Submitted 30 January 2024
Accepted 15 May 2024
Published 17 June 2024

Corresponding author
Emre Safak, emresfk2@gmail.com

Academic editor
Valentina Emilia Balas

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.2103

() Copyright
2024 Safak and Barisct

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Detection of fake face images using
lightweight convolutional neural networks
with stacking ensemble learning method

Emre Safak’* and Necaattin Barigg1*

L R&D Technology and Innovation Department, HAVELSAN, Ankara, Tiirkiye
% Department of Computer Engineering, Gazi University Ankara, Ankara, Tiirkiye

ABSTRACT

Images and videos containing fake faces are the most common type of digital
manipulation. Such content can lead to negative consequences by spreading false
information. The use of machine learning algorithms to produce fake face images has
made it challenging to distinguish between genuine and fake content. Face
manipulations are categorized into four basic groups: entire face synthesis, face
identity manipulation (deepfake), facial attribute manipulation and facial expression
manipulation. The study utilized lightweight convolutional neural networks to detect
fake face images generated by using entire face synthesis and generative adversarial
networks. The dataset used in the training process includes 70,000 real images in the
FFHQ dataset and 70,000 fake images produced with StyleGAN2 using the FFHQ
dataset. 80% of the dataset was used for training and 20% for testing. Initially, the
MobileNet, MobileNetV2, EfficientNetB0, and NASNetMobile convolutional neural
networks were trained separately for the training process. In the training, the models
were pre-trained on ImageNet and reused with transfer learning. As a result of the
first trainings EfficientNetBO0 algorithm reached the highest accuracy of 93.64%. The
EfficientNetB0 algorithm was revised to increase its accuracy rate by adding two
dense layers (256 neurons) with ReLU activation, two dropout layers, one flattening
layer, one dense layer (128 neurons) with ReLU activation function, and a softmax
activation function used for the classification dense layer with two nodes. As a result
of this process accuracy rate of 95.48% was achieved with EfficientNetB0 algorithm.
Finally, the model that achieved 95.48% accuracy was used to train MobileNet and
MobileNetV2 models together using the stacking ensemble learning method,
resulting in the highest accuracy rate of 96.44%.

Subjects Artificial Intelligence, Computer Vision, Mobile and Ubiquitous Computing, Neural
Networks

Keywords Fake face detection, Face manipulation detection, Convolutional neural networks, Deep
learning, Transfer learning, Ensemble learning, Stacking ensemble learning

INTRODUCTION

Since the widespread use of the internet fake images and videos have been produced to
deceive or entertain people. Artificial intelligence algorithms have been used in recent
years for manipulations that were initially made using image and video editing programs.
Deep learning based methods such as automatic encoders and generative adversarial
networks are often used to generate fake image and video using artificial intelligence

How to cite this article Safak E, Barigq1 N. 2024. Detection of fake face images using lightweight convolutional neural networks with
stacking ensemble learning method. Peer] Comput. Sci. 10:e2103 DOI 10.7717/peerj-cs.2103

http://dx.doi.org/10.7717/peerj-cs.2103
mailto:emresfk2@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2103
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

(Pashine et al., 2021). Face image manipulation is the most common type of fake image
produced. Most fake face images are intended to discredit or scam people. With fake face
images people can be shown where they are never been and can be made to speak with
words they did not say. Fake face manipulations are of four types: identity manipulation
(deepfake), attribute manipulation, expression manipulation, and entire face synthesis
(Wang et al., 2021).

Identity manipulation is the replacement of the face image of the person in a video or
image with another person. The selected face is replaced with another identified face in the
video or image. Computer graphics-based methods (face swap) and deep learning
(deepfake) algorithms are generally used for identity manipulation. The deepfake based
approach relies on two autoencoders trained to reconstruct the training images of the
source and target face. A face detector is used to crop and align images. The source face’s
trained encoder and decoder are applied to the target face to create a fake image andvideo.
The autoencoder output is then aligned with the rest of the image using the Poisson image
editing method (Tolosana et al., 2020).

Attribute manipulation involves changing physical features of the face, such as hair
color, skin color, age, gender, and eyes. For this method of manipulation, generative
adversarial networks often called StarGAN are used. StarGAN (Choi et al., 2018) consists
of a discriminator (D) and a generator (G). The discriminator tries to guess whether an
input image is fake or real and classifies the real image according to its corresponding
domain. The generator takes both the image and the target domain label as input and
creates a fake image. The generator tries to reconstruct the original image from the fake
image supplied with the original domain label provided by the discriminator. Finally, the
generator tries to produce images that are indistinguishable from real images and can be
classified as target areas by the discriminator. The widely used FaceApp mobile application
is one of the sample applications that allows the user to manipulate attributes. Users can
use this technology to try various products (cosmetics, makeup, hairstyles, efc.,) in a virtual
environment (Wang et al., 2021).

Expression manipulation involves changing the expressions or emotions displayed on a
person’s face. Facial expressions (happy, excited, confused, angry, efc.) can be changed
with expression manipulation also known as face animation. With this method images can
be animated and used as desired. For example, with expression manipulation a person can
make a speech in a place where they have never been. For this reason, expression
manipulation can have serious consequences (Wang et al., 2021). Face2Face (Thies et al.,
2016) and Neural Nextures (Thies, Zollhofer ¢» Niefiner, 2019) methods are used for
expression manipulation.

Entire face synthesis is the generation of nonexistent face images using generative
adversarial networks. Strong generative adversarial networks such as StyleGAN (Karras ¢
Hellsten, 2021a) are generally used for entire face synthesis manipulation. StyleGAN is a
generative adversarial network that enables the generation of realistic fake face images
developed by NVIDIA researchers. Face images can be produced with a high level of
realism with entire face synthesis. Entire face synthesis can be used in various applications
such as gaming, 3D modeling, media, etc. While it can benefit many industries, it can also

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 2/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

be used to create very realistic fake profiles on social networks to spread disinformation
(Tolosana et al., 2020).

With the use of artificial intelligence algorithms in face manipulations, it has become
very difficult to distinguish between real content and fake content. Due to the increase in
the number and quality of fake face images, studies have started to be carried out in order
to detect them. Most of the high-performance fake face detection methods are based on
deep learning. Usually, convolutional neural network or recurrent neural network
techniques are used. In addition to being able to detect fake faces with high accuracy,
resources should be used effectively. In traditional approaches data collected from data
sources are processed on central servers. With the increasing amount of data and the
internet of things connecting billions of devices to the internet, the current processing
capacities and bandwidths will not be enough (Safak et al., 2021). For this reason, the fake
face detection model to be developed should be able to work with maximum performance
on mobile devices with low processing power instead of a central processing server. In this
study, fake face images produced by generative adversarial networks were detected by
using lightweight convolutional neural networks such as MobileNet, MobileNetV2,
EfficientNetB0O and NASNetMobile that can work on mobile devices. A dataset containing
70,000 real and 70,000 fake images was used for the training process. EfficientNetBO
algorithm has reached the highest accuracy rate as a result of the training processes. In
order to increase the accuracy rate, the highest accuracy rate of 96.44% was achieved when
EfficientNetBO, MobileNet and MobileNetV2 were trained together with the stacking
ensemble learning method.

Previous studies have generally used complex and costly models for fake face detection.
Previous studies where lightweight convolutional neural networks were used, high
accuracy values could not be achieved. Therefore, in this study, lightweight convolutional
neural networks requiring lower computational cost were used. The main contributions of
the article are as follows:

e Models that can run on mobile devices were trained and tested on the FFHQ dataset.

» MobileNet, MobileNetV2, EfficientNetB0, and NASNetMobile lightweight
convolutional neural networks were trained separately. Models pre-trained on ImageNet
were reused with transfer learning. In the tests conducted, the EfficientNetB0 algorithm
achieved the highest accuracy rate of 93.64%.

* By fine-tuning the EfficientNetBO model that achieved the highest accuracy rate, two
dense layers with ReLU activation function (256 neurons), two dropout layers, a flatten
layer, one dense layer with ReLU activation function (128 neurons), and two dense layers
with softmax activation function for classification were added. The EfficientNetBO model
achieved an accuracy rate of 95.48%.

e Models trained separately were re-trained using transfer learning to increase the
accuracy rate. By training the MobileNet and MobileNetV2 models together with the
EfficientNetB0O model using the stacking ensemble learning method, the highest accuracy
rate of 96.44% was achieved.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 3/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

e When the proposed method was trained and tested on the CelebA-HQ dataset, an
accuracy rate of 94.52% was achieved. Thus, the generalizability of the proposed method
to different datasets has been demonstrated.

When the proposed method was run on a mobile device, the latency was 0.171 s. This
demonstrated that the proposed method can be used in real-world scenarios.

In this article, literature research, materials and methods used, research findings and
results are explained. In the second chapter, literature review is presented. In the third
chapter, the method and data set used in this study are explained. In the fourth chapter, the
experimental results of the proposed method and its comparison with other studies are
given.

LITERATURE REVIEW

A new method based on monitoring the neuron behavior of the layers of the convolutional
neural network model is proposed for the detection of fake face images. Studies show that
deep learning systems that monitor neuron coverage and behavior give successful results
against adversarial attacks made on the model. In this study, it was observed that
monitoring neuron behaviors gave similar results. Better detection of spurious patterns
was achieved with the application of neuron activation in convolutional neural network
layers. Experimental results showed that the proposed method gave better results in
detecting identity manipulation, attribute manipulation, expression manipulation and
entire face synthesis manipulation type. In the proposed method, 91.9% accuracy rate was
achieved in the fake face image dataset produced with StyleGAN?2 using the FFHQ dataset
in the entire face synthesis manipulation method (Wang et al., 2021).

FisherFace and Local Binary Pattern Histogram (LBPH) algorithms were used together
for the detection of fake face images. FisherFace was used to reduce the size of the face field,
while LBPH was used to classify the face images. FisherFace is basically based on Fisher’s
Linear Discriminant Analysis (FLDA) method. The most important advantage of the
FisherFace algorithm is that it works faster than other existing algorithms and has a low
error rate. LBPH recognizes the image with less computational complexity by extracting
the features of the face images. As fake face images dataset FFHQ, 100K-Faces, DFFD,
CASIA-WebFace datasets were used separately and compared. The proposed method
reached 94.92% accuracy on the FFHQ dataset (Suganthi et al., 2022).

A fine-tuned neural network architecture based on dual attention is proposed to detect
take face images. In the proposed method, the pre-trained model is integrated with a fine-
tuning converter, MobileNet block V3 and channel attention module to increase
performance and robustness. The fine-tuning converter consists of its own attention
module and a subsampling layer. Moreover, the classifier can be easily integrated with
other convolutional neural networks, while using less data for fine-tuning to increase
performance and robustness. The channel attention module is used to capture the feature
map of fake images. MobileNetV3 convolutional neural network has been used to classify
images. The FaceForensics++ dataset and various generative adversarial network (GAN)
generated datasets were used to test the proposed method. The effectiveness of the model

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 4/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

was checked on eight different generative adversarial networks. While the proposed
method reached 81.43% accuracy on the dataset produced with StyleGAN, it reached
83.64% accuracy on the dataset produced with StyleGAN2 (Bang ¢ Woo, 2021).

A method proposes using only the eyes to detect fake face images. Fake facial images
were detected only by considering the inconsistent corneal specular between the two eyes.
Normally, corneal highlights of real human face images are related to each other, but this
relationship cannot be achieved in fake face images. In a real human face image, the front
position of both eyes is in the same direction as the camera. Moreover, the eyes are away
from the light source and all light sources in the environment are visible to both eyes.
While the FFHQ dataset was used for real face images, the dataset created by the
StyleGAN2 method was used for fake face images. As a result of the proposed method, the
area under the curve (AUC) reached 94% (Hu, Li ¢ Lyu, 2020).

A method proposes using irregular pupil shapes to detect fake face images. In real eyes,
the pupils are circular or elliptical, whereas the pupils formed by the contentious generative
meshes are irregular. The proposed method first uses a face detector to identify the face in
the input image. U-Net-based model developed with EfficientNet-B5 is used to detect the
boundaries of the pupil. Then, the widely used BloU for distance measure was used to
calculate the alignment and irregularity of the pupil with the ellipse. According to this
calculation result, it can be determined that the image is fake or real. In this study, the
FFHQ dataset was used for real face images, and the dataset created using the StyleGAN2
method and consisting of 1,600 images was used for fake face images. As a result of the
proposed method, the AUC reached 91% (Guo et al., 2022).

A summary of the studies on fake face detection is presented in Table 1.

In Table 1, among the studies conducted using the FFHQ dataset and StyleGAN2, the
study employing Fisher’s Linear Discriminant Analysis method achieved the highest
accuracy rate of 94.92% (Suganthi et al., 2022). Another study, which considered
inconsistent corneal specularities between the two eyes without using deep learning,
achieved an AUC value of 94% (Hu, Li ¢ Lyu, 2020). In a method based on monitoring
neuron behaviors in the layers of a convolutional neural network model for detecting fake
face images, an accuracy rate of 91.9% was attained (Wang et al., 2021). Additionally,
considering iris patterns, another study using the EfficientNet-B5 algorithm reached an
accuracy rate of 91% (Guo et al., 2022). Among the examined studies, the study utilizing
the MobileNetV3 algorithm achieved the lowest accuracy rate of 83.64% (Bang ¢ Woo,
2021). While most of the examined studies employed deep learning methods, StyleGAN2
was preferred for generating fake face images. The study using the MobileNetV3
lightweight convolutional neural network model achieved a lower accuracy rate compared
to other studies. There are no lightweight convolutional neural network models capable of
achieving high accuracy. Therefore, in this study, fake faces generated with both
lightweight convolutional neural network models and StyleGAN2 were used.

MATERIALS AND METHODS

Studies in the literature deep learning algorithms that provide higher accuracy are used
instead of classical image processing techniques in detecting fake face images. In addition

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 5/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Studies on fake face detection.

Study Method Algorithm Feature Dataset Performance Accuracy
metric rate
Wang Deep learning ~ New model based on neuron Fake face FFHQ and Accuracy 91.9%
et al. monitoring detection StyleGAN2
(2021)
Suganthi Deep learning FisherFace Fake face FFHQ Accuracy 94.92%
et al. detection
(2022)
Bang ¢ Deep learning ~ MobileNetV3 Fake face FFHQ and Accuracy 83.64%
Woo detection StyleGAN2
(2021)
Hu, Li ¢ Image DIib library Fake face FFHQ and AUC 94%
Lyu processing detection StyleGAN2
(2020)
Guo et al. Deep learning EfficientNet-B5 Fake face FFHQ and AUC 91%
(2022) detection StyleGAN2

to being able to detect fake faces with high accuracy, resources must be used efficiently.
Connecting billions of devices to the Internet of Things (IoT) will make it increasingly
difficult to perform transactions on centralized servers. For this, the fake face detection
model to be developed should be able to work on mobile devices. For this reason,
lightweight convolutional neural network models that can work at maximum performance
on mobile devices were used in this study. The flowchart of the study is shown in Fig. 1.

Figure 1 shows the work done to develop the fake face detection model. A dataset
containing 70,000 real and 70,000 fake images was used to train the fake face detection
model. A total of 112,000 images in the dataset were used for training and 28,000 images
for testing. MobileNet, MobileNetV2, EfficientNetBO and NASNetMobile lightweight
convolutional neural networks are used for the training. Firstly, MobileNet, MobileNetV2,
EfficientNetB0, and NASNetMobile convolutional neural networks are trained separately
for the training. In the training process, the models were pre-trained on ImageNet and
reused with transfer learning. As a result of the first trainings, the EfficientNetB0 algorithm
reached the highest accuracy rate of 93.64%. To further increase the accuracy of the
EfficientNetB0 algorithm, two dense layers (each with 256 neurons) with ReLU activation
function, two dropout layers, one smoothing layer, one dense layer (with 128 neurons)
with ReLU activation function, and a dense layer with two nodes and softmax activation
function were added for classification. As a result of this process, an accuracy rate of
95.48% has been achieved. Finally, with the model that reached 95.48% accuracy,
MobileNet and MobileNetV2 models were trained together with the stacking ensemble
learning method and the highest accuracy rate was achieved with 96.44%. The study of the
convolutional neural network architecture that enables fake face detection is presented in
Fig. 2.

As seen in Fig. 2, the feature map is created by passing the acquired image through the
convolutional neural network layers. Convolutional neural networks were first developed

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 6/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

ImageNet Pre-trained
Model

MobileNet, MobileNetV2,
EfficientNetBO and

Models use with
Ensemble Learning

Model Test

START
NASNetMobile Model Train

A

Train Data (112.000
image)

Test Data (28.000
image)

(Revised EfficientNetBO + Input Face Image

IMobileNetV2+MobileNet)|

Is Image Fake?

Real Face

Fake Face!

Figure 1 Flowchart of the study.

Full-size k&l DOTL: 10.7717/peerj-cs.2103/fig-1

Feature Maps

Feature

Input

IMAGE

Pooling
Layer

Convolution
Layer

Feature
Feature Maps
Maps
Prediction
»
Convolution Pooling Fully Connected
Layer Layer Layer

Figure 2 Architecture of convolutional neural network.

Full-size k&l DOI: 10.7717/peerj-cs.2103/fig-2

and used in 1980. Convolutional neural networks are artificial neural networks developed

for deep learning that learn directly from data and eliminate the need for manual feature

extraction. Convolutional neural networks perform the learning process by taking an input

image and assigning learnable weights to various regions. Convolutional neural networks

have proven themselves by giving very successful results especially in image recognition

and classification tasks. Convolutional neural networks are also used in recognizing and

classifying non-image data such as audio, time series, signal, and text data. A convolutional

neural network developed for a particular task can be reused for another task.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103

00000 7720

http://dx.doi.org/10.7717/peerj-cs.2103/fig-1
http://dx.doi.org/10.7717/peerj-cs.2103/fig-2
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Convolutional neural networks consist of many hidden layers between an input and output
layer. The most commonly used hidden layers are convolution, ReLU, pooling and fully
connected layer (Safak ¢ Barisci, 2018). The convolution layer enables the detection of
image features using convolution filters. The convolution layer first multiplies the
convolution filters with the inputs from the neural network. During this multiplication
process, the filter is passed over the image multiple times, by applying it from right to left
and top to bottom, to cover the entire image. These products are then added together to
create convolutional maps (Albawi, Mohammed ¢ Al-Zawi, 2017). The ReLU layer
introduces nonlinearity to the network by equating negative values to zero and keeping
positive values. In this way, it enables faster and more effective training (Safak et al., 2022).
The pooling layer keeps only the most important information reducing the number of
parameters in the input. The pooling layer helps prevent overfitting, reduce complexity,
and increase efficiency by reducing the number of calculations and parameters in the
network. A filter with non-trainable parameters is applied to the input, and based on the
type of pooling, the filter generates an output array. There are two main types of pooling,
maximum and average pooling. In the maximum pooling method as the filter moves
through the input, it selects the pixel with the maximum value to be sent to the output
array. In the mean pooling method, as the filter moves across the input, it calculates the
average value within the receiving field to send to the output array (Inik ¢ Ulker, 2017).
The fully connected layer performs the classification function based on the attributes from
the previous layers. The fully connected layer usually generates a probability between 0 and
1, using the softmax activation function, to properly classify the inputs (Khan et al., 2020).

The model classifies the input image as Fake Face or Real Face according to the feature
map after passing through all the relevant convolutional neural network layers.

A dataset of 140,000 images was used to train the convolutional neural network models.
The dataset used includes 70,000 real face images in the FFHQ dataset and 70,000 fake face
images produced with StyleGAN2 (Karras ¢ Hellsten, 2021b). The FFHQ dataset is a
dataset consisting of high-resolution images of age and ethnicity diversity prepared for
generative adversarial networks. 6.0% of the images in the dataset belong to the United
States, 1.6% to the United Kingdom, 0.7% to Canada, 0.6% to Spain, 0.5% to Taiwan, and
5.7% to other known countries. The remaining 85% are of unknown origin (Karras ¢
Hellsten, 2022). StyleGAN?2 is very successful in data-driven unconditional generative
modeling (Karras et al., 2020). Therefore fake faces created with StyleGAN2 are very
realistic and challenging. While 80% of the images in the dataset were used for training and
validation, 20% were used for testing (Rdcz, Bajusz ¢ Héberger, 2021).

The hyperparameters in Table 2 were used to train the model. The proposed model
achieved its highest accuracy with the hyperparameters listed in Table 2.

The epoch value shows how many times the dataset is trained in the proposed
convolutional neural network. In this study, the maximum accuracy was achieved when
the dataset was trained on the proposed convolutional neural network 15 epochs. Since the
number of datasets is high, the number of steps per epoch is set to 64 and the dataset is
trained by taking 64 part at each step. Verbosity value is set to one in order to display the
stage of model training. The learning rate which is the update rate of the learned weights in

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 8/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Hyperparameters used in training.

Hyperparameters Value

Epoch 15

Steps_per_epoch 64

Verbosity 1

Learning rate 0.001

Loss_function Binary_crossentropy
Optimizer Adam

the model training, is set to 0.001. Binary cross entropy function is used because binary
classification is made in order to calculate the loss between the model’s prediction and the
true value. Adam optimization algorithm was used to update the determined learning rate
according to different parameters. The Adam optimization algorithm is preferred because
it is computationally efficient, requires low memory requirements, and the dataset is
suitable for large problems (Kingma ¢ Ba, 2017). The model was trained using a computer
with an Intel i7-12650H CPU, 32GB RAM, and NVIDIA GeForce RTX4090 16GB GPU.
The training process took approximately 92 h.

MobileNet, MobileNetV2, EfficientNetB0, and NASNetMobile convolutional neural
network models used for fake face detection in this study. MobileNet is an efficient and not
very computationally intensive convolutional neural network developed for mobile and
embedded applications. MobileNet 28 layers consist of 4.2 million parameters. MobileNet
uses deeply separable convolutions to build lightweight convolutional neural networks.
The number of parameters is significantly reduced by using deeply separable convolutions
in the MobileNet. Deep separable convolution consists of two layers: depth convolution
and point convolution. Deep convolution is used to apply a single filter to each input. Since
deep convolution is only used to filter the input channel, it cannot combine these filters to
generate new features. Point convolution is a 1 x 1 convolution that computes a linear
combination of the in-depth convolution output. MobileNet requires much less
computational power to run or implement transfer learning. MobileNet is also best suited
for web browsers, as browsers have limitations on computing, graphics processing and
storage (Howard et al., 2017). MobileNet architecture is presented in Fig. 3.

MobileNetV?2 is a convolutional neural network that can work efficiently on mobile and
embedded devices and aims to give better results in terms of performance. MobileNetV2
convolutional neural network consists of 53 layers and 3.4 million parameters.
MobileNetV2 architecture includes first full convolution layer with 32 filters followed by
19 residual bottleneck layers. Links and bottleneck layer are now added on the MobileNet
base architecture. The bottleneck residual block is placed between layers. The bottleneck
residual block has been developed instead of the deeply separable convolution in the
MobileNet architecture. The bottleneck residual block allows the network to calculate
activations more efficiently and retain more information after activation. The point-
convolutions in the MobileNet architecture keep or increase the number of channels, while

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 9/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Type / Stride Filter Shape Input Size
Conv /s2 3x3x3x32 224 x 224 x 3
Conv dw /sl 3x3x32dw 112 x 112 x 32
Conv /sl 1 x1x32x64 112 x 112 x 32
Conv dw /82 3 x3x64dw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw / sl 3x3x128dw 56 x 56 x 128
Conv /sl 1x1x128 x 128 56 x 56 x 128
Conv dw /82 3 x3x 128 dw 56 x 56 x 128
Conv /sl 1 x1x128 x 256 28 x 28 x 128
Conv dw / sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x1x 256 x 256 28 x 28 x 256
Conv dw /82 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x1x 256 x 512 14 x 14 x 256
5x Convdw /sl | 3 x3x512dw 14 x 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw / s2 3x3x512dw 14 x 14 x 512
Conv / sl 1 x1x512x 1024 7Tx7x512
Conv dw /82 3 x 3 x 1024 dw 7Tx7x1024
Conv /sl 1x1x1024 x1024 | 7x 7 x 1024
Avg Pool / s1 Pool 7 x 7 7x7x1024
FC /sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

Figure 3 MobileNet architecture.

Full-size K&l DOT: 10.7717/peerj-cs.2103/fig-3

the bottleneck residual blocks in the MobileNetV2 architecture reduce the number of
channels. Since the bottleneck layers are linear, it also prevents non-linear layers from

losing too much information (Sandler et al., 2018). The general architecture of

MobileNetV2 is presented in Fig. 4.
A new scaling model using composite coefficient in the EfficientNet convolutional

neural network architecture is proposed. Other convolutional neural networks randomly

scale different dimensions such as width, depth, and resolution. In contrast, EfficientNet

scales all dimensions equally using a fixed scaling factor. Compound scaling method

increased model accuracy and efficiency over traditional scaling methods. The composite
scaling method can detect that if the input image is large, more layers are needed, and more
channels are needed to detect smaller details in the large image. The EfficientNet
architecture basically uses mobile inverted bottleneck convolution. EfficientNetBO is a
revision of the EfficientNet mesh for mobile and embedded devices. The EfficientNetB0
network consists of 5.3 million parameters. Based on the inverted bottleneck residual
blocks used in the MobileNetV2 network, EfficientNetB0 adds squeeze-and-excitation
blocks (Tan ¢ Le, 2019). The EfficientNetB0 architecture is presented in Fig. 5.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 10/20

http://dx.doi.org/10.7717/peerj-cs.2103/fig-3
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Input | Operator | t| ¢ |n]|s
2242 x 3 conv2d - 32 [1]2
1122 x 32 bottleneck |1 | 16 |1 |1
1122 x 16 bottleneck | 6 | 24 |2 |2
562 x 24 bottleneck | 6 32 312
282 x 32 bottleneck | 6 64 4 |2
142 x 64 bottleneck |6 | 96 |3 |1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 |1 | 1
72 x 320 conv2d 1x1 | - | 1280 | 1 | 1
72 x 1280 | avgpool 7x7 | - - 1] -

1x1x1280 | conv2d Ix1 | - k -
Figure 4 MobileNetV2 architecture. Full-size K&] DOT: 10.7717/peerj-cs.2103/fig-4

NASNet enables the creation of the most suitable convolutional neural network
architecture using reinforcement learning method. In reinforcement learning, which is
used in the NASNet network, the accuracy obtained on the trained dataset of an
architecture is used as the result of each search operation. It serves as a reward for the
search. Convolutional layers, which generally give good results on different datasets can be
used extensively thanks to reinforcement learning. Although the general architecture is
defined in the NASNet network, convolutional cells are not certain. The structures of
normal and reduction cells in the NASNet network are searched by supervised recurrent
neural networks. The number of repetitions of convolutional cells and the number of
initial convolution filters in the NASNet network are adjustable parameters. Adjustable
parameters are used for scaling. Convolutional cells are of two types, normal and reduction
cells. Normal cells are convolutional cells that return a feature map of the same size. A
reduction cell is a cell in which the height and width of the feature map are reduced.
NASNet Mobile is a revised version of the NASNet network for mobile and embedded
devices, reducing the number of parameters. The original NASNet network consisted of
88.9 million parameters, while NASNet Mobile contained 12 cells and 5.6 million
parameters (Saxen et al., 2019).

Tensorflow is a free and open source software library developed by Google using the
C++ programming language used in machine learning and artificial intelligence studies.
Tensorflow supports Javascript, C++, Java and Python programming languages.
Tensorflow also supports Linux, MacOS, Windows, Android and iOS operating systems
(Tensorflow, 2022). Tensorflow uses tensors for computation. Tensor is an n dimensional
vector/matrix representing data types. The vector is a one-dimensional tensor while the
matrix is a two-dimensional tensor. In Tensorflow, all operations take place in graphs. A
graph is a set of nodes representing operations in the model, and the connections between

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 11/20

http://dx.doi.org/10.7717/peerj-cs.2103/fig-4
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

{224x224x3

Conv3x3

y 112x112x32
MBConv1, 3x3
y 112x112x16
MBConv6, 3x3
y 56x56x24
MBConv6, 3x3
y 56x56x24

MBConv6, 5x5
{ 28x28x40

MBConv6, 5x5

v 28x28x40
MBConv6, 3x3

y 28x28x80
MBConv6, 3x3

v 28x28x80
MBConv6, 3x3

y 28x28x80
MBConv6, 5x5

‘ 14x14x112
MBConv6, 5x5

‘ 14x14x112
MBConvé, 5x5

y 14x14x112
MBConv6, 5x5

y 7X7x192
MBConv6, 5x5

{ 7x7x192

MBConv6, 5x5
‘ 7x7x192

MBConv6, 5x5
‘ 7x7x192

MBConv6, 3x3
$7x7x320

Figure 5 EfficientNetBO0 architecture. Full-size K&l DOT: 10.7717/peerj-cs.2103/fig-5

Safak and Barisci (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2103 00 12/20

http://dx.doi.org/10.7717/peerj-cs.2103/fig-5
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

them represent the cascading computations. All calculations in the graph are done by
connecting tensors together (Janardhanan, 2020). Tensorflow can run on central
processing unit (CPU), graphics processing unit (GPU), and tensor processing unit (TPU).
Tensorboard application is used to visualize the work done using Tensorflow (Seker, Diri
¢ Balik, 2017). Tensorflow library has been preferred in this study because it gives better
results in image recognition and classification problems and is widely used in the literature.

Transfer learning is the reuse of a pre-trained machine learning model. Transfer
learning is a method that provides short training time and high accuracy performance by
reusing the model developed for a task for another application (Bozinovski ¢ Fulgosi,
1976). When training a new model with transfer learning, the architecture and weights of
the previously trained model are used. The training data and computational power
required for transfer learning are less than what was required to train the model from
scratch. Transfer learning is widely used in image recognition, speech recognition and
natural language processing (Zhuang et al., 2021). In this study, pre-trained convolutional
neural network models on ImageNet were used to train the fake face detection model.

Ensemble learning is a method of machine learning that relies on combining multiple
models to improve the performance of a model. The most popular ensemble learning
methods are Bagging, Boosting, and Stacking. The bagging ensemble learning method is to
train more than one model with a different sample of the same training dataset. The
boosting ensemble learning method involves multiple models making sequential
predictions for each sample in the training process. The average of the weights of the
predictions made by all models after the prediction made by each model is used by the next
model (Wen & Hughes, 2020). The stacking ensemble learning method is the training of
multiple models separately on the same dataset and combining the predictions of these
models during the prediction process. The reason ensemble learning is efficient is that each
machine learning model works differently. Each model may perform well on some data
and less than others. When different models are combined, they eliminate each other’s
weaknesses (Cui et al., 2021). In this study, the stacking ensemble learning method was
used.

RESULTS AND DISCUSSION

Python 3.6 and Tensorflow software library were used in this study. For training and
testing, a dataset containing a total of 140,000 images, 70,000 of which is fake and 70,000 of
real faces, was used. 80% of the data set was used for training and 20% for testing. Training
was carried out on pre-trained models on ImageNet with the transfer learning method.
Lightweight convolutional neural networks are preferred to ensure that the model can
operate at maximum performance on mobile and embedded devices. In this study,
MobileNet, MobileNetV2, EfficientNetB0, and NASNetMobile convolutional neural
networks, which have proven themselves with good results in mobile and embedded
devices, were used. In the first stage, these algorithms are used with transfer learning, while
the other layers are frozen. A smoothing, a dense layer with ReLU activation function, and
a dense layer consisting of two nodes are added. After the models were trained, the
EfficientNetBO convolutional neural network achieved the highest accuracy rate of 93.64%.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 13/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Layer (type) Output Shape Param #
;;;ientnet—b;E;;;ctionai (None, 128@); ______ =£=1949564)
)

flatten_5 (Flatten) (None, 1280) 2}

dense_6 (Dense) (None, 128) 163968
dense_7 (Dense) (None, 2) 258

Total params: 4,213,790
Trainable params: 4,171,774
Non-trainable params: 42,016

Figure 6 Revised EfficientNetB0 network for transfer learning.
Full-size K&l DOT: 10.7717/peerj-cs.2103/fig-6

The change made for transfer learning from the EfficientNetB0 algorithm is shown in
Fig. 6.

In order to increase the accuracy, the number of layers added for transfer learning in the
EfficientNetB0 algorithm, which has the highest accuracy, has been increased while
minimizing the changes to the number of parameters. The EfficientNetB0O convolutional
neural network has two dense layers (256 neurons) with ReLU activation function, two
dropout layers, one flatten layer, one dense layer (128 neurons) with ReLU activation
function, and a dense layer with two nodes and softmax activation function used for
classification. These layers are added while the previous layers are frozen during transfer
learning. As a result of this process, the number of parameters is 4,476,446. The accuracy
rate achieved with the revised model is 95.48%. The new change for transfer learning from
the EfficientNetBO algorithm is shown in Fig. 7.

In order to improve the success rate achieved with the new EfficientNetBO model, the
ensemble learning method, which has been used extensively recently, has been used. In this
case, the accuracy was 96.20%. Then EfficientNetB0 convolutional neural network
achieved the best results with the ensemble learning method called stacking, while the
MobileNetV2 model, which had the highest accuracy, were trained together. Then, the
MobileNet model was added, and the accuracy rate was 96.41% when the three models
were used with the stacking ensemble learning method. Finally, the NASNetMobile model
was added, and the accuracy rate was 96.27% when the four models were used with the
stacking ensemble learning method. The results of all trials are shown in Table 3.

As can be seen in Table 3, when the revised EfficientNetB0, MobileNet, and
MobileNetV2 models were reused with the stacking ensemble learning model, they
achieved the highest accuracy rate of 96.44%. Tests conducted on the Samsung Galaxy A24
device (Octa-core 2 x 2.2 GHz Cortex-A76 & 6 x 2.0 GHz Cortex-A55 CPU, 6 GB RAM)
showed that the proposed model operated with a latency of 0.171 s.

The CelebA-HQ dataset was used to assess the impact of the proposed method on other
datasets (Huang et al., 2018). CelebA-HQ dataset is a high-quality version of CelebA-HQ

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 14/20

http://dx.doi.org/10.7717/peerj-cs.2103/fig-6
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Layer (type)

efficientnet-be (Functional

)

dense 20 (Dense) (None,
activation_4 (Activation) (None,
dropout_8 (Dropout) (None,
dense_21 (Dense) (None,
dropout_9 (Dropout) (None,
flatten_9 (Flatten) (None,
dense_22 (Dense) (None,
dense 23 (Dense) (None,

Ooutput Shape

(None, 1280)

Param #
4049564
256) 327936
256) 0
256) 0
256) 65792
256) 0
256) 0
128) 32896
2) 258

Total params: 4,476,446
Trainable params: 4,434,430
Non-trainable params: 42,016

Figure 7 New revision for transfer learning from EfficientNetB0 algorithm.

Full-size 4] DOI: 10.7717/peerj-cs.2103/fig-7

Table 3 Performance metrics of fake face image detection models.

Algorithm

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Parameter number

Revised EfficientNetBO+MobileNetV2+MobileNet
Revised EfficientNetBO+MobileNetV2+MobileNet+NASNetMobile

Revised EfficientNetB0+MobileNetV2
Revised EfficientNetB0
EfficientNetB0O

MobileNetV2

MobileNet

NASNetMobile

96.44 97.82
96.27 96.25
96.20 97.59
95.48 96.14
93.64 93.70
91.12 92.53
87.83 93.66
78.87 79.12

97.36
96.27
96.07
95.43
93.27
91.87
87.25
78.04

97.58
96.25
96.83
95.78
93.48
92.19
90.34
78.57

4,476,446
4,213,790
3,500,000
4,253,864
5,600,000

consisting of 30,000 images (Odhiambo, 2021). A total of 30,000 fake images generated
using StyleSwin were also utilized. StyleSwin is a transformer-based Generative Adversarial

Network (GAN) used for generating high-resolution images (Zhang et al., 2022). The

dataset comprises a total of 60,000 images, including 30,000 fake and 30,000 real images.

80% of the dataset was used for training, and the remaining 20% for testing. The
hyperparameters in the proposed method remained unchanged for training. The

comparison of the results obtained with the proposed method on CelebA-HQ and FFHQ

datasets is shown in Table 4.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103

15/20

http://dx.doi.org/10.7717/peerj-cs.2103/fig-7
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 The comparison of the results obtained with the proposed method on CelebA-HQ and FFHQ datasets.

Algorithm Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Revised EfficientNetB0+MobileNetV2+MobileNet FFHQ 96.44 97.82 97.36 97.58
Revised EfficientNetBO+MobileNetV2+MobileNet CelebA-HQ 94.52 94.67 94.29 94.47
Table 5 Comparison of the proposed model with previous studies.
Study Method Algorithm Feature Dataset Performance Accuracy
metric rate
Proposed model Deep learning Revised EfficientNetB0+MobileNetV2 Fake face FFHQ and Accuracy 96.44%
+MobileNet detection StyleGAN2
Wang et al. Deep learning New model based on neuron monitoring Fake face FFHQ and Accuracy 91.9%
(2021) detection StyleGAN2
Suganthi et al. Deep learning FisherFace Fake face FFHQ Accuracy 94.92%
(2022) detection
Bang & Woo Deep learning MobileNetV3 Fake face FFHQ and Accuracy 83.64%
(2021) detection StyleGAN2
Hu, Li & Lyu Image Dlib library Fake face FFHQ and AUC 94%
(2020) processing detection StyleGAN2
Guo et al. (2022) Deep learning EfficientNet-B5 Fake face FFHQ and AUC 91%
detection StyleGAN2

As seen in Table 4, the proposed method achieved an accuracy rate of 94.52% and a
latency of 0.170 s on the CelebA-HQ dataset, demonstrating good results. Comparison of
the proposed model with previous studies is shown in Table 5.

As can be seen in Table 5, the proposed model has reached a higher accuracy rate than
previous studies thanks to the use of transfer learning and ensemble learning methods.

CONCLUSIONS

Fake face images can be used for machine learning, image processing, efc., are content
produced using techniques. The most common type of digital manipulation today. The use
of machine learning algorithms in fake face generation makes it increasingly difficult to
distinguish content from real images. In this study, MobileNet, MobileNetV2,
EfficientNetB0, and NASNetMobile lightweight convolutional neural networks were used
for the detection of fake face images. Due to the widespread use of mobile devices,
lightweight convolutional neural networks that can work on mobile devices were preferred
in this study. A dataset containing 70,000 real and 70,000 fake images was used for the
training process. EfficientNetB0 algorithm has reached the highest accuracy rate as a result
of the training processes. In order to increase the accuracy rate, the highest accuracy rate of
96.44% was achieved when EfficientNetB0, MobileNet and MobileNetV2 were used
together with the ensemble learning method. Applying filters to real images, unnatural
shapes on faces, heavy make-up, glasses, metal, efc., on the face presence of accessories and
child images cause the model to make inaccurate inferences. In this study, the dataset lacks

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103

16/20

http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

sufficient data in some categories such as accessories, shapes, makeup, and young age on
faces. Additionally, it is unknown which country 85% of the facial images in the dataset
belong to. There may be very few or no images from some countries in the dataset. This
situation negatively affects the generalizability of the model. Also, for lightweight
convolutional neural networks to work with high accuracy, hyperparameter configuration
and a considerable amount of data are required. Fake face detection systems may restrict
user privacy as they may enable the analysis of personal private images. In this study,
publicly available image datasets were used for model training and testing processes.
Authorities may find fake face detection systems restrictive to freedom of expression due to
the potential for teaching non-fake content as fake. However, if fake face detection systems
are managed by independent and reliable organizations, the risks of inhibiting freedom of
expression can be mitigated. The study only focuses on detecting fake face images. In
subsequent studies, the method will be expanded to enable the detection of manipulated
text, audio, or video content. Increasing the diversity of the data set will significantly
increase the success of the model in order to prevent situations where the model makes
wrong predictions in future studies. In addition, in future studies identification change,
attribute manipulation and expression manipulation detection can be added to the model
with transfer learning, so that four basic face manipulations can be detected.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
Emre Safak is employed by HAVELSAN.

Author Contributions

e Emre $afak conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

* Necaattin Baris¢i conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Flickr-Faces-HQ Dataset (FFHQ) is available at GitHub: https://github.com/
NVlabs/fthq-dataset.

StyleGAN?2 is available at GitHub: https://github.com/NVlabs/stylegan2.

The CelebA-HQ celebrity faces dataset is available at Kaggle and Zenodo:

- https://www.kaggle.com/datasets/badasstechie/celebahq-resized-256x256/data.

- Safak, E. (2024). CelebA-HQ Dataset Generated Images with StyleSwin Method.
Zenodo. https://doi.org/10.5281/zenodo.11118066.

The code is available in the Supplemental Files.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 17/20

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/stylegan2
https://www.kaggle.com/datasets/badasstechie/celebahq-resized-256x256/data
https://doi.org/10.5281/zenodo.11118066
http://dx.doi.org/10.7717/peerj-cs.2103#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2103#supplemental-information.

REFERENCES

Albawi S, Mohammed TA, Al-Zawi S. 2017. Understanding of a convolutional neural network. In:
International Conference on Engineering and Technology, 21-23 August 2017. Antalya, Tiirkiye
1-6.

Bang YO, Woo SS. 2021. DA-FDFtNet: dual attention fake detection fine-tuning network to detect
various ai-generated fake images. CoRR DOI 10.48550/arXiv.2112.12001.

Bozinovski S, Fulgosi A. 1976. The influence of pattern similarity and transfer of learning upon
training of a base perceptron B2. In: Proceedings of Symposium Informatica. Bled, Slovenia, 3-
121-5.

Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J. 2018. StarGAN: unified generative adversarial
networks for multi-domain image-to-image translation. In: EEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 18-23 June 2018. Salt Lake City, UT, USA, 18-23.

Cui S, Yin Y, Wang D, Li Z, Wang Y. 2021. A stacking-based ensemble learning method for
earthquake casualty prediction. Applied Soft Computing 101:107038
DOI 10.1016/j.as0¢.2020.107038.

Guo H, Hu S, Wang X, Chang MC, Lyu S. 2022. Eyes tell all: irregular pupil shapes reveal GAN-
generated faces. In: IEEE International Conference on Acoustics, Speech and Signal Processing,
23-27 May 2022. 2904-2908.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.
2017. MobileNets: efficient convolutional neural networks for mobile vision applications. CoORR
DOI 10.48550/arXiv.1704.04861.

Hu S, Li Y, Lyu S. 2020. Exposing GAN-generated faces using inconsistent corneal specular
highlights. CoRR DOI 10.48550/arXiv.2009.11924.

Huang H, Li Z, He R, Sun Z, Tan T. 2018. IntroVAE: introspective variational autoencoders for
photographic image synthesis. In: Advances in Neural Information Processing Systems 31
(NeurIPS 2018). Montréal, Canada.

inik O, Ulker E. 2017. Deep learning and deep learning models used in image analysis. Journal of
Gaziosmanpasa Scientific Research 6(3):85-104.

Janardhanan P. 2020. Project repositories for machine learning with tensorflow. Procedia
Computer Science 171:188-196 DOI 10.1016/j.procs.2020.04.020.

Karras T, Hellsten J. 2021a. StyleGAN. Available at https://github.com/NVlabs/stylegan (accessed
21 February 2022).

Karras T, Hellsten J. 2021b. StyleGAN2. Available at https://github.com/NVlabs/stylegan2
(accessed 21 February 2022).

Karras T, Hellsten J. 2022. Flickr-faces-HQ dataset. Available at https://github.com/NVlabs/ffhq-
dataset (accessed 21 February 2022).

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. 2020. Analyzing and improving the
image quality of StyleGAN. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13-19 June 2020. Piscataway: IEEE, 8107-8116.

Khan A, Sohail A, Zahoora U, Qureshi AS. 2020. A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review 53(8):5455-5516
DOI 10.1007/s10462-020-09825-6.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 18/20

http://dx.doi.org/10.7717/peerj-cs.2103#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2103#supplemental-information
http://dx.doi.org/10.48550/arXiv.2112.12001
http://dx.doi.org/10.1016/j.asoc.2020.107038
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.2009.11924
http://dx.doi.org/10.1016/j.procs.2020.04.020
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Kingma DP, Ba JL. 2017. Adam: a method for stochastic optimization. CoRR
DOI 10.48550/arXiv.1412.6980.

Odhiambo M. 2021. CelebAHQ. Available at https://www.kaggle.com/datasets/badasstechie/
celebahq-resized-256x256/data (accessed 21 March 2024).

Pashine S, Mandiya S, Gupta P, Sheikh R. 2021. Deep fake detection: survey of facial
manipulation detection solutions. International Research Journal of Engineering and Technology
8(5):4441-4449 DOI 10.48550/arXiv.2106.12605.

Racz A, Bajusz D, Héberger K. 2021. Effect of dataset size and train/test split ratios in QSAR/
QSPR multiclass classification. Molecules 26(4):1111 DOI 10.3390/molecules26041111.

Safak E, Arslan C, Goziitok M, Kopriilii T. 2021. A survey of distributed ledger technologies and
application areas. European Journal of Science and Technology 29:36-45
DOI 10.31590/ejosat.1011289.

Safak E, Baris¢1 N. 2018. Age and gender prediction using convolutional neural networks. In: 2nd
International Symposium on Multidisciplinary Studies and Innovative Technologies, 19-21
October 2018. Ankara, Tiirkiye, 1-7.

Safak E, Dogru iA, Baris¢1 N, Toklu S. 2022. IoT based mobile driver drowsiness detection using
deep learning. Journal of the Faculty of Engineering and Architecture of Gazi University
37(4):1869-1881 DOI 10.17341/gazimmfd.999527.

Seker A, Diri B, Balik HH. 2017. A review about deep learning methods and applications. Gazi
Journal of Engineering Sciences 3(3):47-64.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. 2018. MobileNetV2: inverted residuals
and linear bottlenecks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 4510-4520.

Saxen F, Werner P, Handrich S, Othman E, Dinges L, Al-Hamadi A. 2019. Face attribute
detection with MobileNetV2 and NasNet-Mobile. In: 11th International Symposium on Image
and Signal Processing and Analysis, 23-25 September 2019. Dubrovnik, Croatia, 176-180.

Suganthi ST, Ayoobkhan MUA, Kumar K, Bacanin N, Venkatachalam K, Stépén H, Pavel T.
2022. Deep learning model for deep fake face recognition and detection. Peer] Computer Science
8(2):e881 DOI 10.7717/peerj-cs.881.

Tan M, Le QV. 2019. EfficientNet: rethinking model scaling for convolutional neural networks.
CoRR DOI 10.48550/arXiv.1905.11946.

Tensorflow. 2022. Tensorflow core. Available at https://www.tensorflow.org/tutorials (accessed 20
March 2022).

Thies], Zollhofer M, Stamminger M, Theobalt C, Niefiner M. 2016. Face2face: real-time face
capture and reenactment of rgb videos. Communications of the ACM 62(1):96-104
DOI 10.1145/3292039.

Thies J, Zollhofer M, Nieflner M. 2019. Deferred neural rendering: image synthesis using neural
textures. ACM Transactions on Graphics 38(4):1-12 DOI 10.1145/3306346.3323035.

Tolosana R, Vera-Rodriguez R, Fierrez J, Morales A, Ortega-Garcia J. 2020. Deepfakes and
beyond: a survey of face manipulation and fake detection. Information Fusion 64(1):131-148
DOI 10.1016/j.inffus.2020.06.014.

Wang R, Juefei-Xu F, Ma L, Xie X, Huang Y, Wang J, Liu Y. 2021. FakeSpotter: a simple yet
robust baseline for spotting ai-synthesized fake faces. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, 7-15 January 2021. Vol. 476. Yokohama,
Japan, 3444-3451.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 19/20

http://dx.doi.org/10.48550/arXiv.1412.6980
https://www.kaggle.com/datasets/badasstechie/celebahq-resized-256x256/data
https://www.kaggle.com/datasets/badasstechie/celebahq-resized-256x256/data
http://dx.doi.org/10.48550/arXiv.2106.12605
http://dx.doi.org/10.3390/molecules26041111
http://dx.doi.org/10.31590/ejosat.1011289
http://dx.doi.org/10.17341/gazimmfd.999527
http://dx.doi.org/10.7717/peerj-cs.881
http://dx.doi.org/10.48550/arXiv.1905.11946
https://www.tensorflow.org/tutorials
http://dx.doi.org/10.1145/3292039
http://dx.doi.org/10.1145/3306346.3323035
http://dx.doi.org/10.1016/j.inffus.2020.06.014
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

PeerJ Computer Science

Wen L, Hughes M. 2020. Coastal wetland mapping using ensemble learning algorithms: a
comparative study of bagging, boosting and stacking techniques. Remote Sensing 12(10):1-18
DOI 10.3390/rs12101683.

Zhang B, Gu S, Zhang B, Bao J, Chen D, Wen F, Wang Y, Guo B. 2022. StyleSwin: transformer-
based GAN for high-resolution image generation. In: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Piscataway: IEEE.

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. 2021. A comprehensive survey on
transfer learning. Proceedings of the IEEE 109(1):43-76 DOI 10.1109/JPROC.2020.3004555.

Safak and Barisci (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2103 20/20

http://dx.doi.org/10.3390/rs12101683
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.7717/peerj-cs.2103
https://peerj.com/computer-science/

	Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method
	Introduction
	Literature review
	Materials and Methods
	Results and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

