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ABSTRACT
Constrained many-objective optimization problems (CMaOPs) have gradually
emerged in various areas and are significant for this field. These problems often involve
intricate Pareto frontiers (PFs) that are both refined and uneven, thereby making their
resolution difficult and challenging. Traditional algorithms tend to over prioritize
convergence, leading to premature convergence of the decision variables, which greatly
reduces the possibility of finding the constrained Pareto frontiers (CPFs). This results in
poor overall performance. To tackle this challenge, our solution involves a novel dual-
population constrained many-objective evolutionary algorithm based on reference
point and angle easing strategy (dCMaOEA-RAE). It relies on a relaxed selection
strategy utilizing reference points and angles to facilitate cooperation between dual
populations by retaining solutions that may currently perform poorly but contribute
positively to the overall optimization process. We are able to guide the population to
move to the optimal feasible solution region in a timely manner in order to obtain a
series of superior solutions can be obtained. Our proposed algorithm’s competitiveness
across all three evaluation indicators was demonstrated through experimental results
conducted on 77 test problems. Comparisons with ten other cutting-edge algorithms
further validated its efficacy.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Many-objective optimization, Evolutionary algorithm, Constraint handling, Dual-
population, Easing strategy

INTRODUCTION
The constrained multi-objective optimization problem (CMOP) is a type of problem
that widely occurs often in real-life scenarios (Zhao et al., 2023; Wang et al., 2023). One
major characteristic of CMOPs is the involvement of diverse and complex constraints
related to decision variables or objective functions, which makes it difficult to find ideal or
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approximately ideal solutions. The theoretical model of CMOPs can be presented as:

minimize F(x)= (f1(x),...,fj(x))T

subject to x ∈ S
gm(x)≥ 0,j = 1,2,...,M;
hn(x)= 0,k= 1,2,...,N .

Where x = (x1,...,xj)T denotes the decision vector, and j describes the decision variables
count, and x ∈S, addition S ∈Rn is the search area. gm(x) and hn(x) represent the m-
th inequality constraint and the n-th equality constraint, respectively. m indicates the
number of objectives. When m ≥4, the equation can be used to describe a constrained
many-objective optimization problem (CMaOP). Many real-world applications involve
CMaOPs, such as scheduling optimization (Sindhu & Mukherjee, 2018; Zhang et al., 2017;
Zhang et al., 2021), routing problems (Li et al., 2017; Shen et al., 2022; Shen et al., 2023;
Guo et al., 2023), portfolio optimization (Hemici & Zouache, 2023; Wang, Huang & Wang,
2023; Setiawan & Rosadi, 2020), and water resource allocation (Wang, Wang & Li, 2020).

For a CMaOP, the extent of the constraint violation (CV) of the p-th constraint for a
solution x is formulated as follows:

ϕp(x)=

{
max(0,gp(x)),p= 1,...,l
max(0,

∣∣hp(x)∣∣),p= l+1,....,q
.

The total CV can be determined by:

ϕ(x)=
p∑

j=1

ϕj(x).

Over the past few decades, there have been continuous efforts made to solve CMOPs.
Algorithms often need to find new and better feasible solutions by bypassing the infeasible
regions. Therefore, transforming the original problem into a multi-population-based
cooperative optimization problem is an often used approach (Bao et al., 2023; Liang et
al., 2023a). Relevant evidence indicates which methods can effectively balance objectives
and constraints (Liang et al., 2023b). Previous algorithms have been successful in solving
traditional constraint multi-objective optimization problems (CMOPs). However, they
have encountered limitations when it comes to constrained many-objective optimization
problems (CMaOPs). These challenges predominantly stem from the following:

• They get stuck in local optima caused by overemphasizing convergence. To illustrate
the drawbacks of traditional selection strategies, we present the following example.
Figure 1 demonstrates the evolution of decision variables and objective values for three
traditional optimization algorithms—CTAEA (Li et al., 2019), NSGAIII (Jain & Deb,
2014), and IDBEA (Asafuddoula, Ray & Sarker, 2015)—tackling the C1-DTLZ3 (Jain
& Deb, 2014) problem. As iterations progress, these algorithms gradually approach the
optimal CPFs but often get stuck in local optima. Simultaneously, there is a gradual
reduction in the diversity of their decision variables, which is not coincidental. These
behaviors are controlled by their selection strategies to move toward CPFs, it is necessary
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to promptly eliminate poorly performing solutions. However, this might also prevent the
population from finding the final CPF. To further support this, we conducted multiple
runs and obtained a notably ideal result. Figure 2 displays the distribution of decision
variables and objective values in this ideal result. It is evident that the entire population
is uniformly distributed over the CPF, with a significant portion of its decision variables
distributed around 0.5. In the results depicted in Fig. 1, the presence of decision variables
at 0.5 gradually diminishes with further iterations because these solutions perform poorly
in the current environment. However, these solutions are crucial for the population’s
progression towards CPFs. As a result, some solutions that might not perform well
in the current context but are instrumental for the overall optimization process were
discarded. It is important to note the distinction in our study compared to Wang &
Xu (2020), which focused on infeasible solutions that show good convergence, or Ming
et al. (2023a), which concentrated on suboptimal solutions tailored for the current
population. Instead, our study prioritized solutions that perform poorly in the current
environment but contribute to the overall optimization process. This highlights the need
to ease the population’s convergence pressure, which is crucial in CMaOPs, as it might
prevent the population from converging to CPFs in time. Employing a multi-population
collaborative approach is effective but it also brings forth the second issue.
• In the process of population collaboration, it is crucial to strike a balance between
exploring feasible and infeasible regions. While exploring infeasible regions, it is also
important to avoid missing feasible areas caused by excessively rapid convergence (Zeng,
Cheng & Liu, 2023), which could result in inefficiency and waste of computational
resources. This balance becomes more fragile in CMaOPs. To address this issue, Zeng,
Cheng & Liu (2023) divided the archive into an inverse archive and a diversity archive,
which enables better performance across various types of problems. However, the
algorithm relies on the distance between solutions, making them susceptible to local
optima influences in smaller dimensions with different value ranges. Moreover, distances
lose meaning in higher dimensions (Myszkowski & Laszczyk, 2021). Similarly, Li et al.
(2019) used two archives, CA and DA, to store convergence and diversity solutions.
However, in CMaOPs, updating a solution in the archive often requires traversing
the entire population for convergence or diversity, which is inefficient. Furthermore,
mating-selection strategies lead to deficiencies in exploring new feasible regions (Yang et
al., 2023). Some dual-population algorithms (Bao et al., 2023; Ming et al., 2022) utilize
a bidirectional search strategy. This approach involves rapidly converging an infeasible
solution towards Unconstrained Pareto fronts (UPFs). Subsequently, together with the
population of exploring feasible solutions, it gradually moves towards CPFs from both
directions. This method proves highly effective in CMOPs. However, in CMaOPs, the
emergence of numerous nondominated solutions weakens the population’s convergence
toward the PF (Zou et al., 2023; Elarbi, Bechikh & Ben Said, 2021). This prevents the
traditional method from moving the population closer toward PF in time. There is
a critical need for a search strategy that explores infeasible solutions while balancing
convergence and diversity.
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• In MaOPs, preserving diversity among solutions, aiming for their uniform distribution
along the PF, remains crucial. Two representative approaches to achieving this are
reference points (Jain & Deb, 2014) and angles among solutions (He & Yen, 2017). The
former ensures uniformity across the solution space by generating reference vectors,
while the latter promptly eliminates poor-quality solutions based on the angles between
them. However, in CMaOPs, the scenario differs: the reference points might be uniform,
while the CPF might not be, indicating that traditional reference point-based methods
cannot guarantee uniform solution distribution (Wang, Huang & Pan, 2023). Similarly,
the angle-based approach has its drawbacks. To illustrate the limitations of these
traditional strategies, consider the following artificial scenario depicted in Fig. 3, which
demonstrates the selection process. The solutions—A, B, C, and D——are four non-
dominated solutions, where B has a y-coordinate of 0 and one solution needs to be
eliminated. If the angle-based method is applied, A or B would be chosen from the
AB pair: Solutions dominating B would also have a y-coordinate of 0. Comparatively,
the solution space dominating B would be less than that of A. In this case, eliminating
A seems like a favorable choice. However, it would drive the population closer to the
x-axis. In MaOPs, such a strategy could severely damage population diversity. If B is
eliminated, there might appear non-dominated solutions with a y-coordinate of 0 but
an extremely high x-coordinate, especially in problems with multimodal attributes like
DC3-DTLZ3 (Li et al., 2019). When B has been eliminated, any new solutions of this
type would be non-dominated, consequently compromising the overall quality of the
population. The optimization problem of irregular PFs can be effectively addressed
by employing neural networks (Wang, Huang & Pan, 2023; Liu et al., 2020), which
produces favorable outcomes. However, it has been noted by Ming et al. (2023c) that
the excessive integration of multiple techniques tends to complicate the algorithm.
Additionally, while some problems have a uniform CPFs, others might not. Algorithms
need to balance both scenarios to provide a series of high-performance solutions.

These challenges lead to varying degrees of reduced efficiency when using traditional
methods in CMaOPs. Striking the right balance between feasibility, convergence, and
diversity has been a critical challenge.

The motivation for this article is as follows:
As a type of meta-heuristic algorithm, the evolutionary algorithm does not rely on

problem continuity or differentiability, making it highly suitable for solving CMOPs,
particularly CMaOPs with intricate constraints. However, it should be noted that there is
no universally versatile meta-heuristic algorithm capable of effectively addressing all types
of optimization problems. This concept is known as the No Free Lunch (Wang et al., 2020;
Del Ser et al., 2019). The verification of this theorem also underscores the necessity for
continuous theoretical research on meta-heuristic algorithms.

In contrast to other evolutionary algorithms that have undergone substantial
development, there has been limited research on CMaOEAs, especially with methods
based on multi-population collaborative techniques. However, the performance decreased
significantly when using existing CMOEAs to handle CMaOPs (Ming et al., 2023c). Hence,
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Figure 1 Changes in decision variables and objective values of the conventional algorithm in
C1-DTLZ3.

Full-size DOI: 10.7717/peerjcs.2102/fig-1

conventional multi-objective optimization algorithms are not suitable for CMaOPs, leaving
ample room for advancement and potential when using CMaOEA to handle CMaOPs.

The design of effective CMaOEAs requires a proper balance among convergence,
diversity, and feasibility (Ming et al., 2023c). Traditional multi-population collaborative
algorithms perform well in CMOPs. An improved multi-population collaborative
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algorithms could yield better performance and results in CMaOPs if appropriate
consideration is given to the feasibility.

In this article, a unique dual-population constrained many-objective evolutionary
algorithm based on reference point and angle easing strategy (dCMaOEA-RAE) was
developed. This method effectively resolves CMaOPs by striking a balance feasibility,
convergence, and diversity. Specifically, we divided the population into two parts: the
main population (called PopulationMain) was responsible for searching feasible zones.
A selection strategy was proposed to optimize the distribution of the population in
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discrete and irregular CPFs by combining reference points and angles. The other auxiliary
population (called PopulationExplore) was dedicated to exploring infeasible regions. We
retained some current poor but beneficial solutions for the evolutionary process by slowing
down the convergence rate of some solutions, thereby uncovering new and superior areas
of feasible solutions.

The primary achievements of this study can be briefly described as follows:
• For the main population (PopulationMain), the process involves selecting non-
dominated sets from parents and offspring that using the constraints. Subsequently,
the solution region was divided into a series of sub-regions using reference vectors.
Within each region, the closest solutions to the reference line were initially chosen
to ensure the distribution of solutions in the outcome. Then, among the remaining
solutions, those closer in angle within the current region and adjacent regions were
eliminated. The aim of this was to ensure a more uniform distribution within the
population.
• For the auxiliary population (PopulationExplore), solutions were selected in pairs using
binary tournaments based on angular distance, favoring solutions with better dominance
relationships and distances from the ideal point. This approach enhanced diversity while
guiding the population to spread in various directions within the search space. This
balance the convergence and diversity, which led the population to superior feasible
solution regions.
• Extensive experiments encompassing three test suites with a total of 77 benchmark
problems were conducted. The goals were to confirm the effectiveness and
competitiveness of dCMaOEA-RAE against 10 advanced CMOEA/CMAOEA methods.

The following is the structure of the remainder of this article: Section ‘Related work’
offers a short review of the related work on reference point adaptation methods and their
underlying motivations. Section ‘Proposed algorithm’ explains the overall structure of
the dCMaOEA-RAE with a detailed description of its components. Section ‘Experimental
results and analysis’ analyzes the experimental setup and comprehensive experiments
conducted. Finally, Section ‘Conclusions’ concludes this article, and highlights further
directions for research.

RELATED WORK
Existing constraint-handling techniques
With the development of CMAOEA/CMOEA, an increasing number of constraint-handling
techniques (CHTs) have been invented. This article briefly reviews some representative
techniques in this regard. It first provides a concise introduction to several representative
CHTs, followed by an introduction to collaborative optimization. Generally, these
techniques can be divided into six classes: (1) Penalty functions; (2) constrained dominance
principle (CDP); (3) stochastic ranking (SR); (4) ε-constraints; (5)multi-objectivemethods
(MOs); (6) hybrid methods.
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Penalty function
Penalty functions convert constrained optimization problems into unconstrained problems
by incorporating the degree of CV into the objectives. In general, the fitness F’(x) of solution
x can be calculated on the basis of penalty functions:

F′(x)= F(x)+β ·ϕ(x)
where F(x) represents the fitness of solution x without considering constraints, while
β is the penalty factor, which can be set in three ways: static, dynamic, or adaptive
penalty coefficients. For instance, in Yahya & Tokhi (2017), the authors successfully
tackled constrained optimization problems by introducing penalty functions into the
bat algorithm, which produced promising results. In Nargundkar & Kulkarni (2023), a
combination of cohort intelligence algorithms and penalty functions yielded very promising
results. Chen & Ni (2014) employed an enhanced logistic chaotic mapping combined with
penalty functions to address a resource-constrained project scheduling problem. However,
adjusting the penalty factor’s parameters to adapt to complex and dynamic problems posed
a significant challenge (Ming et al., 2023b).

CDP
CDP was presented by Jain & Deb (2014). Specifically, for two given solutions, A and B,
it can be stated that A constraint dominates B (defined as A ≺ B) if any of the below
conditions are applicable:

• A is a feasible solution whereas B is not.
• Both A and B are feasible solutions, but A dominates B.
• Both A and B are infeasible solutions, where the CV of A is less than the one of B.

Since it was first proposed, CDP has been widely accepted and used due to its simple
structure and ease of implementation. When considering violation degrees as an objective,
this handling process can be seen as a one-dimensional search. CDP only moves the
population toward lower violation degrees, often leading to the population getting stuck
in locally optimal solutions, particularly in cases where feasible regions are discrete.

ε-constraint
To address the limitations of CDP, Takahama & Sakai (2006) relaxed the definition of
feasible solutions. They introduced a variable ε, considering solution x feasible as long as
its violation degree doesn’t exceed ε. The rest remains similar to CDP.Noman & Iba (2011)
combined differential evolution with the ε-constraint technique to solve economic load
dispatch problems. Wang & Li (2022) developed a multi-objective distribution planning
system using an improved ε-constraint algorithm. Experimental outcomes demonstrated
that its optimization results were nearly identical to the optimal path.While the ε-constraint
allows the population to break out of local optima, it also leads to unstable outcomes.
Additionally, defining the size of ε remains a challenge (Ming et al., 2023c).

Stochastic ranking
A probability parameter pr (where pr ∈ (0, 1)) is introduced when comparing two
individuals. With a probability of pr, only the constraint violation degree is compared.
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With a probability of (1 - pr), only the objective functions are compared. This allows the
comparison to retain infeasible solutions.

Multi-objective methods
In this approach, constraints are regarded as one or more independent objective functions,
thereby transforming the initial problem into an unconstrained optimization problem.
Unlike penalty functions, this method increases the number of objective functions, often
leading to multi-objective or even many-objective problems. Different problems pose
various challenges to optimization within this framework.

Hybrid methods
Due to the individual limitations of the aforementioned methods, an increasing number of
researchers are combining multiple handling mechanisms to improve the performance of
CMAOP/CMOPS. Wang, Huang & Pan (2023) observed that in CMaOPs, feasible regions
are often irregular and discrete, whereas reference point algorithms assume uniformly
distributed feasible regions. Based on this observation, they proposed a constraint-based
many-objective evolutionary algorithm, CMaOEA/RPA, which adapts reference points by
using a learning vector quantization network to generate feasible region-adaptive reference
points. They introduced an adaptive constraint-handling technique based on ε -truncation
to incorporate infeasible solutions. Similarly, Ming et al. (2023a) combined machine
learning with ε-constraint techniques, proposing CMaDPPs, which retain temporarily
underperformed solutions to enhance overall performance. This provides a range of
high-performance solutions. However, the combination of multiple techniques can lead
to algorithmic complexity. Moreover, the limitations of combined CHTs might result in
imbalances among convergence, diversity, and feasibility, thereby leading to suboptimal
performance (Ming et al., 2023c).

Use the information of the other solutions
In order to effectively push the population to CPFs, solutions which are non-dominated or
infeasible have gradually attracted attention due to their clear advantages. In the research
of Wang & Xu (2020), an angle-based constrained dominance relation was proposed
to use the function of the objective information carried by infeasible solutions. In the
research of Myszkowski & Laszczyk (2021), the proposed NTGA2 guides the evolution
of the population towards the unexplored parts of the space, promoting diversity and
spreading of the population. In the research of Bao et al. (2022), promising solutions were
archived to be used to improve search performance. In the research of Long et al. (2023), the
proposed EGDCMO used an efficient global diversity strategy to maintain some infeasible
solutions. In the research of Liang et al. (2023c), the proposed CMaOEA-AIR explored
the potentially feasible regions and escaped from local optima over time by adjusting the
selection criteria of infeasible solutions. In the research of Ming et al. (2023a), the authors
note that existing algorithms mainly focus on evaluating the quality of individual solutions,
instead of evaluating the quality of the overall solutions. They pay more attention to poorly
converged, distributed, and infeasible solutions by selecting the population for the next
generation in its entirety.
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Multi-population collaborative techniques
To more effectively address the CMOPs/CMaOPs, many researchers have translated the
problem into other problems, such as in collaborative optimization. This involves dividing
the original population into two functionally different populations. This allows for better
exploration of the solution space, uncovers unexplored and potential information, and
ultimately obtains a more comprehensive CPFs. In the research of Chafekar, Xuan &
Rasheed (2003), the decomposition of a CMOP into multiple optimization problems
with a single-objective and the design of different algorithms to optimize each objective
have been explored. However, the effectiveness of the algorithm may be compromised
when faced with an excessive amount of constraints, potentially leading to local optima
if the focus is solely placed on a single objective. In a similar manner, Wang, Liang &
Zhang (2019) established (M+1) populations. Where M subpopulations were used for
the constrained optimization of the single objective, while another population was used
for the constrained optimization of the M-objective. Each sub-population optimized its
respective problem using differential evolution. To enhance solution diversity, Yang, Liu
& Tan (2021) partitioned of the objective space, dividing the initial problem into multiple
sub-problems and employing multiple CHTs to solve optimization problems. However,
irregular feasible regions might lead to poorer performance. In the research of Liu et al.
(2007), the proposed COGA assigned populations to optimize objectives and constraints
separately while allowing them to exchange information. Li et al. (2019) proposed C-TAEA,
which maintains two archives concurrently during evolution: one focusing on convergence
(CA) and the other emphasizing diversity (DA). The former is used for simultaneous
optimization of constraints and objectives, ensuring the final result’s reliability, while the
latter primarily aims to explore infeasible regions. However, the algorithm suffers from the
drawback of updating the archive sequentially, which results in low efficiency.Moreover, the
offspring do not exhibit good feasibility and convergence (Tian et al., 2021). Considering
that information sharing could diminish population diversity, Tian et al. (2021) presented
a collaborative evolution framework, called CCMO, in which two populations evolve
independently. This class of independent ways is known as ‘‘weak cooperation’’ and it
enhanced diversity by not sharing information and thereby improving performance. To
avoid excessive positive exploration which leads to neglecting feasible solutions, Ming et
al. (2022) employed a new mechanism in the proposed dual-stages and dual-population
constrained multi-objective evolutionary algorithm (DDCMOEA): initially they explored
infeasible solutions to UPFs by rapidly converging the population and then allowing both
populations to converge towardsCPFs simultaneously from twodirections. Similarly,Bao et
al. (2023) used bidirectional searches to enhance search capabilities and exploit infeasible
solutions. Liang et al. (2023b) noted that when UPFs and CPFs don’t fully overlap, the
population used for exploration has a diminished role in assisting the main population
in later stages. Based on this observation, they proposed dual-population constrained
multi-objective evolutionary algorithm with variable auxiliary population size (DPVAPS).
Which strategically reduces the computational resource consumption of the exploration
population and allows the primary population to devote a larger amount of available
resources to the search for CPF. Additionally, in the research of Zeng, Cheng & Liu (2023),
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a method for updating diversity and reverse archives was proposed, which was capable of
handling fraudulent constraints or narrow feasible areas. In the context of CMaOPs, new
environments pose new challenges for algorithms. Some CMaOPs may contain complex
constraints, which can make it challenging for the population to traverse multiple disjoint
infeasible zones that are too close to the CPFs. Geng et al. (2023) introduced NSGA-III
based on dual populations, which improved the performance.

Dealing with complex CPFs
In order to obtain a better distribution of the discrete and discontinuous CPF of the
population in many-objective problems, Wang & Xu (2020) used angle as an index to
judge population density and to evaluate the diversity of the population. However, it did
not perform well in the face of some complex CMOPs (such as DC3-DTLZ3 Jain & Deb,
2014). In the research of Cheng et al. (2016), there exists two sets of reference vectors, one
of which remains uniformly distributed, and the other one adaptively adjusts. In order
to adapt to discrete CMaOPs with different sizes, clustering methods are added to the
optimization algorithm. For instance, an adaptive strategy based on the k-means clustering
method is proposed in the research of Liu et al. (2022b), in which the method used and
the PF shape could be fitted gradually over the evolutionary process. In addition, in the
research of Liu et al. (2022a), an improved growing neural gas (GNG) was used to adapt
the reference vectors in order to solve CMaOPs. In the research of Wang, Huang & Pan
(2023), in order to better adjust the reference points toward the feasible regions, both the
feasible and infeasible solutions were used as two classes of samples to train the learning
model. However, the addition of other techniques can complicate the algorithm and thus
affect its performance (Ming et al., 2023c).

PROPOSED ALGORITHM
Overview of the proposed dCMaOEA-RAE
dCMaOEA-RAE maintains two populations, both of size N. The main population,
PopulationMain, is responsible for exploring feasible solutions and providing a
uniformly distributed final result with strong convergence. The exploration population,
PopulationExplore, explores infeasible solutions to discover new, better feasible solution
regions. Additionally, different selection strategies are applied to the two populations to
fulfill their distinct functions. Algorithm 1 outlines the overall framework of dCMaOEA-
RAE. In the beginning, each population is initialized and reference points are generated.
Subsequently, the populations enter an evolutionary loop. Parents are selected using
binary tournament which is based on non-dominated sorting. This generates offspring, P’.
The offspring and parents together undergo environmental selection. The environmental
selection process is conducted differently for the two populations: feasible non-dominated
solutions thatmeet the constraints undergo the environmental selection strategy of themain
population. These solutions are screened, based on angles, to eliminate crowded solutions
and then form the new generation of the main population. The remaining solutions
undergo the environmental selection strategy of the exploration population, creating a
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new generation of the exploration population. This cycle continues until completion. The
proposed algorithm’s process flow is illustrated in Fig. 4.

Algorithm 1: Framework of dCMaOEA-RAE

1 Input: N (Population size), (Maximum generation)
2 Output: (final Population set)
3 Z←Reference_point_Generation(N );
4 Pmain,Pexplore← Initialization(N );
5 t← 0;
6 repeat
7 FrontNo← nondominated_sorting(Pmain∪Pexplore);
8 MatingPool← Select n solutions by FrontNo based binary-tournament-

selection method as mating parents;
9 P’ = OperatorGAhalf(MatingPool);
10 P = Pmain∪Pexplore ∪P
11 Calculate the CV values of solutions in P
12 FrontNo← nondominated_sorting(P)
13 Pm← FrontNo==1 and CV==0
14 Pm = EnvironmentSelectionForMain(Pm,Z)
15 Pe← P-Pm
16 Pe = EnvironmentSelectionForExplore(Pe,Z)
17 t← t+1
18 until t< tmax ;

Environmental selection of PopulationMain
After obtaining a range of feasible non-dominated solutions that exceeded the population
size, an environmental selection process was required. As all the solutions within this
set are non-dominated, this step focuses on enhancing diversity. Algorithm 2 delineated
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the population selection process. The search space was divided into subspaces using pre-
generated weight vectors and each solution was associated with the vector perpendicularly
closest (Line 1). This step effectively reduced the computational complexity. For each
subspace, the algorithm first identified the solution closest to the weight vector and
designated it as ‘the key of this vector’ (Line 2). Following this, we identified the weight
vector associated with the highest number of connected solutions, denoted by z. (Line 4).
We calculated the angles between the solution set S (excluding ‘key’) associated with the
vector z and the set comprising themselves along with adjacent weight vectors (Line 6). The
method is further illustrated by Fig. 5, which depicts a hyperplane composed of ten weight
vectors (A-J) in a three-objective environment. For F, its adjacent weight vectors were C,
E, I, and J. We found the pair of solutions with the smallest angle. At least one solution in
this pair should be from set P. If the other solution was not part of set S, we eliminated
the other solution (Lines 8-11). Otherwise, we compared these two solutions with the
second smallest angle excluding each other. This was used as the criteria for diversity.
And eliminated the solution with the smaller angle (Line 13-14). The process continued
iteratively utill the number of solutions was same as N.
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Algorithm 2: EnvironmentSelectionForMain

1 Input: P (The Population), Z (Reference point), N (Population Size)
2 Output: P
3 Normalize P;
4 Assign each solution of P to the nearest reference point by the perpendicular dis-

tance.
5 In the set of solutions connected to each reference point, the solution with the

shortest distance is selected and named as the ’key’ of each reference point.
6 repeat
7 Find the reference point that connects the largest number of solutions in the

same reference point, denoted as z.
8 The solutions associated with the vector z are denoted as S, while the set of solu-

tions belonging to the reference vectors adjacent to z is denoted as S’.
9 Calculate the Angle between (S - key) and (S’ ∪ S), and the result is denoted as

R.
10 Find the pair of solutions with the smallest Angle in R, denoted as A and B.
11 if A /∈ S then
12 discard B
13 else if B /∈ S then
14 discard A
15 else
16 compute the Angle of the second closest solution of A and B apart from

each other, denoted a_ and b_. If a_> b_ then eliminate B from P and vice
versa.

17 end
18 until size of P> N ;

Environmental selection of population explore
After determining the primary population, the remaining individuals required filtration.
The exploration population, which disregards the constraints, was used to explore infeasible
solutions and discover new feasible regions. Algorithm 3 outlines the selection process for
the exploration population.

Similar to Section ‘Environmental Selection of PopulationMain’ initially, predefined
reference points generated weight vectors and were linked to nearby solutions.
Subsequently, the algorithm calculated the angles between solution sets associated with
each reference vector. It recorded the minimum angle within each reference vector’s set of
solutions (Line 1). This method avoids traversing the entire population each time a solution
is chosen which reduces computational complexity. Then, the algorithm conducted non-
dominated sorting of the solution sets and computed the distances of each solution from
the origin (Lines 2–3) for assessment.

Entering the ‘while’ loop, it selected the reference vector corresponding to the minimum
value in Angle_min. It picked the two solutions with the smallest angle among these
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(Line 6). The algorithm first compared the domination levels of the two solutions; it
eliminated the one with the larger domination level (Lines 7-10). If both solutions had
equal domination levels, it eliminated the solution farthest from the origin (Line 12).
Subsequently, the algorithm updated the Angle_min for that reference vector (Line 14).
This process was repeated until the population reached the required size.

Algorithm 3: EnvironmentSelectionForExplore

1 Input: P (The Population), Z (Reference point)
2 Output: P(The screened population)
3 Calculate the minimum angle among the solutions of the set of solutions that con-

nect the same reference point, denoted as Angle_min. If there is only 0 or 1 solu-
tion in the solution set, the Angle is denoted as inf.

4 FrontNo← nondominated_sorting(P)
5 Cons← The distance of the solution from the origin
6 Normalize P
7 repeat
8 Find the reference point where the minimum value in Angle_min lies and iden-

tify the pair of solutions with the smallest angle, denoted as A and B;
9 if FrontNo(A)> FrontNo(B) then
10 Eliminate A from P;
11 else if FrontNo(A)< FrontNo(B) then
12 Eliminate B from P;
13 else
14 The solution with larger Cons is eliminated;
15 end
16 Update Angle_min
17 until size of P> N ;
18 return P;

Remark
Certainly, it is important to note the significant differences between the use of reference
points and angles in the search methods of these two populations.

The main population aims for an even distribution to ensure the outcome. We used the
‘key’ solution to maintain uniform distribution, particularly in cases of a uniform CPF. In
situations with non-uniform CPFs, we calculated the angle with adjacent reference vectors,
allowing the solutions to distribute as evenly as possible. In Fig. 6, we demonstrate the
effectiveness of this strategy through an artificial selection scenario: Fig. 6A comprises four
non-dominated solutions, A, B, C, and D, where ABC divides the solution space into four
quarters and D is near B. If we needed to eliminate one solution it would be either B or D.
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Our proposed search strategy accurately eliminated D by calculating the angle between BD
and other solutions.

For the auxiliary population tasked with exploring infeasible solutions, achieving
maximumuniformity, unlike themain population, was not crucial. Instead, it aimed to slow
down convergence pressure through angle-based strategies, preserving some sub-optimal
yet beneficial solutions throughout the evolution process. As the main population used
non-dominated sorting to decrease convergence pressure, the overall convergence pressure
was guaranteed. Additionally, while comparing non-dominant layers and their distance
from the origin are somewhat similar but different, we illustrated this distinction through
an example: Fig. 7 displays three solutions, A, B, and C, within a selection environment
where one needs elimination. It is clear that AC is non-dominated, and B is dominated by
C. When considering their distances from the origin, C < B < A, which would lead to the
elimination of A. However, when considering the dominance layer, B is to be eliminated,
which is the intended outcome. Therefore, by first comparing dominance layers and then
distances, we achieved our intended objective.

EXPERIMENTAL RESULTS AND ANALYSIS
A concise overview of the experimental setup and algorithm parameters is included in this
section.We then evaluated our designedmethod against ten advancedCMOEAs/CMaOEAs
on three representative benchmark suites containing a total of 77 test problems. A
performance analysis was carried out on the results. All experiments were performed
using PlatEMO (Tian et al., 2017).

Experimental settings
Benchmark problems
Similar to most literature, we selected well-established and highly regarded test suites,
including C-DTLZ (Wang & Xu, 2020), DC-DTLZ (Li et al., 2019), MW (Jiao et al.,
2021a; Ma &Wang, 2019), and CF (Ming et al., 2023a; Zhou, Xiang & He, 2021), which
encompassed a total of 16 MaOPs. Each problem was scalable and the objectives varied
from 3, 5, 8, 10, and 15. In particular, the DC3-DTLZ1 with 8, 10, and 15 objectives was not
included due to the unavailability of ideal points for evaluation on the PlatEMO platform.
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As for the decision variables, following Ming et al. (2023b), for C1-DTLZ1, DC1-DTLZ1,
DC2-DTLZ1, and DC3-DTLZ1, the number of decision variables was d = m + 4. For
the following cases, C1-DTLZ3, C2-DTLZ2, C3-DTLZ4, DC1-DTLZ3, DC2-DTLZ3, and
DC3-DTLZ3, d = m + 9. For MW4, MW8, and MW14, d = 15. For CF4, CF8, CF12, d =
m + 10.

The methods used for comparison and parameter settings
We ran comparative trials with four CMOEAs (Top (Liu & Wang, 2019), CCMO (Tian et
al., 2021), DDCMOEA (Ming et al., 2022), and BiCO (Liu, Wang & Tang, 2022)), and six
CMaOEAs (NSGA-III (Jain & Deb, 2014), the improved decomposition-based evolutionary
algorithm (IDBEA) (Asafuddoula, Ray & Sarker, 2015), Two-Archive Evolutionary
Algorithm for Constrained Multiobjective Optimization (C-TAEA) (Li et al., 2019), TiGE2
(Zhou et al., 2020), DCNSGAIII (Jiao et al., 2021b), and CMME (Ming et al., 2023b)) to
show the effectiveness of our work. The selected algorithms are representative of their
respective categories: In CMOEAs, Top utilizes DE operators and is a well-established
algorithm; CCMO is a highly effective weak-cooperative population-based algorithm;
DDCMOEA and BiCo are recent prominent algorithms based on bidirectional search.
Among CMaOEAs, NSGA-III is a classic optimization algorithm with significant guidance
for many other algorithms; IDBEA relies on decomposition for CMaOPs; C-TAEA
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is an archive-based optimization algorithm often included in literature comparisons;
TiGE2 converts constraints into a third criterion apart from convergence and diversity;
DCNSGAIII and CMME are both notable CMaOEAs introduced in recent years, known
for their competitiveness. All of these methods were implemented within PlatEMO (Tian
et al., 2017).

Referring to the work of Ming et al. (2023a) and Wang, Huang & Pan (2023), the
population sizes (N) and the maximum fitness evaluation (maxFE) for the algorithm across
various test problems are outlined in Tables 1 and 2. Among these, Top utilizes DE-based
genetic operators, while other CMaOEAs/CMOEAs employ GA-based operators using
simulated binary crossover (Deb & Agrawal, 2000) and polynomial mutation (Edupuganti,
Prasad & Ravi, 2010), with a crossover probability of 1 and a distribution index of 20. The
mutation probability pm is set to 1/n, where n represents the number of decision variables,
and the distribution index is set to The parameters for all algorithms are the same as those
suggested in their original references in order to maintain fairness. All parameters below
are unchanged unless otherwise stated.

All of the algorithms were independently run 30 times on every test case. Both the mean
and standard deviation were recorded. Statistics were calculated with MATLAB software
(The MathWorks, Natick, MA, USA), using the Wilcoxon test at a significance level of 0.05
and the Friedman test with Bonferroni correction at a significance level of 0.05 to analyze
the experimental results. In particular, we transformed the HV metric for the algorithms
as follows: HV ′= 1−HV , to satisfy the ‘the smaller, the better’ property required by the
Friedman test for the data.

Performance Indicators
We used several metrics to comprehensively judge the effectiveness of different algorithms:
Inverted Generational Distance (IGD), IGDp (Ishibuchi et al., 2015), and Hypervolume
(HV) (Zitzler & Thiele, 1999). Multiple metrics offer enhanced reliability (Ming et al.,
2023c), providing a more comprehensive assessment of algorithmic performance.

Comparison results
The designed algorithm was compared with the ten methods mentioned previously. Values
such as ‘‘NaN’’ and ‘‘0.0000e+0’’ signify that the results were too distant from the true
Pareto front to compute the metric. We used symbols ‘‘+’’, ‘‘-’’, and ‘‘=’’ respectively to
indicate results that were statistically superior to dCMaOEA-RAE, significantly inferior to
dCMaOEA-RAE, or similar to dCMaOEA-RAE. The result with the best performance in
each problem had been bolded. Within the Friedman ranking, in addition to the best data,
we bolded the second-best data.

Comparison results on DTLZ test problem
Table 3 presents the Friedman rankings of eleven algorithms across various objective
quantities in the C-DTLZ and DC-DTLZ test problems. It is evident that dCMaOEA-
RAE consistently outperformed other algorithms across all three metrics. CMME and
DCNSGAIII, as recent CMaOEAs, exhibited relatively good performance. These test sets
included diverse feasible regions and offered a comprehensive evaluation of algorithm
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Table 1 The upper limit of the fitness estimates for different problems.

Problem M = 3 M = 5 M = 8 M = 10 M = 15

C1-DTLZ1 46,000 127,200 124,800 276,000 204,000
C1-DTLZ3 92,000 318,000 390,000 966,000 680,000
C2-DTLZ2 23,000 74,200 78,000 207,000 136,000
C3-DTLZ4 69,000 265,000 312,000 828,000 544,000
DC-DTLZ and MW 69,000 265,000 312,000 828,000 544,000
CF 40,000 80,000 140,000 180,000 240,000

Table 2 The population size of different problems.

Problem M = 3 M = 5 M = 8 M = 10 M = 15

C-DTLZ, DC-DTLZ and MW 92 212 156 276 136
CF 92 126 156 220 240

performance. Tables 4, 5 and 6 report the IGD, IGDp, and HV performance indices for
the test problems, respectively. Looking at the three metrics collectively, it is apparent that
dCMaOEA-RAE achieved the highest number of superior rankings in all three metrics.
Specifically 34, 31, and 35, respectively, exceeded more than half of the total. Particularly
notable performances were observed in C1-DTLZ3, DC1-DTLZ3, DC2-DTLZ1, and
DC3-DTLZ3. Due to the complex nature of the constraints, the designed algorithm faced
significant challenges in dealing with these types of problems, yet it outperformed other
algorithms. For instance, C1-DTLZ3 encounter infeasible obstacles when approaching the
PFs and DC2-DTLZ1 contained extensive infeasible regions, which showed the ability of
dCMaOEA-RAE to reach superior CPFs through such regions. For example, DC1-DTLZ3
had a narrow feasible region, while DC3-DTLZ3’s CPF consisted of a couple of segmented,
narrow, tapered strips and a flexible sheet area above the PF. dCMaOEA-RAE strengthened
population diversity in the auxiliary population through binary tournaments. It guided the
main population toward the precise exploration of minute feasible regions. Additionally,
algorithms like CCMO are competitive in solving some problems such as C2-DTLZ2,
DC1-DTLZ1, and DC2-DTLZ3 in the 3-objective problems. This competitiveness stems
from CCMO’s utilization of a weak cooperation approach, where two independent
populations evolve. This enhances certain aspects of diversity and enables the discovery of
smaller feasible regions. However, the slow convergence of the CCMO as the number of
objectives grows prevents it from being suitable for CMaOPs. Furthermore, it is notable that
dCMaOEA-RAE exhibited relatively inferior performance in D1-DTLZ1 and DC1-DTLZ1.
This could be due to the simplicity of these test problems in terms of the constraint
complexity, where even using the straightforward CDP of NSGA-III yielded reasonably
good performance.

Comparison results on MW and CF test problem
Table 7 presents the Friedman ranking of the 11 algorithms in theMWandCF test problems
with different numbers of objectives, respectively. Known for their discrete irregularity
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Table 3 The Friedman rankings of eleven algorithms across various objective quantities in DTLZ test
problems.

Igd ranking Igdp ranking Hv ranking

NSGAIII 3.89 3.97 4.60
IDBEA 8.20 8.22 8.47
CTAEA 4.40 3.99 4.47
TiGE2 7.59 7.12 7.82
DCNSGAIII 3.50 3.57 4.47
CMME 3.62 3.42 4.71
ToP 8.75 8.76 6.68
CCMO 6.20 6.45 5.62
DDCMOEA 6.75 7.00 6.00
BiCo 6.43 6.72 5.86
dCMaOEA-RAE 1.36 1.48 1.98

Notes.
The best results are in bold.

and small feasible ratios, MW and CF highlighted the robust integrated capability of
dCMaOEA-RAE in navigating infeasible regions and exploring minute irregular feasible
solutions. It is evident that dCMaOEA-RAE consistently secured the top position across
all indicators and test problems. It was closely followed by CMME. Tables 8, 9 and 10
illustrate the detailed results of the algorithms using different metrics. CMME was effective
certain effectiveness due to its enhanced mating and environmental selection. However, its
performance was relatively unstable, resulting in higher standard deviations. Meanwhile,
dCMaOEA-RAE demonstrated favorable execution in MW8, CF4, and CF12. These
problems encompass various scenarios such as multimodal landscapes, irregular CPFs,
convex shapes, and small feasible regions. This showcased dCMaOEA-RAE’s adeptness in
tackling these complexities, which are challenging for other algorithms.

Effects of the proposed selection strategy
The proposed dual-population mechanism is further validated in this subsection by
employing two variants of dCMaOEA-RAE. We adopted the reference point selection
strategy from Jain & Deb (2014) to replace the selection strategy of the subject and
exploration populations in the dCMaOEA-RAE algorithm, denoted as dCMAOEA-
RAE-I and dCMAOEA-RAE-II, respectively. In C-DTLZ and DC-DTLZ experiments
with identical parameters as in Section ‘Experimental settings’, we compared these
aforementioned variants and are presented in Table 11. It is worth noting that even
when the CPF is non-uniform, the selection strategy for the main population maintained a
favorable distribution. Furthermore, the auxiliary population’s selection strategy effectively
guided the population towards discovering a superior feasible solution region. Figure 8
shows the effectiveness of the three methods used in the DC3-DTLZ3 problem. It is
evident that dCMAOEA-RAE-I failed to achieve a uniform distribution on the CPF,
while dCMAOEA-RAE-II was unable to locate the CPF within the given time frame.
dCMAOEA-RAE achieved the best performance.
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Table 4 The IGD performance values of dCMaOEA-RAE and other schemes on DTLZ benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 2.0452e−2 (8.62e−4) = 4.3115e−1 (6.06e−2) - 2.2959e−2 (3.13e−4) - 2.7828e−1 (6.90e−2) - 2.0328e−2 (2.04e−4) = 2.0270e−2 (1.09e−4) = NaN (NaN) 2.0796e−2 (1.43e−4) - 2.0929e−2 (1.90e−4) - 2.1079e−2 (2.43e−4) - 2.0304e−2 (1.06e−4)

5 5.2035e−2 (3.62e−4) - 4.6390e−1 (7.21e−2) - 5.9488e−2 (4.48e−4) - 3.2485e−1 (7.57e−2) - 5.2180e−2 (2.13e−4) - 5.2317e−2 (3.29e−4) - NaN (NaN) 5.2123e−2 (3.83e−4) - 5.2182e−2 (3.52e−4) - 5.2005e−2 (2.94e−4) = 5.1809e−2 (3.13e−4)

8 9.5924e−2 (6.26e−4) - 4.9600e−1 (7.32e−2) - 1.2051e−1 (2.62e−3) - 4.4614e−1 (7.41e−2) - 9.9733e−2 (1.08e−2) - 9.8088e−2 (4.73e−3) - 4.4803e−1 (0.00e+0) = 1.0814e−1 (6.34e−3) - 1.0586e−1 (1.35e−3) - 1.0352e−1 (9.60e−4) - 9.5362e−2 (3.70e−4)

10 1.0859e−1 (3.77e−4) - 4.7535e−1 (9.26e−2) - 1.3984e−1 (1.92e−3) - 4.7119e−1 (3.66e−2) - 1.1141e−1 (9.27e−3) - 1.1105e−1 (7.93e−3) = 3.3122e−1 (7.98e−2) - 1.1906e−1 (8.58e−3) - 1.1743e−1 (1.64e−3) - 1.1234e−1 (8.15e−4) - 1.0777e−1 (4.01e−4)

C1_DTLZ1

15 1.8217e−1 (3.43e−3) = 5.7091e−1 (4.73e−2) - 2.1316e−1 (7.48e−3) - 4.9683e−1 (2.94e−2) - 1.7852e−1 (9.79e−3) = 1.7490e−1 (1.14e−2) + 3.5315e−1 (7.93e−2) - 2.0141e−1 (1.60e−2) - 2.0306e−1 (1.60e−2) - 1.6217e−1 (4.91e−3) + 1.8093e−1 (2.25e−3)

3 4.5626e+0 (4.01e+0) - 6.7824e+0 (2.84e+0) - 7.4347e−2 (1.90e−2) - 6.7013e+0 (2.77e+0) - 4.3189e+0 (4.02e+0) - 2.7092e+0 (3.82e+0) - 2.5549e+0 (3.74e+0) - 5.5936e−2 (6.16e−4) - 5.9077e−2 (1.23e−2) - 1.1201e+0 (2.76e+0) - 5.4471e−2 (5.79e−6)

5 5.9626e+0 (5.41e+0) - 1.0480e+1 (3.46e+0) - 8.9830e+0 (4.88e+0) - 8.1656e+0 (5.06e+0) - 5.2901e+0 (5.61e+0) - 7.0263e+0 (5.68e+0) - 4.6736e+0 (5.19e+0) - 1.8980e−1 (4.11e−3) - 2.5247e−1 (5.80e−2) - 1.9953e−1 (1.81e−2) - 1.6511e−1 (5.45e−5)

8 6.4110e+0 (5.71e+0) - 1.0124e+1 (4.20e+0) - 8.8411e+0 (4.85e+0) - 1.1572e+1 (2.72e+0) - 5.2733e+0 (5.71e+0) - 8.7426e+0 (4.98e+0) - 2.1311e+1 (2.24e+0) - 1.1604e+2 (1.93e+1) - 1.2365e+2 (1.70e+1) - 1.0942e+2 (9.85e+0) - 3.1542e−1 (4.01e−4)

10 3.5311e+0 (5.49e+0) - 1.2517e+1 (5.13e+0) - 1.1578e+1 (5.44e+0) - 1.1682e+1 (5.76e+0) - 4.6522e+0 (6.39e+0) - 1.1051e+1 (5.87e+0) - 2.2314e+1 (1.91e+0) - 1.5002e+2 (1.55e+1) - 1.4579e+2 (1.48e+1) - 1.3473e+2 (1.57e+1) - 4.1996e−1 (4.59e−4)

C1_DTLZ3

15 1.3161e+1 (3.96e+0) - 1.4881e+1 (7.23e−15) - 9.3568e+0 (6.24e+0) - 1.4107e+1 (3.45e+0) - 1.2142e+1 (5.18e+0) - 1.3874e+1 (2.48e+0) - 2.2541e+1 (1.52e+0) - 1.8118e+2 (1.05e+1) - 1.7849e+2 (7.35e+0) - 1.7511e+2 (7.15e+0) - 6.2513e−1 (1.07e−2)

3 4.8388e−2 (3.82e−4) - 8.0929e−1 (1.87e−1) - 5.6440e−2 (1.21e−3) - 1.4636e−1 (2.94e−2) - 4.8131e−2 (4.14e−4) - 5.5408e−2 (9.57e−4) - 1.5413e−1 (2.63e−1) - 4.4865e−2 (6.60e−4) + 4.5238e−2 (7.34e−4) + 4.5092e−2 (5.79e−4) + 4.6736e−2 (4.47e−4)

5 1.3880e−1 (3.21e−4) - 9.0861e−1 (1.95e−1) - 1.4675e−1 (1.21e−3) - 2.2595e−1 (1.51e−2) - 1.3864e−1 (8.98e−4) - 1.4490e−1 (1.22e−3) - 2.0163e−1 (4.13e−3) - 1.4317e−1 (1.91e−3) - 1.4302e−1 (2.45e−3) - 1.3954e−1 (1.29e−3) - 1.3730e−1 (3.72e−4)

8 3.0943e−1 (1.66e−1) - 1.3201e+0 (1.37e−1) - 2.3839e−1 (1.75e−3) - 2.9756e−1 (5.99e−3) - 2.6084e−1 (6.99e−2) - 2.3830e−1 (2.46e−3) - 7.6692e−1 (2.10e−1) - 2.7862e−1 (5.88e−3) - 3.0119e−1 (1.12e−1) - 2.7864e−1 (4.68e−3) - 2.3475e−1 (1.03e−3)

10 2.9867e−1 (8.17e−2) - 1.2785e+0 (1.23e−1) - 3.3770e−1 (4.50e−2) - 3.9815e−1 (3.68e−2) - 2.9453e−1 (7.55e−2) - 2.8284e−1 (2.65e−3) - 7.6441e−1 (2.07e−1) - 3.7589e−1 (5.37e−2) - 3.8182e−1 (5.30e−2) - 3.0048e−1 (3.34e−3) - 2.5342e−1 (1.75e−3)

C2_DTLZ2

15 4.0315e−1 (1.95e−1) - 1.4436e+0 (1.27e−1) - 2.6972e−1 (5.49e−3) + 3.5847e−1 (1.54e−2) - 3.2636e−1 (7.16e−2) - 2.6685e−1 (6.67e−3) = 1.0485e+0 (4.41e−2) - 4.0502e−1 (1.17e−1) - 3.7823e−1 (3.44e−2) - 3.5942e−1 (4.34e−3) - 2.7792e−1 (3.85e−2)

3 1.6714e−1 (2.29e−1) - 4.9293e−1 (3.69e−1) - 1.1251e−1 (2.84e−3) - 1.9931e−1 (1.08e−2) - 1.4715e−1 (1.89e−1) = 1.0837e−1 (2.90e−3) - 1.4903e−1 (4.12e−3) - 1.7413e−1 (2.26e−1) - 1.2544e−1 (1.35e−1) - 1.0162e−1 (1.71e−3) - 9.6727e−2 (6.76e−3)

5 2.4577e−1 (9.07e−4) + 4.2896e−1 (6.00e−2) - 2.9058e−1 (2.70e−3) - 4.1223e−1 (1.71e−2) - 2.9674e−1 (1.26e−1) - 2.8014e−1 (2.23e−3) - 4.3753e−1 (2.15e−2) - 2.9621e−1 (5.60e−3) - 2.9659e−1 (4.37e−3) - 3.1528e−1 (6.81e−3) - 2.4646e−1 (9.17e−4)

8 4.8463e−1 (8.85e−2) - 7.8663e−1 (1.00e−1) - 5.4737e−1 (3.61e−3) - 6.3383e−1 (5.52e−3) - 6.5925e−1 (7.66e−2) - 5.3235e−1 (4.01e−2) - 1.1467e+0 (2.29e−1) - 2.1495e+0 (1.55e−2) - 2.1532e+0 (2.35e−2) - 1.0767e+0 (5.14e−2) - 4.5240e−1 (1.37e−3)

10 5.7647e−1 (2.95e−2) - 7.4832e−1 (6.16e−2) - 6.2254e−1 (5.49e−3) - 7.4351e−1 (1.01e−2) - 6.8257e−1 (2.99e−2) - 6.1341e−1 (5.10e−3) - 1.5677e+0 (2.24e−1) - 2.2620e+0 (8.41e−3) - 2.2605e+0 (9.40e−3) - 1.2231e+0 (6.93e−2) - 5.6575e−1 (1.92e−3)

C3_DTLZ4

15 8.8392e−1 (7.18e−2) - 1.2092e+0 (2.13e−1) - 8.0478e−1 (8.14e−4) = 8.6019e−1 (1.05e−2) - 8.9130e−1 (6.60e−2) - 8.0885e−1 (1.06e−2) - 2.0933e+0 (1.65e−1) - 2.4880e+0 (9.28e−3) - 2.4897e+0 (9.81e−3) - 1.7600e+0 (1.66e−1) - 8.0729e−1 (7.30e−3)

(continued on next page)
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Table 4 (continued)
Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 1.4171e−2 (2.08e−4) - 8.5097e−2 (7.94e−2) - 1.5193e−2 (2.86e−4) - 6.9675e−1 (3.91e−1) - 1.3659e−2 (1.71e−4) - 1.5771e−2 (1.93e−4) - 3.9118e−2 (5.26e−2) - 1.2028e−2 (9.49e−5) + 1.2193e−2 (1.54e−4) + 1.2155e−2 (1.76e−4) + 1.3441e−2 (1.79e−4)

5 3.9838e−2 (1.66e−4) - 1.0296e−1 (8.89e−2) - 4.2027e−2 (4.10e−4) - 4.1156e−1 (1.82e−1) - 4.0467e−2 (1.37e−4) - 4.2269e−2 (3.45e−4) - 1.4487e+0 (2.95e+0) - 4.2931e−2 (8.93e−4) - 4.3592e−2 (1.10e−3) - 4.3503e−2 (8.31e−4) - 3.9222e−2 (2.01e−4)

8 7.9405e−2 (3.49e−4) - 1.5747e−1 (1.01e−1) - 8.3722e−2 (7.83e−4) - 4.4538e−1 (1.39e−1) - 7.9243e−2 (5.95e−3) - 7.9963e−2 (7.57e−4) - 1.9710e+0 (3.14e+0) - 9.5292e−1 (7.71e−1) - 2.4032e+0 (1.71e+0) - 2.7226e+0 (6.16e+0) - 7.8712e−2 (4.62e−4)

10 8.6661e−2 (2.54e−3) - 1.3065e−1 (6.75e−2) - 9.4437e−2 (2.20e−3) - 3.8517e−1 (1.32e−2) - 9.1340e−2 (1.57e−2) = 7.8762e−2 (2.11e−3) + 9.0116e−1 (2.35e+0) - 1.5949e+1 (2.66e+1) - 8.4254e+0 (1.31e+1) - 6.6049e+1 (4.30e+1) - 8.5535e−2 (3.50e−4)

DC1_DTLZ1

15 1.2831e−1 (4.74e−4) = 3.7718e−1 (1.00e−1) - 1.4233e−1 (6.33e−3) - 4.7192e−1 (1.85e−1) - 1.3542e−1 (6.46e−3) - 1.3437e−1 (6.44e−3) - 1.6273e+0 (2.72e+0) - 1.7559e+2 (3.41e+1) - 1.9601e+2 (3.27e+1) - 1.7509e+2 (4.41e+1) - 1.2824e−1 (3.56e−5)

3 4.6182e−2 (8.08e−4) - 7.5739e−1 (6.20e−1) - 4.3119e−2 (1.24e−3) - 2.4204e+0 (6.29e−1) - 4.5442e−2 (8.81e−4) - 5.0164e−2 (2.60e−3) - 1.8304e+0 (2.63e+0) - 3.5491e−2 (2.87e−4) + 1.1967e−1 (1.22e−2) - 3.6419e−2 (6.04e−4) + 3.9421e−2 (9.47e−4)

5 1.4439e−1 (7.55e−4) - 8.8198e−1 (4.30e−1) - 2.1898e−1 (2.90e−2) - 1.9932e+0 (5.10e−1) - 1.4426e−1 (7.68e−4) - 1.4814e−1 (1.26e−3) - 2.7296e+0 (1.49e+0) - 1.5380e−1 (3.49e−3) - 2.3892e−1 (4.90e−2) - 1.5655e−1 (5.05e−3) - 1.4282e−1 (8.97e−4)

8 4.6456e−1 (1.06e−1) - 1.4782e+0 (6.35e−1) - 4.8976e−1 (3.74e−2) - 1.8398e+0 (4.67e−1) - 4.3037e−1 (1.13e−1) - 4.8240e−1 (7.81e−2) - 1.9521e+1 (6.68e+0) - 9.7315e+1 (1.04e+1) - 9.6550e+1 (9.92e+0) - 9.2617e+1 (1.15e+1) - 3.2833e−1 (3.88e−2)

10 5.0848e−1 (3.36e−2) - 1.1976e+0 (1.52e−1) - 5.0451e−1 (2.88e−2) - 1.5937e+0 (2.42e−1) - 4.7635e−1 (5.52e−2) - 5.3172e−1 (4.02e−2) - 2.1042e+1 (5.77e+0) - 1.2820e+2 (1.96e+1) - 1.2783e+2 (2.22e+1) - 1.2017e+2 (1.64e+1) - 4.2703e−1 (3.11e−2)

DC1_DTLZ3

15 7.0664e−1 (5.26e−2) - 1.4486e+0 (4.16e−1) - 7.5391e−1 (6.29e−2) - 1.3974e+0 (1.14e−1) - 7.2232e−1 (6.14e−2) - 6.7388e−1 (1.68e−2) - 1.9561e+1 (6.34e+0) - 1.8314e+2 (7.12e+0) - 1.8222e+2 (6.10e+0) - 1.7097e+2 (7.49e+0) - 6.0801e−1 (1.53e−2)

3 1.4121e−1 (5.47e−2) - 4.4372e−1 (1.10e−1) - 2.3142e−2 (1.64e−4) - 3.4230e−1 (3.88e−2) - 1.4038e−1 (2.59e−1) - 3.9740e−2 (4.97e−2) = NaN (NaN) 2.1163e−2 (1.74e−4) - 2.1303e−2 (2.77e−4) - 8.4539e−2 (7.37e−2) - 2.0585e−2 (3.16e−5)

5 1.1904e−1 (5.13e−2) - 4.4879e−1 (1.56e−1) - 6.1253e−2 (3.40e−4) - 3.6741e−1 (7.46e−2) - 8.7978e−2 (6.54e−2) - 6.6678e−2 (3.63e−2) - NaN (NaN) 5.6980e−2 (1.04e−3) - 5.7216e−2 (1.01e−3) - 8.3301e−2 (4.46e−2) - 5.2703e−2 (1.24e−5)

8 1.5374e−1 (2.95e−2) - 5.0946e−1 (1.44e−1) - 1.2430e−1 (7.27e−4) - 4.0216e−1 (7.02e−2) - 1.1450e−1 (2.95e−2) - 1.0856e−1 (2.59e−2) = NaN (NaN) NaN (NaN) 2.2591e−1 (0.00e+0) = NaN (NaN) 9.7173e−2 (4.00e−5)

10 1.6371e−1 (3.41e−2) - 6.4506e−1 (1.47e−1) - 1.4338e−1 (1.04e−3) - 4.3323e−1 (6.80e−2) - 1.1603e−1 (1.53e−2) - 1.1535e−1 (1.98e−2) = NaN (NaN) 2.3380e−1 (7.98e−3) - 2.4261e−1 (0.00e+0) = 2.1240e−1 (0.00e+0) = 1.0924e−1 (9.25e−5)

DC2_DTLZ1

15 2.6711e−1 (4.90e−2) - 7.5599e−1 (7.79e−2) - 2.1687e−1 (4.12e−3) - 4.6611e−1 (1.28e−1) - 2.0479e−1 (3.87e−2) - 2.2509e−1 (5.07e−2) = NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN) 1.8312e−1 (9.08e−4)

3 NaN (NaN) NaN (NaN) 5.1407e−1 (1.36e−1) - 5.3954e−1 (2.34e−1) - 5.6252e−1 (7.92e−4) - 5.6290e−1 (3.93e−3) - NaN (NaN) 5.5577e−2 (5.55e−4) + 1.2880e−1 (1.66e−1) - 5.6653e−1 (3.75e−3) - 7.7453e−2 (8.03e−2)

5 5.9767e−1 (1.53e−3) - 1.3285e+0 (1.12e−1) - 3.0578e−1 (1.65e−1) - 5.9047e−1 (1.69e−1) - 6.3286e−1 (7.44e−2) - 6.0501e−1 (9.68e−3) - NaN (NaN) 5.1390e−1 (2.02e−1) - 6.2292e−1 (6.59e−2) - 6.3820e−1 (1.88e−2) - 1.6504e−1 (1.24e−4)

8 8.1512e−1 (4.09e−2) - 1.5661e+0 (7.73e−2) - 4.1644e−1 (1.10e−1) = 1.1275e+0 (4.48e−1) - 7.6298e−1 (6.29e−2) - 6.9270e−1 (1.49e−2) - NaN (NaN) 8.2310e−1 (0.00e+0) = NaN (NaN) NaN (NaN) 3.7867e−1 (6.42e−2)

10 8.4419e−1 (3.12e−2) - 1.6222e+0 (6.41e−2) - 4.3850e−1 (4.61e−2) = 9.8833e−1 (1.93e−1) - 7.8365e−1 (1.32e−1) - 7.9176e−1 (1.05e−2) - 9.5967e−1 (0.00e+0) = 8.6445e−1 (0.00e+0) = 8.4945e−1 (0.00e+0) = 8.5563e−1 (6.60e−3) - 4.4248e−1 (3.25e−2)

DC2_DTLZ3

15 1.0026e+0 (1.98e−2) - 1.7053e+0 (1.46e−3) - 6.3739e−1 (1.87e−2) - 1.4889e+0 (1.88e−1) - 9.5856e−1 (1.09e−1) - 9.7664e−1 (6.12e−3) - 1.1355e+0 (1.38e−1) - NaN (NaN) NaN (NaN) NaN (NaN) 6.2688e−1 (1.30e−2)

3 1.8985e−1 (1.01e−1) - 9.2166e+0 (1.21e+1) - 9.2066e−3 (2.70e−4) - 2.0076e+0 (1.25e+0) - 1.5542e−2 (2.93e−2) - 9.8425e−2 (8.07e−2) - 3.6156e+0 (2.94e+0) - 7.2053e−3 (8.90e−5) + 7.5990e−3 (3.66e−4) + 5.7873e−2 (7.50e−2) = 8.1517e−3 (1.02e−4)
DC3_DTLZ1

5 1.0734e−1 (5.16e−2) - 6.0361e+0 (9.03e+0) - 3.2263e−2 (5.22e−3) - 1.0480e+0 (5.36e−1) - 2.8726e−2 (1.52e−2) - 5.3204e−2 (4.84e−2) - 8.7646e+0 (7.34e+0) - 1.8746e−2 (6.67e−4) + 1.9470e−2 (6.96e−4) + 2.6404e−2 (2.91e−2) - 2.1367e−2 (7.46e−4)

3 1.4704e+0 (4.10e−1) - 1.0056e+1 (9.17e+0) - 4.8771e−2 (3.30e−2) - 4.0190e+0 (1.08e+0) - 6.2978e−1 (3.10e−1) - 9.3609e−1 (4.52e−1) - 1.0109e+1 (3.88e+0) - 3.3601e−2 (2.87e−2) - 3.4534e−1 (1.98e−1) - 9.0422e−1 (3.76e−1) - 2.3069e−2 (4.38e−4)

5 9.2709e−1 (4.17e−1) - 3.1616e+0 (1.60e+0) - 9.7792e−2 (1.36e−2) - 3.4930e+0 (9.29e−1) - 3.8017e−1 (2.44e−1) - 7.3050e−1 (2.84e−1) - 9.3152e+0 (6.55e+0) - 2.8038e−1 (2.09e−1) - 6.4652e−1 (1.49e−1) - 6.8763e−1 (2.53e−1) - 7.8344e−2 (1.85e−3)

8 1.6474e+0 (5.88e−1) - 2.7607e+0 (5.51e−1) - 2.3947e−1 (6.44e−2) - 3.5893e+0 (1.14e+0) - 8.4779e−1 (6.01e−1) - 1.2897e+0 (3.60e−1) - 2.0797e+1 (5.84e+0) - 5.3433e+1 (1.11e+1) - 4.6698e+1 (1.08e+1) - 4.3766e+1 (9.50e+0) - 1.8735e−1 (2.87e−2)

10 1.4446e+0 (6.44e−1) - 2.4439e+0 (5.79e−1) - 2.0325e−1 (6.70e−2) = 3.4611e+0 (9.84e−1) - 5.6973e−1 (3.24e−1) - 9.5002e−1 (3.52e−1) - 1.7307e+1 (4.91e+0) - 6.8489e+1 (9.43e+0) - 6.0150e+1 (9.55e+0) - 6.5345e+1 (8.19e+0) - 1.9546e−1 (8.80e−2)

DC3_DTLZ3

15 3.4727e+0 (1.44e+0) - 7.0692e+0 (5.93e+0) - 3.1701e+0 (6.91e−1) - 3.6492e+0 (1.27e+0) - 7.1588e−1 (2.45e−1) - 2.3985e+0 (5.99e−1) - 4.0817e+1 (5.82e+0) - 1.2969e+2 (4.01e+1) - 9.9678e+1 (1.42e+1) - 1.3491e+2 (2.96e+1) - 1.5429e−1 (1.73e−2)

+/-/= 1/42/3 0/46/0 1/42/4 0/47/0 0/43/4 2/38/7 0/35/2 6/36/2 4/37/3 4/36/3

Notes.
The best results are in bold.
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Table 5 The IGDp performance values of dCMaOEA-RAE and other schemes on DTLZ benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 1.5071e−2 (9.98e−4) - 3.4300e−1 (5.89e−2) - 1.6368e−2 (2.70e−4) - 2.0904e−1 (5.56e−2) - 1.4712e−2 (3.60e−4) = 1.4676e−2 (1.07e−4) = NaN (NaN) 1.5076e−2 (3.51e−4) - 1.5154e−2 (3.29e−4) - 1.5405e−2 (4.84e−4) - 1.4676e−2 (1.47e−4)

5 3.7117e−2 (1.93e−4) - 3.9090e−1 (7.37e−2) - 4.1657e−2 (3.23e−4) - 2.5660e−1 (6.84e−2) - 3.7066e−2 (1.26e−4) - 3.7268e−2 (1.88e−4) - NaN (NaN) 3.6398e−2 (2.58e−4) + 3.6446e−2 (2.59e−4) + 3.6230e−2 (2.70e−4) + 3.6910e−2 (1.82e−4)

8 6.3453e−2 (2.63e−4) - 4.2557e−1 (7.79e−2) - 8.5570e−2 (2.87e−3) - 3.7210e−1 (7.69e−2) - 6.4649e−2 (4.69e−3) - 6.4857e−2 (3.95e−3) - 3.8029e−1 (0.00e+0) = 7.3596e−2 (3.21e−3) - 7.2479e−2 (1.26e−3) - 6.8557e−2 (8.36e−4) - 6.2733e−2 (1.71e−4)

10 6.8922e−2 (4.28e−4) - 4.1215e−1 (1.01e−1) - 1.0167e−1 (2.13e−3) - 4.0702e−1 (3.91e−2) - 7.0627e−2 (5.44e−3) - 7.2273e−2 (8.50e−3) = 2.6124e−1 (8.76e−2) - 8.1057e−2 (3.47e−3) - 8.0229e−2 (1.45e−3) - 7.3970e−2 (8.14e−4) - 6.8387e−2 (3.60e−4)

C1_DTLZ1

15 1.2163e−1 (4.06e−3) - 5.2070e−1 (5.15e−2) - 1.6630e−1 (8.85e−3) - 4.4015e−1 (3.11e−2) - 1.1811e−1 (1.25e−2) = 1.1411e−1 (1.60e−2) + 2.8383e−1 (8.82e−2) - 1.4231e−1 (1.06e−2) - 1.4273e−1 (9.04e−3) - 1.1198e−1 (5.50e−3) + 1.1982e−1 (2.67e−3)

3 4.5493e+0 (4.02e+0) - 6.7784e+0 (2.85e+0) - 3.7412e−2 (2.46e−2) - 6.6561e+0 (2.83e+0) - 4.3051e+0 (4.03e+0) - 2.6882e+0 (3.83e+0) - 2.5388e+0 (3.75e+0) - 2.3800e−2 (4.84e−4) - 2.8914e−2 (1.68e−2) - 1.0915e+0 (2.77e+0) - 2.2516e−2 (5.70e−5)

5 5.9199e+0 (5.45e+0) - 1.0469e+1 (3.49e+0) - 8.9443e+0 (4.95e+0) - 8.0714e+0 (5.16e+0) - 5.2435e+0 (5.65e+0) - 6.9822e+0 (5.73e+0) - 4.6065e+0 (5.24e+0) - 1.0212e−1 (7.25e−3) - 1.8576e−1 (7.38e−2) - 1.1577e−1 (2.58e−2) - 6.2004e−2 (6.08e−5)

8 6.3259e+0 (5.80e+0) - 1.0061e+1 (4.30e+0) - 8.7839e+0 (4.93e+0) - 1.1529e+1 (2.79e+0) - 5.1740e+0 (5.79e+0) - 8.6753e+0 (5.08e+0) - 2.1294e+1 (2.24e+0) - 1.1603e+2 (1.93e+1) - 1.2365e+2 (1.70e+1) - 1.0942e+2 (9.85e+0) - 1.2206e−1 (5.31e−4)

10 3.3633e+0 (5.58e+0) - 1.2420e+1 (5.29e+0) - 1.1533e+1 (5.51e+0) - 1.1579e+1 (5.90e+0) - 4.4943e+0 (6.49e+0) - 1.0965e+1 (6.01e+0) - 2.2295e+1 (1.91e+0) - 1.5002e+2 (1.55e+1) - 1.4579e+2 (1.48e+1) - 1.3473e+2 (1.57e+1) - 1.7495e−1 (1.78e−4)

C1_DTLZ3

15 1.3117e+1 (4.04e+0) - 1.4850e+1 (9.03e−15) - 9.2640e+0 (6.34e+0) - 1.4056e+1 (3.53e+0) - 1.2075e+1 (5.30e+0) - 1.3848e+1 (2.53e+0) - 2.2521e+1 (1.52e+0) - 1.8118e+2 (1.05e+1) - 1.7849e+2 (7.35e+0) - 1.7511e+2 (7.15e+0) - 2.4861e−1 (2.05e−2)

3 2.1372e−2 (2.37e−4) - 6.3197e−1 (1.17e−1) - 2.3856e−2 (8.28e−4) - 6.1040e−2 (9.35e−3) - 2.1214e−2 (3.01e−4) - 2.3871e−2 (4.98e−4) - 9.8479e−2 (1.66e−1) - 2.0700e−2 (7.61e−4) = 2.0353e−2 (7.63e−4) = 2.0966e−2 (4.57e−4) - 2.0447e−2 (3.32e−4)

5 5.5624e−2 (2.75e−4) - 6.7427e−1 (1.39e−1) - 5.6095e−2 (6.62e−4) - 8.3355e−2 (4.45e−3) - 5.7154e−2 (5.30e−4) - 5.7630e−2 (7.30e−4) - 1.4749e−1 (6.41e−3) - 8.0053e−2 (4.70e−3) - 7.7944e−2 (4.67e−3) - 7.6340e−2 (2.56e−3) - 5.5350e−2 (2.84e−4)

8 1.3996e−1 (1.58e−1) - 9.8003e−1 (1.56e−1) - 6.0517e−2 (8.35e−4) + 6.8137e−2 (1.44e−3) + 9.4139e−2 (5.59e−2) - 6.5080e−2 (3.53e−3) + 6.3935e−1 (1.58e−1) - 1.8715e−1 (1.89e−2) - 2.0550e−1 (9.89e−2) - 1.8829e−1 (1.51e−2) - 7.4946e−2 (1.53e−3)

10 1.1811e−1 (5.17e−2) - 9.0742e−1 (1.35e−1) - 1.4630e−1 (2.42e−2) - 1.6031e−1 (1.31e−2) - 1.1885e−1 (5.33e−2) - 1.0104e−1 (7.09e−4) - 6.3353e−1 (1.49e−1) - 2.7440e−1 (2.83e−2) - 2.7052e−1 (2.89e−2) - 2.2964e−1 (1.21e−2) - 9.6858e−2 (1.46e−3)

C2_DTLZ2

15 1.8442e−1 (2.04e−1) = 1.0801e+0 (1.69e−1) - 6.1199e−2 (1.48e−3) + 7.6436e−2 (1.35e−2) - 1.0765e−1 (5.17e−2) - 6.4462e−2 (4.27e−3) + 8.4881e−1 (4.40e−2) - 3.1274e−1 (9.18e−2) - 2.9106e−1 (1.72e−2) - 2.8147e−1 (3.70e−3) - 7.3645e−2 (2.69e−2)

3 8.1424e−2 (1.04e−1) - 3.0240e−1 (2.36e−1) - 6.1324e−2 (2.73e−3) - 9.2891e−2 (3.91e−3) - 7.7509e−2 (8.48e−2) - 5.6539e−2 (2.04e−3) - 1.1098e−1 (6.11e−3) - 9.1339e−2 (1.00e−1) - 7.0274e−2 (5.96e−2) - 6.1555e−2 (2.72e−3) - 5.1679e−2 (5.38e−3)

5 1.1982e−1 (3.19e−3) = 2.6732e−1 (4.22e−2) - 1.4618e−1 (2.01e−3) - 1.7275e−1 (8.94e−3) - 1.5202e−1 (5.97e−2) - 1.3551e−1 (1.68e−3) - 3.2848e−1 (1.85e−2) - 1.9558e−1 (6.87e−3) - 1.9549e−1 (6.97e−3) - 2.1764e−1 (8.24e−3) - 1.2111e−1 (2.55e−3)

8 2.6476e−1 (5.25e−2) = 4.8561e−1 (4.53e−2) - 2.4637e−1 (1.41e−3) - 2.8048e−1 (2.06e−3) - 3.6549e−1 (6.55e−2) - 2.4301e−1 (1.78e−2) - 9.8181e−1 (2.17e−1) - 2.1174e+0 (1.66e−2) - 2.1210e+0 (2.21e−2) - 8.4204e−1 (7.49e−2) - 2.4287e−1 (2.33e−3)

10 2.8542e−1 (1.41e−2) = 4.4309e−1 (4.32e−2) - 2.9814e−1 (2.67e−3) - 3.7084e−1 (1.09e−2) - 3.5775e−1 (4.38e−2) - 2.8302e−1 (3.49e−3) - 1.3896e+0 (2.32e−1) - 2.2284e+0 (9.38e−3) - 2.2265e+0 (1.06e−2) - 9.7925e−1 (9.13e−2) - 2.8104e−1 (8.99e−4)

C3_DTLZ4

15 5.0147e−1 (9.69e−2) - 7.6127e−1 (2.14e−1) - 4.0003e−1 (4.78e−4) + 4.5801e−1 (1.04e−2) - 5.0953e−1 (8.36e−2) - 4.0187e−1 (5.14e−3) + 1.9129e+0 (2.14e−1) - 2.4356e+0 (1.00e−2) - 2.4366e+0 (1.10e−2) - 1.4336e+0 (2.32e−1) - 4.0669e−1 (1.06e−2)

3 1.0188e−2 (3.36e−4) - 5.9860e−2 (5.73e−2) - 1.0676e−2 (2.41e−4) - 6.3877e−1 (4.09e−1) - 9.7869e−3 (2.38e−4) - 1.1292e−2 (2.06e−4) - 3.4279e−2 (5.34e−2) - 8.6929e−3 (2.44e−4) + 9.0721e−3 (4.35e−4) + 8.8226e−3 (4.32e−4) + 9.4730e−3 (1.52e−4)

5 2.8071e−2 (1.68e−4) - 7.5701e−2 (7.52e−2) - 2.8782e−2 (3.05e−4) - 3.4897e−1 (1.90e−1) - 2.8384e−2 (1.59e−4) - 2.9380e−2 (2.75e−4) - 1.4320e+0 (2.96e+0) - 2.9986e−2 (6.57e−4) - 3.1803e−2 (1.13e−3) - 3.1071e−2 (7.60e−4) - 2.7511e−2 (2.06e−4)

8 4.9284e−2 (3.08e−4) - 1.1482e−1 (9.17e−2) - 5.5199e−2 (6.80e−4) - 3.8672e−1 (1.50e−1) - 4.9115e−2 (3.16e−3) - 5.1719e−2 (8.18e−4) - 1.9325e+0 (3.17e+0) - 9.3636e−1 (7.79e−1) - 2.3949e+0 (1.72e+0) - 2.7066e+0 (6.16e+0) - 4.8935e−2 (4.24e−4)

10 5.5262e−2 (1.05e−3) - 9.1598e−2 (6.62e−2) - 6.6001e−2 (2.20e−3) - 3.3369e−1 (1.38e−2) - 5.9687e−2 (9.38e−3) - 5.0651e−2 (2.46e−3) + 8.5308e−1 (2.36e+0) - 1.5943e+1 (2.66e+1) - 8.4220e+0 (1.31e+1) - 6.6049e+1 (4.30e+1) - 5.4699e−2 (3.58e−4)

DC1_DTLZ1

15 7.4143e−2 (9.39e−4) = 3.0707e−1 (1.11e−1) - 9.0981e−2 (4.49e−3) - 4.1096e−1 (1.95e−1) - 7.6779e−2 (4.96e−3) - 7.6754e−2 (4.30e−3) - 1.5758e+0 (2.75e+0) - 1.7559e+2 (3.41e+1) - 1.9601e+2 (3.27e+1) - 1.7509e+2 (4.41e+1) - 7.4060e−2 (4.41e−4)

3 1.6203e−2 (7.38e−4) - 7.2363e−1 (6.17e−1) - 1.6831e−2 (8.74e−4) - 2.3042e+0 (6.63e−1) - 1.6513e−2 (7.26e−4) - 1.7507e−2 (1.22e−3) - 1.7876e+0 (2.64e+0) - 1.4190e−2 (6.95e−4) = 8.0907e−2 (1.60e−2) - 1.4054e−2 (4.70e−4) + 1.4419e−2 (3.03e−4)

5 4.8471e−2 (3.79e−4) - 6.4856e−1 (4.60e−1) - 7.6827e−2 (9.02e−3) - 1.8042e+0 (5.49e−1) - 4.8692e−2 (6.71e−4) - 4.9736e−2 (9.46e−4) - 2.6777e+0 (1.53e+0) - 8.3787e−2 (5.83e−3) - 1.7425e−1 (6.03e−2) - 8.8537e−2 (6.01e−3) - 4.8206e−2 (6.44e−4)

8 2.4523e−1 (1.13e−1) - 1.1572e+0 (6.92e−1) - 2.1490e−1 (4.59e−2) - 1.5979e+0 (5.21e−1) - 2.1918e−1 (1.15e−1) - 2.0597e−1 (4.43e−2) - 1.9492e+1 (6.72e+0) - 9.7313e+1 (1.04e+1) - 9.6549e+1 (9.92e+0) - 9.2615e+1 (1.15e+1) - 1.2875e−1 (3.00e−2)

10 2.3071e−1 (3.88e−2) - 8.3413e−1 (1.14e−1) - 1.9902e−1 (1.20e−2) - 1.2943e+0 (2.85e−1) - 2.1556e−1 (6.08e−2) = 2.2052e−1 (1.72e−2) - 2.1015e+1 (5.80e+0) - 1.2820e+2 (1.96e+1) - 1.2782e+2 (2.22e+1) - 1.2017e+2 (1.64e+1) - 1.8044e−1 (1.81e−2)

DC1_DTLZ3

15 3.6545e−1 (8.55e−2) - 1.0587e+0 (4.81e−1) - 4.0432e−1 (1.08e−1) - 1.0242e+0 (1.45e−1) - 3.9700e−1 (1.01e−1) - 2.9844e−1 (1.97e−2) - 1.9525e+1 (6.39e+0) - 1.8314e+2 (7.12e+0) - 1.8222e+2 (6.10e+0) - 1.7097e+2 (7.49e+0) - 2.4723e−1 (2.18e−2)

3 1.4040e−1 (5.65e−2) - 4.1064e−1 (9.82e−2) - 1.6410e−2 (3.64e−4) - 2.5655e−1 (3.47e−2) - 1.2849e−1 (2.41e−1) - 3.4643e−2 (5.17e−2) = NaN (NaN) 1.5119e−2 (4.08e−4) - 1.5513e−2 (7.99e−4) - 8.1403e−2 (7.66e−2) - 1.4738e−2 (1.75e−4)

5 1.1338e−1 (5.85e−2) - 4.0660e−1 (1.53e−1) - 4.3221e−2 (2.56e−4) - 2.9019e−1 (7.33e−2) - 7.5801e−2 (6.89e−2) = 5.3527e−2 (4.14e−2) = NaN (NaN) 4.3852e−2 (1.57e−3) - 4.4832e−2 (1.69e−3) - 7.6669e−2 (4.77e−2) - 3.7589e−2 (3.96e−5)

8 1.4102e−1 (3.95e−2) - 4.5940e−1 (1.47e−1) - 9.0082e−2 (9.09e−4) - 3.2493e−1 (7.34e−2) - 8.5652e−2 (4.06e−2) = 7.9495e−2 (3.59e−2) - NaN (NaN) NaN (NaN) 2.1694e−1 (0.00e+0) = NaN (NaN) 6.3804e−2 (1.49e−4)

10 1.4286e−1 (4.52e−2) - 6.0198e−1 (1.52e−1) - 1.0586e−1 (1.10e−3) - 3.6727e−1 (7.10e−2) - 7.5415e−2 (2.04e−2) - 7.8057e−2 (2.87e−2) - NaN (NaN) 2.0939e−1 (2.52e−2) - 2.3065e−1 (0.00e+0) = 2.0059e−1 (0.00e+0) = 6.8932e−2 (1.00e−4)

DC2_DTLZ1

15 2.3120e−1 (6.31e−2) - 7.1874e−1 (8.29e−2) - 1.7049e−1 (5.05e−3) - 4.0874e−1 (1.37e−1) - 1.5173e−1 (5.11e−2) - 1.7862e−1 (6.78e−2) = NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN) 1.2195e−1 (1.12e−3)

(continued on next page)
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Table 5 (continued)
Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 NaN (NaN) NaN (NaN) 5.0295e−1 (1.50e−1) - 4.1451e−1 (3.39e−1) - 5.6204e−1 (7.77e−4) - 5.6240e−1 (3.76e−3) - NaN (NaN) 2.5172e−2 (1.69e−3) + 9.9415e−2 (1.68e−1) - 5.6567e−1 (3.68e−3) - 4.8172e−2 (8.28e−2)

5 5.8544e−1 (1.47e−3) - 1.1968e+0 (6.67e−2) - 1.9624e−1 (1.80e−1) - 3.7730e−1 (2.49e−1) - 6.0997e−1 (4.83e−2) - 5.9176e−1 (8.30e−3) - NaN (NaN) 4.8620e−1 (2.30e−1) - 6.0770e−1 (8.59e−2) - 6.2759e−1 (1.86e−2) - 6.2047e−2 (6.82e−5)

8 7.1946e−1 (2.62e−2) - 1.3449e+0 (5.88e−2) - 1.9755e−1 (1.37e−1) = 8.3837e−1 (4.89e−1) - 6.9204e−1 (3.97e−2) - 6.4366e−1 (4.78e−3) - NaN (NaN) 7.8606e−1 (0.00e+0) = NaN (NaN) NaN (NaN) 1.5498e−1 (3.21e−2)

10 7.3825e−1 (2.74e−2) - 1.3606e+0 (2.45e−2) - 1.6340e−1 (4.04e−2) + 6.6764e−1 (1.92e−1) - 6.6327e−1 (1.71e−1) - 6.9057e−1 (4.48e−3) - 7.5380e−1 (0.00e+0) = 8.1869e−1 (0.00e+0) = 8.0284e−1 (0.00e+0) = 8.1081e−1 (9.59e−3) - 1.8389e−1 (1.40e−2)

DC2_DTLZ3

15 8.2436e−1 (2.18e−2) - 1.4065e+0 (1.78e−3) - 2.5376e−1 (1.83e−2) + 1.2206e+0 (2.03e−1) - 7.5877e−1 (1.70e−1) - 7.8952e−1 (3.78e−3) - 9.6822e−1 (1.82e−1) - NaN (NaN) NaN (NaN) NaN (NaN) 2.5884e−1 (1.75e−2)

3 1.8963e−1 (1.02e−1) - 9.2109e+0 (1.21e+1) - 6.4401e−3 (2.25e−4) - 1.9866e+0 (1.26e+0) - 1.2833e−2 (2.98e−2) - 9.6676e−2 (8.24e−2) - 3.6118e+0 (2.94e+0) - 5.2763e−3 (2.52e−4) + 6.2000e−3 (7.51e−4) - 5.6977e−2 (7.56e−2) - 5.7532e−3 (1.16e−4)
DC3_DTLZ1

5 1.0550e−1 (5.47e−2) - 6.0264e+0 (9.03e+0) - 2.2297e−2 (3.94e−3) - 1.0259e+0 (5.49e−1) - 1.8314e−2 (8.07e−3) - 4.6251e−2 (5.19e−2) - 8.7615e+0 (7.34e+0) - 1.2866e−2 (5.80e−4) + 1.5066e−2 (1.16e−3) = 2.1411e−2 (3.04e−2) - 1.4656e−2 (7.67e−4)

3 1.4702e+0 (4.10e−1) - 1.0041e+1 (9.17e+0) - 2.5030e−2 (2.75e−2) - 3.9622e+0 (1.10e+0) - 6.2874e−1 (3.12e−1) - 9.3571e−1 (4.52e−1) - 1.0102e+1 (3.89e+0) - 2.2802e−2 (3.19e−2) - 3.1587e−1 (2.16e−1) - 9.0262e−1 (3.76e−1) - 8.3682e−3 (5.55e−4)

5 9.2330e−1 (4.18e−1) - 3.1029e+0 (1.62e+0) - 3.6526e−2 (9.16e−3) - 3.4067e+0 (9.54e−1) - 3.5355e−1 (2.70e−1) - 7.2354e−1 (2.86e−1) - 9.2965e+0 (6.57e+0) - 2.4476e−1 (2.24e−1) - 6.3199e−1 (1.63e−1) - 6.8480e−1 (2.53e−1) - 2.9814e−2 (1.26e−3)

8 1.6388e+0 (5.91e−1) - 2.6413e+0 (5.86e−1) - 1.1580e−1 (4.07e−2) - 3.5271e+0 (1.17e+0) - 8.0235e−1 (6.24e−1) - 1.2803e+0 (3.64e−1) - 2.0791e+1 (5.84e+0) - 5.3431e+1 (1.11e+1) - 4.6694e+1 (1.08e+1) - 4.3764e+1 (9.50e+0) - 9.0387e−2 (2.96e−2)

10 1.4288e+0 (6.42e−1) - 2.3043e+0 (6.11e−1) - 1.0824e−1 (3.12e−2) + 3.3303e+0 (1.02e+0) - 4.8189e−1 (3.09e−1) - 9.2788e−1 (3.60e−1) - 1.7295e+1 (4.92e+0) - 6.8487e+1 (9.43e+0) - 6.0148e+1 (9.55e+0) - 6.5343e+1 (8.19e+0) - 1.2956e−1 (4.21e−2)

DC3_DTLZ3

15 3.4292e+0 (1.45e+0) - 6.9724e+0 (5.97e+0) - 3.1329e+0 (6.98e−1) - 3.5671e+0 (1.27e+0) - 6.7397e−1 (2.49e−1) - 2.3755e+0 (5.97e−1) - 4.0806e+1 (5.82e+0) - 1.2969e+2 (4.01e+1) - 9.9677e+1 (1.42e+1) - 1.3491e+2 (2.96e+1) - 5.9004e−2 (2.50e−2)

+/-/= 0/41/5 0/46/0 6/40/1 1/46/0 0/42/5 5/37/5 0/35/2 5/35/4 2/37/5 4/38/1

Notes.
The best results are in bold.
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Table 6 The HV performance values of dCMaOEA-RAE and other schemes on DTLZ benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 8.3079e−1 (9.63e−3) - 8.1384e−2 (6.91e−2) - 8.3313e−1 (4.44e−3) - 3.0228e−1 (9.86e−2) - 8.3546e−1 (5.14e−3) = 8.3557e−1 (3.30e−3) = NaN (NaN) 8.3238e−1 (6.38e−3) - 8.3264e−1 (6.65e−3) - 8.3142e−1 (5.85e−3) - 8.3668e−1 (3.15e−3)

5 9.7357e−1 (4.68e−3) = 9.7600e−2 (9.50e−2) - 9.7664e−1 (1.68e−3) + 4.1091e−1 (1.74e−1) - 9.7730e−1 (2.65e−3) + 9.7655e−1 (4.20e−3) + NaN (NaN) 9.7420e−1 (8.26e−3) - 9.7612e−1 (3.08e−3) + 9.7372e−1 (3.90e−3) = 9.7429e−1 (3.07e−3)

8 9.7893e−1 (1.34e−2) - 1.0138e−1 (8.57e−2) - 9.9099e−1 (7.62e−3) + 2.0892e−1 (1.51e−1) - 9.8851e−1 (9.15e−3) = 9.9064e−1 (9.05e−3) + 1.9269e−1 (0.00e+0) = 9.7697e−1 (1.68e−2) - 9.7169e−1 (2.73e−2) - 9.9304e−1 (2.14e−3) + 9.8708e−1 (6.19e−3)

10 9.9386e−1 (8.00e−3) = 1.3252e−1 (1.17e−1) - 9.9857e−1 (1.57e−3) + 1.6268e−1 (5.70e−2) - 9.9641e−1 (3.67e−3) = 9.9648e−1 (3.24e−3) = 4.7593e−1 (2.01e−1) - 9.8585e−1 (1.66e−2) - 9.8821e−1 (1.21e−2) - 9.9726e−1 (1.44e−3) = 9.9628e−1 (2.35e−3)

C1_DTLZ1

15 9.8987e−1 (1.51e−2) = 3.7705e−2 (5.21e−2) - 9.9672e−1 (4.40e−3) + 1.3674e−1 (5.46e−2) - 9.9904e−1 (1.68e−3) + 9.9473e−1 (6.73e−3) + 4.5187e−1 (1.80e−1) - 9.7278e−1 (2.57e−2) - 9.7465e−1 (3.16e−2) - 9.9397e−1 (6.78e−3) = 9.9443e−1 (3.17e−3)

3 2.4047e−1 (2.80e−1) - 7.0244e−2 (1.83e−1) - 5.3015e−1 (4.06e−2) - 0.0000e+0 (0.00e+0) - 2.4159e−1 (2.81e−1) - 3.7197e−1 (2.68e−1) - 2.8998e−1 (2.34e−1) - 5.5833e−1 (8.94e−4) - 5.4974e−1 (2.74e−2) - 4.8312e−1 (1.93e−1) - 5.5951e−1 (9.75e−5)

5 2.8929e−1 (3.88e−1) - 6.0718e−2 (2.07e−1) - 1.5756e−1 (2.94e−1) - 0.0000e+0 (0.00e+0) - 3.4392e−1 (4.00e−1) - 3.1487e−1 (3.93e−1) - 3.1292e−2 (5.77e−2) - 7.6360e−1 (8.34e−3) - 6.2188e−1 (1.29e−1) - 7.4071e−1 (4.20e−2) - 8.1268e−1 (3.91e−4)

8 3.8594e−1 (4.52e−1) - 6.7505e−2 (2.33e−1) - 9.3339e−2 (2.14e−1) - 0.0000e+0 (0.00e+0) - 4.6273e−1 (4.44e−1) - 1.5470e−1 (3.18e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 9.2377e−1 (4.09e−4)

10 5.7396e−1 (4.76e−1) - 1.5151e−2 (3.45e−2) - 7.6375e−2 (2.12e−1) - 0.0000e+0 (0.00e+0) - 5.7572e−1 (4.72e−1) - 1.9406e−1 (3.58e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 9.6960e−1 (2.38e−4)

C1_DTLZ3

15 6.2260e−2 (2.37e−1) - 0.0000e+0 (0.00e+0) - 3.6518e−2 (1.39e−1) - 0.0000e+0 (0.00e+0) - 1.1863e−1 (3.05e−1) - 1.6573e−2 (9.08e−2) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 9.7806e−1 (2.12e−2)

3 5.0596e−1 (1.55e−3) - 4.4350e−2 (4.23e−2) - 5.0400e−1 (2.50e−3) - 4.0805e−1 (2.15e−2) - 5.0219e−1 (2.25e−3) - 5.0292e−1 (2.45e−3) - 4.1234e−1 (1.30e−1) - 5.1319e−1 (1.58e−3) + 5.1392e−1 (1.50e−3) + 5.1238e−1 (1.60e−3) + 5.0966e−1 (1.87e−3)

5 7.5435e−1 (1.16e−3) - 6.8357e−2 (6.12e−2) - 7.4050e−1 (1.97e−3) - 6.5522e−1 (1.43e−2) - 7.4789e−1 (2.07e−3) - 7.4383e−1 (1.81e−3) - 5.2333e−1 (1.83e−2) - 7.3029e−1 (4.57e−3) - 7.3504e−1 (4.48e−3) - 7.3563e−1 (2.98e−3) - 7.5518e−1 (7.24e−4)

8 7.7736e−1 (1.61e−1) - 2.9518e−2 (4.41e−2) - 7.9456e−1 (6.73e−3) - 7.8054e−1 (1.02e−2) - 8.2090e−1 (4.81e−2) - 7.9791e−1 (2.33e−2) - 2.4464e−1 (9.70e−2) - 7.7460e−1 (1.45e−2) - 7.6116e−1 (1.08e−1) - 7.7791e−1 (1.16e−2) - 8.4337e−1 (1.23e−3)

10 8.8403e−1 (2.61e−2) - 5.3786e−2 (5.15e−2) - 8.7656e−1 (4.53e−3) - 8.7053e−1 (7.11e−3) - 8.8440e−1 (2.66e−2) - 8.8678e−1 (7.23e−4) - 2.7555e−1 (1.18e−1) - 8.3972e−1 (9.91e−3) - 8.4168e−1 (7.36e−3) - 8.3985e−1 (7.27e−3) - 9.0091e−1 (1.21e−3)

C2_DTLZ2

15 8.5497e−1 (2.23e−1) - 2.6259e−2 (3.08e−2) - 9.3111e−1 (4.11e−3) - 8.6271e−1 (2.03e−2) - 9.3501e−1 (2.49e−2) - 9.4281e−1 (5.05e−3) - 1.7040e−1 (5.61e−2) - 8.6617e−1 (1.20e−1) - 8.9485e−1 (9.76e−3) - 9.0964e−1 (6.90e−3) - 9.5419e−1 (1.36e−2)

3 7.6826e−1 (8.07e−2) - 5.8664e−1 (1.48e−1) - 7.8483e−1 (1.75e−3) - 7.6185e−1 (3.01e−3) - 7.7262e−1 (6.57e−2) - 7.8802e−1 (1.42e−3) - 7.5108e−1 (4.54e−3) - 7.6293e−1 (7.65e−2) - 7.7913e−1 (4.57e−2) - 7.8602e−1 (1.77e−3) - 7.9176e−1 (3.85e−3)

5 9.6444e−1 (6.33e−4) = 8.9923e−1 (2.56e−2) - 9.5706e−1 (6.58e−4) - 9.4841e−1 (2.77e−3) - 9.5397e−1 (2.30e−2) - 9.5980e−1 (5.37e−4) - 8.9026e−1 (8.92e−3) - 9.4627e−1 (2.02e−3) - 9.4633e−1 (2.09e−3) - 9.3852e−1 (3.04e−3) - 9.6418e−1 (4.87e−4)

8 9.9365e−1 (5.77e−3) = 9.4139e−1 (2.46e−2) - 9.9435e−1 (1.28e−4) - 9.9226e−1 (2.35e−4) - 9.8274e−1 (8.96e−3) - 9.9470e−1 (1.51e−3) - 6.0447e−1 (1.91e−1) - 4.6487e−2 (4.96e−3) - 4.7454e−2 (5.64e−3) - 6.8927e−1 (5.55e−2) - 9.9592e−1 (1.21e−4)

10 9.9930e−1 (3.41e−4) = 9.8939e−1 (4.92e−3) - 9.9903e−1 (3.95e−5) - 9.9750e−1 (5.26e−4) - 9.9740e−1 (1.61e−3) - 9.9917e−1 (7.54e−5) - 3.8396e−1 (1.71e−1) - 8.5281e−2 (4.30e−3) - 8.6897e−2 (3.72e−3) - 6.5068e−1 (6.80e−2) - 9.9941e−1 (2.50e−5)

C3_DTLZ4

15 9.9907e−1 (1.30e−3) - 8.9733e−1 (1.89e−1) - 9.9998e−1 (3.35e−6) + 9.9965e−1 (1.01e−4) - 9.9887e−1 (2.12e−3) - 9.9997e−1 (1.70e−5) + 1.2437e−1 (7.96e−2) - 6.1290e−2 (5.04e−3) - 5.9072e−2 (4.18e−3) - 2.9820e−1 (8.53e−2) - 9.9996e−1 (3.26e−5)

3 6.2853e−1 (1.80e−3) - 4.7633e−1 (1.30e−1) - 6.2711e−1 (8.56e−4) - 4.4992e−2 (7.19e−2) - 6.2523e−1 (1.56e−3) - 6.2462e−1 (2.53e−3) - 5.3679e−1 (1.04e−1) - 6.3120e−1 (1.03e−3) = 6.3008e−1 (1.30e−3) - 6.3007e−1 (1.70e−3) = 6.3080e−1 (7.35e−4)

5 7.7271e−1 (1.02e−3) - 6.5021e−1 (1.86e−1) - 7.7004e−1 (6.49e−4) - 1.0812e−1 (5.02e−2) - 7.6993e−1 (8.79e−4) - 7.7093e−1 (8.96e−4) - 2.3086e−1 (2.55e−1) - 7.7030e−1 (8.49e−4) - 7.6717e−1 (2.62e−3) - 7.6534e−1 (1.59e−3) - 7.7335e−1 (2.79e−4)

8 7.9422e−1 (1.97e−4) - 6.4863e−1 (2.37e−1) - 7.9142e−1 (1.56e−3) - 1.0051e−1 (5.52e−2) - 7.9418e−1 (3.63e−3) - 7.9443e−1 (3.26e−4) = 1.2615e−1 (1.33e−1) - 5.7474e−2 (1.35e−1) - 1.9399e−2 (7.75e−2) - 2.2937e−2 (7.98e−2) - 7.9450e−1 (2.41e−4)

10 7.9615e−1 (1.87e−4) - 7.2697e−1 (1.82e−1) - 7.9611e−1 (8.32e−5) - 1.0508e−1 (2.29e−2) - 7.9096e−1 (1.80e−2) - 7.9620e−1 (1.07e−3) = 2.0599e−1 (1.35e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 7.9640e−1 (6.24e−5)

DC1_DTLZ1

15 7.9780e−1 (5.25e−5) - 2.1553e−1 (1.25e−1) - 7.9690e−1 (6.67e−4) - 9.7776e−2 (3.14e−2) - 7.9701e−1 (8.79e−4) - 7.9692e−1 (1.77e−3) - 1.3018e−1 (1.43e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 7.9782e−1 (1.26e−5)

3 4.6770e−1 (1.21e−3) - 4.4299e−2 (9.85e−2) - 4.5969e−1 (2.38e−3) - 0.0000e+0 (0.00e+0) - 4.6689e−1 (1.75e−3) - 4.6456e−1 (1.75e−3) - 1.2582e−1 (1.55e−1) - 4.7178e−1 (1.19e−3) + 4.8450e−1 (3.04e−2) + 4.7192e−1 (9.03e−4) + 4.7020e−1 (6.42e−4)

5 7.6343e−1 (8.32e−4) - 1.5999e−1 (1.91e−1) - 6.9317e−1 (2.77e−2) - 0.0000e+0 (0.00e+0) - 7.6326e−1 (1.11e−3) - 7.6066e−1 (1.70e−3) - 6.7052e−3 (2.15e−2) - 7.3878e−1 (6.61e−3) - 6.3025e−1 (1.21e−1) - 7.3260e−1 (7.72e−3) - 7.6433e−1 (6.39e−4)

8 6.7891e−1 (2.12e−1) - 3.8186e−2 (5.80e−2) - 7.2227e−1 (9.72e−2) - 0.0000e+0 (0.00e+0) - 7.2117e−1 (2.11e−1) - 7.2086e−1 (1.15e−1) - 2.7222e−3 (1.49e−2) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 8.8759e−1 (2.46e−2)

10 8.6427e−1 (6.05e−2) - 1.1858e−1 (7.32e−2) - 9.0575e−1 (1.34e−2) - 4.3598e−5 (1.67e−4) - 8.8727e−1 (8.32e−2) - 8.5660e−1 (3.52e−2) - 1.6414e−3 (8.99e−3) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 9.3396e−1 (2.37e−2)

DC1_DTLZ3

15 7.7122e−1 (1.99e−1) - 4.0233e−2 (2.95e−2) - 5.3964e−1 (2.87e−1) - 1.3883e−2 (3.04e−2) - 6.9292e−1 (2.23e−1) - 8.7544e−1 (5.45e−2) - 8.9910e−4 (4.92e−3) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 9.6829e−1 (2.64e−2)

(continued on next page)

Jietal.(2024),PeerJ
C
om

put.Sci.,D
O

I10.7717/peerj-cs.2102
25/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2102


Table 6 (continued)
Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 5.3565e−1 (1.38e−1) - 4.1253e−2 (4.80e−2) - 8.3793e−1 (8.03e−4) - 2.2592e−1 (6.28e−2) - 6.6866e−1 (3.24e−1) - 7.9298e−1 (1.26e−1) = NaN (NaN) 8.4021e−1 (9.28e−4) - 8.3918e−1 (1.91e−3) - 6.7809e−1 (1.87e−1) - 8.4132e−1 (3.90e−4)

5 8.8733e−1 (7.15e−2) - 9.4441e−2 (8.46e−2) - 9.7703e−1 (2.35e−4) - 3.1664e−1 (1.98e−1) - 9.1189e−1 (1.52e−1) = 9.6040e−1 (5.05e−2) = NaN (NaN) 9.7553e−1 (1.02e−3) - 9.7512e−1 (9.53e−4) - 9.3350e−1 (7.07e−2) - 9.7981e−1 (1.25e−4)

8 9.4308e−1 (2.81e−2) - 8.6927e−2 (8.75e−2) - 9.9630e−1 (1.49e−4) - 3.1972e−1 (1.85e−1) - 9.8299e−1 (2.83e−2) - 9.8646e−1 (2.53e−2) = NaN (NaN) NaN (NaN) 8.9944e−1 (0.00e+0) = NaN (NaN) 9.9760e−1 (5.02e−5)

10 9.8137e−1 (1.18e−2) - 3.5186e−2 (5.71e−2) - 9.9945e−1 (3.38e−5) - 2.5602e−1 (1.71e−1) - 9.9853e−1 (4.84e−3) = 9.9742e−1 (6.90e−3) = NaN (NaN) 9.6718e−1 (2.83e−3) - 9.6177e−1 (0.00e+0) = 9.6774e−1 (0.00e+0) = 9.9968e−1 (1.69e−5)

DC2_DTLZ1

15 9.7648e−1 (1.39e−2) - 6.2107e−3 (2.28e−2) - 9.9983e−1 (4.90e−5) - 2.5592e−1 (2.64e−1) - 9.9098e−1 (1.48e−2) = 9.8683e−1 (1.42e−2) = NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN) 9.9992e−1 (7.81e−6)

3 NaN (NaN) NaN (NaN) 5.5219e−2 (1.37e−1) - 1.4459e−1 (1.67e−1) - 7.7810e−3 (2.66e−4) - 7.2387e−3 (1.58e−3) - NaN (NaN) 5.5615e−1 (2.58e−3) + 4.6617e−1 (1.84e−1) - 1.3183e−2 (7.65e−4) - 5.2320e−1 (1.03e−1)

5 7.1128e−2 (1.04e−3) - 2.6517e−4 (5.24e−4) - 5.9045e−1 (2.82e−1) - 3.2567e−1 (2.40e−1) - 6.1863e−2 (1.41e−2) - 5.7198e−2 (1.80e−2) - NaN (NaN) 2.3767e−1 (3.15e−1) - 7.1011e−2 (1.08e−1) - 5.1734e−2 (1.04e−2) - 8.1290e−1 (5.15e−4)

8 9.4008e−2 (2.98e−2) - 7.8746e−4 (1.68e−3) - 8.1248e−1 (2.46e−1) = 2.5644e−1 (3.05e−1) - 1.1812e−1 (3.80e−2) - 1.5532e−1 (4.23e−2) - NaN (NaN) 6.0427e−2 (0.00e+0) = NaN (NaN) NaN (NaN) 8.9720e−1 (2.79e−2)

10 1.9009e−1 (3.83e−2) - 5.1470e−4 (1.20e−3) - 9.5124e−1 (9.40e−2) = 2.7150e−1 (2.02e−1) - 2.7644e−1 (2.20e−1) - 1.3179e−1 (1.11e−1) - 5.1449e−2 (0.00e+0) = 1.2294e−1 (0.00e+0) = 1.2314e−1 (0.00e+0) = 9.4961e−2 (4.02e−3) - 9.5968e−1 (1.77e−2)

DC2_DTLZ3

15 2.0471e−2 (1.55e−2) - 0.0000e+0 (0.00e+0) - 9.5590e−1 (2.43e−2) - 1.4640e−2 (4.07e−2) - 1.1581e−1 (2.93e−1) - 0.0000e+0 (0.00e+0) - 7.6188e−2 (8.71e−2) - NaN (NaN) NaN (NaN) NaN (NaN) 9.7109e−1 (1.80e−2)

3 1.0301e−1 (1.18e−1) - 5.0216e−4 (2.75e−3) - 5.2385e−1 (3.52e−3) - 4.7724e−3 (1.82e−2) - 5.1341e−1 (7.88e−2) - 2.7861e−1 (2.20e−1) - 1.8447e−3 (7.04e−3) - 5.3458e−1 (1.44e−3) + 5.3150e−1 (2.74e−3) - 3.9225e−1 (1.99e−1) - 5.3403e−1 (1.29e−3)
DC3_DTLZ1

5 3.3519e−2 (5.65e−2) - 0.0000e+0 (0.00e+0) - 8.8720e−2 (1.34e−2) - 0.0000e+0 (0.00e+0) - 1.2609e−1 (7.73e−3) - 9.1221e−2 (5.15e−2) - 1.7315e−3 (9.48e−3) - 1.4590e−1 (1.19e−3) + 1.3700e−1 (4.01e−3) = 1.3026e−1 (3.55e−2) - 1.3680e−1 (1.54e−3)

3 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 3.2375e−1 (5.53e−2) - 0.0000e+0 (0.00e+0) - 1.2013e−2 (6.58e−2) - 0.0000e+0 (0.00e+0) - 4.9475e−3 (2.71e−2) - 3.4162e−1 (5.41e−2) = 2.0874e−1 (1.74e−1) - 0.0000e+0 (0.00e+0) - 3.6432e−1 (1.79e−3)

5 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 5.2809e−1 (2.60e−2) - 0.0000e+0 (0.00e+0) - 2.2979e−1 (2.86e−1) - 0.0000e+0 (0.00e+0) - 3.6063e−3 (1.98e−2) - 2.9958e−1 (2.52e−1) - 3.3183e−2 (1.27e−1) - 0.0000e+0 (0.00e+0) - 5.8852e−1 (2.50e−3)

8 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 4.9611e−1 (6.96e−2) - 0.0000e+0 (0.00e+0) - 1.3614e−1 (2.78e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 7.0329e−1 (3.00e−2)

10 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 6.5133e−1 (4.80e−2) - 0.0000e+0 (0.00e+0) - 3.1313e−1 (3.60e−1) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 7.6613e−1 (2.81e−2)

DC3_DTLZ3

15 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 3.3276e−3 (1.33e−2) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 2.9572e−2 (3.65e−2)

+/-/= 0/40/6 0/46/0 5/40/2 0/47/0 2/39/6 4/34/9 0/35/2 5/35/4 3/37/4 3/35/5

Notes.
The best results are in bold.
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Table 7 The Friedman ranking of the 11 algorithms in theMW and CF test problems.

MW CF

Igd ranking Igdp ranking Hv ranking Igd ranking Igdp ranking Hv ranking

NSGAIII 3.58 3.41 3.66 4.25 4.40 4.78
IDBEA 10.16 10.19 9.96 8.33 8.02 8.71
CTAEA 5.73 5.04 4.22 4.19 4.28 4.25
TiGE2 8.75 8.39 7.31 6.21 5.58 4.84
DCNSGAIII 3.78 3.52 3.61 3.50 3.81 3.82
CMME 3.30 2.95 3.38 3.45 2.90 3.02
ToP 7.20 7.53 7.90 8.04 8.16 8.07
CCMO 5.73 6.08 6.13 7.05 7.29 7.14
DDCMOEA 5.45 5.79 6.00 6.97 7.29 6.98
BiCo 5.04 5.93 6.22 7.17 7.45 7.13
dCMaOEA-RAE 1.96 1.86 2.31 1.52 1.49 1.94

Notes.
The best results are in bold.

Figure 8 Result of non-dominated solutions achieved on the three-objective DC3-DTLZ3 benchmark.
Full-size DOI: 10.7717/peerjcs.2102/fig-8

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

Va
lu

e

NSGAIII on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

2

2.5

Va
lu

e

IDBEA on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

2

4

6

8

10

12

14

Va
lu

e

CTAEA on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

50

100

150

Va
lu

e

TiGE2 on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

Va
lu

e

DCNSGAIII on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

Va
lu

e

CMME on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.2

0.4

0.6

0.8

1

Va
lu

e

dCMaOEA-RAE on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

Va
lu

e

CCMO on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

5

10

15

20

Va
lu

e

ToP on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

10

20

30

40

50

60

Va
lu

e

BiCo on DC3_DTLZ3

1 2 3 4 5
Dimension No.

0

0.5

1

1.5

2

Va
lu

e

DDCMOEA on DC3_DTLZ3

Figure 9 Result of solutions on the five-objective DC3-DTLZ3 benchmark.
Full-size DOI: 10.7717/peerjcs.2102/fig-9

Intuitive experimental results
To provide a visual representation of the experimental outcomes, Figs. 9, 10, 11 and 12
show the parallel coordinates of the final nondominated solutions that were achieved by

Ji et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2102 27/40

https://peerj.com
https://doi.org/10.7717/peerjcs.2102/fig-8
https://doi.org/10.7717/peerjcs.2102/fig-9
http://dx.doi.org/10.7717/peerj-cs.2102


Table 8 The IGD performance values of dCMaOEA-RAE and other schemes onMW and CF benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 4.1346e−2 (1.03e−4) + 5.3510e−1 (1.68e−1) - 4.6574e−2 (3.86e−4) - 9.2444e−2 (2.68e−2) - 4.1775e−2 (3.05e−4) - 4.1772e−2 (2.55e−3) - NaN (NaN) 4.2790e−2 (3.94e−4) - 4.3134e−2 (4.43e−4) - 4.3125e−2 (4.31e−4) - 4.1556e−2 (8.50e−5)

5 1.0481e−1 (5.10e−5) - 6.2830e−1 (1.63e−1) - 1.2460e−1 (7.45e−4) - 1.4335e−1 (4.64e−3) - 1.0504e−1 (1.16e−4) - 1.0471e−1 (4.73e−5) - 3.4736e−1 (2.11e−1) - 1.2323e−1 (1.90e−3) - 1.2415e−1 (2.59e−3) - 1.2582e−1 (2.54e−3) - 1.0466e−1 (4.81e−5)

8 1.9815e−1 (1.79e−2) = 7.3962e−1 (1.92e−1) - 2.4861e−1 (1.22e−3) - 2.5424e−1 (1.29e−2) - 1.9563e−1 (1.09e−2) - 1.9424e−1 (5.16e−3) - 3.3111e−1 (1.79e−1) - 3.4269e−1 (1.21e−2) - 3.1111e−1 (1.20e−2) - 3.3144e−1 (1.04e−2) - 1.9345e−1 (9.29e−5)

10 2.1732e−1 (6.17e−4) - 7.4992e−1 (1.78e−1) - 2.8787e−1 (1.50e−3) - 2.6195e−1 (4.54e−3) - 2.2966e−1 (1.83e−2) - 2.1779e−1 (7.00e−4) - 2.7979e−1 (7.59e−3) - 3.6658e−1 (7.92e−3) - 3.7324e−1 (7.58e−3) - 3.4167e−1 (7.16e−3) - 2.1565e−1 (4.79e−4)
MW4

15 3.7106e−1 (1.43e−3) - 6.1677e−1 (8.02e−2) - 4.3220e−1 (1.54e−2) - 8.9734e−1 (1.45e−1) - 3.7025e−1 (2.30e−3) = 3.6383e−1 (3.40e−3) + 3.3544e−1 (6.68e−3) + 3.8830e−1 (5.74e−3) - 3.8721e−1 (5.39e−3) - 3.6461e−1 (7.79e−3) + 3.7002e−1 (2.57e−3)

3 5.5978e−2 (8.98e−3) - 8.0068e−1 (1.77e−1) - 5.5650e−2 (4.03e−3) - 1.3725e−1 (1.03e−1) - 4.9512e−2 (2.66e−3) - 5.6059e−2 (2.87e−3) - 7.5520e−1 (3.05e−1) - 4.9376e−2 (5.24e−3) = 5.0773e−2 (6.52e−3) - 4.7367e−2 (1.50e−3) = 4.6914e−2 (1.06e−3)

5 1.7251e−1 (5.93e−2) - 1.0041e+0 (1.35e−1) - 1.7079e−1 (2.01e−3) - 9.4621e−1 (1.03e−1) - 1.5286e−1 (2.83e−4) + 1.5402e−1 (3.15e−3) - 6.9024e−1 (4.27e−1) - 1.6384e−1 (2.70e−3) - 1.6491e−1 (2.46e−3) - 1.6445e−1 (2.87e−3) - 1.5297e−1 (1.57e−4)

8 3.3806e−1 (5.45e−2) - 1.1610e+0 (1.23e−1) - 3.5481e−1 (2.62e−3) - 1.1195e+0 (5.39e−2) - 3.1421e−1 (3.61e−2) - 3.1036e−1 (1.08e−2) - 5.1666e−1 (2.29e−1) - 4.2377e−1 (5.63e−3) - 3.8674e−1 (6.09e−3) - 4.0797e−1 (6.46e−3) - 3.0702e−1 (3.70e−4)

10 4.0071e−1 (2.18e−2) - 1.2049e+0 (1.01e−1) - 4.1210e−1 (2.18e−3) - 1.1830e+0 (5.14e−2) - 4.0145e−1 (2.81e−2) - 4.0576e−1 (1.00e−2) - 4.6236e−1 (5.63e−3) - 4.8420e−1 (4.96e−3) - 4.8514e−1 (3.60e−3) - 4.7549e−1 (4.31e−3) - 3.9335e−1 (3.39e−4)
MW8

15 6.3583e−1 (1.26e−2) - 1.2613e+0 (1.10e−1) - 6.4977e−1 (4.49e−3) - 1.2661e+0 (3.78e−2) - 6.3590e−1 (1.41e−2) - 6.2361e−1 (1.99e−3) = 6.4753e−1 (8.01e−3) - 6.8639e−1 (5.22e−3) - 6.8641e−1 (4.75e−3) - 6.7954e−1 (4.56e−3) - 6.2297e−1 (1.11e−3)

3 1.4173e−1 (6.05e−2) - 2.4198e+0 (4.30e−1) - 1.1203e−1 (7.44e−3) - 1.6621e−1 (8.43e−3) - 1.3470e−1 (2.36e−2) - 1.3348e−1 (5.32e−3) - 3.9380e−1 (5.07e−1) - 1.0776e−1 (1.86e−2) - 1.0422e−1 (2.57e−3) + 1.0359e−1 (3.47e−3) + 1.0718e−1 (2.33e−3)

5 3.5957e−1 (3.79e−2) = 2.5722e+0 (6.35e−1) - 3.0796e−1 (5.24e−3) = 5.1383e−1 (1.07e−1) - 3.7462e−1 (3.84e−2) - 5.9738e−1 (7.17e−2) - 7.6569e−1 (1.06e−1) - 3.3206e−1 (5.00e−3) = 3.2991e−1 (7.00e−3) = 3.4341e−1 (1.19e−2) = 3.4779e−1 (6.39e−2)

8 8.4285e−1 (1.81e−2) - 2.2333e+0 (2.56e−1) - 1.0653e+0 (3.23e−2) - 1.6886e+0 (1.66e−1) - 8.5748e−1 (2.45e−2) - 8.9219e−1 (4.80e−2) - 1.1373e+0 (3.17e−2) - 1.0958e+0 (8.18e−3) - 9.6001e−1 (2.06e−2) - 9.7758e−1 (1.20e−2) - 8.2505e−1 (1.58e−2)

10 1.1364e+0 (2.70e−2) - 2.6975e+0 (1.64e−1) - 1.4082e+0 (4.57e−2) - 2.2269e+0 (8.02e−2) - 1.1661e+0 (3.05e−2) - 1.1100e+0 (5.22e−2) - 1.3607e+0 (1.33e−2) - 1.2092e+0 (2.07e−2) - 1.2016e+0 (1.65e−2) - 1.1445e+0 (8.87e−3) - 1.0287e+0 (3.38e−2)
MW14

15 3.3138e+0 (5.26e−2) - 3.9256e+0 (1.29e−1) - 3.0267e+0 (9.82e−2) - 4.5330e+0 (3.33e−2) - 3.2478e+0 (5.32e−2) - 2.9776e+0 (1.27e−1) - 2.3851e+0 (1.59e−2) + 2.2046e+0 (4.51e−3) + 2.2060e+0 (3.90e−3) + 2.2208e+0 (6.17e−3) + 2.8376e+0 (1.07e−1)

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 2.7874e−1 (2.36e−1) - 1.9639e+0 (5.03e−1) - 1.3014e−1 (1.13e−1) - 3.1715e−1 (1.81e−1) - 1.3509e−1 (7.97e−2) - 3.0527e−1 (3.29e−1) - 1.8169e+0 (0.00e+0) = 1.4601e−1 (1.37e−1) = 2.4416e−1 (2.33e−1) = 1.4671e−1 (1.67e−1) - 1.0281e−1 (6.06e−2)

5 5.1186e−1 (3.53e−1) - 1.7146e+0 (7.15e−1) - 3.8089e−1 (1.52e−1) - 7.0498e−1 (3.67e−1) - 3.7751e−1 (2.53e−1) - 4.2964e−1 (2.60e−1) - 1.9103e+0 (2.33e−1) - 4.6312e−1 (2.69e−1) - 3.2679e−1 (1.80e−1) = 3.5408e−1 (1.65e−1) - 2.4837e−1 (7.57e−2)

8 7.3985e−1 (3.45e−1) - 1.4417e+0 (5.13e−1) - 5.5977e−1 (1.74e−1) - 8.5278e−1 (5.71e−1) - 6.2013e−1 (2.12e−1) - 5.7799e−1 (7.47e−2) - 1.7747e+0 (8.05e−1) - 1.0621e+0 (3.96e−1) - 1.1457e+0 (5.08e−1) - 1.1823e+0 (4.13e−1) - 5.0722e−1 (2.23e−1)

10 6.7419e−1 (1.24e−1) - 1.1133e+0 (3.34e−1) - 5.8305e−1 (1.33e−1) = 7.7031e−1 (2.71e−1) - 6.2555e−1 (2.94e−2) - 6.5622e−1 (3.80e−2) - 1.7666e+0 (9.80e−1) - 1.3395e+0 (3.48e−1) - 1.2291e+0 (3.44e−1) - 1.5427e+0 (4.84e−1) - 5.2266e−1 (2.64e−2)
CF4

15 8.8459e−1 (4.42e−1) - 1.0728e+0 (1.36e−1) - 7.1502e−1 (1.90e−1) = 7.6792e−1 (9.57e−2) - 7.8034e−1 (1.39e−2) - 7.8149e−1 (3.94e−2) - 1.7647e+0 (7.64e−1) - 1.8277e+0 (6.25e−1) - 2.4202e+0 (1.34e+0) - 1.8478e+0 (7.73e−1) - 6.8444e−1 (7.63e−2)

3 3.9755e−2 (1.64e−3) - 1.1639e+0 (4.42e−1) - 1.0639e−1 (2.95e−2) - 8.6543e−2 (8.95e−3) - 4.3037e−2 (1.56e−3) - 4.0327e−2 (8.39e−4) - 7.0123e−1 (3.23e−1) - 3.7801e−2 (1.34e−3) = 3.8347e−2 (1.09e−3) - 3.8073e−2 (1.40e−3) = 3.7546e−2 (9.19e−4)

5 1.7553e−1 (2.60e−2) - 1.0117e+0 (4.14e−1) - 2.1613e−1 (5.33e−2) - 2.0680e−1 (1.00e−2) - 1.8213e−1 (6.87e−3) - 1.6425e−1 (4.45e−3) - 8.1078e−1 (1.48e−1) - 1.9636e−1 (1.05e−2) - 1.7891e−1 (7.62e−3) - 2.0177e−1 (7.94e−3) - 1.5310e−1 (4.78e−3)

8 2.3475e−1 (1.34e−2) - 6.3313e−1 (1.81e−1) - 3.9845e−1 (1.62e−1) - 3.2142e−1 (3.92e−2) - 2.2564e−1 (1.95e−2) - 2.1694e−1 (1.35e−2) = 6.7238e−1 (1.37e−1) - 7.0495e−1 (1.01e−1) - 7.1514e−1 (1.16e−1) - 8.2211e−1 (1.59e−1) - 2.1246e−1 (7.63e−3)

10 2.9697e−1 (2.49e−2) - 7.9193e−1 (1.96e−1) - 4.2456e−1 (1.20e−1) - 3.8367e−1 (4.47e−2) - 2.9648e−1 (3.08e−2) - 3.0264e−1 (1.99e−2) - 6.7894e−1 (7.12e−2) - 1.0749e+0 (1.05e−1) - 9.9753e−1 (9.53e−2) - 1.1600e+0 (2.44e−1) - 2.4757e−1 (1.86e−2)
CF8

15 3.1541e−1 (2.25e−2) = 7.3267e−1 (1.01e−1) - 3.7981e−1 (1.81e−2) - 4.8627e−1 (4.87e−2) - 2.7887e−1 (1.89e−2) + 2.7830e−1 (1.81e−2) + 6.9293e−1 (8.91e−2) - 1.4265e+0 (2.58e−1) - 1.6848e+0 (9.48e−2) - 1.6510e+0 (1.93e−1) - 3.1348e−1 (1.19e−2)

3 4.8641e−1 (3.01e−1) - 1.1384e+0 (4.25e−1) - 1.5854e−1 (2.58e−1) - 3.3710e−1 (2.96e−1) - 1.1978e−1 (2.38e−1) - 2.0562e−1 (2.41e−1) - 8.0750e−1 (2.73e−1) - 1.2534e−1 (2.68e−1) = 1.2139e−1 (1.92e−1) = 6.9080e−2 (1.41e−1) = 4.5687e−2 (6.05e−2)

5 3.5444e−1 (2.88e−1) - 8.7013e−1 (3.99e−1) - 1.8317e−1 (1.68e−1) = 4.1561e−1 (1.12e−1) - 2.3564e−1 (2.22e−1) - 2.0452e−1 (1.22e−1) - 4.4233e−1 (1.77e−1) - 3.9534e−1 (2.39e−1) - 2.6854e−1 (1.61e−1) - 4.2466e−1 (2.28e−1) - 1.2527e−1 (2.75e−2)

8 3.2852e−1 (1.36e−1) - 5.8694e−1 (9.36e−2) - 3.3983e−1 (8.80e−2) - 4.7955e−1 (9.13e−2) - 2.8077e−1 (1.11e−1) - 2.6319e−1 (3.47e−2) - 4.0280e−1 (7.65e−2) - 7.6433e−1 (7.39e−2) - 7.5671e−1 (7.49e−2) - 7.8730e−1 (2.80e−2) - 2.0841e−1 (2.31e−2)

10 3.4037e−1 (6.52e−2) - 5.3685e−1 (1.04e−1) - 3.0463e−1 (6.32e−2) - 5.6965e−1 (9.14e−2) - 3.0606e−1 (7.40e−2) - 3.0401e−1 (2.01e−2) - 3.5304e−1 (3.65e−2) - 8.5742e−1 (3.75e−2) - 8.1686e−1 (6.66e−2) - 8.1813e−1 (3.55e−2) - 2.2183e−1 (1.85e−2)
CF12

15 3.0488e−1 (1.13e−1) = 5.3377e−1 (1.04e−1) - 4.8640e−1 (8.85e−2) - 6.3978e−1 (3.16e−2) - 3.6300e−1 (1.29e−1) - 2.7465e−1 (2.70e−2) + 3.5823e−1 (2.49e−2) - 1.0110e+0 (3.37e−2) - 1.0934e+0 (3.53e−2) - 8.7825e−1 (3.15e−2) - 2.7757e−1 (6.48e−2)

+/-/= 0/13/2 0/15/0 0/12/3 0/15/0 1/14/0 2/12/1 0/14/1 0/12/3 0/12/3 0/13/2

Notes.
The best results are in bold.
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Table 9 The IGDp performance values of dCMaOEA-RAE and other schemes onMW and CF benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 2.9289e−2 (1.03e−4) + 4.2468e−1 (1.58e−1) - 3.2597e−2 (2.71e−4) - 6.3474e−2 (1.63e−2) - 2.9571e−2 (2.29e−4) = 2.9623e−2 (2.04e−3) - NaN (NaN) 3.0663e−2 (4.53e−4) - 3.0932e−2 (4.53e−4) - 3.1015e−2 (4.29e−4) - 2.9557e−2 (1.29e−4)

5 7.4796e−2 (7.03e−5) - 5.0429e−1 (1.61e−1) - 8.8288e−2 (5.45e−4) - 9.9578e−2 (3.04e−3) - 7.5102e−2 (1.43e−4) - 7.4678e−2 (6.44e−5) + 2.8461e−1 (1.74e−1) - 9.4456e−2 (1.70e−3) - 9.4854e−2 (2.38e−3) - 9.8683e−2 (2.63e−3) - 7.4730e−2 (7.12e−5)

8 1.2979e−1 (9.87e−3) - 5.8795e−1 (2.04e−1) - 1.8021e−1 (1.46e−3) - 1.7057e−1 (7.94e−3) - 1.2823e−1 (4.97e−3) - 1.2786e−1 (4.50e−3) - 2.6204e−1 (1.54e−1) - 3.0516e−1 (2.05e−2) - 2.7824e−1 (1.93e−2) - 2.9891e−1 (1.57e−2) - 1.2754e−1 (1.83e−4)

10 1.3713e−1 (5.73e−4) - 6.1016e−1 (1.99e−1) - 2.1316e−1 (1.51e−3) - 1.7944e−1 (4.32e−3) - 1.4487e−1 (1.11e−2) - 1.3768e−1 (5.31e−4) - 2.1757e−1 (8.55e−3) - 3.2563e−1 (1.47e−2) - 3.3593e−1 (1.31e−2) - 3.0570e−1 (1.26e−2) - 1.3581e−1 (5.27e−4)
MW4

15 2.5309e−1 (2.03e−3) - 4.5806e−1 (8.82e−2) - 3.3969e−1 (2.11e−2) - 7.7342e−1 (1.61e−1) - 2.5193e−1 (3.41e−3) = 2.4334e−1 (4.98e−3) + 2.2496e−1 (8.13e−3) + 2.9788e−1 (6.89e−3) - 2.9638e−1 (6.52e−3) - 2.7074e−1 (9.05e−3) - 2.5177e−1 (3.62e−3)

3 3.9993e−2 (1.42e−2) - 5.7774e−1 (9.08e−2) - 3.3213e−2 (9.00e−3) - 7.0014e−2 (5.32e−2) - 2.8480e−2 (6.68e−3) - 3.2699e−2 (6.96e−3) - 5.1278e−1 (2.02e−1) - 3.2390e−2 (9.86e−3) - 3.4976e−2 (1.07e−2) - 2.5398e−2 (4.45e−3) - 2.3117e−2 (4.69e−3)

5 7.0555e−2 (2.88e−2) - 7.4154e−1 (7.69e−2) - 6.9426e−2 (3.12e−3) - 5.6557e−1 (9.53e−2) - 5.9255e−2 (2.50e−3) - 6.0619e−2 (3.94e−3) - 5.1355e−1 (2.94e−1) - 9.9077e−2 (5.55e−3) - 1.0132e−1 (5.79e−3) - 1.0259e−1 (5.12e−3) - 5.8090e−2 (1.41e−3)

8 1.3577e−1 (3.06e−2) - 8.5910e−1 (8.38e−2) - 1.3838e−1 (4.46e−3) - 7.3811e−1 (4.13e−2) - 1.2060e−1 (2.03e−2) - 1.1870e−1 (5.41e−3) = 3.9139e−1 (1.74e−1) - 3.2516e−1 (9.41e−3) - 2.9701e−1 (8.61e−3) - 3.1057e−1 (1.10e−2) - 1.1446e−1 (1.31e−3)

10 1.6430e−1 (1.40e−2) = 8.4317e−1 (5.78e−2) - 1.4699e−1 (3.24e−3) + 7.7858e−1 (3.46e−2) - 1.6406e−1 (1.83e−2) = 1.5094e−1 (8.88e−3) + 3.2069e−1 (1.32e−2) - 3.7183e−1 (7.68e−3) - 3.7267e−1 (5.58e−3) - 3.6790e−1 (6.13e−3) - 1.5847e−1 (2.07e−4)
MW8

15 2.5413e−1 (1.25e−2) - 8.2425e−1 (1.07e−1) - 2.7904e−1 (5.16e−3) - 8.3885e−1 (2.98e−2) - 2.5562e−1 (1.42e−2) - 2.3796e−1 (2.83e−3) = 3.9988e−1 (1.48e−2) - 5.3852e−1 (1.30e−2) - 5.3698e−1 (1.03e−2) - 5.3801e−1 (9.76e−3) - 2.3786e−1 (3.33e−4)

3 9.0654e−2 (4.74e−2) - 1.3525e+0 (7.16e−2) - 6.3732e−2 (6.30e−3) + 8.5369e−2 (5.71e−3) - 8.3313e−2 (1.49e−2) - 7.7527e−2 (4.80e−3) - 3.1444e−1 (4.32e−1) - 7.1622e−2 (1.21e−2) - 6.9085e−2 (3.32e−3) - 6.7223e−2 (3.63e−3) = 6.5913e−2 (2.88e−3)

5 2.5164e−1 (2.71e−2) - 1.6923e+0 (2.39e−1) - 1.8814e−1 (4.90e−3) + 2.9914e−1 (4.64e−2) - 2.6388e−1 (2.77e−2) - 4.4066e−1 (7.58e−2) - 6.7475e−1 (1.23e−1) - 2.2313e−1 (4.57e−3) = 2.2090e−1 (4.88e−3) = 2.6601e−1 (7.40e−3) - 2.2524e−1 (3.29e−2)

8 6.0095e−1 (1.82e−2) - 1.6448e+0 (2.44e−1) - 8.2161e−1 (4.28e−2) - 9.7918e−1 (1.29e−1) - 6.1068e−1 (1.57e−2) - 6.0961e−1 (2.01e−2) - 9.3345e−1 (5.24e−2) - 8.5644e−1 (1.64e−2) - 7.0419e−1 (2.68e−2) - 7.5409e−1 (1.99e−2) - 5.5625e−1 (1.02e−2)

10 6.8197e−1 (1.38e−2) - 1.7954e+0 (1.32e−1) - 1.0278e+0 (4.30e−2) - 1.2109e+0 (4.29e−2) - 7.0376e−1 (1.82e−2) - 6.8679e−1 (2.60e−2) - 1.0212e+0 (2.81e−2) - 9.7390e−1 (2.92e−2) - 9.6252e−1 (2.42e−2) - 8.9199e−1 (1.40e−2) - 6.2209e−1 (1.65e−2)
MW14

15 1.5370e+0 (3.28e−2) - 1.9926e+0 (1.17e−1) - 1.8635e+0 (4.55e−2) - 2.4193e+0 (2.87e−2) - 1.5042e+0 (3.45e−2) - 1.6214e+0 (1.41e−1) - 1.5120e+0 (1.85e−2) - 1.3596e+0 (3.33e−2) = 1.3643e+0 (2.48e−2) - 1.4821e+0 (3.19e−2) - 1.3495e+0 (3.76e−2)

+/-/= 1/13/1 0/15/0 3/12/0 0/15/0 0/12/3 3/10/2 1/13/0 0/13/2 0/14/1 0/14/1
Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 2.5749e−1 (2.48e−1) - 1.9349e+0 (4.94e−1) - 1.0778e−1 (1.23e−1) = 2.7235e−1 (2.08e−1) - 1.1140e−1 (9.26e−2) - 2.8786e−1 (3.41e−1) - 1.7723e+0 (0.00e+0) = 1.3125e−1 (1.46e−1) = 2.3481e−1 (2.40e−1) = 1.3039e−1 (1.75e−1) = 7.9945e−2 (7.23e−2)

5 4.6652e−1 (3.79e−1) - 1.6673e+0 (7.29e−1) - 3.1371e−1 (1.77e−1) - 6.1577e−1 (4.18e−1) - 3.0539e−1 (2.79e−1) - 3.6565e−1 (2.90e−1) - 1.9036e+0 (2.44e−1) - 4.2723e−1 (2.90e−1) - 2.8740e−1 (2.02e−1) - 3.0548e−1 (1.90e−1) - 1.6527e−1 (1.04e−1)

8 6.0122e−1 (4.24e−1) - 1.3679e+0 (5.52e−1) - 4.2633e−1 (2.35e−1) - 7.4308e−1 (6.19e−1) - 4.4543e−1 (2.89e−1) - 3.9912e−1 (1.60e−1) - 1.7444e+0 (8.22e−1) - 9.7088e−1 (4.37e−1) - 1.0620e+0 (5.51e−1) - 1.1019e+0 (4.60e−1) - 3.4447e−1 (2.81e−1)

10 4.7550e−1 (2.01e−1) - 9.6959e−1 (3.97e−1) - 4.1533e−1 (1.87e−1) - 5.9737e−1 (3.44e−1) - 3.8232e−1 (9.90e−2) - 4.4791e−1 (1.32e−1) - 1.7040e+0 (1.03e+0) - 1.2273e+0 (3.76e−1) - 1.1269e+0 (3.87e−1) - 1.4596e+0 (5.21e−1) - 2.9085e−1 (4.97e−2)
CF4

15 6.8697e−1 (5.09e−1) - 9.0722e−1 (2.11e−1) - 5.0084e−1 (2.38e−1) - 5.2603e−1 (1.83e−1) - 5.1275e−1 (1.25e−1) - 5.3619e−1 (1.58e−1) - 1.7417e+0 (7.70e−1) - 1.6453e+0 (6.89e−1) - 2.2494e+0 (1.43e+0) - 1.7250e+0 (8.22e−1) - 4.4977e−1 (1.70e−1)

3 3.1652e−2 (1.94e−3) - 1.1386e+0 (4.73e−1) - 8.5985e−2 (2.06e−2) - 6.0930e−2 (6.76e−3) - 3.7001e−2 (1.72e−3) - 3.0683e−2 (7.98e−4) - 6.9780e−1 (3.25e−1) - 3.2867e−2 (1.70e−3) - 3.3349e−2 (1.27e−3) - 3.3070e−2 (1.80e−3) - 2.9468e−2 (1.01e−3)

5 1.1606e−1 (1.13e−2) - 9.0091e−1 (4.76e−1) - 1.3901e−1 (4.64e−2) - 1.0173e−1 (6.84e−3) - 1.2223e−1 (6.03e−3) - 9.7557e−2 (3.71e−3) - 7.7930e−1 (1.54e−1) - 1.6096e−1 (1.34e−2) - 1.5010e−1 (8.61e−3) - 1.6823e−1 (9.00e−3) - 9.0641e−2 (3.57e−3)

8 1.6626e−1 (1.16e−2) - 4.5019e−1 (2.51e−1) - 2.9224e−1 (1.59e−1) - 1.5502e−1 (1.64e−2) - 1.6170e−1 (1.47e−2) - 1.2843e−1 (5.95e−3) + 6.3877e−1 (1.47e−1) - 6.5518e−1 (1.16e−1) - 6.7043e−1 (1.24e−1) - 7.6669e−1 (1.91e−1) - 1.4202e−1 (9.04e−3)

10 1.8864e−1 (1.84e−2) - 5.7974e−1 (2.60e−1) - 2.7780e−1 (1.11e−1) - 1.9705e−1 (2.25e−2) - 1.9541e−1 (2.13e−2) - 1.5847e−1 (8.78e−3) = 6.2191e−1 (8.30e−2) - 1.0119e+0 (1.21e−1) - 9.3561e−1 (1.19e−1) - 1.0793e+0 (2.77e−1) - 1.5876e−1 (1.47e−2)
CF8

15 2.5077e−1 (2.40e−2) - 5.3343e−1 (1.58e−1) - 2.4071e−1 (1.27e−2) - 2.6381e−1 (2.25e−2) - 2.3607e−1 (1.65e−2) - 1.7904e−1 (1.19e−2) + 6.3907e−1 (9.60e−2) - 1.3891e+0 (2.91e−1) - 1.6652e+0 (1.13e−1) - 1.6332e+0 (2.15e−1) - 2.2342e−1 (1.19e−2)

3 3.8140e−1 (3.05e−1) - 1.0455e+0 (4.42e−1) - 1.5463e−1 (2.60e−1) - 3.0743e−1 (3.11e−1) - 1.1515e−1 (2.39e−1) - 1.9649e−1 (2.40e−1) - 7.3841e−1 (2.89e−1) - 1.2271e−1 (2.69e−1) = 1.1983e−1 (1.92e−1) - 6.6585e−2 (1.42e−1) = 4.1701e−2 (6.16e−2)

5 3.0979e−1 (2.77e−1) - 7.7571e−1 (4.18e−1) - 1.6041e−1 (1.75e−1) = 3.4556e−1 (1.24e−1) - 2.1588e−1 (2.30e−1) - 1.7765e−1 (1.33e−1) - 3.9326e−1 (1.63e−1) - 3.7825e−1 (2.44e−1) - 2.5649e−1 (1.64e−1) - 4.0799e−1 (2.34e−1) - 1.0132e−1 (3.18e−2)

8 2.6319e−1 (1.32e−1) - 4.1857e−1 (1.21e−1) - 2.8634e−1 (1.03e−1) - 3.9054e−1 (1.07e−1) - 2.1781e−1 (1.28e−1) - 2.0438e−1 (4.80e−2) - 3.4100e−1 (8.98e−2) - 7.3697e−1 (9.46e−2) - 7.2558e−1 (9.66e−2) - 7.8037e−1 (2.94e−2) - 1.5545e−1 (3.19e−2)

10 2.7927e−1 (8.13e−2) - 3.8577e−1 (1.28e−1) - 2.4053e−1 (7.44e−2) - 4.8997e−1 (1.10e−1) - 2.3407e−1 (8.52e−2) - 2.2826e−1 (2.57e−2) - 2.8170e−1 (4.36e−2) - 8.3995e−1 (4.44e−2) - 7.9354e−1 (8.68e−2) - 8.0399e−1 (4.35e−2) - 1.5412e−1 (2.55e−2)
CF12

15 2.1264e−1 (1.40e−1) = 3.7450e−1 (1.29e−1) - 4.1921e−1 (1.04e−1) - 5.4726e−1 (3.67e−2) - 2.7843e−1 (1.55e−1) - 1.7495e−1 (3.61e−2) = 2.4987e−1 (2.01e−2) - 9.8260e−1 (3.76e−2) - 1.0658e+0 (3.91e−2) - 8.5561e−1 (3.35e−2) - 1.8532e−1 (8.48e−2)

+/-/= 0/14/1 0/15/0 0/13/2 0/15/0 0/15/0 2/11/2 0/14/1 0/13/2 0/14/1 0/13/2

Notes.
The best results are in bold.
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Table 10 The HV performance values of dCMaOEA-RAE and other schemes onMW and CF benchmark problems.

Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 8.4145e−1 (1.08e−4) + 2.3817e−1 (9.33e−2) - 8.3812e−1 (2.84e−4) - 7.7874e−1 (2.80e−2) - 8.4107e−1 (3.45e−4) = 8.4071e−1 (3.79e−3) - NaN (NaN) 8.3983e−1 (5.83e−4) - 8.3959e−1 (5.83e−4) - 8.3914e−1 (5.40e−4) - 8.4112e−1 (1.44e−4)

5 9.7987e−1 (1.42e−4) = 2.5165e−1 (8.31e−2) - 9.7694e−1 (2.15e−4) - 9.6827e−1 (2.11e−3) - 9.7980e−1 (1.33e−4) = 9.7988e−1 (1.50e−4) + 7.0289e−1 (2.37e−1) - 9.7335e−1 (7.11e−4) - 9.7311e−1 (9.90e−4) - 9.7028e−1 (1.14e−3) - 9.7980e−1 (1.36e−4)

8 9.9713e−1 (2.01e−3) = 2.5338e−1 (9.73e−2) - 9.9625e−1 (1.35e−4) - 9.8708e−1 (6.65e−3) - 9.9750e−1 (5.78e−4) = 9.9754e−1 (2.22e−4) = 8.9256e−1 (2.10e−1) - 9.7439e−1 (3.49e−3) - 9.8316e−1 (2.28e−3) - 9.7518e−1 (2.04e−3) - 9.9758e−1 (5.23e−5)

10 9.9968e−1 (2.27e−5) = 2.5479e−1 (1.14e−1) - 9.9944e−1 (2.77e−5) - 9.9858e−1 (3.97e−4) - 9.9902e−1 (1.80e−3) = 9.9968e−1 (1.37e−5) = 9.9412e−1 (9.99e−4) - 9.9332e−1 (4.29e−4) - 9.9302e−1 (3.61e−4) - 9.9418e−1 (3.02e−4) - 9.9967e−1 (1.96e−5)
MW4

15 9.9990e−1 (1.02e−5) - 6.3492e−1 (1.25e−1) - 9.9986e−1 (1.50e−5) - 2.4233e−1 (1.50e−1) - 9.9990e−1 (7.66e−6) = 9.9990e−1 (1.01e−5) - 9.9976e−1 (3.31e−5) - 9.9992e−1 (8.87e−6) + 9.9992e−1 (1.02e−5) + 9.9993e−1 (8.97e−6) + 9.9990e−1 (1.09e−5)

3 5.1180e−1 (2.47e−2) - 6.0227e−2 (4.48e−2) - 5.1631e−1 (1.59e−2) - 4.3885e−1 (9.40e−2) - 5.3113e−1 (1.17e−2) - 5.1983e−1 (1.28e−2) - 1.1356e−1 (1.29e−1) - 5.2841e−1 (1.79e−2) - 5.2341e−1 (1.88e−2) - 5.4133e−1 (7.78e−3) = 5.4121e−1 (8.41e−3)

5 7.9491e−1 (3.93e−2) - 4.9124e−2 (3.14e−2) - 7.8761e−1 (4.73e−3) - 1.4422e−1 (5.68e−2) - 8.1026e−1 (2.86e−3) - 8.0784e−1 (5.90e−3) - 2.8673e−1 (2.49e−1) - 7.6652e−1 (7.43e−3) - 7.6249e−1 (7.65e−3) - 7.6013e−1 (7.46e−3) - 8.1157e−1 (1.77e−3)

8 9.0627e−1 (2.86e−2) - 5.5880e−2 (3.60e−2) - 9.0678e−1 (4.21e−3) - 1.2706e−1 (2.40e−2) - 9.1896e−1 (1.60e−2) - 9.2039e−1 (3.85e−3) - 5.2887e−1 (1.65e−1) - 6.9051e−1 (1.78e−2) - 7.5224e−1 (1.66e−2) - 7.2151e−1 (1.95e−2) - 9.2357e−1 (8.28e−4)

10 9.6606e−1 (9.22e−3) - 7.6649e−2 (2.52e−2) - 9.6408e−1 (1.36e−3) - 1.2046e−1 (2.66e−2) - 9.6550e−1 (1.43e−2) = 9.6760e−1 (1.91e−3) - 7.3265e−1 (2.11e−2) - 7.8154e−1 (9.06e−3) - 7.7941e−1 (8.40e−3) - 7.8296e−1 (9.39e−3) - 9.6948e−1 (1.91e−4)
MW8

15 9.8076e−1 (8.48e−3) - 1.4583e−1 (1.61e−1) - 9.3112e−1 (7.04e−3) - 1.1517e−1 (3.28e−2) - 9.7927e−1 (9.93e−3) - 9.8822e−1 (4.46e−3) - 7.3366e−1 (2.97e−2) - 7.0558e−1 (9.71e−3) - 7.0550e−1 (8.88e−3) - 6.9588e−1 (1.64e−2) - 9.9046e−1 (1.24e−4)

3 4.5879e−1 (2.83e−2) - 1.3010e−2 (6.73e−3) - 4.6637e−1 (3.77e−3) - 4.4582e−1 (4.54e−3) - 4.6379e−1 (7.79e−3) - 4.6464e−1 (3.70e−3) - 3.5887e−1 (1.61e−1) - 4.6872e−1 (6.28e−3) - 4.7030e−1 (3.63e−3) - 4.6572e−1 (4.10e−3) - 4.7200e−1 (2.36e−3)

5 3.5753e−1 (1.61e−2) - 3.3504e−3 (7.86e−3) - 3.9543e−1 (3.88e−3) + 3.6694e−1 (1.62e−2) = 3.5286e−1 (1.91e−2) - 2.7439e−1 (2.08e−2) - 1.4241e−1 (4.90e−2) - 3.8912e−1 (3.12e−3) + 3.9010e−1 (2.31e−3) + 3.7165e−1 (2.79e−3) = 3.7269e−1 (1.59e−2)

8 2.2297e−1 (5.40e−3) - 7.7490e−3 (1.13e−2) - 2.4924e−1 (6.82e−3) = 2.5048e−1 (1.98e−2) + 2.2710e−1 (7.45e−3) - 2.1931e−1 (1.82e−2) - 7.1659e−2 (1.66e−2) - 1.3412e−1 (1.21e−2) - 1.6040e−1 (9.08e−3) - 1.8116e−1 (9.99e−3) - 2.3804e−1 (2.19e−2)

10 2.0448e−1 (3.94e−3) - 5.9731e−3 (1.03e−2) - 2.3281e−1 (5.15e−3) + 2.4060e−1 (1.02e−2) + 2.0460e−1 (4.41e−3) - 2.1629e−1 (1.22e−2) = 8.3505e−2 (2.35e−2) - 9.8631e−2 (2.09e−2) - 8.7729e−2 (1.93e−2) - 1.0571e−1 (2.06e−2) - 2.1926e−1 (6.31e−3)
MW14

15 1.5314e−1 (2.81e−3) - 1.5010e−1 (6.97e−3) - 1.5495e−1 (2.72e−3) - 1.0444e−1 (4.94e−3) - 1.4540e−1 (2.01e−3) - 1.5952e−1 (3.96e−3) = 1.5091e−1 (1.43e−2) - 5.0262e−3 (4.34e−3) - 3.8760e−3 (3.44e−3) - 4.5549e−3 (9.60e−3) - 1.5950e−1 (3.10e−3)

+/-/= 1/11/3 0/15/0 2/12/1 2/12/1 0/9/6 1/10/4 0/14/0 2/13/0 2/13/0 1/12/2
Problem M NSGAIII IDBEA CTAEA TiGE2 DCNSGAIII CMME ToP CCMO DDCMOEA BiCo dCMaOEA-RAE

3 2.1851e−1 (1.39e−1) - 0.0000e+0 (0.00e+0) - 3.2993e−1 (1.08e−1) = 1.6366e−1 (1.21e−1) - 3.1812e−1 (1.03e−1) - 2.2409e−1 (1.47e−1) - 0.0000e+0 (0.00e+0) = 3.0642e−1 (1.31e−1) = 2.3407e−1 (1.47e−1) - 3.1949e−1 (1.32e−1) - 3.5245e−1 (8.95e−2)

5 1.4248e−2 (1.94e−2) - 0.0000e+0 (0.00e+0) - 2.2867e−2 (1.81e−2) - 1.0441e−2 (1.34e−2) - 2.8453e−2 (2.06e−2) - 2.4517e−2 (2.64e−2) - 0.0000e+0 (0.00e+0) - 1.6121e−2 (1.97e−2) - 3.2761e−2 (2.77e−2) - 2.6162e−2 (2.06e−2) - 5.7694e−2 (2.60e−2)

8 6.8585e−4 (7.51e−4) - 2.7990e−7 (1.29e−6) - 5.5645e−4 (4.88e−4) - 2.1065e−4 (3.95e−4) - 1.0133e−3 (6.83e−4) - 1.3023e−3 (1.07e−3) = 0.0000e+0 (0.00e+0) - 9.9240e−8 (2.70e−7) - 2.6130e−7 (9.19e−7) - 2.3805e−6 (6.21e−6) - 1.3651e−3 (8.93e−4)

10 5.7391e−5 (5.13e−5) - 3.1228e−7 (8.93e−7) - 2.5140e−5 (1.96e−5) - 3.7022e−5 (3.77e−5) - 1.0095e−4 (5.25e−5) = 1.1084e−4 (1.05e−4) = 0.0000e+0 (0.00e+0) - 2.2733e−11 (8.99e−11) - 1.9845e−9 (1.06e−8) - 6.1339e−9 (3.21e−8) - 1.2048e−4 (2.76e−5)
CF4

15 8.3250e−8 (8.70e−8) = 6.3372e−11 (1.61e−10) - 1.3009e−8 (1.23e−8) - 6.2761e−8 (4.98e−8) - 1.2302e−7 (7.58e−8) + 1.4354e−7 (1.12e−7) + 0.0000e+0 (0.00e+0) - 7.7199e−16 (3.62e−15) - 3.1682e−15 (9.49e−15) - 2.3660e−15 (9.48e−15) - 9.6979e−8 (5.33e−8)

3 2.2498e−1 (2.72e−3) - 3.7582e−3 (1.10e−2) - 1.6136e−1 (2.08e−2) - 1.9275e−1 (7.88e−3) - 2.1746e−1 (2.22e−3) - 2.2573e−1 (1.57e−3) - 7.0995e−3 (1.47e−2) - 2.2579e−1 (2.10e−3) - 2.2531e−1 (1.55e−3) - 2.2433e−1 (2.19e−3) - 2.2680e−1 (1.60e−3)

5 2.6927e−1 (1.29e−2) - 1.0666e−2 (1.62e−2) - 2.3169e−1 (6.21e−2) - 2.8069e−1 (9.69e−3) - 2.6228e−1 (8.43e−3) - 2.9133e−1 (4.99e−3) - 1.6904e−3 (3.06e−3) - 2.1877e−1 (1.47e−2) - 2.3418e−1 (1.03e−2) - 2.0919e−1 (1.01e−2) - 3.0242e−1 (4.74e−3)

8 7.0072e−2 (1.03e−2) - 1.0188e−2 (8.94e−3) - 3.6058e−2 (3.85e−2) - 9.3233e−2 (7.72e−3) + 7.0002e−2 (1.36e−2) - 1.0138e−1 (6.13e−3) + 1.7981e−4 (4.74e−4) - 9.3405e−5 (2.92e−4) - 1.0920e−4 (5.65e−4) - 3.8865e−5 (2.13e−4) - 8.2937e−2 (6.07e−3)

10 1.2409e−1 (1.72e−2) - 4.8998e−3 (5.36e−3) - 8.4751e−2 (4.19e−2) - 1.2798e−1 (1.85e−2) - 1.1367e−1 (1.59e−2) - 1.5730e−1 (5.07e−3) + 1.7567e−3 (1.81e−3) - 5.1527e−8 (2.82e−7) - 9.2729e−6 (5.06e−5) - 1.4456e−5 (7.92e−5) - 1.5109e−1 (7.48e−3)
CF8

15 1.0529e−2 (4.47e−3) - 5.9518e−4 (1.27e−3) - 3.8934e−2 (5.49e−3) + 3.5485e−2 (9.58e−3) = 5.7219e−3 (2.66e−3) - 2.4147e−2 (4.10e−3) - 1.0581e−4 (1.25e−4) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 3.4936e−2 (2.89e−3)

3 3.8683e−1 (2.11e−1) - 4.2158e−2 (7.32e−2) - 5.6890e−1 (2.59e−1) - 3.4110e−1 (2.22e−1) - 6.3439e−1 (2.06e−1) - 4.9787e−1 (2.77e−1) - 6.5318e−2 (8.63e−2) - 6.4245e−1 (2.30e−1) = 6.1007e−1 (2.18e−1) = 6.8629e−1 (1.54e−1) = 7.0904e−1 (1.17e−1)

5 7.0639e−1 (2.84e−1) - 1.2679e−1 (1.16e−1) - 8.7269e−1 (2.01e−1) - 6.0749e−1 (2.02e−1) - 8.2216e−1 (2.52e−1) - 8.6234e−1 (1.58e−1) - 4.5740e−1 (1.57e−1) - 5.7809e−1 (3.20e−1) - 7.4101e−1 (2.30e−1) - 5.2243e−1 (2.70e−1) - 9.4250e−1 (3.27e−2)

8 8.3101e−1 (1.66e−1) - 2.9044e−1 (8.27e−2) - 8.6778e−1 (1.02e−1) - 8.1219e−1 (1.69e−1) - 8.9698e−1 (1.58e−1) = 9.1898e−1 (7.88e−2) - 6.9062e−1 (9.47e−2) - 2.6858e−1 (4.48e−2) - 2.7911e−1 (5.48e−2) - 2.6118e−1 (2.30e−2) - 9.7087e−1 (2.17e−2)

10 9.7140e−1 (3.72e−2) - 3.0165e−1 (8.13e−2) - 9.8856e−1 (2.73e−2) - 8.3423e−1 (1.83e−1) - 9.7873e−1 (4.03e−2) = 9.8856e−1 (5.68e−3) - 8.2950e−1 (3.84e−2) - 3.3259e−1 (2.30e−2) - 4.1362e−1 (3.30e−2) - 3.8638e−1 (1.76e−2) - 9.9038e−1 (5.79e−3)
CF12

15 8.2411e−1 (1.20e−1) - 3.1671e−1 (7.34e−2) - 9.4826e−1 (7.77e−2) - 9.2284e−1 (2.93e−2) - 9.4371e−1 (1.07e−1) = 9.1963e−1 (8.64e−2) - 8.7218e−1 (9.69e−2) - 3.4662e−1 (2.29e−2) - 2.2330e−1 (2.19e−2) - 5.1265e−1 (2.42e−2) - 9.7434e−1 (6.94e−2)

+/-/= 0/14/1 0/15/0 1/13/1 1/13/1 1/10/4 3/10/2 0/14/1 0/13/2 0/14/1 0/14/1

Notes.
The best results are in bold.
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Table 11 The IGD performance of dCMaOEA-RAE and the variants on DTLZ benchmark problems.

Problem M dCMaOEA-RAE-I dCMaOEA-RAE-II dCMaOEA-RAE

3 2.0307e−2 (1.63e−4) = 2.0479e−2 (5.54e−4) = 2.0304e−2 (1.06e−4)
5 5.1975e−2 (1.97e−4) = 6.1374e−2 (5.13e−2) - 5.1809e−2 (3.13e−4)
8 9.5552e−2 (4.64e−4) - 1.0287e−1 (1.21e−2) - 9.5362e−2 (3.70e−4)
10 1.0781e−1 (3.40e−4) = 1.1133e−1 (5.99e−3) - 1.0777e−1 (4.01e−4)

C1_DTLZ1

15 1.8056e−1 (3.54e−3) = 1.8646e−1 (6.00e−3) - 1.8093e−1 (2.25e−3)
3 5.4470e−2 (4.84e−6) = 2.2349e+0 (3.55e+0) - 5.4471e−2 (5.79e−6)
5 1.6510e−1 (4.01e−5) = 2.4353e+0 (4.25e+0) - 1.6511e−1 (5.45e−5)
8 3.1541e−1 (5.37e−4) = 4.8279e+0 (5.41e+0) - 3.1542e−1 (4.01e−4)
10 4.1997e−1 (4.15e−4) = 2.5805e+0 (4.71e+0) - 4.1996e−1 (4.59e−4)

C1_DTLZ3

15 6.2727e−1 (1.07e−2) = 1.0509e+1 (6.08e+0) - 6.2513e−1 (1.07e−2)
3 4.7274e−2 (4.76e−4) - 4.7139e−2 (5.42e−4) - 4.6736e−2 (4.47e−4)
5 1.3763e−1 (3.99e−4) - 1.3775e−1 (3.98e−4) - 1.3730e−1 (3.72e−4)
8 2.4102e−1 (2.64e−2) - 2.4176e−1 (2.07e−2) - 2.3475e−1 (1.03e−3)
10 2.5928e−1 (2.13e−3) - 2.6511e−1 (5.23e−2) - 2.5342e−1 (1.75e−3)

C2_DTLZ2

15 2.8690e−1 (4.83e−2) = 2.7273e−1 (2.16e−2) + 2.7792e−1 (3.85e−2)
3 1.2057e−1 (1.36e−1) = 9.3242e−2 (5.43e−4) + 9.6727e−2 (6.76e−3)
5 2.4665e−1 (9.25e−4) = 2.4623e−1 (1.17e−3) = 2.4646e−1 (9.17e−4)
8 4.5868e−1 (3.11e−2) = 4.5755e−1 (3.35e−2) = 4.5240e−1 (1.37e−3)
10 5.6612e−1 (2.08e−3) = 5.6809e−1 (1.90e−3) - 5.6575e−1 (1.92e−3)

C3_DTLZ4

15 8.0926e−1 (1.33e−2) = 8.0865e−1 (1.04e−2) - 8.0729e−1 (7.30e−3)
3 1.3872e−2 (2.32e−4) - 1.3633e−2 (2.21e−4) - 1.3441e−2 (1.79e−4)
5 3.9356e−2 (1.80e−4) - 3.9801e−2 (1.79e−4) - 3.9222e−2 (2.01e−4)
8 7.8816e−2 (3.73e−4) = 7.9226e−2 (3.57e−4) - 7.8712e−2 (4.62e−4)
10 8.5651e−2 (2.45e−4) = 8.5942e−2 (2.73e−4) - 8.5535e−2 (3.50e−4)

DC1_DTLZ1

15 1.2824e−1 (3.14e−5) = 1.2822e−1 (2.07e−4) = 1.2824e−1 (3.56e−5)
3 4.3553e−2 (9.34e−4) - 4.1805e−2 (1.07e−2) - 3.9421e−2 (9.47e−4)
5 1.4300e−1 (7.63e−4) = 1.4290e−1 (9.92e−4) = 1.4282e−1 (8.97e−4)
8 3.3113e−1 (4.32e−2) = 4.2799e−1 (9.94e−2) - 3.2833e−1 (3.88e−2)
10 4.2458e−1 (3.37e−2) = 4.5276e−1 (3.55e−2) - 4.2703e−1 (3.11e−2)

DC1_DTLZ3

15 6.1091e−1 (1.98e−2) = 7.0825e−1 (8.42e−2) - 6.0801e−1 (1.53e−2)
3 2.0576e−2 (2.74e−5) = 2.5392e−2 (2.63e−2) = 2.0585e−2 (3.16e−5)
5 5.2706e−2 (1.63e−5) = 5.2703e−2 (1.08e−5) = 5.2703e−2 (1.24e−5)
8 9.7176e−2 (5.01e−5) = 1.0520e−1 (1.64e−2) = 9.7173e−2 (4.00e−5)
10 1.0926e−1 (8.35e−5) = 1.2099e−1 (2.56e−2) = 1.0924e−1 (9.25e−5)

DC2_DTLZ1

15 1.8335e−1 (8.73e−4) = 1.9088e−1 (2.87e−2) = 1.8312e−1 (9.08e−4)
3 8.8731e−2 (1.13e−1) = 5.6710e−1 (8.12e−3) - 7.7453e−2 (8.03e−2)
5 1.6503e−1 (7.61e−5) = 5.8769e−1 (7.98e−2) - 1.6504e−1 (1.24e−4)
8 3.6504e−1 (6.94e−2) = 7.2973e−1 (6.67e−2) - 3.7867e−1 (6.42e−2)
10 4.4066e−1 (4.17e−2) = 7.9912e−1 (3.39e−2) - 4.4248e−1 (3.25e−2)

DC2_DTLZ3

15 6.3066e−1 (1.64e−2) = 9.8775e−1 (1.77e−2) - 6.2688e−1 (1.30e−2)

(continued on next page)

Ji et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2102 31/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2102


Table 11 (continued)

Problem M dCMaOEA-RAE-I dCMaOEA-RAE-II dCMaOEA-RAE

3 9.8363e−3 (3.60e−4) - 1.1807e−2 (1.80e−2) - 8.1517e−3 (1.02e−4)DC3_DTLZ1
5 2.2668e−2 (8.43e−4) - 2.1306e−2 (4.72e−4) = 2.1367e−2 (7.46e−4)
3 3.2289e−2 (1.81e−2) - 6.6723e−1 (2.40e−1) - 2.3069e−2 (4.38e−4)
5 8.2585e−2 (3.19e−3) - 5.4976e−1 (1.42e−1) - 7.8344e−2 (1.85e−3)
8 1.7583e−1 (4.57e−2) + 8.7158e−1 (3.96e−1) - 1.8735e−1 (2.87e−2)
10 2.2435e−1 (8.87e−2) = 7.1864e−1 (2.46e−1) - 1.9546e−1 (8.80e−2)

DC3_DTLZ3

15 1.7843e−1 (6.40e−2) = 1.0644e+0 (5.13e−1) - 1.5429e−1 (1.73e−2)

+/-/= 1/12/34 2/34/11

Notes.
The best results are in bold.
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Figure 10 Result of solutions on the eight-objective DC1-DTLZ3 benchmark.
Full-size DOI: 10.7717/peerjcs.2102/fig-10
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Figure 11 Result of solutions on the ten-objective CF12 benchmark.
Full-size DOI: 10.7717/peerjcs.2102/fig-11

the 11 algorithms in problems like DC3-DTLZ3, DC1-DTLZ3, and C1-DTLZ3, with five,
eight, and 15 objectives, respectively. To demonstrate the efficacy of the designed algorithm,
we magnified part of the images. It is evident that dCMaOEA-RAE attains a more diverse
and superior set of feasible solutions than the other algorithms. This further supports
the high performance of the designed environmental selection strategy in enhancing the
population’s search for better feasible regions. It directed the main population to be evenly
distributed within the feasible region. Additionally, Fig. 13 illustrates the evolution process
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Figure 12 Result of solutions on the fifteen-objective C1-DTLZ3 benchmark.
Full-size DOI: 10.7717/peerjcs.2102/fig-12

0
0

0.5

0.5

1

0.5

1.5

1

2

2.5

1 1.5
21.5

0
0

0.2

0.20.2

0.4

0.4

0.6

0.4 0.6

0.8

0.6 0.80.8
1

0
0

0.2

0.20.2

0.4

0.4

0.6

0.4 0.6

0.8

0.6 0.80.8 1

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

25% 50% 75% 100%

Figure 13 Changes in decision variables and objective values of the conventional algorithm in C1-
DTLZ3.

Full-size DOI: 10.7717/peerjcs.2102/fig-13

concerning changes in the objective space and decision variables for both the main and
exploration populations. The proposed algorithmmanaged to maintain certain suboptimal
solutions, thereby preventing the decision variables from becoming overly uniform and
avoiding local optima.

Summaries and discussion
Based on the aforementioned results, the performance of dCMaOEA-RAE in various types
of CMaOPs can be summarized as follows:

• dCMaOEA-RAE demonstrated suitability for problems with complex constraints, such
as C1-DTLZ3 and DC2-DTLZ1, due to its ability to retain solutions that might not
perform well in the current context but are critical for the overall optimization process.
Moreover, it effectively utilized information from these solutions to guide the population
towards CPFs in a timely manner.
• Additionally, dCMaOEA-RAE was well-suited for problems featuring irregular or
discrete CPFs, like CF4 and CF12. The selection strategy based on reference points and
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angles adapted well to such CPFs by maintaining population distribution and obtaining
a set of uniformly distributed solutions.
• Furthermore, dCMaOEA-RAE proved suitable for CMAOPs exhibiting multi-modal
attributes, such as DC3-DTLZ3. This method achieved an optimal balance between
convergence, diversity and feasibility.
• However, when it came to problems with simple constraints, other simpler and low-
complexity methods achieved similar or better results than dCMaOEA-RAE, and the
advantages of dCMaOEA-RAE were not demonstrated.
• dCMaOEA-RAE was also not suitable for problems with small feasible regions. The
retention of poor solutions reduced pressure on the solution feasibility. Therefore,
it often led to dCMAOEA-RAE being unable to identify all feasible solution regions
adequately. Simultaneously, smaller feasible solution regions decreased in efficiency
when diversity strategies were employed by dCMaOEA-RAE. This results in poorer
population distribution.

CONCLUSIONS
Within this report, we introduced a novel dual-population constrained many-objective
optimization algorithm named dCMaOEA-RAE. This approach addresses the issue of
reduced performance in traditional algorithms that happens. Specifically, we designed
two distinct search strategies for the two populations to ensure that the population could
identify the optimal feasible regions in a timely manner. We found that coordination
between different populations when using dCMaOEA-RAE reached a satisfactory balance
between feasibility, convergence, and diversity. However, there are still some limitations
to be addressed. For instance, further enhancements are needed in the performance of
dCMaOEA-RAE when dealing with problems featuring small feasible regions. The number
of poor solutions retained in this method is fixed, which may affect the efficiency of
population search. In addition, using the most efficient method possible to ensure the
uniform distribution of the population on the irregular CPFs has also become a challenge.
The above problems are likely to be solved by the theory of swarm intelligence algorithms.
We suggest focusing on exploring this research field. In the future, we will make an attempt
to add the theory of swarm intelligence algorithm and machine learning to create simple
and efficient optimization algorithms that would enhance their effectiveness in handling
CMaOPs.
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