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ABSTRACT
Portable devices like accelerometers and physiological trackers capture movement
and biometric data relevant to sports. This study uses data from wearable sensors
to investigate deep learning techniques for recognizing human behaviors associated
with sports and fitness. The proposed CNN-BiGRU-CBAM model, a unique hybrid
architecture, combines convolutional neural networks (CNNs), bidirectional gated
recurrent unit networks (BiGRUs), and convolutional block attention modules
(CBAMs) for accurate activity recognition. CNN layers extract spatial patterns, BiGRU
captures temporal context, andCBAMfocuses on informative BiGRU features, enabling
precise activity pattern identification. The novelty lies in seamlessly integrating these
components to learn spatial and temporal relationships, prioritizing significant features
for activity detection. The model and baseline deep learning models were trained on
the UCI-DSA dataset, evaluating with 5-fold cross-validation, including multi-class
classification accuracy, precision, recall, and F1-score. The CNN-BiGRU-CBAMmodel
outperformed baselinemodels like CNN, LSTM, BiLSTM, GRU, and BiGRU, achieving
state-of-the-art results with 99.10% accuracy and F1-score across all activity classes.
This breakthrough enables accurate identification of sports and everyday activities
using simplified wearables and advanced deep learning techniques, facilitating athlete
monitoring, technique feedback, and injury risk detection. The proposed model’s
design and thorough evaluation significantly advance human activity recognition for
sports and fitness.
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INTRODUCTION
The study of human activity recognition (HAR) is gainingmomentum across various fields,
focusing on automatically identifying bodily movements. There are two main approaches
to performing HAR: the computer vision method and the sensor-based method (Diraco et
al., 2023). In the computer vision approach, video material is closely examined to identify
human behaviors, showing optimal performance in controlled laboratory environments.
However, practical scenarios pose challenges, with factors like ambient noise, varying
illumination, and contrast discrepancies potentially hindering the effectiveness of computer
vision and causing malfunctions. On the other hand, the sensor-based method relies on
data from wearable devices and ambient sensors to recognize and classify activities.
This approach proves to be more robust for HAR in unpredictable, real-time situations
with potential visual disruptions. As researchers enhance the capabilities of HAR, they
persist in exploring both methodologies to comprehend their respective advantages and
limitations (Zhang et al., 2022).

HAR has emerged as an essential technology in numerous sports and fitness
applications (Pajak et al., 2022a; Hussain et al., 2022; Steels et al., 2020; Pajak et al., 2022b).
By automating the identification of movements and workouts using sensor data, it becomes
possible to gauge, document, and assess the level of physical activity carried out by athletes.
This facilitates functionalities like automated workout monitoring, form evaluation,
repetition counting, technique rating, and more. However, accurately recognizing and
categorizing physical movements in sports poses unique and intricate challenges. These
movements are often elaborate and intense, involving multiple overlapping actions that
engage the entire body. Activities within the same category may display subtle differences
influenced by biomechanics, anatomy, injury history, and individual skill levels. Moreover,
several exercises incorporate transitional movements or non-standardized sequencing
between repetitions. These attributes complicate various actions by human detection
techniques designed for diverse purposes. Efficient algorithms for sports applications
must be capable of identifying a diverse array of dynamic, detailed movements while also
adjusting to individual variations.

In the past ten years, machine learning methodologies have unveiled resilient and
intricate capabilities for recognizing activities in sports and fitness applications. Bian
et al. (2019) introduced a system for categorizing weight training activities, utilizing
an accelerometer and three force sensors. K-nearest neighbor, decision tree, and random
forestmodels underwent training and testing, achieving high accuracies exceeding 95%. The
research (Zebin, Scully & Ozanyan, 2017) compared supervised classification algorithms for
HAR. Diverse statistical time and frequency domain features were extracted from inertial
sensor data. Another aspect of the study (Nurhanim et al., 2017) also focused on classifying
signals from smartphone inertial sensors, employing the support vector machine algorithm
in both time and frequency domains. Nevertheless, conventional machine learning relied
on manually crafted features derived from sensor data, demanding significant expertise in
the specific field and often demonstrating poor generalization. Recent approaches based
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on deep neural networks can autonomously learn latent feature representations directly
from raw sensor streams.

Recent breakthroughs in advanced learning techniques have propelled cutting-edge
achievements in addressing intricate challenges related to pattern recognition across
diverse domains (Ascioglu & Senol, 2023; Wu, Zhu &Wan, 2023; Gou et al., 2023). Models
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs),
and attention networks have effectively handled high-dimensional time series data. These
temporal models can implicitly grasp and assess intricate concepts like motion, sequencing,
transitions, intensity, duration, and coordination. Simultaneously, the fusion of data
from various sensors through multi-modal sensor integration, including accelerometers,
gyroscopes, magnetometers, barometers, heart rate monitors, and more, facilitates
capturing biomechanical and physiological aspects. The synergy of deep learning and
wearable sensors enables inconspicuous monitoring of subtle motion patterns, fatigue
levels, workout quality, improper form, and factors contributing to the risk of injury. The
most recent techniques lay the groundwork for a new era in sports tracking technology,
emphasizing optimization, prevention, and personalization for casual and elite athletes.

Despite advancements in HAR through deep learning techniques, further research is
necessary to develop robust and efficient models tailored for identifying a broad spectrum
of sports and everyday activities utilizing data from wearable sensors. Present studies
often concentrate on limited tasks or rely on complex sensor setups that could be more
practical for real-world applications. Additionally, publicly available datasets encompassing
diverse sport-related activities are scarce, impeding the creation and evaluation of models
proficient in recognizing various sports and fitness movements.

We propose a novel hybrid deep learning framework called CNN-BiGRU-CBAM to
address this research gap. This model integrates CNNs, bidirectional gated recurrent unit
networks (BiGRU), and convolutional block attention modules (CBAM) to classify sports
and daily activities accurately using wearable sensor data. The primary objectives of this
study are as follows:

• Develop a sophisticated deep learning model that accurately identifies various sports
and everyday activities utilizing efficient wearable sensors.
• Evaluate the performance of the proposed model using benchmark datasets containing
diverse sports and daily activities and compare its efficacy with other state-of-the-art
deep learning models.
• Investigate how sensor placement on the body influences activity detection performance
to achieve optimal outcomes.

We aim to advance HAR in sports and fitness contexts, facilitating the development
of more precise and practical activity monitoring systems beneficial for athletes and
individuals in their training and daily routines.

This article delves into customized deep-learning methodologies to classify sports and
daily activities accurately. The focus is on utilizing time-series data collected from wearable
sensors. A hybrid deep neural network is proposed in this work for HAR using wearable
sensors. The architectural design of this model leverages the complementary strengths of
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CNNs for spatial feature extraction, BiGRUs for temporal contextmodeling, and CBAM for
attention-based emphasis on informative features. In summary, this study’s contribution
can be encapsulated as follows:

• This study aims to develop a novel deep learning architecture known as CNN-BiGRU-
CBAM, explicitly tailored to precisely identify sports and daily activities using data from
wearable sensors. This model combines CNNs, BiGRUs, and CBAM to effectively extract
spatial features, capture temporal relationships, and prioritize relevant areas in sensor
data. The proposed framework represents HAR advancement, particularly in sports and
fitness.
• TheCNN-BiGRU-CBAMmodel is subjected to a rigorous evaluation using a benchmark
dataset encompassing a wide range of sports and everyday activities. The performance
assessment, which includes multi-class classification metrics such as accuracy, precision,
recall, and F1-score, reveals the model’s exceptional capabilities. The results demonstrate
that the proposedmodel outperforms existing advanced deep learningmodels, achieving
an average accuracy and F1-score of 99.10% across all activity categories, a testament to
its superior performance.
• The study delves into the crucial aspect of sensor placement on the body, aiming to
determine the optimal positioning for accurate activity recognition performance. This
research yields invaluable insights into the most effective sensor locations for detecting
sports and daily activities. By analyzing model performance using sensor data from
various body positions, including the torso, right arm, left arm, right leg, and left leg,
these findings provide practical guidance for the development of more efficient and
user-friendly wearable sensor systems for HAR applications.
• A comprehensive ablation study is conducted to assess the specific effects of critical
components in the CNN-BiGRU-CBAMmodel. This research elucidates the significance
of each element—CNN, BiGRU, and CBAM modules—by systematically removing or
replacing them. It highlights their contributions to the overall model performance,
validating the design choices in the proposed architecture and guiding future research
in crafting efficient HAR models for sports and fitness applications.

The article is organized as follows: Section ‘Related Works’ examines the current
landscape of applying deep learning to recognize sports and daily activities, highlighting
challenges and constraints. Section ‘The Proposed Methodology’ explains the proposed
approach and the structure of the deep learning model designed for recognizing activities;
section ‘Experiments and Research Findings’ details the experiment setup, benchmark
datasets, metrics for evaluation, and the presentation of results. Additionally, a thorough
analysis of the model’s exceptional performance is included. Section ‘Discussion’ of the
research delves into various significant and captivating points derived from the findings.
Finally, ‘Conclusion and FutureWorks’ summarizes the article’s contributions and suggests
future research methods.
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RELATED WORKS
Recognition of human activity is attracting substantial attention in research, driven by
its potential applications in healthcare, sports, and the monitoring of general human
movement. Numerous approaches based on machine learning have been introduced to
tackle HAR in the past few years. This section reviewed works on recognizing sports and
fitness activities and explored deep-learning frameworks designed for HAR.

Traditional machine learning approaches for HAR
Early HAR research primarily utilized traditional machine-learning techniques. For
instance, Siirtola et al. (2011) applied linear discriminant analysis (LDA) on acceleration
data sampled at 5 Hz to classify swimming activities and count strokes. Similarly, Ponce,
Miralles-Pechuán & Martınez-Villaseñor (2016) employed an artificial intelligence network
to categorize daily actions such as sitting, standing, reclining, lying on one side, and playing
basketball. These studies showcased the potential of machine learning in HAR but often
concentrated on a restricted set of activities and necessitated manual feature engineering.

Deep learning approaches for HAR
Recent progress in deep learning has transformed the field of HAR by facilitating automated
feature extraction and enhancing overall performance.Hammerla, Halloran & Plötz (2016)
extensively explored deep neural networks, CNNs, and RNNs, performing practical
assessments on three openly available datasets. The results of their study indicated that the
most effective method for scrutinizing jogging and walking activities was the CNN-based
approach. Another inquiry by Coelho et al. (2019) introduced a HAR system grounded in
CNNs for categorizing six distinct activities: running, walking, ascending and descending
stairs, standing, and sitting. This approach exhibited noteworthy levels of accuracy and
precision, reaching 94.89% and 95.78%, respectively. Furthermore, Lee, Yoon & Cho (2017)
proposed a HAR technique utilizing a one-dimensional CNN and three-axis accelerometer
data from mobile devices.

Although deep learning methodologies have demonstrated encouraging outcomes, they
frequently concentrate on restricted activities. They may need help effectively capture the
intricate temporal relationships in sensor data. Furthermore, the need for more extensive
and varied publicly available datasets for sports and fitness-related activities impedes
advancing and assessing HAR models within these realms.

Several deep learning architectures have been specifically tailored and assessed using the
UCI-DSA dataset, which was also employed in our study. GoogLeNet, proposed by Szegedy
et al. (2015), introduces the inception module within a deep CNN structure to enhance
performance by capturing multiple-scale features. ResNeXt, introduced by Xie et al.
(2017), extends the ResNet framework by integrating the inception module with a residual
structure, enabling the model to learn more intricate and varied features. Multi-STMT,
proposed by Zhang & Xu (2024), is a multi-level network that combines a CNN module, a
BiGRUmodule, and an attentionmechanism to capture spatial and temporal dependencies
within sensor data. Tuncer et al. (2020) presented an automated method for recognizing
daily sports activities and gender based on a novel multikernel local diamond pattern using
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sensor signals, illustrating the immense potential of deep learning methods for specific
HAR tasks.

Additionally, Khatun et al. (2022) introduced a deep CNN-LSTM model with self-
attention for HAR using wearable sensors, demonstrating the efficacy of integrating
various deep learning architectures. Meanwhile,Mim et al. (2023) proposed GRU-INC, an
approach based on inception and attention mechanisms utilizing GRU for HAR, further
underscoring the significance of attention mechanisms in capturing pertinent features.

Despite their promising outcomes, these deep learning methodologies often concentrate
on a restricted range of activities and may not effectively capture the intricate temporal
relationships within sensor data. Furthermore, the absence of comprehensive and diverse
public datasets for sports and fitness activities poses challenges for the development and
assessment of HAR models in these domains.

Sport-specific HAR datasets and challenges
Publicly accessible datasets for HAR, especially those containing sensor data from sports
and fitness activities, are relatively uncommon. Frequently, existing datasets like UCI-
DSA (Barshan & Altun, 2013) and the study conducted by Trost, Zheng & Wong (2014)
consolidate various sports into a singular dataset, thereby diminishing the granularity
of specific sports actions by categorizing them under broad target classes. The UTD
Multimodal Human Action Dataset (Chen, Jafari & Kehtarnavaz, 2015) incorporates
sports activities; however, it is constrained to a solitary action per sport, rendering it an
inadequate representation of the comprehensive nature of each sport.

In recent times, the dataset for basketball activities introduced by Hoelzemann et al.
(2023) has gained prominence due to its diverse range of classes, a sizeable number
of participants involved in the study, and its comprehensive inclusion of the intrinsic
characteristics of basketball that vary based on the ruleset. Nonetheless, a pressing
requirement remains for additional publicly accessible datasets focused explicitly on
sports activities, which can effectively capture the inherent variability and complexity
present within these domains, utilizing inertial sensor data as the primary source.

Addressing the gaps and proposed framework
The framework proposed in this study, CNN-BiGRU-CBAM, addresses the constraints
of prevailing HAR methodologies and datasets. By synergizing CNNs for spatial feature
extraction, BiGRU for temporal context modeling, and CBAM for attention-based feature
refinement, our model effectively captures both spatial and temporal interdependencies
present in sensor data.

Furthermore, we meticulously evaluate our model’s performance on the UCI-DSA
dataset, which covers a wide range of sports and daily activities. This rigorous assessment
highlights the robustness and generalizability of our approach, demonstrating its superiority
over state-of-the-art techniques.

THE PROPOSED METHODOLOGY
The focus of this study was the recognition of sport and fitness activities (SDAR) using
deep learning methods to abstract features from raw sensor data. Illustrated in Fig. 1, the

Mekruksavanich et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2100 6/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2100


D
at

a 
C

ol
le

ct
io

n

Right
arm

Right
leg

Raw Sensor Data

D
at

a 
Pr

e-
pr

oc
es

si
ng

Raw 
Sensor 
Data

Data Segmentation

D
at

a 
N

or
m

al
iz

at
io

n

N
oi

se
 R

em
ov

in
g

C
la

ss
ifi

ca
tio

n

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

Training Data

5-fold
cross-validation

Training Data

Training Data

Training Data

Test Data

Confusion Matrix

Accuracy Curve

Left
arm

Left
left

CNN-BiGRU-CBAM

Torso Accelerometer data

Gyroscope data

Magnetometer data

D
ro

po
ut

Bi
G

RU

Ba
tc

h 
N

om
al

iz
at

io
n

C
on

v1
D

BiGRU Block

G
A

P

FC

O
ut

pu
t

Convolutional Block

Ba
tc

h 
N

om
al

iz
at

io
n

C
on

v1
D

Ba
tc

h 
N

om
al

iz
at

io
n

C
on

v1
D

C
BA

M

CBAM BlockInput

X’X

Input Feature Refined Feature

Channel Attention Spatial Attention

CBAM

Figure 1 SDAR workflow used in this study.
Full-size DOI: 10.7717/peerjcs.2100/fig-1

SDAR framework under examination comprises four essential stages: data collection, data
pre-processing, classification, and performance evaluation.

Data collection
We possess only one public dataset that contains activities with non-repetitive and intricate
motion states, specifically the Daily and Sports Activity dataset (UCI-DSA) Barshan &
Yüksek (2014). This dataset includes sensor data that captures 19 distinct physical actions
undertaken by eight participants (four female, four male, ages 20–30). Each activity was
executed for 5 min by each participant, generating 5 min of signal data per participant
for each movement. The signals were recorded at a sampling frequency of 25 Hz and
segmented into 5-second intervals, resulting in 480 segments for each action (60 segments
per participant).

The UCI-DSA encompasses 19 movements, namely: seating, standing, lying (on the
back and right side), ascending and descending stairs, standing and moving in an elevator,
strolling (in a parking lot and on a 4 km/h treadmill-flat and 15 deg incline), running on
an 8 km/h treadmill, stepping, cross training, cycling (horizontal and vertical), rowing,
jumping, and playing basketball.

For data collection, inertial measurement units (IMUs) were utilized, and each
participant affixed these units to five different body parts. Each IMU was equipped
with three sensors for acceleration, three for rotational velocity, and three for the magnetic
field, facilitating the capture of intricate motion details. Throughout the data collection
process, participants attached one IMU to their torso, right and left arm, right and left leg,
completing a comprehensive sensor configuration covering the entire body (Barshan &
Yüksek, 2014). This configuration allowed the recording of diverse, multi-modal signals,
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encompassing movements from all major body parts. Figure 2 displays some examples of
the collected IMU data.

Figure 2 portrays examples of sensor data from inertial measurement units (IMUs) for
three sports activities. In the case of SP-SMS activity (such as running), the acceleration
plot exhibits repetitive patterns along the x , y , and z axes, representing the periodic
limb motions inherent in running. The rotational velocity also displays periodic patterns
corresponding to the rotational motion of the limbs/torso, while the magnetic field remains
relatively stable during this repetitive activity.

For WP-CMS activity (like cycling), the acceleration plot shows less distinct periodic
patterns than running due to the more intricate multi-state motions involved. Similarly,
rotational velocity and magnetic fields exhibit reduced periodicity during complex
basketball maneuvers.

In NP-CMS activity (for example, basketball), the acceleration, rotational velocity, and
magnetic fields lack periodic or repetitive patterns. This absence indicates more random
and non-periodic motions during the activity.

Data pre-processing
Processing data from wearable sensors often involves preparatory steps before constructing
a model, aiming to convert raw signals into indicative features (Zheng, Wang & Ordieres-
Meré, 2018). In this study, a systematic pre-processing pipeline for structured data was
applied before the development of deep networks. This pipeline included denoising,
normalization, and segmentation of the data.

Data denoising
The raw data acquired from sensors carried measurement noise from system limitations
or unexpected movements during the experiments. This noisy signal interferes with the
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valuable information embedded in the data. Consequently, it was imperative to mitigate
the impact of noise to extract meaningful information for subsequent processing. Various
filtering methods are commonly employed to handle this issue, including the mean filter,
low-pass filter, Wavelet filter, and Gaussian filter (Rong et al., 2007; Mostayed et al., 2008).
In this study, we opted for an average smoothing filter to denoise the signal, applying the
filter across all three dimensions of the accelerometer and gyroscope sensors.

Data normalization
Subsequently, the raw data from sensors undergo normalization, ensuring their values
fall within the range of 0 to 1, as shown in Eq. (1). This step addresses challenges in
model learning by harmonizing the data values to a uniform range, facilitating quicker
convergence during gradient descents.

Xnorm
i =

Xi−xmin
i

xmax
i −xmin

i
,i= 1,2,3,... (1)

where Xnorm
i represented the normalized data, n represented the number of channels, xmax

i
and xmin

i are the maximum and minimum values of the ith channel, respectively.

Data segmentation
Aswearable sensors produce a large amount of signal data, it is impractical to simultaneously
input all of this data into the HAR model. Therefore, the data must be divided into
segments using a sliding window approach before being fed into the model. Splitting
data into windows is a widely employed technique in HAR to separate data for analysis.
It is commonly used to detect recurring activities such as walking, jogging, and inactive,
including standing, sitting, and lying down (Banos et al., 2014). The continuous sensor
signals are split into fixed-length windows. Consecutive windows overlap partially to
increase the number of available training examples and avoid missing transitions between
activities. Figure 3 demonstrates the windowing process.
The segmented sample data, obtained using a sliding window of size N , has a dimension

of K ×N . The given sample is represented by the symbolWt .

Wt = [a1t a
2
t ...a

K
t ] ∈R

K×N (2)

The column vector akt = (a1t ,a
2
t ,...,a

k
tN )

T represents the signal data of sensor k at
window time t . T denotes the transpose operator, K represents the number of sensors,
and N indicates the length of the sliding window. To exploit the relationships between
windows and facilitate the training process, the window data is divided into sequences of
windows.

S={(W1,y1),(W2,y2),...,(WT ,yT )} (3)

T is the length of the window series, and yt represents the activity label of the associated
windowW . The label of a window that contains several activity classes will be determined
by selecting the most often occurring sample activity.
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The proposed CNN-BiGRU-CBAM model
The suggested model utilizes an end-to-end deep learning architecture. This hybrid design
incorporates three key elements: convolution, residual bidirectional GRU, and CBAM
blocks. The convolution extracts features from the input data. The bidirectional GRU
retains information from both directions in time. Residual connections allow information
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to shortcut across layers. The attention mechanism focuses the model on relevant features.
Figure 4 illustrates the entire structure of the proposed integrated deep learning model.

The first element, the convolutional block, extracts spatial characteristics from the
pre-processed data. Modifying the convolution kernel’s step size shortens the time series
length, quickening recognition time. The next component employs a BiGRU network to
capture temporal patterns in the data after convolution. Integrating BiGRU capacities
strengthens the model’s ability to incorporate long-term dependencies in the time series.
This fusion enhances the model’s capacity to comprehend intricate temporal features,
improving accuracy.

We then apply an attention mechanism called CBAM to refine the final recognition
characteristics. This module calculates weights for the information generated by the
BiGRU, enabling the model to focus on the most informative input data. Highlighting the
most relevant elements reinforces the model’s ability to discriminate between activities,
increasing recognition accuracy.

Finally, a fully connected layer and SoftMax function categorize the behavior details. The
output prediction specifies the activity performed. In the following sections, we elaborate
on each component, delineating their roles within the proposed model.

Convolution block
CNNs rely on a standard set of components. They often apply supervised learningmethods.
Typically, CNN neurons connect to every neuron in the next layers. An activation function
transforms the neuron’s inputs into outputs. Two key factors impact the activation
function’s efficacy. One is sparsity—the fraction of zero activations. Another is ensuring
sufficient gradient flow as the network depth increases. CNNs frequently use pooling to
reduce dimensionality. Two common techniques are taking the maximum (max-pooling)
or average (average-pooling) value over input regions. Max-pooling and average-pooling
simplify the representations by reducing the number of parameters within activation maps.
At the same time, they preserve the most salient information.

This work involves employing convolutional blocks (ConvB) for identifying essential
characteristics in raw sensor data. The diagram in Fig. 4 demonstrates that ConvB comprises
six layers of 1D-convolutional (Conv1D) and batch normalization (BN). The structure is
made up of three layers of Conv1D-BN. Conv1D employs multiple trainable convolutional
kernels to capture diverse attributes, with each kernel producing a distinct feature map. To
optimize the training process’s efficiency and speed, we opted to incorporate the BN layer.

BiGRU block
At the core of our proposed CNN-BiGRU-CBAM model lies the BiGRU. This crucial
component captures temporal correlations and context from the features extracted by the
convolutional layers. Unlike conventional RNNs, BiGRU excels in processing sequential
input by maintaining an internal state and employing gating mechanisms to control
information flow.

In a standard GRU, the hidden state ht at time t isdetermined by combining the outputs
of the update gate zt , reset gate rt , current input xt , and the previously hidden state ht−1. The
update gate zt determines the amount of information to retain from the previous hidden
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Figure 5 Structure of bidirectional GRU (BiGRU): (A) GRU cell and (B) unroll BiGRU.
Full-size DOI: 10.7717/peerjcs.2100/fig-5

state, while the reset gate rt determines the degree to which the previous hidden state
should be ignored. Figure 5A illustrates the structure of a GRU cell and the mathematical
equations managing its operation as follows:

zt = σ (Wzxt ⊕Uzht−1) (4)

rt = σ (Wrxt ⊕Urht−1) (5)

gt = tanh(Wgxt ⊕Ug (rt ⊗ht−1)) (6)

ht = ((1−zt )⊗ht−1)⊕ (zt ⊗gt ) (7)

Here, σ represents a sigmoid function, ⊕ denotes an element-wise addition, and ⊗
denotes an element-wise multiplication.

To augment the capacity of the GRU in apprehending historical and forthcoming
context, we integrate a BiGRU into our framework. Illustrated in Fig. 5B, a BiGRU
comprises two distinct GRU strata: a forward GRU, which handles the input sequence
from the initial timestep to the concluding one, and a backward GRU, which inversely
manages the sequence. Subsequently, the outputs of both GRU layers are combined at
each timestep to generate the ultimate BiGRU output, encompassing insights from both
antecedent and subsequent contexts.

Within our CNN-BiGRU-CBAM architecture, the BiGRU segment receives the spatial
characteristics derived from the convolutional strata as its input. Independently, the
forward and backward GRU strata analyze these characteristics, grasping the temporal
connections and context in opposing directions. By amalgamating the results of both GRU
layers, the BiGRU component furnishes a more exhaustive comprehension of the temporal
correlations among the extracted features. Consequently, this enhancement empowers
the model with improved capabilities to discern and categorize diverse sports and daily
endeavors.

Incorporating a BiGRU component in our model presents numerous benefits compared
to a single-direction GRU. By encompassing historical and forthcoming contexts, the
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BiGRU can apprehend richer temporal structures and interrelations, thereby enhancing
activity recognition performance. Furthermore, the bidirectional processing aids the
model in effectively managing intricate and diverse-length sequences, which are prevalent
in sensor-based HAR tasks.

CBAM block
The CBAM proposal was put forth in Woo et al. (2018) as an attention mechanism
to improve performance by amplifying significant channels and crucial sections of
intermediate features. CBAM comprises two sub-modules: the channel and spatial
attention modules, as depicted in Fig. 6. These modules are intended for application
post-convolutional layers, as their names indicate. CBAM capitalizes on features’ spatial
and cross-channel connections by progressively integrating channel and spatial attention.
To be more specific, it accentuates beneficial channels and reinforces informative local
regions.

Figure 6 demonstrates the CBAM attention mechanism, incorporating channel and
spatial attentionmodules. The initial passage of data involves the channel attentionmodule
(CAM), illustrated in Fig. 7. CAM employs adaptive learning to assess the importance of
each channel, facilitating more precise selection and utilization of information from diverse
channels. Subsequently, the data undergoes processing in the spatial attention module,
depicted in Fig. 8. This module enhances the network’s focus on various spatial positions,
enabling a deeper understanding and effectively exploiting significant characteristics in
distinct locations. These modules can augment the network’s ability to perceive and
withstand challenges (Agac & Durmaz Incel, 2023).

Figure 7 illustrates the structure of the CAM module. Within the CAM module, both
maximum pooling, enhancing sharpness, and average pooling, providing a smoothing
effect, are applied in the spatial dimension of the input feature. Subsequently, the input
feature is subjected to a multilayer perceptron (MLP) transformation utilizing a reduction
ratio (r), and eventually, a sigmoid activation function is used. The reduction ratio is crucial
in determining the extent of dimensionality reduction. It helps maintain a balance between
computational effectiveness and attention accuracy by using a shared MLP component in
the channel attention process. A lower reduction ratio can amplify the channel attention
mechanism’s information expression but escalates computational complexity. Conversely,
a higher reduction ratio trims computational complexity but may constrain the channel
attention mechanism’s expressive capability. Achieving an optimal trade-off between
attention performance and computing efficiency necessitates fine-tuning the reduction
ratio based on the specific application.

The spatial attention module (SAM) system consists of three consecutive steps, as
illustrated in Fig. 8. Initially, two tensors are formed by implementing maximum and
average pooling operations on the channels of the input feature F . The two tensors are
merged and inputted into the convolutional layer with a defined kernel size to generate a
feature map with a single channel. Subsequently, the output undergoes processing in the
sigmoid activation layer to obtain the final spatial attention mask. Finally, each feature map
in X undergoes element-wise multiplication with the constructed spatial attention mask.
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Figure 6 The convolutional block attentionmodule (CBAM).
Full-size DOI: 10.7717/peerjcs.2100/fig-6

Figure 7 The channel attentionmodule (CAM) of CBAM.
Full-size DOI: 10.7717/peerjcs.2100/fig-7

Figure 8 The spatial attentionmodule (SAM) of CBAM.
Full-size DOI: 10.7717/peerjcs.2100/fig-8

Training and hyperparameters
To ensure the effectiveness of the CNN-BiGRU-CBAM model, having ample and diverse
training data is crucial, along with precise adjustment of architectural design parameters
known as hyperparameters. These hyperparameters encompass various factors, such as the
number of iterations, learning rates, batch size, and activation functions, among others. To
ensure the robust and dependable performance of the model, we adopted a conventional
approach involving dividing data into distinct training and holdout validation sets. The
training set was utilized for hyperparameter optimization, while the holdout validation set
was reserved for impartial comparative testing.
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By engaging in a systematic process of experimentation and refinement, we identified the
most effective hyperparameter configurations that resulted in the highest possible accuracy
for the model. The parameters consist of a batch size of 128, a 1×10−3 learning rate, and
an epoch count of 200. Furthermore, we have included an adaptive learning rate technique
that decreases the learning rate by 25% if no progress is detected for ten consecutive epochs.
This strategy facilitates the model’s convergence by enhancing its efficiency and preventing
it from being trapped in unsatisfactory alternatives.

We used data shuffling before each training period to increase themodel’s resilience. This
strategy facilitates the model’s ability to acquire knowledge from diverse data and mitigates
the likelihood of overfitting. For model optimization, we used the Adam optimizer, which
dynamically modifies the learning rates of each parameter by taking into account their past
gradients. The evaluation of themodel’s performancewas conducted by using cross-entropy
loss, a metric that measures the discrepancy between the anticipated probability of the
classes and the actual probabilities.

Table 1 comprehensively summarizes the hyperparameters utilized in our custom CNN-
BiGRU-CBAM framework. Within the convolutional block are three 1D-convolutional
layers, each followed by batch normalization and max pooling steps. These convolutional
layers employ a kernel size of 3, a stride of 1, and various filters (256, 128, and 64) to
capture information across different scales. The Swish activation function is applied within
these convolutional layers to introduce non-linearity and boost the model’s expressive
capabilities.

For the BiGRU block, 128 hidden units are utilized in both forward and backward
directions to capture temporal relationships within the sensor data. To address overfitting,
a dropout layer with a dropout rate of 0.25 is applied to the BiGRU outputs. Following the
BiGRU block, the CBAM block is appended to enhance the model’s ability to focus on the
most pertinent features. Ultimately, global average pooling and a dense layer with Softmax
activation are employed to generate the final activity predictions.

Cross validation
To measure the CNN-BiGRU-CBAM model’s efficacy, we employed the k-fold cross-
validation (k-CV) method (Wong, 2015). This technique involves partitioning the dataset
into k subsets of similar size, each distinct and non-overlapping, as shown in Fig. 9.
Following this partitioning, one subset is designated as the validation set, while the
remaining k − 1 subsets are utilized for model training. The overall performance is then
determined by averaging performance metrics such as accuracy, precision, recall, and
F1-score across all k folds (Bragança et al., 2022).
It is worth noting that the k-CV procedure can be computationally intensive, especially

with large datasets or high k values. In our study, we meticulously balanced computational
efficiency and accurate performance estimation by opting for a 5-fold cross-validation (k
= 5).
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Table 1 The summary of hyperparameters of the CNN-BiGRU-CBAM used in this work.

Stage Hyperparameters Values

Architecture Convolutional Block
Kernel Size 3

1D-Convolution Stride 1
Filters 256

Activation Swish
Batch Normalization –
Max Pooling 2

Kernel Size 3
1D-Convolution Stride 1

Filters 128
Activation Swish
Batch Normalization –
Max Pooling 2

Kernel Size 3
1D-Convolution Stride 1

Filters 64
Activation Swish
Batch Normalization –
Max Pooling 2
BiGRU Block
BiGRU Unit 128
Dropout 0.25
CBAM Block
CBAM Layer –
Global Average Pooling –
Dense Number of activity classes

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 128
Number of Epochs 200

EXPERIMENTS AND RESEARCH FINDINGS
In this section, we detail the experiments conducted to pinpoint the most efficient
CNN models for recognizing athletic activities from sensor data. Our focus in this study
centered on the UCI-DSA benchmark dataset, which is extensively utilized in recognition
applications of sport activity. The evaluation of deep learning models in these applications
was gauged through commonly recognized metrics, namely accuracy and F1-score.

Experiment setting
In this research, Google Colab Pro+ with a graphics processing unit module, namely Tesla
V100-SXM2-16GB, was employed to accelerate the training of deep learning models. The
implementation of CNN-BiGRU-CBAM and other foundational deep learning models
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Figure 9 The 5-fold cross validation.
Full-size DOI: 10.7717/peerjcs.2100/fig-9

utilized a Python framework with TensorFlow and CUDA backends. The investigations
primarily revolved around the Python packages outlined below:

• Numpy and Pandas were used for data management throughout sensor data retrieval,
processing, and analysis.
• Matplotlib and Seaborn were used to create visual representations and display the
findings of data analysis and model assessment.
• Scikit-learn was used as a module for collecting and generating data in research.
• TensorFlow was used to generate and train deep learning models.

Various examinations were conducted on the UCI-DSA dataset to determine the most
efficient approach. Employing a 5-fold cross-validation strategy, the investigations covered
three distinct scenarios involving both sports and everyday activities from the UCI-DSA
dataset, as depicted below:

• Scenario I: Exclusively using activities connected to sports (SPT).
• Scenario II: Solely relying on activities that are part of our everyday lives (ADL).
• Scenario III: Incorporating both sport-related and daily living activities (ALL).

Experimental results
In this part, we detail the evaluation tests carried out, the recognition outcomes achieved
by the proposed CNN-BiGRU-CBAM model, and the performance of other comparative
deep learning approaches –CNN, long short-term memory (LSTM), bidirectional LSTM
(BiLSTM), GRU and BiGRU. Training and testing of the models involved segmented
windows extracted from three distinct activity scenarios derived from the publicly
available UCI-DSA dataset, containing data from wearable sensors. Scenario I exclusively
encompassed sports movements, Scenario II comprised solely sensor data from regular
walking, while Scenario III encompassed sports and daily activities. The models underwent
assessment for accuracy and F1-score in multi-class classification through 5-fold stratified
cross-validation.

A benchmark test was conducted with various configurations of wearable sensors on
the torso, arms, and legs to gauge the impact of sensor placement on the body. The
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Table 2 Recognition performance of deep learning models on Scenario I using sensor data of sport activities from different body positions.

Model Recognition effectiveness

Torso Right arm Left arm Right leg Left leg

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

CNN 99.46 99.46 99.17 99.17 99.15 99.14 99.85 99.85 99.71 99.71
LSTM 99.69 99.69 98.85 98.86 98.63 98.61 99.92 99.92 99.96 99.96
BiLSTM 99.73 99.73 99.19 99.19 99.23 99.23 99.92 99.92 100.00 100.00
GRU 99.71 99.71 99.29 99.29 99.25 99.25 99.98 99.98 99.88 99.87
BiGRU 99.67 99.67 99.38 99.37 99.40 99.39 99.94 99.94 99.96 99.96
CNN-BiGRU-CBAM 99.94 99.94 99.81 99.81 99.92 99.92 99.98 99.98 100.00 100.00

Table 3 Recognition performance of deep learning models on Scenario II using sensor data of daily activities from different body positions.

Model Recognition effectiveness

Torso Right arm Left arm Right leg Left leg

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

CNN 97.36 97.32 97.34 97.31 97.66 97.65 97.48 97.43 97.64 97.60
LSTM 97.18 97.13 96.34 96.29 96.41 96.36 97.34 97.28 97.62 97.57
BiLSTM 97.87 97.84 97.36 97.29 97.41 97.39 98.01 97.99 97.80 97.78
GRU 97.13 98.11 7.59 97.57 97.85 97.82 98.08 98.07 98.08 98.06
BiGRU 98.31 98.30 97.25 97.21 98.36 98.34 98.52 98.51 98.36 98.35
CNN-BiGRU-CBAM 98.36 98.36 97.99 97.96 98.59 98.58 98.01 97.99 98.38 98.36

Table 4 Recognition performance of deep learning models on Scenario III using sensor data of sport and daily activities from different body
positions.

Model Recognition effectiveness

Torso Right arm Left arm Right leg Left leg

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

CNN 97.35 97.27 97.28 97.24 97.77 97.77 97.91 97.89 98.26 98.23
LSTM 98.32 98.31 97.41 97.37 97.74 97.71 98.55 98.54 98.73 98.71
BiLSTM 98.61 98.61 97.76 97.74 97.29 97.18 98.87 98.86 99.07 99.06
GRU 98.53 98.52 97.88 97.84 98.25 98.24 98.84 98.83 99.05 99.03
BiGRU 98.62 98.61 98.39 98.38 98.67 98.67 98.90 98.89 98.49 98.48
CNN-BiGRU-CBAM 98.62 98.62 98.75 98.74 98.98 98.98 98.91 98.91 99.10 99.10

experimental results, revealing the model’s performance, were presented in Tables 2, 3 and
4.

As per the findings in Table 2, the CNN-BiGRU-CBAMmodel demonstrates the highest
accuracy in classification and F1-scores across all five body locations: torso, right arm,
left arm, right leg, and left leg. The model consistently achieves accuracy exceeding 99.8%
when utilizing sensor data from any body part. This highlights the model’s capability to
accurately recognize diverse athletic movements, irrespective of variations in positional
movement patterns. In contrast, baseline deep learning models like CNN and LSTM
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typically achieve accuracy levels ranging between 98% and 99%, with variability based on
sensor positioning. Notably, their performance experiences a significant drop when relying
solely on data from either the left or right arm.

Moreover, there is a slight improvement in results for all models when utilizing data
from the right leg compared to the left leg. This hints at a subtle asymmetry in body
movements during athletic activities, providing more informative motion signals that the
models can discern from the right side limbs. In essence, despite potential variations in
accuracy tied to sensor placement, the outcomes affirm that the CNN-BiGRU-CBAM
model can effectively classify various sports exercises using simplified wearable sensors
placed on any monitored body part without significant information loss. This adaptability
proves beneficial for practical sporting applications requiring precise sensor positioning.

Table 3 displays the outcomes of recognizing everyday activities (Scenario II) using
diverse placements of on-body sensors. The CNN-BiGRU-CBAM method achieves the
highest accuracy across all five observed body regions. However, unlike in sports activities,
variations emerge depending on sensor positioning. To bemore specific, sensors positioned
on the torso yield the most valuable signals for everyday activity recognition, registering
an accuracy of 98.36% with the CNN-BiGRU-CBAM model. Following closely behind is
the data from the left arm. Conversely, leg measurements provide less reliable information,
resulting in a roughly 2% decrease in accuracy. Additionally, when comparing signals
from the arms, it has been demonstrated that left-arm sensors consistently exhibit a 2–5%
higher accuracy compared to their right-arm counterparts across various everyday tasks,
irrespective of the model used. This observed laterality pattern reverses when contrasted
with the movements associated with sports activities.

The CNN-BiGRU-CBAM model accurately identifies a combined dataset of sports and
everyday life activities using wearable motion data, as shown in Table 4. This superior
performance extends across all five monitored body postures. However, the most effective
sensor placement varies compared to the studies focused on specific categories.

In Scenario III, where a diverse range of actions is considered, the right arm sensors prove
particularly valuable, contributing to an impressive accuracy of 98.75% with the CNN-
BiGRU-CBAM model. This surpasses the previously observed torso placement reliability
for isolated sports and regular activities. Arm-worn sensors consistently demonstrate
robust identification capabilities, with the left arm achieving an exceptional accuracy of
98.98% using the CNN-BiGRU-CBAM method. Therefore, upper limb dynamics prove
most suitable for capturing the myriad movements in this broad activity set, ranging from
basic periodic motions like walking to sophisticated multi-state sports workouts.

Conversely, data from the analysis of leg movements yields comparatively fewer
significant insights for categorizing this diverse array of motions. Despite this, the proposed
technique consistently attains an accuracy rate exceeding 98.9% across all body postures,
establishing its reliable capability for recognizing various activities.

Assessing the model’s learning capacity and overfitting resilience
To grasp the learning patterns of the CNN-BiGRU-CBAM model, we analyzed the
validation accuracy during various training phases across three specific scenarios: (1)
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Figure 10 Validation accuracy of the proposed CNN-BiGRU-CBAMmodel across training epochs for
different scenarios and body positions: (A) Scenario I: using only sensor data from sport activities, (B)
Scenario II: using only sensor data from activities of daily living, and (C) Scenario III: using sensor data
from both sport activities and activities of daily living.

Full-size DOI: 10.7717/peerjcs.2100/fig-10

employing sensor data exclusively from sports activities, (2) using sensor data exclusively
from daily life activities, and (3) leveraging sensor data from both sports activities and daily
life activities. This investigation helps to understand the model’s capacity to adapt to new
data and could detect issues such as overfitting or underfitting.

Figure 10 visually depicts the relationship between epochs and validation accuracy
within the CNN-BiGRU-CBAMmodel. This model incorporates sensor data from various
body regions, including the torso, right arm, left arm, right leg, and left leg, across
different contexts. Across all three scenarios examined, our model consistently improves
its validation accuracy as epochs progress, reaching a notable performance level around
the 50th epoch. The validation accuracy stabilizes after that, suggesting the model has
reached a dependable solution. Figure 10 also illustrates the model’s learning trends and
generalization capabilities, showcasing a steady increase in validation accuracy over epochs
and resilience against overfitting across different scenarios and body positions.
In the first scenario (Fig. 10A), the CNN-BiGRU-CBAMmodel achieves peak validation

accuracy when utilizing sensor data from the left leg, closely followed by the right leg and
torso data. While the accuracy slightly diminishes with data from both arms, it remains
substantial. This observation suggests that movements of the legs are crucial for discerning
athletic activities.

In scenario II (Fig. 10B), the model’s performance remains relatively steady across
different body postures, with slightly higher validation accuracies observed for data from
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the left arm and right leg. This indicates that sensor data from distinct body orientations
have similar impacts on identifying daily life activities.

In Fig. 10C, Scenario III demonstrates that the CNN-BiGRU-CBAM model achieves
optimal validation accuracy when using data from the left leg, followed by the right arm
and left arm data. Although the accuracy diminishes somewhat with data from the torso
and right leg, it remains robust. These findings suggest that combining motions of the
legs and arms yields distinctive characteristics for identifying both sports and everyday
activities.

The charts depicting epoch versus validation accuracy for all three scenarios reveal that
the CNN-BiGRU-CBAM model exhibits no signs of overfitting. This is evidenced by the
stable validation accuracy even after numerous epochs. This observation indicates that the
model has acquired resilient and significant features from the sensor data, enabling it to
maintain high-performance levels on unseen data.

Comparison results with state-of-the-art models
To demonstrate the exceptional performance of our CNN-BiGRU-CBAM model, we
thoroughly compared it with many cutting-edge models in the field of individual activity
identification utilizing data from wearable sensors. The selections for benchmark models
comprise:

• GoogleLeNet (Szegedy et al., 2015), a CNN model, incorporates the inception module,
facilitating rapid computation and improved performance by aggregating multi-scale
information.
• ResNeXt (Xie et al., 2017), an advanced iteration of the ResNet architecture, integrates
the inception module with a residual framework, enabling the network to encompass a
broader spectrum of intricate and diverse characteristics.
• Multi-STMT (Zhang & Xu, 2024) is a sophisticated network composition comprising a
CNN component, a BiGRU component, and an attention mechanism. Its objective is to
capture spatial and temporal relationships within sensor input data.

We evaluated the efficacy of our proposed model compared to conventional ones
using the UCI-DSA dataset, assessing two key metrics: accuracy and F1-score. The results,
presented in Table 5, demonstrate that our CNN-BiGRU-CBAM model outperforms
state-of-the-art methods, achieving an average accuracy of 99.51% and an F1-score of
99.51%.

Among all the models employed for comparison, Multi-STMT exhibits the closest
performance to our proposed model, boasting an impressive accuracy rate of 99.39%
and an outstanding F1-score of 99.49%. This effectiveness can be attributed to the multi-
tiered structure of the system, which integrates CNN and BiGRU modules alongside
an attention mechanism. Such architecture enables accurate capture of spatial and
temporal relationships within the sensor data. However, our CNN-BiGRU-CBAM
model outperforms Multi-STMT by a slight margin, underscoring the efficacy of our
meticulously designed framework. Our approach utilizes convolutional blocks to extract
spatial features, BiGRU for temporal context modeling, and CBAM for feature refinement
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Table 5 Comparative analysis of the proposed CNN-BiGRU-CBAMmodel against state-of-the-art
models using wearable sensor data on the UCI-DSA dataset.

Model Recognition Performance

Accuracy F1-score

GoogleLeNet (Szegedy et al., 2015) 96.64% 96.36%
ResNeXt (Xie et al., 2017) 98.81% 98.82%
Multi-STMT (Zhang & Xu, 2024) 99.39% 99.49%
The proposed CNN-ResBiGRU-CBAM 99.51% 99.51%

through attention. This amalgamation of techniques empowers our model to adeptly
discern and utilize discriminative patterns within the sensor data, thereby augmenting
identification accuracy.

The UCI-DSA dataset employed in this comparative study is esteemed for its extensive
array of characteristics, which are attributed to the plethora of sensors utilized during data
collection. This abundance of features facilitates efficient feature extraction by the models,
contributing to the outstanding classification accuracy observed across most approaches
applied to this dataset.

DISCUSSION
In this part, we thoroughly examine the research observations discussed in the previous
section.

Impact of different types of activities
Building upon the experimental results, we explored how different types of activities
impact the classification performance of the proposed CNN-BiGRU-CBAM model in
distinguishing between sports and everyday activities. The outcomes from Tables 2 to 4
were analyzed and visually represented through bar graphs in Fig. 11.

Presented in Fig. 11 is a comparison of the CNN-BiGRU-CBAM model’s accuracy
in multi-class classification across three activity scenarios. The model relies on data from
body-worn sensors positioned in diverse body postures. Specifically, it achieves an accuracy
of 99.94% for sports movements, showcasing its highly reliable capability in recognizing a
diverse array of intricate exercise routines. This performance slightly diminishes to 98.36%
for everyday ambulation, as these routine activities entail less motion complexity that may
challenge deep networks.

Remarkably, when considering the combination of sports and everyday activities, the
accuracy remains consistent with the scenario focused solely on sports, maintaining a
precision of 98.62%. This underscores the model’s adeptness in accurately categorizing
complex real-life situations encompassing intricate sports activities and routine daily
movements.
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Figure 11 Comparison results of the proposed CNN-BiGRU-CBAM using sensor data from different
activity types.

Full-size DOI: 10.7717/peerjcs.2100/fig-11

Impact of different body positions for sport and daily activity
recognition
The visual comparison illustrates the CNN-BiGRU-CBAMmodel’s accuracy in categorizing
activities. This model relies on sensor data from five wearable positions: torso, right arm,
left arm, right leg, and left leg. In the context of routine tasks, the torso emerges as the
optimal location, achieving a high 98.36% accuracy. This aligns with expectations, given
that typical walking primarily involves upper body movements.

However, when it comes to sports movements, the accuracy of torso-based sensors
drops to 99.94%, somewhat lower than the 99.98–100% achieved by leg-worn sensors.
This implies that the enhanced mobility and agility in sports activities make legs more
effective in capturing intricate routines. Combining both activity categories, placing the
right arm strikes an optimal balance, maximizing information availability for identifying
diverse activities. This emphasizes the practicality of wrist-worn devices commonly found
in consumer wearables.

In brief, torsomotion is beneficial for sensing everyday activities, whereas limbplacement
proves more suitable for sports analytics. Arm signals determine generalized positioning,
which is relevant for accurate deep activity detection across various scenarios.

Ablation studies
In the realm of neural networks (Montaha et al., 2021), the concept of ablation study has
gained prominence as a means to evaluate a model’s effectiveness by investigating how
altering specific elements affects its performance (de Vente et al., 2020). Consequently, we
scrutinize the effects of ablation on our proposed model through three distinct research
scenarios. In these instances, we adjust various blocks and layers to evaluate their impact on
the proposed design (Meyes et al., 2019). As a result, upon completing all research scenarios,
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Table 6 Impact of the convolution block.

Model Recognition Performance

Accuracy Loss F1-score

CNN-BiGRU-CBAM without
Convolutional Block

98.65%(±0.23%) 0.05(±0.02) 98.65%(±0.23%)

The proposed CNN-ResBiGRU-CBAM 99.51%(±0.33%) 0.02(±0.01) 99.51%(±0.33%)

we aim to identify the most optimal configuration of our proposed CNN-BiGRU-CBAM
model, ultimately leading to maximal recognition performance.

Impact of the convolution block
To explore the impact of the convolutional block on model performance, we conducted
an ablation study using the UCI-DSA dataset. This involved creating a baseline model
by excluding the convolutional block from the original CNN-BiGRU-CBAM architecture
while retaining the BiGRU and CBAM blocks. The baseline model directly feeds raw sensor
data into the BiGRU block without any spatial feature extraction.

Table 6 presents the findings of the ablation investigation. The model without the
convolutional blocks exhibits inferior recognition performance compared to the complete
CNN-BiGRU-CBAM model. Removing the convolutional blocks decreases the F1-score
from 99.51% to 98.65%, underscoring the importance of spatial feature extraction for
accurate activity identification.

Impact of the BiGRU block
The BiGRU component within our CNN-BiGRU-CBAM framework plays a crucial role in
capturing temporal connections and context from the features extracted by the CNN layers.
GRUs are a specific type of RNN renowned for processing sequential data by maintaining
internal states that retain and recall information from previous time steps.

Our model employs a BiGRU, comprising two GRU layers that process the input
sequence in both forward and backward directions. The forward GRU sequentially
analyzes the input sequence from the initial to the final time step, while the backward GRU
examines the sequence in reverse, from the final to the initial time step. This bidirectional
approach allows the BiGRU to capture context from past and future time steps, providing
a comprehensive understanding of temporal relationships between the extracted features.

The BiGRU component receives the CNN layers’ output as input, representing spatial
characteristics derived from sensor data. The input sequence undergoes separate processing
by the forward and backward GRU layers, with their outputs combined at each time step
to form the final BiGRU output. This output encapsulates sequential connections and
contextual information from the extracted features, facilitating a deeper comprehension of
the relationships between different actions and enhancing overall identification accuracy.

To evaluate the BiGRU block’s effectiveness in capturing temporal relationships, we
conducted an ablation experiment on our proposed CNN-BiGRU-CBAM model. The
baseline architecture for this experiment was a modified version of CNN-BiGRU-CBAM
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Table 7 Impact of the BiGRU block.

Model Recognition performance

Accuracy Loss F1-score

CNN-BiGRU-CBAM without BiGRU Block 98.24%(±0.53%) 0.05(±0.01) 98.24%(±0.54%)
The proposed CNN-ResBiGRU-CBAM 99.51%(±0.33%) 0.02(±0.01) 99.51%(±0.33%)

lacking a BiGRU block. The results in Table 7 confidently indicate that the CNN-BiGRU-
CBAM model, incorporating the BiGRU block, outperforms the baseline model without
it. Specifically, it achieves an increase of approximately 1.27% in F1-score on the UCI-DSA
dataset.

The BiGRU block’s bidirectional processing capability is advantageous for activity
recognition tasks as it integrates information from past and future time steps, which is
crucial for distinguishing between various activities. By capturing relevant context, the
BiGRU block enhances the model’s ability to accurately identify and categorize different
sports and daily activities using sensor data.

Impact of the CBAM block
The CBAM block, a novel addition to our proposed CNN-BiGRU-CBAM model, is
designed to enhance the model’s ability to focus on crucial features for activity detection.
This is achieved by implementing attention mechanisms in both the channel and spatial
dimensions, a unique approach in the field of computer vision and machine learning.
This block consists of two consecutive submodules: the channel and spatial attention
modules. The former exploits inter-channel interactions to generate a channel attention
map, emphasizing informative channels, while the latter utilizes inter-spatial interactions
to develop a spatial attention map, highlighting relevant spatial locations.

Positioned after the BiGRUblock in ourmodel, theCBAMblock refines spatial–temporal
feature representations before reaching the final classification layer. By employing attention
mechanisms, the CBAM block enables the model to prioritize essential areas in feature
maps while filtering out noise and irrelevant data. This attention-based feature refinement
is believed to enhance the model’s ability to detect activities effectively across various body
postures, a significant advancement in the field of activity detection.

To evaluate the impact of the CBAM block, we conducted an ablation study, removing
the CBAM block from the CNN-BiGRU-CBAM model while retaining the convolutional
and BiGRU modules. The performance of the ablated model was assessed on all three
benchmark datasets and compared to the complete CNN-BiGRU-CBAM model.

The results of the ablation study, presented in Table 8, demonstrate that the CNN-
BiGRU-CBAM model incorporating the CBAM block achieves superior recognition
performance compared to the ablated model without the CBAM block. Integration of the
CBAM block leads to a 0.36% improvement in the F1-score for the UCI-DSA dataset. This
enhancement can be attributed to the attention mechanism’s ability to highlight important
features and reduce interference, thereby enhancing the model’s ability to discriminate
between different elements.
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Table 8 Impact of the CBAM block.

Model Recognition Performance

Accuracy Loss F1-score

CNN-BiGRU-CBAM without CBAM Block 99.14%(±0.28%) 0.03(±0.02) 99.14%(±0.28%)
The proposed CNN-ResBiGRU-CBAM 99.51%(±0.33%) 0.02(±0.01) 99.51%(±0.33%)

Table 9 Comparison of the number of trainable parameters, memory consumption, andmean pre-
diction times for baseline deep learning models (CNN, LSTM, BiLSTM, GRU, and BiGRU) and the pro-
posed CNN-BiGRU-CBAMmodel using the benchmark UCI-DSA dataset.

Model Parameters Memory
(bytes)

Mean
prediction
time (ms)

CNN 509,011 6,147,880 0.190
LSTM 108,051 1,339,032 0.270
BiLSTM 279,315 3,412,376 0.425
GRU 86,163 1,076,376 0.278
BiGRU 169,747 2,091,160 0.416
CNN-BiGRU-CBAM 312,698 3,914,472 0.425

In summary, the CNN-BiGRU-CBAMmodel employs convolutional modules, a BiGRU
component, and a CBAMmodule to effectively extract the most relevant features from the
data captured by wearable sensors.

Complexity analysis
To thoroughly explore the algorithm’s intricacies, we conducted an extensive examination
of the proposed CNN-BiGRU-CBAM model. This analysis compared it with baseline
deep learning models such as CNN, LSTM, BiLSTM, GRU, and BiGRU. We adopted
the HAR evaluation methodology outlined by Angerbauer et al. (2021) for this study. The
complexity was assessed by measuring the models’ memory usage, average prediction time,
and the number of trainable parameters. The benchmark UCI-DSA dataset utilized in this
investigation was employed to assess all models.

Memory consumption
During the inference process on test dataset batches, we evaluated the memory usage of the
CNN-BiGRU-CBAM architecture compared to the baseline CNN, LSTM, BiLSTM, GRU,
andBiGRUarchitectures usingCUDAprofiling tools. The results presented inTable 9 reveal
that our proposed model requires an average of 3,914,472 bytes of memory. This memory
stores encoder feature maps, temporal hidden states, classifier weights, and outputs. In
contrast, the basic CNN consumes an average of 6,147,880 bytes when processing shorter
feature sequences. Conversely, the standalone BiGRU architecture occupies an average
of 2,091,160 bytes without employing convolutions to represent spatial hierarchies. The
CNN-BiGRU-CBAM model strikes a balance by enhancing accuracy without substantially
increasing memory usage.
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Prediction time
To evaluate efficiency, we analyze the complexity of the models based on their mean
prediction time. This metric is determined by feeding a set of samples from the test data
into the HARmodels and calculating the average duration required to process one window.
The results of this analysis are presented in Table 9, showcasing the average prediction time
in milliseconds for the deep learning models operating on the UCI-DSA dataset. BiGRU
exhibits the most prolonged prediction latency among these models, with a duration of
0.416 ms. It is worth noting that BiGRUs typically require a significantly longer time during
training than CNN-based models, including our proposed CNN-BiGRU-CBAM. This is
because convolutions can be executed concurrently, only needing a few adjacent values
to compute the output of a single kernel. However, with BiGRU, a substantial portion of
computations must be performed sequentially, as outputs depend on prior outputs. The
mean prediction time of the CNN-BiGRU-CBAM model is 0.425 ms, comparable to that
of the BiGRU and BiLSTM models.

Trainable parameters
In addition to memory usage and average prediction time, we consider the number of
trainable parameters to indicate model complexity. These parameters represent the weights
that are adjusted during the model training process, and a higher count suggests the
model’s capacity to convey more intricate data. However, if the data lacks complexity, it
also increases the risk of overfitting.

The count of trainable parameters for the deep learning models (CNN, LSTM, BiLSTM,
GRU, BiGRU, and the proposed CNN-BiGRU-CBAM) utilized in this study is meticulously
presented in Table 9. These values were obtained from the model summary using the
benchmark UCI-DSA dataset, ensuring the accuracy and reliability of our findings. The
results align with the intuitive understanding of the complexity differences among these
models. Among the fundamental deep learning models, the GRU is the simplest, with
86,163 parameters, while the CNN is the most complex, with 509,011 parameters. The
proposed CNN-BiGRU-CBAM model contains a total of 312,698 trainable parameters.
This figure is notably higher than those of other deep learning models but remains lower
than that of the CNN model.

CONCLUSION AND FUTURE WORKS
This research delved into applying advanced learning approaches to accurately recognize
diverse sports and fitness activities using information gathered from wearable sensors.
An essential contribution lies in introducing an integrated CNN-BiGRU-CBAM model,
amalgamating convolutional, recurrent, and attention-based neural network structures.
The primary goal is to boost the precision and dependability of detecting sports and
everyday activities. The performance of this hybrid model was assessed using the UCI-DSA
benchmark dataset, showcasing its capability to categorize a broad spectrum of intricate
workout movements precisely. Notably, the proposed technique outperforms comparable
deep learning benchmarks like CNN, LSTM, BiLSTM, GRU, and BiGRU. Rigorous
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evaluations validate its consistent and accurate recognition across numerous classes in
both sports and everyday activities, relying solely on sensor data.

Ongoing research efforts are crucial to bolster the robustness, interpretability,
and accessibility of models for practical deployment. Nonetheless, intelligent activity
identification holds substantial potential to revolutionize training, competition, and
rehabilitation in sports. Potential future directions also include:

• Deploying models on portable edge devices for minimal analysis delays,
• Integrating sensor data with video streams and
• Exploring attention methods to enhance model transparency and comprehensibility.
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