments were conducted. The
objective of these experiments was to validate the AMLS, the MC-loss function, and the
overall effectiveness of the proposed method, respectively.

Experimental setup
In order to evaluate the effectiveness of the proposed AMCF, we conducted extensive
experiments on seven public datasets and compared the results with those obtained via
currently utilized fine-tuning methods. In addition, we analyzed the effectiveness of the
proposed AMLS and MC-loss function. The following four sets of experiments were
performed for this purpose:

(1) Parameter sensitivity analysis and multi-source domain model selection analysis.
The aim was to analyze the impact of different hyperparameter values and different source
domain selections on the fine-tuning performance of AMCF.

(2) Experiment for establishing the effectiveness of the AMLS. The aim was to verify
that the AMLS can accurately identify the layer fine-tuning scheme suitable for the target
task.

(3) Experiment for establishing the effectiveness of MC-loss function. Here, the goal
was to verify that the MC-loss function can help multiple source domain models learn a
greater number of effective features pertaining to the target task.

(4) Experiment for comparing the AMCF proposed here with the current popular
single-source domain fine-tuning methods, including Train-From-Scratch, Standard
Fine-Tuning (Kornblith, Shlens & Le, 2019), L2-SP (Xuhong, Grandvalet & Davoine, 2018),
Child-Tuning (Xu et al., 2021), AdaFilter (Guo et al., 2020), ALS (Nagae et al., 2022),
Auto-RGN (Lee et al., 2023), and OFT (Qiu et al., 2023).

Methods used in comparison: For clarity, a brief description of each method is given
below.

• Train-From-Scratch: This method trains the model anew using randomly initialized
weights without applying any transfer learning methods.
• Standard Fine-Tuning (Standard FT): This method fine-tunes all the parameters of the
source domain model on the target dataset (Kornblith, Shlens & Le, 2019).
• L2-SP: This regularized fine-tuning method uses an L2 penalty in the loss function to
ensure that the fine-tunedmodel is similar to the pre-trainedmodel (Xuhong, Grandvalet
& Davoine, 2018).
• Child-Tuning: This method selects a child network in the source domain model for
fine-tuning through a Bernoulli distribution (Xu et al., 2021).
• AdaFilter: This method uses a policy network to determine which filter parameters need
to be fine-tuned (Guo et al., 2020).
• Automatic layer selection (ALS): This method uses a genetic algorithm to automatically
select an effective update layer for transfer learning (Nagae et al., 2022).
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Table 1 Datasets used to evaluate our method and compare it to other fine-tuning approaches.

Target datasets Training instances Evaluation instances Classes

Stanford dogs 12,000 8,580 120
MIT indoor 5,360 1,340 67
Caltech256-30 7,680 5,120 256
Caltech256-60 15,360 5,120 256
Aircraft 3,334 3,333 100
UCF-101 7,629 1,908 101
Omniglot 19,476 6,492 1,623

• Auto-RGN: Themethod automatically selects layers with relatively high relative gradient
norms for fine-tuning at each epoch (Lee et al., 2023).
• Orthogonal Finetuning (OFT): The method employs an orthogonal transformation to
fine-tune model parameters, enabling the pre-trained model to adapt to downstream
tasks without altering the model’s hyperspherical energy (Qiu et al., 2023).

Datasets and the pre-trained models: For the comparisons, the two most widely used
datasets–CIFAR-100 (Krizhevsky & Hinton, 2009), ImageNet (Yamada & Otani, 2022),
and CUB-200 (Wah et al., 2011)—served as source domain data, and Stanford Dogs
(Khosla et al., 2011), MIT Indoor (Quattoni & Torralba, 2009), Caltech 256-30, Caltech
256-60 (Griffin, Holub & Perona, 2007), Aircraft (Maji et al., 2013), UCF-101 (Bilen et al.,
2016), and Omniglot (Lake, Salakhutdinov & Tenenbaum, 2015) datasets were used as the
target domain data, as shown in Table 1. We used ResNet50 pre-trained on ImageNet
and CIFAR-100 datasets as the two source domain models for fine-tuning, respectively,
whereby the classification accuracy of the model pre-trained on ImageNet was 75.15%
(provided by the Torchvision library) and that of the model pre-trained on CIFAR-100
was 84.55%.

Implementation details: All experiments were conducted using the Pytorch framework
on NVIDIA 3090 GPUs, utilizing SGD as the optimizer during training, with the weight
decay and momentum set to 0.0005 and 0.9, respectively, and the initial learning rate and
batch size set to 0.01 and 64, respectively. The number of fine-tuning epochs for evaluating
each individual in our approachwas set to 5. For the final fine-tuning, the number of epochs
was set to 110, and learning rate decay was performed every 30 epochs. Each experiment
was repeated five times to obtain the average classification accuracy.

Parameter sensitivity analysis and multi-source domain model
selection analysis
In AMCF, the selection of the source domains and the values of hyperparameters are
most likely to affect the fine-tuning performance. Therefore, in this section, the analysis
mainly focuses on these two factors. Firstly, regarding the selection of source domains,
we conducted separate analyses and discussions on the performance of fine-tuning for
target tasks using a single source domain (ImageNet), two source domains (ImageNet,
CIFAR-100), and three source domains (ImageNet, CIFAR-100, CUB-200).
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Table 2 Comparative analysis of fine-tuning results of different selection of source domain models. The best results are shown in bold.

Source domains MIT indoor Stanford Dogs Caltech256-30 Caltech256-60 Aircraft UCF-101 Omniglot

One source domain 76.64% 79.02% 77.53% 82.57% 56.10% 76.83% 87.21%
Two source domains 79.10% 86.30% 82.91% 86.05% 62.31% 80.54% 87.76%
Three source domains 79.25% 85.23% 82.50% 86.38% 61.14% 79.96% 86.87%

Table 2 shows the classification accuracy of the proposed AMCF on two source domain
models (ImageNet, CIFAR-100) and three source domain models (ImageNet, CIFAR-
100, CUB-200), along with the classification accuracy achieved through full fine-tuning
using only one source domain model (ImageNet). It can be seen from Table 2 that the
classification accuracy obtained by AMCF is significantly higher than that obtained by
a single source domain, whether it is two source domains or three source domains. In
addition, the fine-tuning results obtained from using three source domains are worse
than those obtained from using two source domains on five out of seven target tasks.
This is because the source domain dataset CUB-200 is very dissimilar to these five target
datasets, causing the source domain knowledge or features to be unsuitable for the target
domain, thereby negatively impacting the model performance. However, in some target
tasks, such as MIT Indoor and Caltech256-30, the results using three source domains
are even better than using two source domains. Although the performance of two source
domains and three source domains is similar, considering the computational complexity,
using two source domains can achieve better results than three source domains, and the
computational complexity is also lower. Therefore, in the subsequent experiments of this
article, AMCF will use ImageNet and CIFAR-100 as the source domains.

The AMCF contains multiple hyperparameters such as the number of the population
iterations G, population size n, learning factors c1 and c2, the number maxEpoch of epochs
for evaluating each individual, and β in the loss function; where the values of G, n, c1, and
c2 are referenced from previous studies (Nagae et al., 2022; Eberhart & Shi, 2000), and the
number maxEpoch of epochs and the hyperparameter β for evaluating each individual
are new parameters introduced for this specific problem. In order to verify the impact
of different hyperparameters on AMCF performance, we will compare and analyze the
different values of maxEpoch and β in Table 3.

In this experiment, β is set to 0, 0.1, 0.2, and 0.5, and maxEpoch is set to 1, 3, 5, and
10, respectively. The value of β determines the contribution ratio of the difference loss
to the total loss, and the value of maxEpoch represents the number of training epochs for
evaluating each individual. Table 3 shows the performance of AMCF under different β and
maxEpoch values. It can be seen from Table 3 that when β = 0.2, the best fine-tuning results
can be obtained, and maxEpoch is greater than or equal to 5, the performance of AMCF
is better. In the following experiments, AMCF will use the parameter settings β = 0.2 and
maxEpoch= 5.
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Table 3 Comparative analysis of fine-tuning results under different values of hyperparameters β and
maxEpoch. The best results are shown in bold.

β 0 0.1 0.2 0.5

MIT indoors 76.26% 78.05% 79.10% 78.50%
Stanford dogs 84.97% 85.37% 86.30% 85.64%
Caltech256-30 78.82% 81.58% 82.91% 82.59%
Caltech256-60 83.45% 85.52% 86.05% 84.03%
maxEpoch 1 3 5 10
MIT indoors 75.74% 74.32% 79.10% 78.95%
Stanford dogs 83.90% 85.68% 86.30% 85.64%
Caltech256-30 79.53% 82.01% 82.91% 82.24%
Caltech256-60 80.76% 85.41% 86.05% 86.23%

Effectiveness analysis of the adaptive multi-source domain layer
selection strategy
In this section, we analyze the fine-tuning performance of different fine-tuning layer
selection strategies to verify the effectiveness of the proposed adaptive multi-source
domain layer selection strategy (AMLS).

In this experiment, we fine-tuned the model using random selection, fine-tuning 20
layers, full fine-tuning, and AMLS. All four strategies use the MC-loss function. In AMLS,
the population size n was set to 10, the maximum number of population iterations G was
set to 5, and the numbermaxEpoch of epochs for each individual in assessing fitness was set
to 5. In the process of individual speed updating, the learning factors c1 and c2 were set to
1.5, and the inertia weights, α, were used in a linearly decreasingmanner while remaining in
the α ∈ [0.7,1.4] range. In the experiments with the random selection strategy, the number
of layers fine-tuned on all source domain models is a random number generated between 1
and 50. For example, (10, 30)means that the final 10 layers of the first source domainmodel
are fine-tuned, while the final 30 layers of the second source domain model are fine-tuned.
Fine-tuning 20 layers means fine-tuning the final 20 layers of all source domain models.
Full fine-tuning refers to fine-tuning all layers. Based on the layer fine-tuning schemes
obtained from the above strategies, we conducted 110 fine-tuning epochs on the source
domain models and evaluated its classification accuracy on the seven image classification
datasets.

Table 4 shows the classification accuracy of the four selection strategies when applied
to the test sets derived from all datasets. It is evident that the AMLS achieved superior
fine-tuning results on all datasets. Moreover, the layer fine-tuning result yielded by
the random selection strategy is 6% lower than the AMLS on average, highlighting the
importance of accurately selecting the fine-tuning layer. Althoughmaking an inappropriate
selection can greatly reduce the model’s performance during the fine-tuning process, the
AMLS can accurately identify appropriate layers for fine-tuning in multiple source domain
models, effectively enhancing the model’s performance on the target task. Figure 4 shows
the number of fine-tuned layers obtained by the AMLS on two source domain models.
Source domain model CIFAR-100 was trained on the CIFAR-100 dataset, while source

Feng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2107 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2107


Table 4 Classification accuracy achieved using random selection, fine-tune 20 layers, full fine-tune, and the proposed AMLS. The best results
are shown in bold.

Selection strategy MIT indoor Stanford Dogs Caltech256-30 Caltech256-60 Aircraft UCF-101 Omniglot

Random selection 77.91% 81.32% 77.59% 79.02% 49.50% 72.43% 85.15%
Fine-tune 20 layers 77.98% 81.68% 78.98% 82.89% 61.77% 80.07% 85.22%
Full fine-tune 78.35% 81.34% 78.84% 82.75% 60.21% 79.96% 86.09%
AMLS 79.10% 86.30% 82.91% 86.05% 62.31% 80.54% 87.76%

Figure 4 The number of fine-tuning layers obtained via each source domain model using the AMLS.
Full-size DOI: 10.7717/peerjcs.2107/fig-4

domain model ImageNet was trained on the ImageNet dataset. As shown in Fig. 4, we
observed that in most datasets, the number of layers fine-tuned from the source domain
model ImageNet is fewer than themodel CIFAR-100. This suggests that the variance in data
distribution between ImageNet and most target tasks is smaller compared to CIFAR-100.
However, on Omniglot, the model fine-tuned from ImageNet has adjusted more layers
than CIFAR-100, indicating a relatively larger difference in data distribution between
ImageNet and Omniglot. In addition, the optimal number of fine-tuning layers varies
significantly for different target tasks within the same source domain. This indicates that
the optimal number of fine-tuning layers varies depending on the target task.

In summary, the experimental results shown in Table 4 and Fig. 4 indicate that the
selection of fine-tuning layers in the source domainmodels plays a crucial role in extracting
key features for the target task. The AMLS can accurately identify the fine-tuning layers
suitable for the target task, thereby enabling the model to extract more crucial feature
information.
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Table 5 Fine-tuning results of different loss functions onmultiple source domain models. The best results are shown in bold.

Loss function MIT indoor Stanford dogs Caltech256-30 Caltech256-60 Aircraft UCF-101 Omniglot

(CE-loss, Model CIFAR-100) 70.74% 75.86% 67.91% 77.16% 51.45% 76.25% 86.59%
(CE-loss, Model ImageNet) 76.19% 84.79% 82.59% 84.65% 54.39% 76.25% 87.30%
(CE-loss, Two Models) 78.95% 85.31% 81.03% 84.86% 57.03% 78.13% 87.53%
(MC-loss, TwoModels) 79.10% 86.30% 82.91% 86.05% 62.31% 80.54% 87.76%

Effectiveness analysis of the multi-source collaborative loss function
In this section, we report on the comparative experiments that were conducted to verify the
fine-tuning effectiveness of the proposed MC-loss function when applied to the target task.
For this purpose, a comparison with the cross-entropy loss function was conducted on both
single-source domain and multi-source domain models using four sets of experiments.
In all experiments, the source domain models adopted the same fine-tuning and freezing
scheme (shown in Fig. 4), while the hyperparameter value β was set to 0.2, and each set of
experiments was trained for 110 epochs. The classification accuracy on the target task was
recorded for each experiment, the details of which are outlined below.

(CE-loss, Model CIFAR-100): Fine-tuning the source domain model CIFAR-100 on all
target datasets using the cross-entropy loss function.

(CE-loss, Model ImageNet): Fine-tuning the source domain model ImageNet on all
target datasets using the cross-entropy loss function.

(CE-loss, Two models): The proposed AMCF applied for fine-tuning source domain
model CIFAR-100 and source domain model ImageNet using the cross-entropy loss
function.

(MC-loss, Two models): The proposed AMCF is applied, which involves fine-tuning
source domain model CIFAR-100 and source domain model ImageNet using the multi-
source domain collaborative loss function.

Table 5 shows the classification accuracy achieved by the aforementioned four fine-
tuning combinations on seven datasets, confirming that the AMCF is superior to the
single-source domain fine-tuningmethod. These results suggest that a single source domain
model can only extract limited key features for the target task, whereas collaborative fine-
tuning with multiple source domains can extract more key features, leading to a significant
improvement in the model performance on the target task.

The experimental results show that the MC-loss function enhances the accuracy of
extracting key features in the target task by adapting each source domain model to the
target task while minimizing the discrepancies between the output features of different
source domain models. Ultimately, this significantly enhances the fine-tuning performance
of the model on the target task.

Comparison of the adaptive multi-source collaborative fine-tuning
framework with the popular single-source domain fine-tuning
methods
In this section, we compare and analyze the AMCF with several popular fine-tuning
methods, including Train-From-Scratch, Standard Fine-Tuning (Standard-FT), L2-SP,
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Table 6 Comparative analysis of Top-1 classification accuracy between adaptive multi-source domain collaborative fine-tuning framework
and single-source domain fine-tuning methods. The best results are shown in bold.

Method MIT indoor Stanford dogs Caltech256-30 Caltech256-60 Aircraft UCF-101 Omniglot

Train-From-Scratch 40.82% 42.45% 25.41% 47.55% 12.12% 43.61% 84.82%
Standard-FT (ImageNet) 76.64% 79.02% 77.53% 82.57% 56.10% 76.83% 87.21%
Standard-FT (CIFAR-100) 72.38% 75.85% 68.53% 77.20% 55.59% 76.53% 87.32%
L2-SP 76.41% 79.69% 79.33% 82.89% 56.52% 74.33% 86.92%
Child-Tuning 77.83% 81.13% 80.19% 83.63% 55.92% 77.40% 87.32%
AdaFilter 77.53% 82.44% 80.62% 84.31% 55.41% 76.99% 87.46%
ALS 76.64% 83.34% 80.93% 84.21% 56.04% 75.78% 87.09%
Auto-RGN 77.46% 83.21% 80.44% 82.98% 54.18% 76.20% 87.43%
OFT 77.68% 83.44% 79.49% 83.82% 55.89% 74.21% 84.02%
Ours 79.10% 86.30% 82.91% 86.05% 62.31% 80.54% 87.76%

Child-Tuning, AdaFilter, ALS, Auto-RGN, and OFT. Standard-FT (ImageNet) and
Standard-FT (CIFAR-100) represent standard fine-tuning using the source domain models
ImageNet and CIFAR-100, respectively. The effectiveness of AMCF is validated by applying
all alternatives to seven public datasets. All methods were iterated 110 epochs and each
method was applied five times to obtain the average classification accuracy and eliminate
the influence of randomness. The experimental results are presented in Table 6 and Fig. 5,
whereby those related to the L2-SP and AdaFilter methods were sourced from published
works (Xuhong, Grandvalet & Davoine, 2018; Guo et al., 2020).

As can be seen from the Table 6, the proposed AMCF achieved the highest accuracy
on all datasets. The Train-From-Scratch method achieved the lowest accuracy as it trained
the target task using randomly initialized weight parameters, without employing any
fine-tuning techniques. Standard Fine-Tuning, L2-SP, Child-Tuning, AdaFilter, ALS,
Auto-RGN, and OFTmethods are single-source domain fine-tuning techniques and utilize
the source domain model for fine-tuning. Accordingly, they greatly enhance performance
compared to the Train-From-Scratch approach. However, the performance of single-
source domain fine-tuning methods is limited when there is a significant difference in
data distribution between the source and the target domain, as the key features extracted
from a single source domain model on the target task are limited. In contrast, the AMCF
combines rich features extracted from multiple source domain models, making the
model’s predictions on the target task more accurate and effectively improving the model
performance. For example, in Table 6, the performance of the source domainmodel CIFAR-
100 after standard fine-tuning on six target tasks (excluding Omniglot) is lower than the
performance obtained by the source domain model ImageNet. This indicates that the data
distribution difference between the source domain CIFAR-100 and the six target domains
is larger when compared to that of the source domain ImageNet, while the data distribution
difference of the source domain ImageNet is relatively smaller. This conclusion is consistent
with the findings regarding the number of fine-tuning layers in Fig. 4.When using AMCF to
combine two source domainmodels, the accuracy obtained on all target tasks is significantly
better than the results of fine-tuning a single source domain. This also indicates that, even in
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Figure 5 Test accuracy curve of the proposed method, OFT, Auto-RGN, ALS, and Standard Fine-
Tuning baseline when applied toMIT Indoors, Stanford Dogs, Caltech256-30, and Caltech256-60
datasets.

Full-size DOI: 10.7717/peerjcs.2107/fig-5

instances when there is a significant distribution difference between a single source domain
and a target domain, AMCF can still enhance the model’s feature extraction capability.
However, even though the AMCF can enhance the model’s feature extraction ability on the
target task when there is a significant difference in data distribution between the source and
target domain, the performance improvement obtained through fine-tuning is still limited
when the data distribution differences between all source domain and target domain are too
large or completely unrelated. For example, the target task Omniglot achieved only about
a 2% accuracy improvement compared to Training-From-Scratch when using standard
fine-tuning on the source domainmodels ImageNet and CIFAR-100. This indicates that the
data distribution of Omniglot is very different from that of both source domains. And thus,
AMCF only achieved an improvement of around 0.3% compared to other single-source
domain fine-tuning methods. Figure 5 shows the test accuracy curves of our method, OFT,
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Auto-RGN, ALS, and Standard Fine-Tuning (source ImageNet) baseline when applied to
the Stanford Dogs,MIT Indoors, Caltech256-30, and Caltech256-60 datasets. The red curve
represents the fine-tuning results of the proposed AMCF. It is evident that the proposed
method significantly improves fine-tuning performance compared to other fine-tuning
methods on all datasets. For example, after 5 epochs, our method achieves classification
accuracies of 79.80%, 71.11%, 75.91%, and 80.03%, while the standard fine-tuning baseline
method only achieves 67.73%, 62.61%, 69.66%, and 71.28%. Therefore, our method can
match or even surpass the accuracy level of the standard fine-tuning baseline approach in
fewer epochs, significantly reducing training time for new tasks, making it more suited for
practical applications.

These experimental results demonstrate that the proposed AMCF effectively extracts a
greater number of key features in the target task by fine-tuning multiple source domain
models. Compared to current single-source domain fine-tuning methods, it greatly
enhances the fine-tuning performance, while achieving competitive results within fewer
training epochs, as shown in Fig. 5.

Experimental findings
Based on the experimental results, the following conclusions can be reached: (1) multi-
source collaborative domain fine-tuning is more beneficial for learning effective feature
information in the target task, leading to a significant improvement in model performance;
(2) the selection of fine-tuning layers in the source domain model is crucial for achieving
optimal fine-tuning performance, and this selection varies depending on the target task.
The proposed AMLS can accurately identify the appropriate layers for the target task.

While this method improves the model performance on the target task compared to
single-source domain fine-tuning strategy, training multiple source domain models can
lead to slower inference speed. When there are N source domain models, the number
of parameters required for training will be approximately N times greater than that in
single-source domain fine-tuning approach. In the future, this issue will be addressed by
reducing the number of fine-tuning parameters or by incorporating adapter fine-tuning.
Additionally, it is important to note that the AMCF method only modifies the output layer
and loss function components ofmulti-source domainmodels. Fine-tuning is performed on
a per-layer basis, making it applicable to various deep neural network model architectures.

CONCLUSION
In order to mitigate the difficulty in extracting effective features through single-source
domain fine-tuning when there is a significant difference in data distribution between
the source domain and the target domain, we proposed a transfer learning framework
called adaptive multi-source domain collaborative fine-tuning (AMCF). The framework
combines multiple source domain models for collaborative fine-tuning, extracting more
effective features for the target task compared to single-source domain fine-tuningmethods,
thereby significantly improving the fine-tuning performance. In the proposed method, an
adaptive multi-source domain layer selection strategy is designed to dynamically provide
appropriate layer fine-tuning schemes for the target task on multiple source domain
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models, enabling the model to extract more crucial feature information. Based on this
strategy, a multi-source domain collaborative loss function is designed to adapt each
source domain model to the target task. The strategy aims to minimize the differences
between the output features of different source domain models, thereby improving the
accuracy of the key features extracted by the model in the target task. Experimental results
show that compared with the most widely used single source domain fine-tuning methods,
the proposed AMCF extracts more effective key feature information of the target task,
thereby significantly improving the performance of model fine-tuning.

However, since the AMCF combines multiple source domain models for collaborative
fine-tuning, its parameter scale is extremely large, making it difficult to execute this
approach on devices with limited computational resources. Therefore, our future work will
primarily focus on exploring multi-source domain collaborative fine-tuning methods that
can be adopted in such contexts.
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nyy15-4j048 and at Kaggle: https://www.kaggle.com/datasets/mmoreaux/caltech256.

The FGVC-Aircraft Benchmark is available at https://www.robots.ox.ac.uk/~vgg/data/
fgvc-aircraft and at Kaggle: https://www.kaggle.com/datasets/seryouxblaster764/fgvc-
aircraft.

The UCF101 Dynamic Images dataset is available at https://www.robots.ox.ac.uk/~vgg/
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