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ABSTRACT
The soil quality plays a crucial role in providing essential nutrients for crop growth and
ensuring a bountiful yield. Identifying the soil composition, which includes sand, silt
particles, and the mixture of clay in specific proportions, is vital for making informed
decisions about crop selection andmanaging weed growth. Furthermore, soil pollution
from emerging contaminants presents a substantial risk to water resource management
and food production. Developing numerical models to comprehensively describe the
transport and reactions of chemicals within both the plants and soil is of utmost
importance in crafting effective mitigation strategies. To address the limitations of
traditional models, this paper devises an innovative approach that leverages deep
learning to predict hydroponic and soil compound dynamics during plant growth.
This method not only enhances the understanding of how plants interact with their
environment but also aids in making more informed decisions about agriculture,
ultimately contributing to more sustainable and efficient crop production. The data
needed to perform the developed hydroponic and soil compound prediction model
is acquired from online resources. After that, this data is forwarded to the feature
extraction phase. The weighted features, deep belief network (DBN) features, and
the original features are achieved in the feature extraction stage. To get the weighted
features, the weights are optimally obtained using the Iteration-assisted Enhanced
Mother Optimization Algorithm (IEMOA). Subsequently, these extracted features are
fed into the Multi-Scale feature fusion-based Convolution Autoencoder with a Gated
Recurrent Unit (MS-CAGRU) network for hydroponic and soil compound prediction.
Thus, the hydroponic and soil compound prediction data is attained in the end. Finally,
the performance evaluation of the suggested work is conducted and contrasted with
numerous conventional models to showcase the system’s efficacy.
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INTRODUCTION
Background of the study
Soil plays a vital role in sustaining human survival and facilitating overall ecosystem
health. However, the relentless pursuit of economic development and advancements
in agricultural production has exacerbated the issue of soil pollution. Among the various
sources of soil contamination, heavymetal pollution stands out as a particularly challenging
problem due to its resistance to microbial degradation (Kim, Grunwald & Rivero, 2014).
This contamination not only hampers crop growth and leads to reduced yields, but also
poses a direct threat to human life and well-being as heavy metals can find their way into
the human body through food consumption and other pathways, thereby introducing both
carcinogenic and noncarcinogenic risks to the health of human, primarily when vegetables
are grown in contaminated soil (Tan et al., 2021). It is imperative to conduct comprehensive
research on heavy metal pollution in soil (Vohland et al., 2016). In recent years, increased
attention has been devoted to the issue of heavy metal pollution in soil, leading to more
profound and comprehensive studies in this field. Worldwide, the humid tropics’ soils have
long been favored for agriculture. However, the soils in southeasternNigeria present unique
challenges while holding potential for crop production. These soils have been severely
weathered and leached due to high rainfall and high-temperature conditions, resulting
in distinctive characteristics (Wang, Tao & Zou, 2020). Like all soils, their properties,
such as texture, pH, Cation Exchange Capacity (CEC), exchangeable cations, and clay
content, are shaped by various environmental factors, including topography and other
soil-forming influences (Loew & Mauser, 2008). Additionally, these alluvial deposits’
nutrient composition, mineralogical features, and soil texture are primarily characterized
by quartz oxides, which are typically lacking in essential plant nutrients (Wang et al.,
2022). Consequently, achieving high crop yields on these soils can be challenging unless
appropriate nutrient amendments are applied (Shi et al., 2022).

Soil texture plays a crucial role in influencing the movement and storage of water and air
within the soil, as well as impacting root growth, the availability of plant nutrients, and the
activities ofmicroorganisms. Collectively, these factors affect quality, overall health, and soil
fertility (Lee, 2021). Therefore, determining and classifying soil texture is vital for a range
of decision-making processes, monitoring tools, and agricultural applications (Southey et
al., 2015). In pursuit of these goals, Visible and Near-Infrared (Vis-NIR) spectra spanning
from 400 to 2,500 nm and Mid-Infrared (MIR) spectra from 2,500 to 25,000 nm have
become widely adopted for assessing soil properties. These spectral techniques offer
the advantage of being rapid, convenient, and cost-effective for obtaining valuable soil
information (Wang et al., 2023). Soil is the primary reservoir for a wide range of organic
contaminants (Burton et al., 2015). The migration of these organic contaminants from the
soil into plants, especially agricultural crops, poses a significant risk to the sustainability
of agriculture and the potential for negative impacts on human health through dietary
exposure. This has highlighted the necessity for the development of dependable predictive
tools capable of assessing the transfer of contaminants from soil to trees. These tools would
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be based on these chemicals’ molecular characteristics or signatures (Jadidoleslam et al.,
2022).

Motivation of the study
Machine learning and deep learning approaches have found extensive applications in
diverse fields, such as natural language processing, healthcare, manufacturing, chemistry,
and image recognition, including tasks like reaction prediction and molecular property
estimation (Cao & Zhang, 2020; Abidi et al., 2023a; Abidi, Alkhalefah & Umer, 2022; Abidi
et al., 2023b; Abidi, Alkhalefah & Aboudaif, 2024). In recent times, as part of the big
data-driven toolkit for assessment and decision-making, machine learning models have
demonstrated their effectiveness in predicting various characterization parameters. While
numerous machine learning algorithms have been created for soil property prediction, the
development of site-specific techniques is essential for improving the quality of thematic
soil maps. One method to mitigate soil heterogeneity and lead to varied crop yields is using
digital soil mapping (DSM). However, DSM is often hindered by within-site variability.
Addressing these challenges has led to the development of site-specific cropping systems,
often called precision agriculture (Goldman et al., 2020). Precision agriculture techniques
allow for the precise delineation of management strategies for specific areas within a
field. This approach has evolved to incorporate the spatial variation of nutrients and soil
properties within a field, leveraging geospatial technologies and incorporating data from
remote sensing, soil properties, micro-climatic data, geological information, and digital
elevation models (DEM) (Abdulraheem et al., 2023). Precision agriculture empowers farm
managers to effectively address within-field variability and maximize the cost-effectiveness
of their proposed crop enterprises. In existing research works, the diverse techniques were
adapted for the prediction of hydroponic and soil compounds in the plant growth. Here, the
technique provides advantageous performance still it lacks from several challenges needs
to be resolved. Further, the existing techniques do not efficient in the larger datasets yet, it
often does not handle the complex datas effectively. In the aforementioned challenges, the
novel technique is implemented in the hydroponic and soil compound prediction model.
However, the implementation is done and also the datas are collected from the Kaggle
dataset to provide better performance in this research work. Moreover, the result analysis
shows better performance in terms of accuracy.

Some of the objectives of the suggested deep learning-based hydroponic and soil
compound prediction technique are given here:

• To design a deep learning-based model for hydroponic and soil compound prediction
approach that helps to make more informed choices about crop production, such as
adjusting nutrient levels, irrigation schedules, and environmental conditions to optimize
plant growth.
• To obtain three diverse features like input feature, weighted feature, and deep feature for
prediction. These diverse feature sets can enhance the performance and interpretability
of these models.
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• To propose the optimization approach named IEMOA (Iteration-assisted Enhanced
Mother Optimization Algorithm), which is favorable for optimizing the weight and
maximizing the chi-squared statistic and relief score.
• To design theMS-CAGRU (Multi-Scale feature fusion-based Convolution Autoencoder
withGated Recurrent Unit) network for compound prediction, which is the combination
of multiple powerful techniques in deep learning like convolutional autoencoders, GRU,
and multi-scale feature, this model empowers the crop growth in both hydroponic and
soil-based systems.
• Assessing the developedmodel’s performance involves evaluating its predictive accuracy,
generalization capabilities, and efficiency. The model’s performance is likely compared
to that of traditional models to demonstrate its superiority.

The main stages of the recommended hydroponic and soil compound prediction
technique model utilizing deep learning are outlined in the following sections. The
conventional works regarding hydroponic and soil compound prediction are explained
in sub-division 2. ‘An Automated Model of Hydroponic and Soil Compound Prediction
during Plant Growth using Adaptive Technique’ presents the definition of the automated
model of hydroponic and soil compound prediction during plant growth using adaptive
technique. Extracting the features and weighted features using deep belief network (DBN)
and IEMOA with the objective derivation using the suggested techniques are provided in
‘Extracting the Features andWeighted Features using DBN and IEMOA with the Objective
Derivation’. ‘Multiscale Feature Fusion-based Convolutional Autoencoder with GRU for
Prediction’ provides an explanation of the multistate feature fusion-based convolution
autoencoder with GRU used for prediction. ‘Simulation Findings and Discussions’
presents numeric outcomes and offers a summary of the deep learning-driven method for
forecasting hydroponic and soil compound dynamics. Finally, conclusions are presented
in ‘Conclusions’.

LITERATURE REVIEW
This section explains the existing literature in the field of application of deep learning for
farming, specifically for soil analysis.

Related works
Gao et al. (2021) have suggested end-to-end machine learning methods to unravel the
intricate relationship between complex molecular structures and risk characterization
factors (RCF). These models were trained on a comprehensive RCF dataset comprising 341
data points encompassing 72 different chemicals. Our study showcased the effectiveness
of the Gradient Boosting Regression Tree (GBRT) method, which was based on Extended
Connectivity Fingerprints (ECFP), in forecasting RCF values. Furthermore, our findings
shed light on the presence of nonlinear relationships among the properties of soils, plants,
and chemicals. It aided in providing a more comprehensive understanding of the risks
posed by chemicals to both human health and ecosystems.

Emadi et al. (2020) have employed various kind of approaches, including artificial neural
networks (ANN), support vector machines (SVM), random forest (RF), regression trees,
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deep neural networks (DNN) and extreme gradient boosting (XGBoost) to enhance the
prediction models for soil organic carbon (SOC). A genetic algorithm (GA) was employed
as a feature selection approach to identify the most effective variables. The results of our
study revealed that precipitation emerges as the most influential predictor, accounting for
14.9% of the spatial variability in SOC. These findings provided valuable insights into the
key drivers of SOC variability, contributing to our understanding of soil dynamics and
carbon sequestration.

Padmapriya & Sasilatha (2023) have suggested that in soil classification, utilizing
both deep learning and machine learning models has become essential for accurately
determining soil types. To this end, a novel multi-stacking ensemble model was introduced
in conjunction with a unique feature selection algorithm called Q-HOG. This approach
capitalized on the advancements in Artificial Intelligence (AI), particularly in the context
of smart agriculture. The method of designing a multi-stacking ensemble for multi-
classification leverages both deep learning and machine learning approaches, though at the
cost of increased computation time.

John et al. (2020) have proposed predictors include Base Saturation (BS), Effective
Cation Exchange Capacity (ECEC), Potassium to Magnesium Ratio (K_Mg), Calcium to
Magnesium Ratio (Ca_Mg), elevation, total catchment area, topographic wetness index,
Ratio Vegetation Index (RVI), NormalizedDifference Build-Up Index (NDBI), Normalized
Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Normalized
Difference Moisture Index (NDMI) and Land Surface Temperature (LST).

Omondiagbe et al. (2023) have designed a method for building a convolutional neural
network (CNN) for soil spectroscopic and evaluating its performance with data from the
Kellogg Soil Research Institute’s dataset and the LUCAS soil libraries. There were two
stages to this strategy. Initially, it mechanized the creation of a network with every link.
This involved automatically choosing the various layer types and the number of cells
in each layer. The first tactic was to modify the Populations Training (PBT) technique
by substituting a Bayesian optimization methodology for the random search method
employed in PBT.

Peng et al. (2023) have attempted to improve the accuracy forecasts of extremely
heterogeneous in the soil of a small-scale manufacturing site by developing efficient
3D forecasting algorithms using artificial intelligence and easily accessible multisource
supplementary data. To develop six individual and two collective models for Zn using raw
covariates from stratigraphic succession, electrical resistivity tomography, functional area
layout, and derived covariates. These models were based on machine learning algorithms
like random forest, extreme gradient boosting, and k-nearest neighbors as well as the
stacking method employed by ensemble ML.

Zhao, Wei & Wen (2022) have designed a model for forecasting the enhanced deep Q
network. The model’s convergence speed was increased, and the acquisition rate of samples
used for training for agents in deep Q networks was accelerated through the reuse of
condition values. Simultaneously, a flexible fuzzy membership component was used to
modify the agent’s responsiveness towards external feedback values over various training
intervals and enhance the model’s ability to remain stable following completion. In order to
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predict observed outcomes for interpolated points, an adaptive inverse length interpolated
technique was finally used, which increases the model’s predictive accuracy.

Tripathi, Tiwari & Tiwari (2022) have proposed estimating wheat crop yield utilizing
various data parameters, including optical remote sensing satellite data, soil health
parameters, and SAR backscatter. Among the models employed, the Deep Learning
Multilayer Perception (DLMLP) model based on soil health performed exceptionally well
in estimating crop yield. Notably, when compared to the Ordinary Least Squares Regressor
(OLS), the DLMLP test R2 showed a significant improvement of 42.2%. Remarkably, the
DLMLP model delivered satisfactory accuracy in yield estimation, even in the absence
of historical validation data for soil health parameters in the preceding years for wheat
seasons.

Research gaps and challenges
Numerous advancements and limitations in conventional hydroponic and soil compound
prediction during plant growth are listed in Table 1. Gradient boosting regression trees have
been regarded as a promising tool to tackle the impact of chemicals on the environment. It is
used for image recognition (Gao et al., 2021). Root concentration factor in plant-soil system
is regarded as the difficult one. Ensemble has the ability to determine the reliability for
better prediction. But, it is affected by diverse climate and agro-ecological structures (Emadi
et al., 2020). The ensemble model is used to validate as well as to detect the kind of clay
soil (Padmapriya & Sasilatha, 2023). It is also used to determine the fertility of the soil and
detect the weed. But it consumes more time for computation. The ensemble model has
the ability to provide better classification outcomes as well as random features (John et al.,
2020). It has permitted precise soil management for crop production. Here, the auxiliary
predictors need to be enhanced. CNN and Bayesian optimization have been used to
choose the hyperparameters tuning strategy (Omondiagbe et al., 2023). It has the ability to
determine the optimal data processing phases. But, there is a lack of soil properties.Machine
learning has the ability to retrieve features through images. It is used to train the classifier,
which differentiates the plants (Peng et al., 2023). However, this model acquires more data.
Deep QNetwork is used to enhance the stability of the model after convergence (Zhao, Wei
& Wen, 2022). The predicted accuracy of the soil is high in this model. But, it requires more
time for the training phase. DLMLP is used to measure the optimum levels of diverse soil
health parameters (Tripathi, Tiwari & Tiwari, 2022). It is useful for the earlier resolution
in soil health parameters. It is failed to determine the crop yield. These challenges help to
develop better deep learning-based hydroponic and soil compound prediction.

AN AUTOMATED MODEL OF HYDROPONIC AND SOIL
COMPOUND PREDICTION DURING PLANT GROWTH
USING ADAPTIVE TECHNIQUE
This section describes the proposed adaptive technique used for prediction.
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Table 1 Characteristics and defects of existing work hydroponic and soil compound prediction during plant growth.

Author (citation) Methodology Features Challenges

Gao et al. (2021) Gradient boosting
regression tree

• It has been regarded as the promising
tool to tackle the impact of chemicals
in the environment.
• It is used for image recognition.

• Root concentration factor in
plant-soil system is regarded as
the difficult one.

Emadi et al. (2020) Ensemble • It has the ability to determine
the reliability for better prediction.

• But, it is affected by diverse
climate and agro-ecological
structures.

Padmapriya & Sasilatha (2023) Ensemble • This model is used to validate as well
as to detect the kind of clay soil.
• It is also used to find the
fertility of the soil and detect the weed.

• But, it consume more time for
computation.

John et al. (2020) Ensemble • This model has the ability to
provide better classification outcome
as well as the random features.
• It has permitted precise soil
management for crop production.

•Here, the auxiliary predictors
are need to be enhanced.

Omondiagbe et al. (2023) CNN •Here, the Bayesian optimization has
been used to choose the hyper
parameters tuning strategy.
• It has the ability to
determine the optimal data
processing phases.

• But, there is a lack in soil
properties.

Peng et al. (2023) Machine learning • It has the ability to retrieve the
features through images.
• It is used to train the classifier,
which differentiate the plants.

• But, this model acquires
more number of data.

Zhao, Wei & Wen (2022) Deep Q Network • It is used to enhance the stability of
the model after convergence.
• The predicted accuracy of the
soil is high in this model.

• But, it require more time
for training phase.

Tripathi, Tiwari & Tiwari (2022) DLMLP • It is used to measure the optimum levels
of diverse soil health parameters.
• It is useful for the earlier
resolution in soil health parameters.

• It is failed to determine
the crop yield.

Implemented dataset details
Dataset (Hydroponic and Soil Compound Dataset): The data is gathered from the online
repository (High et al., 2019). The dataset containsmeasurements of various phytohormone
concentrations, which are plant growth hormones. These hormones include zeatin,
adenosine, indole-3-acetic acid, abscisic acid, and isopentenyl adenosine. The dataset has
been collected to study and understand how the presence of earthworms, different growth,
and the concentrations of specific plant growth hormones impact plant growth and related
factors. The input data is mentioned by the term OFda

y . The data are collected from the
standard Kaggle datasets to validate the performance accurately in the hydroponic and
soil compound prediction model in the plant growth. However, the entire dataset has
been taken for the validation process to split into training and testing process. Here, 75%
of data is considered for the training process whereas 25% of the datas is taken in the
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testing phase. Due to this, the data quality gets increased in the evaluation process. While
collecting the data in the representative and significant way, the potential bias in the dataset
gets eliminated to improve the accurate outcomes in the hydroponic and soil compound
prediction in plant growth.

Proposed prediction system and its description
Predicting hydroponic and soil compounds is crucial in agricultural research and
practice. It involves modeling and forecasting the concentrations of essential plant
growth hormones, assessing the impact of various factors such as growth media and
the presence of earthworms, and predicting outcomes related to soil health, hydroponic
conditions, and plant biomass. This predictive endeavor has significant implications
for optimizing agricultural practices, enhancing crop yield, and promoting sustainable
farming techniques. Accurate predictions of hydroponic and soil compounds can lead to
optimized crop yield. Predictive models can help in the early detection of issues in plant
growth. If the model predicts deviations from expected compound concentrations or plant
biomass, it can signal potential problems, allowing for proactive intervention. On the
other hand, plant growth is a highly complex process influenced by numerous factors.
While predictive models can capture some of this complexity, they may not account
for all variables, leading to inaccuracies. The accuracy of predictions heavily relies on
the quality of the data used for model training. Incomplete or inaccurate data can lead
to unreliable predictions. Addressing these limitations using the proposed model and
continually improving predictive techniques is essential for harnessing the full potential
of such predictions in agriculture and environmental management. Figure 1 shows the
diagrammatic representation of the proposed hydroponic and soil compound prediction
model using deep learning.

Our suggested model aims to develop a deep learning-based approach for predicting
hydroponic and soil compound dynamics to enable more informed decisions in crop
production. Initially, gather the data from the online sources and obtain three features:
input feature, weighted feature, and deep feature. In the weighted feature, the weight is
optimized using the novel technique named IEMOA to maximize the effectiveness in terms
of chi-squared statistics and relief score. To design the MS-CAGRU network, a powerful
fusion of multiple deep learning techniques for prediction is utilized. This model combines
convolutional autoencoders to capture spatial patterns and encode essential features, GRU
for handling sequential and temporal data, which is vital for understanding the dynamics of
hydroponic and soil compound systems and multi-scale feature fusion, enabling the model
to incorporate information from different levels of granularity. This approach empowers
crop growth in both hydroponic and soil-based cultivation systems. Finally, the model’s
performance is compared with traditional models to demonstrate its superiority. This
comparison will underscore the practical benefits of our deep learning-based approach in
improving crop production decisions.

Suggested optimization approach: IEMOA
The major challenges that exist in diverse algorithms for hydroponic and soil compound
prediction models in plant growth. Major optimization algorithms are emerged still it lack
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Figure 1 Delineative representation of the proposed hydroponic and soil compound prediction model
using deep learning.

Full-size DOI: 10.7717/peerjcs.2101/fig-1

from few challenges that needs to be resolved. While adapting with the larger training
samples, often it emerges overfitting or overlapping occurs which tentatively degrades
the reliability of the system. Henceforth, the research work adapts an existing Mother
Optimization Algorithm (MOA) (Matoušová et al., 2023) in order to achieve remarkable
precision and faster convergence in comparison to certain metaheuristic algorithms.
However, it is worth noting that MOA alone does not provide solutions for problems
related to hydro-thermal scheduling and unit commitment in power optimization. In
order to address these specific challenges, a novel optimization approach, known as
IEMOA, has been introduced to predict the compound of hydroponic and soil systems.
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This IEMOA algorithm shows better performance in terms of convergence analysis. Due to
this, the overfitting gets reduced to enhance the system performance in hydroponic and soil
compound prediction plant growth. Here, a technique is employed where random integers
are updated based on the worst and best fitness values. This formulation is mathematically
represented in Eq. (1).

λ=−t ∗
1

Maxiter
. (1)

Here, the random variable is stated as λ. The variable Maxiter defines the maximum
iteration, and the variable t symbolizes the current iteration. The random variable is
updated in the recommended IEMOA in Eq. (5). The mathematical model of the suggested
IEMOA is described below.

The home is unquestionably the first educational institution in society, and a mother’s
role as an educator is crucial while growing children. A mother imparts valuable life lessons
and encounters with life to her children, and they grow as a result of her guidance. The
three procedures listed below are some of the most significant ways that a mom and her
children engage of (i) training, (ii) guidance, and (iii) nurturing. Thus, the suggested MOA
makes advantage of computational modeling of compassionate and instructive actions.

The suggested MOA is a population-level metaheuristic method that uses an iterative
approach to tackle optimization issues. The user base of the method is made up of potential
fixes that are shown as variables in the issue space. Equation (2) denotes the matrix model
of the population as a whole. Set at the beginning of the optimization procedure using
Eq. (3).

Ui=



U1
...

Ui
...

Us


s×m

=


U

U1,1 ... U1,d ··· U1,m

...
. . .

...
...

...

Ui,1 ... Ui,d ... Ui,m
...

...
...

. . .
...

Us,1 ··· Us,d ··· Us,m


s×m

(2)

ui,= γj+λ.(γj−κi),i= 1,2......s,j = 1,2.....m. (3)

Here, s is the quantity of a population’s participants,m is the number of decisive factors,
and U is the population size matrix of the suggested MOA. The variable λ provides the
random interval which lies in the interval of (0, 1). Also, the upper bound and lower bound
are defined as γj and κi. The term Ui is equal to Ui= u1,i....u1,j .....ui,m.

All members of the MOA population offer a possible answer to the problem under
optimization and the values that each component of the group suggests for the decision
variables can be used to calculate the objective value for the issue at hand. The function
parameters with objectives can be expressed mathematically as a vector by applying Eq. (4).
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K =



K1
...

Ki
...

Ks


s×1

=



K (y1)
...

K (yi)
...

K (yS)


s×1

. (4)

In the above context, the term K is the final goal function value for the ith candidate
option and Ki is a collection of unbiased parameter values.

Phase 1: training (exploration phase): Applying Eq. (5), another position is produced
for every individual during this phase. As Eq. (6) demonstrated, the new positioning is
recognized as the appropriate member’s position if the objective function improves.

U p1
i,j = (up1i,j+λ(0,1)).(lj−λ(2).u

p1
i,j) (5)

Ui=

{{
uPi ,T

P
i <Ki

uPi ,else
. (6)

Here, the term Ki,j is the jth component of the starting point of the ith demographic
participant and Ti is the jth parameter of the mother’s orientation. The new standing, Ki,j ,
is obtained for the ith populous member using the first within the MOA. The term λ(2)
defines the random function that uniformly generates the random number at the interval
of (1, 2). Here, the variable λsymbolizes the random number; in conventional approaches,
the random uniform number is produced using the function range of (0, 1). This may
lead to optimal issues, and these issues can be mitigated using the proposed formulation
in Eq. (1).

Phase 2: guidance (exploration phase): Each individual’s set of poor conduct KKli,j
isascertained by applying Eq. (7) to compare the value of the objective function for that
member. A component is uniformly chosen at random from the created collection of
unwelcome actions, KKli,j , for each ui,j . Using (8), a new location is initially built for
each member to simulate protecting the child from harmful actions. In the event that it
raises the value of the goal’s function, this additional position takes the place of the related
individual’s prior role, as determined by Eq. (9).

JJi={u k,Ky >Ki ∈ l{1,2,....s},where i= 1,2....s (7)

ui,j = ui,j+λ.(ui,j−λ(2).KKli,j) (8)

Ui=

{{
uPi ,K

P
i <Ki

uPi ,else
. (9)
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From the above equation, the term KKli,j is the chosen unwanted conduct for the ith
population participant KKli,j is its jth dimension, and ui,j is the set of poor behavior for the
ith community member.

Phase 3: Nurturing (exploitation phase): Mothers encourage their children to develop
their talents throughout their schooling in a variety of ways. By slightly altering the
population members’ positions, parenting increases neighborhood searching and
exploitation capacity during the MOA phase. To replicate the period of rising, every
member of the community is first given a new position based on the modeling of kids’
growth in personalities with the help of Eq. (10). If the value of the goal function increases
in the new position, the newly created position is substituted for the prior one held by the
matching member, as specified in Eq. (11).

up1i = up1i +γ × (1−2λ)
×(γj−κi)

m
(10)

ui=

{{
U P
i ,K

P
i < yi

U P
i ,else

. (11)

In the above context,U P
i is the new location determined by the third stage of the planned

MOA, the term U P
i for the ith populace member. When i is the result of the goal of the

function, where m is the repetition counter’s truthful value. The pseudocode presented
IEMOA is presented in Algorithm 1. Figure 2 shows the recommended IEMOA model.

EXTRACTING THE FEATURES AND WEIGHTED FEATURES
USING DBN AND IEMOA WITH THE OBJECTIVE DERIVATION
This section explains the extracting and weighted features using the proposed method in
detail.

Original and weighted features
In this phase, the collected data is provided as the original feature, which is represented
as OFda

y . Also, multiplying the original data with these optimized weights generates a
set of weighted features represented as WFda

T . Optimizing the weights can significantly
enhance the performance of machine learning models. It allows the model to assign
more importance to relevant features, which can lead to better predictions and reduced
overfitting. The weight is optimized by using the proposed IEMOA approach. This step
aims to enhance the relevance of certain features, potentially amplifying their impact on
subsequent analyses and predictions. Figure 3 shows the view of original and weighted
features.

DBN-based features
A DBN is a type of neural network that contains many layers of interconnected neurons or
nodes. It is typically composed of two main types of layers: a stack of Restricted Boltzmann
Machine (RBMs) in the lower layers and a layer of traditional neural network neurons in
the upper layer.
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The collected dataRFda
y is the input to this phase, to address this limitation; a hierarchical

learning system can be employed, wherein the learned features from one RBM are used
as input data for a subsequent RBM. This layer-by-layer approach is commonly used to
construct a DBN (Zhao, Zhang & Zheng, 2017), enabling the progressive extraction of deep
features from the input data.
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Algorithm 1: IEMOA
Input: Optimized weightWe , Relief score µ, Chi-squared
statistic ϕ2

Output: Optimal solution
Begin MOA algorithm
Determine the number of iterations and size of the
population
Generate an initial population of potential solutions based
on Eq. (2)
Calculate the fitness function for each population
Initializem
Form= 1 :M
While (i< imax)do
Best random value is updated using Eq. (1)
For i= 1 : S
Phase 1: Education
Update the position of ith members in the population in
Eq. (5)

Update the ithmember’s attributes by Eq. (6)
Phase 2: Guidance
Compute the updated position of the ith member in the population
according to Eq. (7)
Modify the attributes of the ithmember, such as its position, velocity,
or other relevant properties, as prescribed by Eq. (8)
Phase 3: Nurturing
Compute the updated position of the ith member in the
population according to Eq. (10)
Modify the attributes of the ithmember, such as its position,
velocity, or other relevant properties, as prescribed by
Eq. (11)
End
Most promising candidate solution is preserved
Optimal solution is obtained
End

DBN is a type of deep learning model used in machine learning and neural network
research. They are composed of multiple layers of stochastic, generative neural networks,
which include RBMs. The key idea behind DBNs is to learn a hierarchical representation
of the input data, with each layer capturing increasingly abstract and high-level features.

A RBM is often employed as a building block in the layer-wise learning of a DBN. It
consists of two layers, representing a specific type of Markov random field, with visible
unit’s denoted as h= 0,1D and units of hidden as h= 0,1F . The energy associated with a
joint configuration of these units is given by Eq. (12). The term gi and yi defines the bias of
the unit.

T (h,j,k)=−
D∑
i=1

gi,bi−
D∑
i=1

yi,ji−
D∑
i=1

u∑
j=1

Ti,ui,yi. (12)
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The variable T (h,j,k) collectively defines the model’s characteristics and plays a crucial
role in determining the energy of a configuration and, consequently, the probability
distribution associated with the RBM and, mathematically shown in Eqs. (13) and (14).

T (h,j,k)=
1

Z (θ)
exp(−T (h,j,k)) (13)

Z (θ)=
∑
v

∑
h

(−T (h,j,k)). (14)

Hence, the allocating function is defined as Z (θ). Once the hidden units are selected,
reconstruct the input data by setting the probability of Eq. (14). The strength of RBMs is
rooted in their reconstruction-oriented training approach. In the reconstruction process,
RBMs rely solely on the information contained within their hidden units, which have been
trained to capture meaningful features from the input data. Finally, get the deep features,
which are represented as DFda

y . Figure 4 shows the architecture diagram of DBN-based
features.

Fitness equation for weighted features
The three different types of features offer a diverse and comprehensive set of attributes
for subsequent analyses. Optimizing the weights is a crucial step in various data analysis
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and modeling tasks. Feature weight optimization can make models more interpretable.
Emphasizing certain features can lead to a more understandable model, making it easier
to explain the factors driving the predictions or decisions. When feature weights are not
optimized, all features are treated equally in the analysis, regardless of their relevance
or importance. This can lead to suboptimal results, especially if some features are more
informative than others. To lessen these kinds of drawbacks optimized weight parameters,
with the help of the suggested IEMOA approach. The objective formulation of the weighted
feature is shown in Eq. (15).

TL1= arg max
{We }

(
φ2+µ

)
. (15)

From the above context, the term φ2symbolizes the Chi-squared statistic and µdefines
the relief score. Also, the variable Weshows the optimized weight, and the range is 0.01 -
0.99. The definition and formulation of φ2 and µis specified in Eqs. (16) and (17).

Chi-squared statistic: It quantifies the difference between the expected and observed
frequencies of each category in the feature concerning the target variable.

φ2= chi2=
∑

(oij−Eij)2

Eij
. (16)

Relief score: It measures the relevance of individual features in distinguishing between
different classes in a dataset. It evaluates how well a feature can discriminate between
instances of the same class and instances of different classes.

µ= ui− (yi−NHi)+ (yi−NMi). (17)

From the above context, the term oij and Eij denotes the observed and the expected
frequency. Moreover, the term NHi defines the same class and NMi defines the different
classes.
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MULTISCALE FEATURE FUSION-BASED CONVOLUTIONAL
AUTOENCODER WITH GRU FOR PREDICTION
This section explains the details of the proposed convolutional autoencoder with GRU for
prediction.

Convolutional autoencoder
A typical conventional autoencoder consists of two layers corresponding to an encoder
function denoted as kw anda decoder function symbolized as ji (Guo et al., 2017). The
primary objective of an autoencoder is to generate a code or representation for each input
sample by reducing the MSE between the input data and the corresponding reconstructed
output across all the samples, which is mathematically shown in Eq. (18).

min
1
m

m∑
m=1

∥∥ji(kw(yi))−yi∥∥2. (18)

The fully connected autoencoder is defined as Eq. (19).

ji(y)= σ (wy)= k
kw(k)= σ (uk).

(19)

In the context of this model, y and k are both vectors, and σ represents an activation
function such as sigmoid or ReLu. Once the autoencoder is trained, the resulting code
k becomes a new and more meaningful representation of the sample input. This k can
subsequently be input into the next autoencoder to create what is known as Stacked
Autoencoders (SAE). To leverage the data, a convolution autoencoder is defined as shown
in Eq. (20).

ji(y)= σ (y ∗w)= k
kw(k)= σ (h∗u).

(20)

From the above equation, the term k and yare tensors and also the term ∗convolution
operator. Figure 5 shows the architecture diagram of the convolution autoencoder.

Gated recurrent unit (GRU)
The GRU is a network that builds upon the long short-term memory (LSTM) architecture,
with the goal of improving the efficiency of the LSTM structure while maintaining its
efficiency (Li et al., 2021). When compared to the LSTM network, the GRU network
simplifies the structure by having only two gate mechanisms: the update gate and the reset
gate. These gates play a crucial role in addressing prediction challenges in time series data
with long intervals and delays. The update gate regulates how much information from the
previous time step is incorporated into the current time step, allowing for flexible control
over the memory of the network. In contrast, the reset gate determines the degree to which
the network should ignore information from the previous time step, allowing for selective
retention of relevant information.

The gate of reset output at a time is denoted as kt , and the gate of update output at a
time is represented as yt . Additionally, lt and lt−1correspond to the outputs at time t and
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lt−1, respectively. The term yt signifies the input at time t , and kt represents the function of
activation. The computation process for the memory unit can be described using Eqs. (21)
to (24).

kt = ∂(wr .[lt−1,yt ]) (21)

yt = ∂(wr .[lt−1,yt ]) (22)

l̂t = tanl(wr .[kt ∗ lt−1,yt ]) (23)

lt = (1−ht )∗ lt−1+yt . (24)

The activation function is termed as ∂ . From the above equations, the term [] defines the
vector representation of the two product matrices, and also the matrix product is defined
as ∗. Figure 6 shows the architecture diagram of GRU.

Proposed MS-CAGRU for prediction
The MS-CAGRU network model represents an innovative and powerful solution for
hydroponic and soil compound prediction. By combining convolutional autoencoders,
GRU, andmulti-scale feature fusion, this model empowers crop growth in both hydroponic
and soil-based systems. Thus, the developed technique has the ability to handle the complex
datas while the training process takes place. Moreover, the computational complexity of
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the developed MS-CAGRU model offers better performance in the hydroponic and soil
compound prediction model. Due to this, the recommended model provides accurate
outcomes the model offers more stable and reliable performance than the existing
approaches.

Multiscale: This network leverages multi-scale feature fusion techniques, enabling the
model to cover the data at different levels of granularity. This approach enhances the
model’s ability to adapt to various aspects of the data. In our proposed model, the original
feature OFda

y , weighted features WFda
T , and deep features DFda

y are given as input to each
scale of the encoder side of the convolution autoencoder, finally these features are combined
that is denoted as EFy . This feature extraction aims to extract themost valuable information
from the data, enhancing the overall quality of the analysis and insights obtained.

MS-CAGRU: The integration of the extracted features EFy as input to the next layer
of convolution autoencoder and subsequently using the output of the convolution
autoencoder as input to the GRU, which is the replacement of the FC (fully connected)
layer and finally obtained the predicted outcome. This sequential flow of data through
the convolution autoencoder and GRU components offered a comprehensive approach to
understanding and predicting hydroponic and soil compound levels. Figure 7 shows the
proposed view of MS-CAGRU based hydroponic and soil compound prediction.

SIMULATION FINDINGS AND DISCUSSIONS
This section discusses the obtained results.

Experimental setup
This paper employed the Python platform to develop a predictive model for hydroponic
and soil compounds using deep learning techniques. To validate the effectiveness of
the suggested IEMOA-based prediction method, the results were compared with other
classification and optimization techniques. The implementation process involved a
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population size, chromosome length, and total iterations set at 10, no of features in data,
and 50. Various classifiers, including ‘‘VGG16 (Thepade et al., 2022), InceptionNet (Zhong
& Pun, 2020), Resnet (Zhu et al., 2022), and GRU (Li et al., 2021), were utilized to assess
the performance of the MS-CAGRU model’’. Additionally, heuristic approaches such as
Beluga Whale Optimization (BWO) (Gao et al., 2023), Cheetah Optimizer (CO) (Akbari et
al., 2022), Squid Game Optimizer (SGO) (Azizi et al., 2023), and MOA (Matoušová et al.,
2023) were employed to validate the efficacy of the suggested IEMOAmethod. Also, baseline
methods like YOLO-EfficientNet (Wang, Wu & Shen, 2024), Multiple Linear Regression
(MLR) (Yang et al., 2023), and Bidirectional Recurrent Neural Network (BRNN) (Yu et
al., 2023) are computed using the developed model for attaining efficient performance.
The basic reporting of the experimental design is listed below. Moreover, the processor of
Intel core i3 is used for the implementation with the RAM size of about 8 GB. Hence, the
language of phycharm is performed in this research work.

Performance criteria
Several performance metrics were employed and computed using the following equations
to assess the effectiveness of the studied IEMOA model for predicting hydroponic and soil
compound outcomes. Due to these diverse performance measures, the evaluation metrics
were obtained to prove its efficient performance in the developed model.

(a) The ‘‘F1-score’’ Um defines the test is conducted to show the accuracy of the model
which is estimated using Eq. (25).

Um=
2∗qq

2∗
(
qq+vv+ww

) (25)
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(b) The NPV,Wk is the measurement of all possible outcomes is measured in Eq. (26).

Wk=
xx

xx+ww
(26)

(c) The ‘‘specificity’’ Wc is defined as the proportion of all negative values which is
correctly estimated using Eq. (27).

Wc =
xx

xx+vv
(27)

(d) The computation of ‘‘accuracy’’ Ai is the measurement of accurately predicted
outcomes in the hydroponic and soil compound which is estimated using Eq. (28).

Ai=
xx+qq

xx+vv+qq+ww
(28)

(e) The computation of ‘‘sensitivity’’ is the proportion of all positive values that are
correctly estimated using Eq. (29).

Sn=
qq

qq+ww
(29)

(f) The false discovery rate (FDR) Rh is the sum of all the rejected outcomes in the
number of both false positives and true positives which is estimated in Eq. (30).

Rh=
qq

qq+vv
(30)

(g) The computation of false positive rate (FPR) Rb isthe ratio of analyzing the negative
events as well as the number of actual values is evaluated using Eq. (31).

Rb=
vv

xx+vv
(31)

(h) The computation of true positive rate (TPR) Tb isused to evaluate the proportion of
the positive predicted samples that is correctly estimated which is expressed in Eq. (32).

Tb=
ww

xx+qq
(32)

(i) The computation of true negative rate (TNR) TN isdefined as the actually predicted
negative values is estimated using Eq. (33).

TN =
ww

xx+vv
(33)

(j) The computation of positive predicted value (PPV) or Precision PPV isdefined as
the measurement of predicting the positive samples which is computed in Eq. (34).

ppv =
ww

ww+vv
(34)

Here, variable ww and xx , qq and vv symbolize true, false positives and false, true
negatives.
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Figure 8 ROC assessment of the designed hydroponic and soil compounds prediction model com-
pared with various classifiers.
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Convergence evaluation of the implemented algorithm on hydroponic
and soil compounds framework
The assessment of the cost function for the executed approach within the hydroponic and
soil compounds prediction framework is depicted in Fig. 8. This illustration demonstrates
its performance across different iteration counts. Notably, the cost function of the
IEMOA-based hydroponic and soil compounds prediction method is significantly lower
than 42.07%, 73.19%, 42.17%, and 51.25% of BWO, CO, SGO, and MOA algorithms,
respectively, at the 10th iteration. This analysis underscores the enhanced performance of
the IEMOA-based approach.

ROC assessment of the designed hydroponic and soil compounds
prediction model
Figure 9 depicts the ROC assessment of the hydroponic and soil compounds prediction
model that was developed. This validation provides insights into the effectiveness of
the MS-CAGRU system in predicting hydroponic and soil compounds. The TPR of the
MS-CAGRU-based hydroponic and soil compounds prediction system outperforms higher
values thanVGG16, InceptionNet, Resnet, andGRUby 3.85%, 12.5%, 19.12%, and 30.65%,
respectively. This difference in TPR demonstrates the superior predictive performance of
the MS-CAGRU-based model for hydroponic and soil compound prediction.
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Figure 9 Convergence evaluation of the implemented IEMOA approach compared with different algo-
rithms.
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Validation of the proposed hydroponic and soil compounds
prediction model
In Figs. 10, 11, and 12, the validation of the suggested hydroponic and soil compounds
prediction model is presented, with a comparison to existing classifiers. In Fig. 10A, the
accuracy of the MS-CAGRU-based hydroponic and soil compounds prediction model
during the 65th learning percentage, it is observed that it performs 11.11%, 38.46%, 8.57%,
and 47.96% more effectively than VGG16, InceptionNet, Resnet, and GRU, respectively.
This outcome establishes that the proposed MS-CAGRU-based hydroponic and soil
compounds prediction model framework delivers superior performance when compared
to other existing models.

Performance analysis of the suggested hydroponic and soil
compounds prediction model
The performance analysis of our recommended hydroponic and soil compounds prediction
model is presented inTable 2, which shows the comparisonwith the conventional classifiers.
The MS-CAGRU-based model framework demonstrates superior performance compared
to VGG16, InceptionNet, ResNet, and GRU models by 7.2%, 2.95%, 5.18%, and 1.05%,
respectively. This outcome establishes that the proposed MS-CAGRU-based hydroponic
and soil compounds prediction model framework delivers superior performance when
compared to other existing models.
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Figure 10 Performance analysis of the proposed hydroponic and soil compounds prediction model
against existing classifiers regarding (A) accuracy, (B) CSI, (C) F1-score, (D) FDR, (E) FNR, (F) FOR.

Full-size DOI: 10.7717/peerjcs.2101/fig-10

Comparative analysis of the developed model using benchmark
methods
The comparative analysis of the developed model for hydroponic and soil compound
prediction model is compared with benchmark methods which are shown in Table 3.
The developed model shows 3.2%, 2.1%, 1.0%, and 10.6% enhanced performance than
YOLO-EfficientNet, MLR, and BRNN in terms of precision measure. Throughout the
analysis, the developed model shows enriched performance than the baseline methods.
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Figure 11 Performance analysis of the proposed hydroponic and soil compounds prediction model
against existing classifiers regarding (A) FPR, (B) LRplus, (C) MCC (D) NPV (E) PPV, (F) Precision.

Full-size DOI: 10.7717/peerjcs.2101/fig-11

Generalization capabilities and scalability of the developed model
The performance of the scalability of the developed model is shown in Fig. 13. Here, the
scalability of the developed model is analyzed and varied based on different data sizes in
terms of accuracy. Moreover, the developed model offers better scalable performance while
handling the different sizes of data to enhance the system performance.

Abidi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2101 25/33

https://peerj.com
https://doi.org/10.7717/peerjcs.2101/fig-11
http://dx.doi.org/10.7717/peerj-cs.2101


  
(a) (b) 

  
(c) (d) 

 

Figure 12 Performance analysis of the proposed hydroponic and soil compounds prediction model
against existing classifiers regarding, (A) Sensitivity, (B) Specificity, (C) TNR, (D) TPR.

Full-size DOI: 10.7717/peerjcs.2101/fig-12

Analysis based on the robustness of the developed model
The robustness analysis is conducted based on the developed model is visualized in Fig. 14.
Hence, the robustness analysis is evaluated to prove an accurate outcome in the hydroponic
and soil compound prediction model.

DISCUSSION
Advantages and disadvantages of deep learning based approaches
The deep learning based approaches have evolved in recent times for hydroponic and soil
compound prediction framework which is necessary to plant growth. Recently, numerous
deep learning techniques are adapted to increase the productivity based on the plant
growth. In traditional approaches, the larger datas becomes complicated to degrade the
system performance. While comparing with the traditional approaches, the deep learning
model shows superior performance in order to enhance system performance in order to
handle complex larger datas while training samples.

Findings of the results
The resultant analysis shows the accurate findings of the developed model which is
described below. Here, the analysis of the developed model offers better performance in
the convergence analysis which has the greater capability to minimize the overfitting issues
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Table 2 Characteristics and defects of existing work hydroponic and soil compound prediction during plant growth.

Metrics/Classifiers VGG16
(Thepade et al., 2022)

Inception-Net
(Zhong & Pun, 2020)

ResNet
(Zhu et al., 2022)

GRU
(Li et al., 2021)

MS-CAGRU

Accuracy 91.8 93.64 94.72 96.04 97.32
Sensitivity 91.87697 93.69085 94.63722397 96.05678 97.31861
specificity 91.72078 93.58766 94.80519481 96.02273 97.32143
precision 91.94949 93.7648 94.93670886 96.1326 97.39542
FPR 8.279221 6.412338 5.194805195 3.977273 2.678571
FNR 8.123028 6.309148 5.362776025 3.943218 2.681388
NPV 91.72078 93.58766 94.80519481 96.02273 97.32143
FDR 8.050513 6.235201 5.063291139 3.867403 2.604578
F1-Score 91.91321 93.72781 94.78672986 96.09467 97.357
MCC 0.835968 0.872775 0.894387547 0.920785 0.94639
PR 91.87697 93.69085 94.63722397 96.05678 97.31861
TNR 91.72078 93.58766 94.80519481 96.02273 97.32143
PPV 91.94949 93.7648 94.93670886 96.1326 97.39542
FOR 8.279221 6.412338 5.194805195 3.977273 2.678571
LRplus 11.0973 14.61103 18.21766562 24.15142 36.33228
CSI 85.0365 88.19599 90.09009009 92.48292 94.85012

Table 3 State-of-art-Method for the hydroponic and soil compound prediction approach.

Metrics/ Classifiers YOLO-EfficientNet
(Wang, Wu & Shen, 2024)

MLR
(Yang et al., 2023)

BRNN
(Yu et al., 2023)

MS-CAGRU

Accuracy 94.5 95.4 96.35 97.32
Sensitivity 94.68 95.49 96.29 97.31861
Specificity 94.32 95.31 96.41 97.32143
Precision 94.31 95.30 96.39 97.39542
FPR 5.68 4.69 3.59 2.678571
FNR 5.32 4.51 3.71 2.681388
NPV 94.69 95.50 96.31 97.32143
FDR 5.69 4.70 3.61 2.604578
F1-Score 94.49 95.39 96.34 97.357
MCC 89.00 90.80 92.70 94.639

to strengthen the developed model in hydroponic and soil compound prediction model
for plant growth. While considering the diverse evaluation measures, the developed model
gets validated and analyzed with the standard baseline methods. These analyses are prone
to prove the superiority of the developed model over the existing approaches. Henceforth,
the developed MS-CAGRUmodel offers 97% which shows better performance. Hence, the
prediction of hydroponic is the significant factor where the maintenance and watering the
plants gets decreased to increasing the plant growth in a significant approach. Due to its
efficient outcome, the developed model has the ability to strengthen the performance in
the hydroponic and soil compound prediction approach for the plant growth to provide
better yield productivity to the farmers. In terms, the existing model VGG16 model shows
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Figure 13 Scalability of the developedmodel.
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Figure 14 Robustness of the developedmodel.
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91% which shows lower performance while validating with accuracy analysis. Also, the
error rate of FDR analysis of the VGG16 model achieves 8.0% whereas the developed
MS-CAGRU model shows 2.6% it significantly reduces the issues of misclassification to
provide the accurate predicted outcomes in the plant growth approach.

CONCLUSIONS
A deep learning-based approach was developed to predict hydroponic and soil compound
dynamics, aiming to enhance decision-making in crop production. Initially, data was
collected from online sources. The endeavor began with the collection of relevant data
from online sources. Three crucial features were identified: input, weighted, and deep
features. The weights were optimized using the IEMOA technique, which focused on
maximizing the chi-squared statistic and relief score, ensuring the effectiveness of the
model. The new model was MS-CAGRU network, a robust fusion of convolutional
autoencoders, GRU, and multi-scale feature fusion. This innovative approach empowered
crop growth in both hydroponic and soil-based cultivation systems. Following the model’s
design, its performance was rigorously compared to that of traditional models. This
comprehensive comparison highlighted the practical benefits of the deep learning-based
approach in improving crop production decisions. When assessing the precision of the
MS-CAGRU-based hydroponic and soil compounds prediction model during the 75th
learning percentage, it was observed that it performs 21.11%, 58.46%, 81.57%, and
37.96% more effectively than VGG16, InceptionNet, Resnet, and GRU, respectively. This
outcome establishes that the proposedMS-CAGRU-based hydroponic and soil compounds
prediction model framework delivers superior performance when compared to other
existing models. The model heavily relies on the quality and quantity of data collected from
online sources. Inaccurate or incomplete data may lead to suboptimal predictions. The
proposed hydroponic and soil compound prediction model is a promising advancement in
crop production decision-making. However, it is important to be aware of its limitations
and address them effectively to ensure its practical and widespread utility in real-world
agricultural settings.
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