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This paper presents a symbolic approach to model checking quantum circuits using a set
of laws from quantum mechanics and basic matrix operations with Dirac notation. We use
Maude, a high-level specification/programming language based on rewriting logic, to
implement our symbolic approach. As case studies, we use the approach to formally
specify several quantum communication protocols in the early work of quantum
communication and formally verify their correctness: Superdense Coding, Quantum
Teleportation, Quantum Secret Sharing, Entanglement Swapping, Quantum Gate
Teleportation, Two Mirror-image Teleportation, and Quantum Network Coding. We
demonstrate that our approach/implementation can be a first step toward a general
framework to formally specify and verify quantum circuits in Maude. The proposed way to
formally specify a quantum circuit makes it possible to describe the quantum circuit in
Maude such that the formal specification can be regarded as a series of quantum
gate/measurement applications. Once a quantum circuit has been formally specified in the
proposed way together with an initial state and a desired property expressed in Linear
Temporal Logic (LTL), the proposed model checking technique utilizes a built-in Maude LTL
model checker to automatically conduct formal verification that the quantum circuit enjoys
the property starting from the initial state.
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ABSTRACT9

This paper presents a symbolic approach to model checking quantum circuits using a set of laws from

quantum mechanics and basic matrix operations with Dirac notation. We use Maude, a high-level

specification/programming language based on rewriting logic, to implement our symbolic approach. As

case studies, we use the approach to formally specify several quantum communication protocols in

the early work of quantum communication and formally verify their correctness: Superdense Coding,

Quantum Teleportation, Quantum Secret Sharing, Entanglement Swapping, Quantum Gate Teleportation,

Two Mirror-image Teleportation, and Quantum Network Coding. We demonstrate that our approach/imple-

mentation can be a first step toward a general framework to formally specify and verify quantum circuits

in Maude. The proposed way to formally specify a quantum circuit makes it possible to describe the

quantum circuit in Maude such that the formal specification can be regarded as a series of quantum

gate/measurement applications. Once a quantum circuit has been formally specified in the proposed

way together with an initial state and a desired property expressed in Linear Temporal Logic (LTL), the

proposed model checking technique utilizes a built-in Maude LTL model checker to automatically conduct

formal verification that the quantum circuit enjoys the property starting from the initial state.
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1 INTRODUCTION25

Quantum computing is a rapidly emerging technology that uses the laws of quantum mechanics to26

solve complex problems that are very hard for classical computers, such as discrete logarithms and27

factoring. Several quantum algorithms have been proposed showing a significant improvement over28

classical algorithms, such as the fast algorithms for discrete logarithms and factoring proposed by Shor29

(1994). It is well known that cryptosystems relying on the hardness of discrete logarithms and factoring30

will be broken by large-scale quantum computers running Shor’s fast algorithm in the future. Then,31

quantum communication involving quantum cryptography has attracted much attention from both industry32

and academia because it provides an efficient and highly secure communication channel relying on33

quantum mechanics phenomena, such as superposition, entanglement, and probabilistic measurement.34

Quantum circuits are a model of quantum computation, comprising a sequence of quantum gates,35

measurements, initializations of qubits, and possibly other actions. Quantum gates operate on quantum36

bits (qubits), the quantum counterpart of classical bits, and manipulate the state of a quantum system37

to perform quantum computations. The outputs of quantum circuits are quantum states, which can38

be measured to obtain classical outcomes with probabilities from which other actions can take place.39

Quantum circuits play a crucial role in the development of quantum algorithms because they are used40

to design and implement quantum algorithms before actually running on quantum computers. Because41

quantum computing is counter-intuitive and radically different from classical computing, the likelihood of42

errors in quantum algorithms and circuits is much higher than in classical algorithms. Therefore, it is43

critical to verify that quantum circuits (or algorithms) enjoy desired properties.44
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Model checking is a formal verification technique widely used in both academia and industry to45

systematically verify that systems satisfy desired properties. Quantum programs and quantum circuits46

are related concepts, but they differ in their level of abstraction and the way they represent quantum47

computations. Quantum circuits are low-level representations of quantum computation that can be48

used to implement quantum programs, while quantum programs are higher-level representations of49

quantum computations that can be expressed in a quantum programming language consisting of a series50

of instructions, especially the loop instruction. Although there are some model checkers dedicated to51

quantum programs, such as Gay et al. (2008); Feng et al. (2013, 2015) (see Ying and Feng (2018, 2021);52

Turrini (2022) for more details), there is still a gap between model checking quantum programs and53

quantum circuits due to different representations and no iteration in quantum circuits, which should54

be filled in. Moreover, because the verification of classical circuits using model checking has been55

proven to be a tremendously successful technique, model checking that quantum circuits satisfy desired56

properties would be a promising approach. There is a symbolic approach proposed by Shi et al. (2021) to57

(semi-)automatically reasoning about quantum circuits in Coq1, an interactive theorem prover, but it often58

requires human users to provide necessary lemmas to complete its proofs.59

This paper presents a symbolic approach to model checking quantum circuits using a set of laws from60

quantum mechanics and basic matrix operations with Dirac notation proposed by Dirac (1939). Concretely,61

quantum states, quantum gates, and measurements are described in Dirac notation instead of using62

explicitly complex vectors and matrices as proposed by Paykin et al. (2017), making our representations63

more compact. Using the set of laws, we can systematically reason about the evolution of quantum states.64

We use Maude introduced by Clavel et al. (2007), a high-level specification/programming language based65

on rewriting logic presented by Meseguer (2012), to specify quantum states, some basic quantum gates66

(e.g., Hadamard gate, controlled-NOT gate, and Pauli gates), and measurements on a standard basis with67

Dirac notation. Maude is equipped with a Linear Temporal Logic (LTL) model checker and its reflective68

programming (or meta-programming) facilities have been used to develop several software tools, such as69

Maude-NPA introduced by Escobar et al. (2007), its parallel version developed by Do et al. (2022b), and70

a toolset of some parallel versions of the LTL model checker presented by Do et al. (2021, 2022a, 2023);71

Phyo et al. (2023). Therefore, Maude makes it possible/convenient to implement our idea and carry out72

case studies. This is why we adopt Maude for the research described in the paper.73

As case studies, we focus on using our approach to formally specify several quantum communication74

protocols in the early work of quantum communication and formally verify their correctness: Superdense75

Coding introduced by Bennett and Wiesner (1992), Quantum Teleportation presented by Bennett et al.76

(1993), Quantum Secret Sharing developed by Hillery et al. (1999), Entanglement Swapping proposed77

by Zukowski et al. (1993), Quantum Gate Teleportation suggested by Gottesman and Chuang (1999),78

Two Mirror-image Teleportation devised by Williams (2008), and Quantum Network Coding originated79

by Satoh et al. (2012). In this paper, we use eventual properties, a class of liveness properties, to express80

the desired properties for these quantum communication protocols. In addition to the desired properties,81

any properties that can be expressed in the scope of LTL can essentially be verified using the Maude82

LTL model checker with our approach. In this paper, we do not directly tackle quantum circuits for83

complicated quantum algorithms, such as Shor (1994) and Grover (1996) because necessary quantum84

gates have not been developed yet and our symbolic reasoning for complex numbers is not sufficient85

to describe and reason about their behaviors adequately. Therefore, extending our approach to handle86

these algorithms would require further research, which would be one piece of our future work. Our87

specification is specifically tailored to quantum circuits, abstracting away from the details of concurrency88

and communication. To handle quantum cryptography, such as BB84 introduced by Bennett and Brassard89

(2014) and B91 introduced by Ekert (1991), we need to be able to express concurrency and communication90

among participants in quantum protocols in our specification. Therefore, extending our approach to91

handle such quantum protocols would require further research, which would be one piece of our future92

work.93

We demonstrate that our approach/implementation can be a first step toward a general framework to94

formally specify and verify quantum circuits. The proposed way to formally specify a quantum circuit95

makes it possible to describe the quantum circuit in Maude such that the formal specification can be96

regarded as a series of quantum gate/measurement applications. Once a quantum circuit has been formally97

specified in the proposed way together with an initial state and a desired property expressed in LTL,98

1https://coq.inria.fr/
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the proposed model checking technique utilizes a built-in Maude LTL model checker to automatically99

conduct formal verification that the quantum circuit enjoys the property starting from the initial state.100

Moreover, our specification considers the probabilities from measurements in quantum computation101

based on which the probability of a computation occurring is accumulated across states and so we are102

able to analyze both the quantitative and qualitative properties2 of several quantum communication103

protocols with the built-in LTL model checker in Maude. Our implementation is publicly available at104

https://doi.org/10.5281/zenodo.10783951.105

The present paper is an extended and improved version of our conference paper presented by Do and106

Ogata (2023) with some improvements as follows:107

• We fully support Pauli gates in our specification and some additional gates, including SSS, TTT , CCCYYY , CCCZZZ,108

SSSWWWAAAPPP, CCCCCCYYY , CCCCCCZZZ, and CCCSSSWWWAAAPPP gates. Moreover, the symbolic reasoning is refined and improved109

in order to conduct more case studies.110

• We verify some more quantum communication protocols: Superdense Coding, Quantum Secret111

Sharing, Entanglement Swapping, Quantum Gate Teleportation, Two Mirror-image Teleportation,112

and Quantum Network Coding in order to demonstrate the usefulness of our approach for formally113

specifying and verifying quantum circuits in Maude.114

• We identify that the original version of Quantum Gate Teleportation does not satisfy its desired115

property using our approach and support tool. We then propose a revised version of the protocol116

and verify that the revised one satisfies its desired property using our approach and support tool.117

• Lastly, we describe how we specify complex numbers in Maude to symbolically reason on complex118

numbers with rational numbers for our case studies.119

The rest of the paper is organized as follows: Section 2 explains basic quantum mechanics and Kripke120

structures; Section 3 explains how we can associate a rewrite theory with a quantum circuit via a Kripke121

structure; Section 4 describes how to construct terms and use a set of laws from quantum mechanics and122

matrix operations for symbolic reasoning using our approach; Section 5 details how to specify qubits,123

gates, measurements, and then quantum circuits in order to symbolically model check quantum circuits124

in a generic way; Section 6 demonstrates how to use our symbolic approach to model checking several125

quantum communication protocols in depth; Section 7 provides a remark on Quantum Gate Teleportation;126

Section 8 presents our experimental results; Section 9 discusses our limitations, some challenges in using127

the Maude LTL model checker, a classical model checker, to verify quantum circuits, and how we address128

them in this paper; Section 10 reviews some existing work; and Section 11 concludes the paper with some129

pieces of future work.130

2 PRELIMINARIES131

This section briefly describes some basic notations from quantum mechanics based on linear algebra132

(refer to Nielsen and Chuang (2010) for more details) and Kripke structures.133

2.1 Basic Quantum Mechanics134

This section describes basic quantum mechanics based on the linear algebra approach. In classical135

computing, the fundamental unit of information is a bit whose value is either 0 or 1. In quantum136

computing, the counterpart is a quantum bit or qubit, which has two basis states, conventionally written137

in Dirac notation proposed by Dirac (1939) as |0ð and |1ð, which denote two column vectors

�

1

0

�

and138

�

0

1

�

, respectively. In quantum theory, a general state of a quantum system is a superposition or linear139

combination of basis states. A single qubit has state |ψð = α |0ð+β |1ð, where α and β are complex140

numbers such that |α|2 + |β |2 = 1. States can be represented by column complex vectors as follows:141

2Quantitative properties involve numerical aspects, such as probabilities or quantitative measures of system behavior, while

qualitative properties focus on the presence or absence of certain behaviors. For example, the probability of each computation of a

model is only zero or one that can be considered as qualitative properties, while the probability of each computation of a model is

greater or less than a certain number other than zero or one that can be considered as quantitative properties.
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Table 1. Quantum gates by names, circuit forms, and the corresponding unitary matrices

Operator Gate Matrix

Identity (III2) I

�

1 0

0 1

�

Pauli-X (XXX) X

�

0 1

1 0

�

Pauli-Y (YYY ) Y

�

0 −i

i 0

�

Pauli-Z (ZZZ) Z

�

1 0

0 −1

�

Hadamard (HHH) H
1√
2

�

1 1

1 −1

�

Controlled-NOT (CCCXXX) (the first and

second wires denote the control and

target qubits, respectively)













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













|ψð=
�

α

β

�

= α |0ð+β |1ð,142

where {|0ð , |1ð} forms an orthonormal basis of the two-dimensional complex vector space. Formally, a143

quantum state is a unit vector in a Hilbert space H , which is equipped with an inner product satisfying144

some axioms.145

The basis {|0ð , |1ð} is called the standard basis. Besides, we have some other bases of interest, such146

as the diagonal (or dual, or Hadamard) basis consisting of the following vectors:147

|+ð= 1√
2
(|0ð+ |1ð) and |−ð= 1√

2
(|0ð− |1ð).148

The evolution of a closed quantum system can be performed by a unitary transformation. If the149

state of a qubit is represented by a column vector, then a unitary transformation can be represented by a150

complex-value matrix UUU such that UUUUUU† =UUU†UUU = III or UUU† =UUU−1, where UUU† is the conjugate transpose151

of UUU . UUU acts on the Hilbert space H transforming a state |ψð to a state |ψ ′ð by a matrix multiplication152

such that |ψ ′ð=UUU |ψð. There are some common quantum gates: the identity gate III, the Pauli gates XXX , YYY ,153

and ZZZ, the Hadamard gate HHH, and the controlled-NOT gate CCCXXX . Note that the CCCXXX gate performs on two154

qubits, while the remaining gates perform on a single qubit.155

For example, the Hadamard gate on a single qubit performs the mapping |0ð  → 1√
2
(|0ð+ |1ð) and |1ð  →156

1√
2
(|0ð− |1ð). The controlled-NOT gate on pairs of qubits performs the mapping |000000ð  → |000000ð , |000111ð  →157

|000111ð , |111000ð  → |111111ð , |111111ð  → |111000ð, which can be understood as inverting the second qubit (referred to as the158

target) if and only if the first qubit (referred to as the control) is 111. The common quantum gates are shown159

in Table 1 by names, circuit forms, and matrix representations, where i is the imaginary unit.160

A quantum measurement is described as a collection {MMMm} of measurement operators, where the161

indices m refer to the measurement outcomes. It is required that the measurement operators satisfy162

∑m MMM†
mMMMm = IIIH . If the state of a quantum system is |ψð before the measurement, then the probability163

for the result m is as follows:164

p(m) = ïψ|MMM†
mMMMm |ψð,165
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where ïψ| is the dual of |ψð such that ïψ|† = |ψð and |ψð† = ïψ|. The state of the quantum system after166

the measurement is
MMMm|ψð√

p(m)
provided that p(m)> 0. For example, if a qubit is in state α |0ð+β |1ð and167

measuring with {MMM0,MMM1} operators, we have the result 0 with probability |α|2 at the post-measurement168

state |0ð and the result 1 with probability |β |2 at the post-measurement state |1ð, where MMM0 = |0ð×ï0|169

and MMM1 = |1ð×ï1|. The quantum measurement with {MMM0,MMM1} operators is called the binary projective170

measurement. In this paper, we only use the binary projective measurement and its circuit form is depicted171

in Figure 1 as follows:172

�Ø

�Ø

Figure 1. The circuit form of the binary projective measurement, where the measurement outcome of

the qubit qi is stored in the classical bit ci.

For multiple qubits, we use the tensor product of Hilbert spaces. Let H1 and H2 be two Hilbert173

spaces. Their tensor product H1 ¹H2 is defined as a vector space consisting of linear combinations174

of the vectors |ψ1ψ2ð = |ψ1ð |ψ2ð = |ψ1ð¹ |ψ2ð, where |ψ1ð ∈ H1 and |ψ2ð ∈ H2. Systems of two or175

more qubits may be in entangled states, meaning that states of qubits are correlated and inseparable. For176

example, we consider a measurement of the first qubit of the entangled state 1√
2
(|000000ð+ |111111ð). The result177

is either 0 with probability 1
2

leaving its state |000000ð or 1 with probability 1
2

leaving its state |111111ð. In either178

case, a subsequent measurement of the second qubit gives a non-probabilistic result, which is immediate179

to the result of the first measurement before. Entanglement shows that an entangled state of two qubits180

cannot be expressed as a tensor product of single-qubit states. We can use HHH and CCCXXX gates to create181

entangled states as follows: CCCXXX((HHH ¹ III) |000000ð) = 1√
2
(|000000ð+ |111111ð).182

2.2 Kripke Structures183

A Kripke structure K is a tuple ïS, I,T,A,Lð as represented by Clarke et al. (2018), where S is a set of184

states, I ¦ S is the set of initial states, T ¦ S×S is a left-total binary relation over S, A is a set of atomic185

propositions, and L is a labeling function whose type is S → 2A. Each element (s,s′) ∈ T is called a state186

transition from s to s′ and T may be called the state transitions (with respect to K). For a state s ∈ S,187

L(s) is the set of atomic propositions that hold in s. A path π is an infinite sequence s0, . . . ,si,si+1, . . .188

such that si ∈ S and (si,si+1) ∈ T for each i. We use the following notations for paths: π i ≜ si,si+1, . . .,189

πi ≜ s0, . . . ,si,si,si, . . ., π(i)≜ si, where ≜ is used as “be defined as.” π i is obtained by deleting the first i190

states s0,s1, . . . ,si−1 from π . πi is obtained by taking the first i+1 states s0,s1, . . . ,si−1,si and adding si191

unboundedly many times at the end. π(i) is the ith state si. Let P be the set of all paths. π is called a192

computation if π(0) ∈ I. Let C be the set of all computations.193

The syntax of a formula ϕ in LTL for K is as follows:194

ϕ ::=¦ | p | ¬ϕ | ϕ 'ϕ | ⃝ ϕ | ϕ U ϕ

where p ∈ A, and ⃝ and U are called the next temporal connective and the until temporal connective,195

respectively. We introduce the eventual temporal abbreviation ♢ which is defined as follows:196

• ♢ϕ ≜¦ U ϕ197

This eventual temporal abbreviation is also used in Clarke et al. (2018).198

Let F be the set of all formulas in LTL for K. Given an arbitrary path π ∈ P of K and an arbitrary199

LTL formula ϕ ∈ F of K, K,π |= ϕ is inductively defined as follows:200

• K,π |=¦201

• K,π |= p iff p ∈ L(π(0))202

• K,π |= ¬ϕ1 iff K,π ̸|= ϕ1203

• K,π |= ϕ1 'ϕ2 iff K,π |= ϕ1 and K,π |= ϕ2204
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• K,π |=⃝ϕ1 iff K,π1 |= ϕ1205

• K,π |= ϕ1 U ϕ2 iff there exists a natural number i such that K,π i |= ϕ2 and for all natural numbers206

j < i, K,π j |= ϕ1207

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ iff K,π |= ϕ for each computation π ∈ C of K.208

In this paper, we refer to ♢ϕ as eventual properties, which informally state that something will209

eventually happen. Termination or halting is one important system requirement that many systems should210

satisfy and can be expressed in LTL as an eventual property. Moreover, we aim to verify whether quantum211

circuits satisfy certain desired properties where something good eventually happens. For example, a qubit212

at the final state for each possible execution path is the same as another qubit at the initial state with a213

non-zero probability. Therefore, it is worthwhile to use eventual properties to express desired properties214

for our case studies under verification. For more details, the reader is referred to Section 6 to see how we215

express the desired properties for our case studies as eventual properties.216

3 REWRITING LOGIC AND QUANTUM CIRCUITS217

This section describes how we can associate a rewrite theory with a quantum circuit via a Kripke structure218

at a conceptual level, enabling the use of LTL model checking to verify that the quantum circuit enjoys a219

desired property.220

A rewrite theory R is a triple (Σ,E,R), where221

• Σ is an order-sorted signature consisting of a set of sorts, subsorts, and function symbols,222

• (Σ,E) forms an order-sorted equational theory with E being a collection of (possibly conditional)223

equations t = t ′,224

• R is a collection of (possibly conditional) rewrite rules l → r.225

Terms are built from variables, constants, and function symbols from Σ, and each term has a sort. The226

equations in E are used to reduce a term into a normal form, while the rewrite rules in R modulo E are227

used to make local transitions in systems, making it possible to rewrite one term to another term. We can228

associate a Kripke structure K = ïS, I,T,A,Lð to a rewrite theory R = (Σ,E,R) as presented in (Clavel229

et al., 2007, Chapter 13). In short, each term t in R can be regarded as a state s ∈ S in K; and each230

rewriting step from t to t ′ can be regarded as a state transition (s,s′) ∈ T in K, where t and t ′ are terms of231

the same sort with their corresponding states s,s′ ∈ S. A and L are not necessary parts of R and can be232

specified later in terms of constants and equations, respectively, to determine whether atomic propositions233

are true at a given state.234

A quantum circuit can be described as a series of applications of quantum gates, measurements, and235

conditional gates, which are applied based on the outcomes of measurements. The input of a quantum236

circuit is a quantum state, and so is the output. The input and the output of a quantum circuit can be237

regarded as the initial state and the final state belonging to S in K, where the initial state also belongs to I238

in K. Therefore, a quantum state can be specified as a term in the rewrite theory R. The application of239

quantum gates manipulates a quantum state to perform quantum computation, which is specified in terms240

of equations in R so that we can reason about quantum computation. The application of a quantum gate241

can be regarded as a deterministic state transition in K since it transforms a quantum state into another242

quantum state. As a result, the application of a quantum gate can be specified by a rewrite rule in R.243

Besides quantum gates, we can conduct a measurement on a quantum state to obtain classical outcomes244

based on which other quantum actions (e.g., quantum gates) can take place. As mentioned before, we245

are only interested in the binary projective measurement in this paper. Therefore, the application of a246

measurement can be regarded as a non-deterministic state transition in K since the measurement may247

make a quantum state collapse into one of two different possibilities of quantum states with probabilities.248

As a result, the application of a measurement can be specified by two rewrite rules in R. Note that there249

are only two rewrite rules for quantum measurements, while there are as many rewrite rules as the number250

of quantum gates supported by the rewrite theory R. If the equations in R are sufficient to reason about251

any quantum computation and the rewrite rules in R support sufficient quantum gates, the rewrite theory252

R can simulate the behavior of any quantum circuit, making it applicable in a generic sense.253
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Given a concrete quantum circuit described as a series of quantum gates, quantum measurement, and254

conditional gates, along with an initial quantum state, the rewrite theory R can simulate the behavior of255

the quantum circuit by addressing all possible execution paths starting from the initial quantum state. We256

can associate K with R so as to conduct LTL model checking and verify that the quantum circuit satisfies257

a desired property. The desired property of the quantum circuit can be constructed based on the atomic258

propositions (regarded as state predicates) within the scope of LTL language. For each possible execution259

path, we can examine each quantum state and check which atomic propositions hold at the state. Thus,260

LTL model checking can verify whether the quantum circuit satisfies the desired property.261

4 SYMBOLIC REASONING262

This section introduces some terms used in our symbolic reasoning and a set of laws used to reduce terms.263

The “symbolic” word means that we use bra-ket notation, which means ïψ| and |ψð, instead of explicitly264

complex vectors and matrices as proposed by Paykin et al. (2017), which makes our representations more265

compact. Moreover, we can deal with not only concrete values but also symbolic values (representing266

arbitrary values) for complex numbers reasoning.267

4.1 Terms268

Terms are built from scalars and basic vectors with some operations.269

• Scalars are complex numbers. We extend rational numbers supported in Maude to deal with complex270

numbers. Some operations for scalars, such as multiplication, division, addition, conjugation,271

absolute, power, and square roots are specified. The reader who is interested in how to specify272

complex numbers in Maude is referred to Appendix A.273

• Basic vectors are the ones of the standard basis written in Dirac notation as |0ð and |1ð.274

• Operations for matrices consist of scalar multiplication ·, matrix product ×, matrix addition +,275

tensor product ¹, and the conjugate transpose AAA† of a matrix AAA.276

In Dirac notation, ï0| is the dual of |0ð such that ï0|† = |0ð and |0ð† = ï0|; similarly for ï1|. The277

terms |jð×ïk| and the inner product of ket vectors |jð and |kð may be written shortly as |jðïk| and ïj|kð278

for any j,k ∈ {0,1}. By using these notations, we can intuitively explain how quantum operations work.279

For example, the XXX gate performs mapping |0ð �→ |1ð and |1ð �→ |0ð. Therefore, we specify the XXX gate280

as |0ðï1|+ |1ðï0| in Maude instead of using explicitly the matrix representation

�

0 1

1 0

�

. We have281

XXX |0ð= |1ðï0|0ð+ |0ðï1|0ð= |1ð because of laws L1 and L3 in Table 2 and similarly for XXX |1ð= |000ð.282

We conventionally specify some basic matrices BBBi for i ∈ [0..3] as follows:283

BBB0 = |0ð×ï0|, BBB1 = |0ð×ï1|, BBB2 = |1ð×ï0|, BBB3 = |1ð×ï1|.284

The XXX , YYY , ZZZ, CCCXXX , and HHH gates are then a linear combination of the matrices BBBi as follows:285

XXX = BBB1 +BBB2, YYY = (−i) ·BBB111 + i ·BBB222, ZZZ = BBB1 +(−1) ·BBB3,

CCCXXX = BBB0 ¹ III2 +BBB3 ¹XXX , HHH = 1√
2
·BBB0 +

1√
2
·BBB1 +

1√
2
·BBB2 +(− 1√

2
) ·BBB3.

286

4.2 Laws287

We use a set of laws in Table 2 derived from the properties of quantum mechanics and basic matrix288

operations, and thus, they are immediately sound. The reader who is interested in their proofs in Coq is289

referred to Shi et al. (2021). Because |0ð and |1ð can be viewed as 2×1 matrices, then the laws actually290

describe matrix calculations with Dirac notation, zero and identity matrices, and scalars. These laws291

are described by equations in Maude and are used to automatically reduce terms until no more matrix292

operation is applicable. Some laws dedicated to simplifying the expressions about complex numbers are293

also specified in Maude by means of equations, but we do not mention them here for brevity.294

For example, we would like to reduce the term CCCXXX × ((HHH ¹ III)×|000ð¹ |000ð) to check whether its result295

is 1√
2
· |000ð¹ |000ð+ 1√

2
· |111ð¹ |111ð. The term says that the HHH gate acts on the first qubit followed by the CCCXXX296
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Table 2. A set of laws used for symbolic reasoning

No. Law

L1 ï0|0ð= ï1|1ð= 1,ï1|0ð= ï0|1ð= 0

L2 Associativity of ×,+,¹ and Commutativity of +

L3 0 ·AAAm×n = Om×n, c ·O = O, 1 ·AAA = AAA

L4 c · (AAA+BBB) = c ·AAA+ c ·BBB
L5 c1 ·AAA+ c2 ·AAA = (c1 + c2) ·AAA
L6 c1 · (c2 ·AAA) = (c1 · c2) ·AAA
L7 (c1 ·AAA)× (c2 ·BBB) = (c1 · c2) · (AAA×BBB)

L8 AAA× (c ·BBB) = (c ·AAA)×BBB = c · (AAA×BBB)

L9 AAA¹ (c ·BBB) = (c ·AAA)¹BBB = c · (AAA¹BBB)

L10 Om×n ×AAAn×p = AAAm×n ×On×p = Om×p

L11 IIIm ×AAAm×n = AAAm×n × IIIn = AAAm×n

L12 AAA+O = O+AAA = O

L13 Om×n ¹AAAp×q = AAAp×q ¹Om×n = Omp×nq

L14 AAA× (BBB+CCC) = AAA×BBB+AAA×CCC

L15 (AAA+BBB)×CCC = AAA×CCC+BBB×CCC

L16 (AAA¹BBB)× (CCC¹DDD) = (AAA×CCC)¹ (BBB×DDD)

L17 AAA¹ (BBB+CCC) = AAA¹BBB+AAA¹CCC

L18 (AAA+BBB)¹CCC = AAA¹CCC+BBB¹CCC

L19 (c ·AAA)† = c∗ ·AAA†, (AAA×BBB)† = BBB† ×AAA†

L20 (AAA+BBB)† = AAA† +BBB†, (AAA¹BBB)† = AAA† ¹BBB†

L21 IIIm
† = IIIm,OOO

†
m×n = OOOn×m,(AAA

†)† = AAA

L22 |0ð† = ï0| , ï0|† = |0ð , |1ð† = ï1| , ï1|† = |1ð

gate where the control and target bits are the first and second qubits, respectively. The simplification of297

the term goes as follows:298

HHH ×|000ð

= (
1√
2
·BBB0 +

1√
2
·BBB1 +

1√
2
·BBB2 +(− 1√

2
) ·BBB3)×|000ð (by replacement of HHH)

=
1√
2
·BBB0 ×|000ð+ 1√

2
·BBB1 ×|000ð+ 1√

2
·BBB2 ×|000ð+(− 1√

2
) ·BBB3 ×|000ð (by law L15)

=
1√
2
· |000ð×ï000|× |000ð+ 1√

2
· |000ð×ï111|× |000ð+ 1√

2
· |111ð×ï000|× |000ð+(− 1√

2
) · |111ð×ï111|× |000ð

(by replacements of BBB0, BBB1, BBB2, and BBB3)

=
1√
2
· |000ð+ 1√

2
· |111ð (by law L1)

(HHH ¹ III)× (|000ð¹ |000ð)
= (HHH ×|000ð)¹ (III ×|000ð) (by law L16)

= (
1√
2
· |000ð+ 1√

2
· |111ð)¹|000ð (by the result of HHH ×|000ð and law L11)

=
1√
2
· |000ð¹ |000ð+ 1√

2
· |111ð¹ |000ð (by law L18)
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299

CCCXXX × ((HHH ¹ III)× (|000ð¹ |000ð))

= (BBB0 ¹ III +BBB3 ¹XXX)× (
1√
2
· |000ð¹ |000ð+ 1√

2
· |111ð¹ |000ð)

(by replacement of CCCXXX , and the result of (HHH ¹ III)× (|000ð¹ |000ð))

= (BBB0 ¹ III)× (
1√
2
· |000ð¹ |000ð)+(BBB0 ¹ III)× (

1√
2
· |111ð¹ |000ð)+(BBB3 ¹XXX)× (

1√
2
· |000ð¹ |000ð) +

BBB3 ¹XXX × (
1√
2
· |111ð¹ |000ð) (by laws L14 and L15)

=
1√
2
· (BBB0 ×|000ð)¹ (III ×|000ð)+ 1√

2
· (BBB0 ×|111ð)¹ (III ×|000ð)+ 1√

2
· (BBB3 ×|000ð)¹ (XXX ×|000ð) +

1√
2
· (BBB3 ×|111ð)¹ (XXX ×|000ð) (by laws L8, L9, and L16)

=
1√
2
· |000ð¹ |000ð+ 1√

2
· |111ð¹ |111ð (by replacements of BBB0, BBB3, and XXX , and laws L1, L11, and L15)

Using the laws, the term is reduced to a normal form that is a linear combination of the tensor product300

of the standard basis with scalars. The whole process is conducted automatically in Maude and the result301

is the same as expected. The key idea is to reduce the matrix multiplication in the form of ïiii| jjjð into a302

scalar and simplify the matrix representation by absorbing ones and eliminating zeros (see law L3). In this303

manner, our symbolic reasoning about matrices can be conducted automatically by rewriting in Maude304

instead of explicitly calculating matrices.305

5 FORMAL SPECIFICATION306

This section shows how we specify in Maude qubits, quantum gates, measurements, and then quantum307

circuits in order to symbolically model check quantum circuits in a generic way.308

5.1 Maude Specification of Qubits, Gates, and Measurements309

Qubits are specified in Maude as the linear combination of tensor product of the standard basis in Dirac310

notation with scalars and similarly for quantum gates. Because |000ð and |111ð can be viewed as 2×1 matrices,311

then qubits and quantum gates are basically matrices. Quantum gates act on qubits (a quantum state)312

specified in Maude as a matrix multiplication with a deterministic transition in Maude. In this paper, we313

only consider binary projective measurements on the standard basis, and thus the measurement operators314

are {MMM0,MMM1}. A measurement of a single qubit in a quantum state is specified in Maude by two state315

transitions with probabilities p(m) for m ∈ {0,1}, making a non-deterministic probabilistic transition.316

Each of the two transitions shows how its measurement operator acts on the single qubit in a state and is317

specified similarly as quantum gates, however, with respect to the probabilities.318

5.2 A Generic Maude Specification of Quantum Circuits319

Quantum circuits are composed of a sequence of quantum gates, measurements, initializations of qubits,320

and possibly other actions (see Figures 2–4). In this paper, we consider the specification of the whole321

quantum state of a quantum circuit, the classical bits obtained from measurements, and the sequence of322

quantum gates, measurements, and conditional gates describing how a quantum circuit works. We then323

build Kripke structures for quantum circuits in order to conduct model checking that quantum circuits324

satisfy desired properties. Some essential elements are shared in the Kripke structures, making a first step325

toward a general framework for specifying and verifying quantum circuits.326

5.2.1 Elements of Quantum Circuits327

A whole quantum state of a quantum circuit is specified in Maude as a collection of qubits associated with328

indices in circuits, where each element is one of the forms as follows:329

• (q[i]: |ψð) denotes a single qubit in state |ψð at qi,330

• (q[i, . . . , j]: |ψð) denotes an entangled state in state |ψð at qi, . . . ,q j, where the order of i, . . . , j331

is relevant.332
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Note that qi and q j denote the labels of quantum wires (refer to Figure 3 for more visualization), where i333

and j represent the indices of the qubits in the whole quantum state of a quantum circuit.334

Classical bits are specified in Maude as a map from indices in circuits to Boolean values, where each335

entry is in the form of (i �→ b), meaning that the value of the classical bit stored at ci is b whose value is336

either 0 or 1.337

A sequence of quantum gates, measurements, and conditional gates in a quantum circuit is specified338

in Maude as a list of actions in which each action is one of the forms as follows:339

• I(i) applies the III gate on qi,340

• X(i) applies the XXX gate on qi,341

• Y(i) applies the YYY gate on qi,342

• Z(i) applies the ZZZ gate on qi,343

• H(i) applies the HHH gate on qi,344

• CX(i, j) applies the CCCXXX gate on qi and q j,345

• M(i) measures qi with the standard basis,346

• c[i] == b ? AL checks if the classical bit at ci equals b, then a list AL of actions is executed.347

Although our specification supports some additional gates, including SSS, TTT , CCCYYY , CCCZZZ, SSSWWWAAAPPP, CCCCCCYYY , CCCCCCZZZ,348

and CCCSSSWWWAAAPPP gates, we do not mention them here because the additional gates are not used for our case349

studies in this paper. Note that those gates can form universal quantum gates, meaning that we may use350

those gates to describe universal quantum computation. However, we need to enhance our symbolic351

reasoning for complex numbers because its specification is not complete in this paper. Based on the actions352

specified above, we can describe the circuits for several quantum communication protocols as shown in353

Section 6. The reader who is interested in how quantum computation works with our specification can354

refer to Appendix B for more details.355

5.2.2 Kripke Structures of Quantum Circuits356

Let K be the Kripke structure specifying a quantum circuit. There are five kinds of observable components357

in our specification as follows:358

• (qstate: qs) represents the whole quantum state qs,359

• (bits: bm) indicates the classical bits obtained from measurements and stored in a bit map bm,360

• (prob: p) denotes the probability p at the current quantum state,361

• (actions: al) signifies the action list al, guiding us on how the circuit works,362

• (isEnd: b) designates termination with Boolean flag b.363

Each state in S is expressed as {obs}, where obs is a collection of those observable components con-364

sisting of one qstate observable component, one prob observable component, one bits observable365

component, one actions observable component, and one isEnd observable component. Note that366

the whole quantum state denotes the quantum state of a quantum circuit, while each state in S denotes a367

state under model checking, which consists of not only the whole quantum state but also other necessary368

information for model checking.369

The set T of transitions is specified in Maude by eleven rewrite rules in our specification. Let OCs be370

a Maude variable of observable component collections, Q and Q’ be Maude variables of whole quantum371

states, BM be a Maude variable of bit maps, Prob and Prob’ be Maude variables of scalars, AL and372

AL’ be Maude variables of action lists, B be a Maude variable of Boolean values, and N, N1, and N2 are373

Maude variables of natural numbers.374

The first six rewrite rules are as follows:375
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rl [I] : {(qstate: Q) (actions: (I(N) AL)) OCs}376

=> {(qstate: Q) (actions: AL) OCs} .377

378

crl [X] : {(qstate: Q) (actions: (X(N) AL)) OCs}379

=> {(qstate: Q’) (actions: AL) OCs}380

if Q’ := (Q).X(N) .381

382

crl [Y] : {(qstate: Q) (actions: (Y(N) AL)) OCs}383

=> {(qstate: Q’) (actions: AL) OCs}384

if Q’ := (Q).Y(N) .385

386

crl [Z] : {(qstate: Q) (actions: (Z(N) AL)) OCs}387

=> {(qstate: Q’) (actions: AL) OCs}388

if Q’ := (Q).Z(N) .389

390

crl [H] : {(qstate: Q) (actions: (H(N) AL)) OCs}391

=> {(qstate: Q’) (actions: AL) OCs}392

if Q’ := (Q).H(N) .393

394

crl [CX] : {(qstate: Q) (actions: (CX(N1, N2) AL)) OCs}395

=> {(qstate: Q’) (actions: AL) OCs}396

if Q’ := (Q).CX(N1, N2) .397

The rules I, X, Y, Z, H, and CX simulate how the III,XXX ,YYY ,ZZZ,HHH, and CCCXXX gates act on the whole quantum398

state in the qstate observable component if its action appears in the actions observable component,399

respectively. In this specification, we consider the probabilities of measurements in quantum computation400

and so we can analyze not only qualitative properties but also quantitative properties for quantum circuits.401

The next two rewrite rules are as follows:402

crl [M0] : {(qstate: Q) (actions: (M(N) AL)) (prob: Prob) (bits: BM) OCs}403

=> {(qstate: Q’) (actions: AL) (prob: (Prob .* Prob’))404

(bits: insert(N, 0, BM)) OCs}405

if {qstate: Q’, prob: Prob’} := (Q).M(P0,N) .406

407

crl [M1] : {(qstate: Q) (actions: (M(N) AL)) (prob: Prob) (bits: BM) OCs}408

=> {(qstate: Q’) (actions: AL) (prob: (Prob .* Prob’))409

(bits: insert(N, 1, BM)) OCs}410

if {qstate: Q’, prob: Prob’} := (Q).M(P1,N) .411

The rules M0 and M1 say that we measure the qubit at index N with the measurement operators MMM0 and412

MMM1, respectively; the classical outcomes are stored accordingly into the bit map in the bits observable413

component; the probabilities and the post-measurement states are also updated in the prob and qstate414

observable components, respectively. These two rules make a non-deterministic probabilistic transition415

when measuring a single qubit.416

The next rewrite rule describes how to conditionally perform the next actions based on classical bits417

obtained from measurements if applicable.418

rl [cif] :419

{(qstate: Q) (bits: ((N |-> N1),BM)) (actions: ((c[N] == N2 ? AL’) AL)) OCs}420

=> {(qstate: Q) (bits: ((N |-> N1), BM))421

(actions: ((if (N1 == N2) then AL’ else nil fi) AL)) OCs} .422

This rule says that if c[N] == N2 ? AL’ is in the action list and the classical bit N1 at index N equals423

the conditional value N2, then the action list AL’ is prepended to the action list AL in the actions424

observable component to be executed next; otherwise, it is ignored.425

The last two rules are as follows:426

rl [end] : {(actions: nil) (isEnd: false) OCs}427
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=> {(actions: nil) (isEnd: true) OCs} .428

429

rl [stutter]: {(isEnd: true) OCs}430

=> {(isEnd: true) OCs} .431

The rule end marks the termination if the action list is nil, meaning no more action. Meanwhile, the432

rule stutter is necessary to make T total when the isEnd observable component is true.433

For Kripke structure K = ïS, I,T,A,Lð of a quantum circuit, we can reuse S and T , while I is required434

to define initial states, and A and L are required to define desired properties for the quantum circuit.435

Therefore, our specification can be a first step toward a general framework to formally specify and verify436

quantum circuits in Maude.437

6 SYMBOLIC MODEL CHECKING438

We have used our symbolic approach to conduct model checking for several quantum communication439

protocols in the early stage of quantum communication:440

• Superdense Coding introduced by Bennett and Wiesner (1992) for transmitting two classical bits441

using an entangled state,442

• Quantum Teleportation presented by Bennett et al. (1993) for teleporting an arbitrary pure state by443

sending two bits of classical information,444

• Quantum Secret Sharing developed by Hillery et al. (1999) for teleporting a pure state from a sender445

(Alice) to a receiver (Bob) with the help of a third party (Charlie),446

• Entanglement Swapping proposed by Zukowski et al. (1993) for creating a new entangled state,447

• Quantum Gate Teleportation suggested by Gottesman and Chuang (1999) for teleporting two448

arbitrary states through the controlled-NOT gate,449

• Two Mirror-image Teleportation devised by Williams (2008) for teleporting two arbitrary states,450

• Quantum Network Coding originated by Satoh et al. (2012) for sending two entangled states451

simultaneously.452

Superdense Coding is the simplest one that uses only two qubits; Quantum Teleportation uses three qubits;453

Quantum Secret Sharing proposed relying on the mechanism of Quantum Teleportation uses four qubits;454

Entanglement Swapping uses four qubits; Quantum Gate Teleportation uses six qubits; Two Mirror-image455

Teleportation uses six qubits; and Quantum Network Coding uses ten qubits.456

For the sake of simplicity, this section demonstrates how to use our symbolic approach to conduct457

model checking experiments for four quantum communication protocols: Superdense Coding, Quantum458

Teleportation, Quantum Secret Sharing, and Quantum Gate Teleportation. Meanwhile, other communica-459

tion protocols are similar and the full specifications of all quantum communication protocols concerned in460

this paper are publicly available at https://doi.org/10.5281/zenodo.10783951. For each461

case study, we only need to specify I, A, and L to model check that K satisfies desired properties, while462

S and T in K are reused as described in the previous section. In this section, we use qstate(_) and463

qubitAt(_) as two functions to get the whole quantum state from a state in S and to get a single qubit464

at some index from the whole quantum state, respectively, where the symbol _ denotes its parameter. It465

is important to note that we use quantum circuits to represent the quantum communication protocols.466

Therefore, sending or receiving classical bits obtained from the measurement outcomes will be abstracted467

away. However, in the following introduction of each protocol, we describe how the protocol works,468

assuming that participants can communicate with each other (e.g., Alice can send a classical bit to Bob).469

This makes it easier for the reader to understand how each protocol works.470
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Figure 2. Superdense Coding

6.1 Superdense Coding (SC)471

6.1.1 Introduction472

Superdense Coding introduced by Bennett and Wiesner (1992) takes advantage of entanglement in473

quantum mechanics to send two classical bits from Alice to Bob using just a pair of entangled qubits.474

Figure 2 depicts the circuit for Superdense Coding. The single wires denote qubits referred to as qi, while475

the double wires denote classical bits referred to as ci. Alice acts on q0 while Bob acts on q1 as follows:476

• First, q0 are q1 are initially in the basic state |000ð. We need to prepare an entangled state between q0477

and q1 by applying the sequence of the HHH gate on q0 and the CCCXXX gate on q0 and q1. The entangled478

state is shared between Alice and Bob using a quantum channel, where q0 and q1 are manipulated479

by Alice and Bob, respectively.480

• Second, Alice needs to send two classical bits x and y, where x,y ∈ {0,1}, as depicted in Figure 2.481

Depending on the values of x and y that Alice wants to send to Bob, Alice will apply the σi gate482

on q0, where i = y+ x∗ (2+(−1)y) ranging over {0,1,2,3} and σ0,σ1,σ2, and σ3 are III,XXX ,YYY ,ZZZ483

gates, respectively.484

• Third, we then apply the sequence of the CCCXXX gate on q0 and q1, and the HHH gate on q0.485

• Fourth, we measure the qubits q0 and q1, and immediately obtain two classical outcomes (0 or 1)486

stored in c0 and c1, respectively.487

At the end, the pair (c0,c1) of classical bits obtained from Bob is expected to be the same as the pair488

(x,y) of classical bits sent by Alice. We would like to verify the correctness of Superdense Coding by489

using our symbolic model checking.490

6.1.2 Specification of Superdense Coding491

Regarding the actions specified in Section 5, we can describe the circuit for Superdense Coding with492

different values of classical bits used for (x,y) as follows:493

• (x,y) = (0,0) with σ0 = III:494

H(0) CX(0, 1) I(0) CX(0, 1) H(0) M(0) M(1)495

• (x,y) = (0,1) with σ1 = XXX :496

H(0) CX(0, 1) X(0) CX(0, 1) H(0) M(0) M(1)497

• (x,y) = (1,1) with σ2 = YYY :498

H(0) CX(0, 1) Y(0) CX(0, 1) H(0) M(0) M(1)499

• (x,y) = (1,0) with σ3 = ZZZ:500

H(0) CX(0, 1) Z(0) CX(0, 1) H(0) M(0) M(1)501

Let ISC be the set of initial states for Superdense Coding. It consists of four initial states corresponding502

to the four possible values used for (x,y) as follows:503

{(isEnd: false)504

(prob: 1)505

(qstate: (q[0]: |0>) (q[1]: |0>))506
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(bits: empty)507

(actions: H(0) CX(0, 1) I(0) CX(0, 1) H(0)508

M(0) M(1))}509

510

{(isEnd: false)511

(prob: 1)512

(qstate: (q[0]: |0>) (q[1]: |0>))513

(bits: empty)514

(actions: H(0) CX(0, 1) X(0) CX(0, 1) H(0)515

M(0) M(1))}516

517

{(isEnd: false)518

(prob: 1)519

(qstate: (q[0]: |0>) (q[1]: |0>))520

(bits: empty)521

(actions: H(0) CX(0, 1) Y(0) CX(0, 1) H(0)522

M(0) M(1))}523

524

{(isEnd: false)525

(prob: 1)526

(qstate: (q[0]: |0>) (q[1]: |0>))527

(bits: empty)528

(actions: H(0) CX(0, 1) Z(0) CX(0, 1) H(0)529

M(0) M(1))}530

Let us refer to the four initial states as init0, init1, init2, and init3, respectively. Initially, for531

each initial state, the isEnd observable component is false, the prob observable component is one, the532

qstate is the basic state (saying |000000ð), while the actions observable component contains the action533

list describing how Superdense Coding works with respect to the values of classical bits x and y.534

6.1.3 Model Checking Superdense Coding535

Let KSC be the Kripke structure for Superdense Coding. To model check that KSC satisfies desired536

properties, we specify ASC and LSC for Superdense Coding. ASC has four atomic propositions isGateI,537

isGateX, isGateY, and isGateZ. LSC is specified as follows:538

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateI539

= (Prob > 0) implies (BM[0] == 0 and BM[1] == 0) .540

541

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateX542

= (Prob > 0) implies (BM[0] == 0 and BM[1] == 1) .543

544

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateY545

= (Prob > 0) implies (BM[0] == 1 and BM[1] == 1) .546

547

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateZ548

= (Prob > 0) implies (BM[0] == 1 and BM[1] == 0) .549

550

eq {OCs} |= PROP = false [owise] .551

where BM and Prob are Maude variables denoting the classical bit map and the probability at a state in S,552

respectively.553

The five equations say that isGateI holds at a state if the state contains (isEnd: true), (554

bits: BM), and (prob: Prob) such that the condition BM[0] == 0 and BM[1] == 0 holds555

whenever Prob > 0 (a non-zero probability), meaning that the pair (0, 0) of classical bits obtained556

from Bob is the same as the classical bits sent by Alice when the gate XXX is used; and similar for other557

propositions. Let gateIProp, gateXProp, gateYProp, and gateZProp be LTL formulas defined558
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as <> isGateI, <> isGateX, <> isGateY, and <> isGateZ, respectively, where <> is the559

eventual temporal connective.560

We model check that KSC = ïS, ISC,T,ASC,LSCð satisfies gateIProp, gateXProp, gateYProp,561

and gateZProp from the initial states init0, init1, init2, and init3, respectively, in Maude as562

follows:563

red modelCheck(init0, gateIProp) .564

red modelCheck(init1, gateXProp) .565

red modelCheck(init2, gateYProp) .566

red modelCheck(init3, gateZProp) .567

No counterexample is found in just 1ms (see Table 3) for each model checking experiment and so KSC568

satisfies gateIProp, gateXProp, gateYProp, and gateZProp. In other words, for all possible569

values of (x,y) and its corresponding gates used, Bob can receive the same classical values sent by Alice570

at the end. Thus, we successfully verify the correctness of Superdense Coding by using our symbolic571

model checking approach. Note that we do not treat the input (x,y) to Superdense Coding as a two-bit572

value symbolically; instead, we conduct four separate model checking experiments. This is necessary573

because we need to instantiate the input to determine which quantum circuit and its desired property574

should be considered individually.575

Moreover, we conduct some more model checking experiments for Superdense Coding to confirm576

that Bob cannot receive bits that differ from the ones sent by Alice using the following commands:577

red modelCheck(init0, gateXProp) .578

red modelCheck(init0, gateYProp) .579

red modelCheck(init0, gateZProp) .580

red modelCheck(init1, gateIProp) .581

red modelCheck(init1, gateYProp) .582

red modelCheck(init1, gateZProp) .583

red modelCheck(init2, gateIProp) .584

red modelCheck(init2, gateXProp) .585

red modelCheck(init2, gateZProp) .586

red modelCheck(init3, gateIProp) .587

red modelCheck(init3, gateXProp) .588

red modelCheck(init3, gateYProp) .589

where each of init0, init1, init2, and init3 is used to check with other properties compared to590

the previous experiments. Each command returns a counterexample that confirms that Bob cannot receive591

bits that differ from the ones sent by Alice.592

6.2 Quantum Teleportation (QT)593

6.2.1 Introduction594

Quantum Teleportation introduced by Bennett et al. (1993) also takes advantage of entanglement in595

quantum mechanics to send an unknown quantum state |ψð from Alice to Bob by using only three qubits596

and two classical bits. Because the no-cloning theorem, as stated in Wootters and Zurek (1982), does not597

allow copying an arbitrary unknown quantum state, the protocol becomes extremely important to transmit598

an arbitrary unknown quantum state from one source to another. The difference between Superdense599

Coding and Quantum Teleportation is that the former transmits two classical bits, while the latter transmits600

an arbitrary unknown quantum state.601

The circuit depicted in Figure 3 shows how the protocol works. Alice acts on q0 and q1, and Bob acts602

on q2 as follows:603

• First, we prepare an unknown state |ψð= α |000ð+β |111ð at q0, where α and β are complex numbers604

such that |α|2 + |β |2 = 1. Initially, q1 and q2 are in the state |000ð.605

• Second, we apply a sequence of quantum gates to manipulate three qubits. In this case, we only606

consider the single-qubit Hadamard HHH and two-qubit controlled-NOT CCCXXX gates. We first apply607

the HHH gate on q1 followed by the CCCXXX gate on q1 and q2 in order to make an entangled state shared608

between Alice and Bob. Alice then applies the CCCXXX gate on q0 and q1 followed by the HHH gate on q0.609
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Figure 3. Quantum Teleportation

• Third, we measure the qubits q0 and q1, and immediately obtain two classical outcomes (0 or 1)610

stored in c0 and c1, respectively.611

• Fourth, we conditionally apply single-qubit XXX and ZZZ gates on q2 depending on the two classical612

bits in c0 and c1. Concretely, we use the XXX gate if c1 equals one and followed by the ZZZ gate if c0613

equals one.614

At the end, Bob will have |ψð and Alice will not have it anymore. We would like to verify whether615

Alice can correctly send an arbitrary unknown quantum state to Bob at the end by using our symbolic616

model checking.617

6.2.2 Specification of Quantum Teleportation618

We can describe the circuit for Quantum Teleportation based on the actions specified in Section 5 as619

follows:620

H(1) CX(1, 2) CX(0, 1) H(0) M(0) M(1) (c[1] == 1 ? X(2)) (c[0] == 1 ? Z(2))621

Let IQT be the set of initial states for Quantum Teleportation. It consists of only one initial state as622

follows:623

{(isEnd: false)624

(prob: 1)625

(qstate: (q[0]: a . |0> + b . |1>)626

(q[1]: |0>) (q[2]: |0>))627

(bits: empty)628

(actions: H(1) CX(1, 2) CX(0, 1) H(0)629

M(0) M(1)630

c[1] == 1 ? X(2)631

c[0] == 1 ? Z(2))}632

where a and b are Maude constants denoting arbitrary scalars such that |a|2 + |b|2 = 1. Initially, the633

isEnd observable component is false, the prob observable component is one, the qstate is a symbolic634

state that is the same as the input state of the protocol, the actions observable component contains the635

action list describing how the protocol works.636

6.2.3 Model Checking Quantum Teleportation637

Let KQT and init be the Kripke structure and the initial state for Quantum Teleportation, respectively.638

To model check that KQT satisfies desired properties, we specify AQT and LQT . AQT has one atomic639

proposition isSuccess. LQT is specified as follows:640

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess641

= Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and642

qubitAt(Q, 0) =/= qubitAt(qstate(init), 0)) .643

eq {OCs} |= PROP = false [owise] .644
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where Q and Prob are Maude variables denoting the whole quantum state and the probability at a state,645

respectively.646

The two equations say that isSuccess holds at a state if the state contains (isEnd: true),647

(qstate: Q), and (prob: Prob) such that the condition qubitAt(Q, 2) == qubitAt(648

qstate(init), 0) and qubitAt(Q, 0) == qubitAt(qstate(init), 0) holds when-649

ever Prob > 0 holds, meaning that at the end, the qubit received by Bob is equal to the qubit sent650

by Alice at the beginning, and Alice does not have the qubit anymore with a non-zero probability. Let651

teleProp be an LTL formula defined as <> isSuccess.652

We want to model check that KQT = ïS, IQT ,T,AQT ,LQT ð satisfies teleProp from the initial state653

init in Maude as follows:654

red modelCheck(init, teleProp) .655

No counterexample is found in just 3ms (see Table 3) and so KQT satisfies teleProp. In other words,656

we successfully verify the correctness of Quantum Teleportation by using our symbolic model checking657

approach.658

During LTL model checking, each state in a computation reachable from an initial state contains659

information on the probability accumulated up to the state from previous states. Ultimately, we obtain660

the probability of each computation. We would like to additionally check that if a computation has a661

probability greater than 0, the probability is also less than 1/2. We achieve this by adding the condition662

Prob < 1/2 to the condition of the first equation specifying the labeling function for the atomic663

proposition isSuccess. The first equation now becomes as follows:664

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess665

= Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and666

qubitAt(Q, 0) =/= qubitAt(qstate(init), 0) and Prob < 1/2) .667

We then conduct the model checking experiment again and no counterexample is found because each668

computation indeed has the probability of 1/4 equally. This artificial model checking experiment demon-669

strates that we can specify quantitative properties by considering the accumulated probability across states670

for each computation.671

Moreover, we conduct one more model checking experiment to confirm that Alice indeed keeps672

her initial qubit with zero probability by changing the condition qubitAt(Q, 0) =/= qubitAt673

(qstate(init), 0) to qubitAt(Q, 0) == qubitAt(qstate(init), 0) in the condi-674

tion of the first equation specifying the labeling function for the atomic proposition isSuccess, and675

conducting the model checking experiment again. As expected, a counterexample was found, showing676

that Alice indeed keeps her initial qubit with zero probability.677

6.2.4 Reachability Analysis for Quantum Teleportation678

Besides using LTL model checking, we can also use reachability analysis to verify the correctness of679

Quantum Teleportation with the same property mentioned above. Maude is equipped with the search680

command with which reachability analysis can be conducted. The following search command, where681

TELEPORT is the specification of Quantum Teleportation, init is the initial state for TELEPORT,682

search in TELEPORT : init683

=>* {(qstate: Q) (isEnd: true) (prob: P) OCs}684

such that not (685

Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and686

qubitAt(Q, 0) =/= qubitAt(qstate(init), 0))687

) .688

finds all states reachable from the initial state that contain (isEnd: true), (qstate: Q), and689

(prob: Prob) such that it is not the case where the qubit received by Bob at the end is equal to690

the qubit sent by Alice at the beginning, and Alice does not have the qubit anymore with a non-zero691

probability. Note that the condition used here is the negation of the condition used to define the atomic692

proposition isSuccess above. The search command does not find any state in just 2ms, meaning that693

we successfully verify the correctness of Quantum Teleportation by using reachability analysis.694

The reason why we use the Maude LTL model checker is because it is convenient to express desired695

properties of quantum circuits in LTL. Quantum circuits look simple but have non-determinism because696
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of measurements, and then have multiple possible execution paths. It is necessary to take all such multiple697

execution paths. Desired properties of quantum circuits are in the form: for each possible execution path,698

something good eventually happens. For example, a qubit at the final state for each possible execution699

path is the same as another qubit at the initial state with a non-zero probability. Meanwhile, we need to700

find all states that do not satisfy the condition and we need to think in an inverse way when the search701

command is used. As written, we can use the search command, but because times taken by the search702

command (i.e., 2ms) and the Maude LTL model checker (i.e., 3ms) are comparable and it is convenient to703

express desired properties of quantum circuits in LTL, so we use the Maude LTL model checker.704

6.3 Quantum Secret Sharing (QSS)705

6.3.1 Introduction706

Quantum Secret Sharing was first invented by Hillery et al. (1999) and some attempts to describe quantum707

circuits for the protocol were presented by Joy et al. (2019). This protocol also takes advantage of708

entanglement to send an unknown quantum state |ψð from Alice to either Bob or Charlie using the709

mechanism of Quantum Teleportation. However, this protocol uses four qubits and three classical bits,710

and especially neither Bob nor Charlie can independently reconstruct |ψð by themselves. The one711

wants to retrieve the unknown quantum state |ψð if and only if some information from the other is712

provided. This protocol has been used in many applications, such as quantum money schemes introduced713

by Wiesner (1983); Wang et al. (2007), quantum error-correcting codes introduced by Cleve et al. (1999);714

Matsumoto (2017), and a graph-theoretic protocol introduced by Sarvepalli (2012); Gravier et al. (2015),715

demonstrating its importance.716

The circuit for Quantum Secret Sharing is depicted in Figure 4. We suppose that Charlie will717

reconstruct the unknown quantum state |ψð sent by Alice with consent from Bob in the following718

description. Alice acts on q0 and q1, Bob acts on q2, and Charlie acts on q3 as follows:719

• First, we prepare an arbitrary unknown state |ψð= α |000ð+β |111ð at q0, where α and β are complex720

numbers such that |α|2 + |β |2 = 1. Initially, q1, q2, and q3 are in the basic state |000ð.721

• Second, we apply a sequence of quantum gates to manipulate four qubits. We first apply the HHH gate722

on q1, the CCCXXX gate on q1 and q2, and the CCCXXX gate on q1 and q3 in order to make an entangled state723

shared between Alice, Bob, and Charlie. Alice then applies the CCCXXX gate on q0 and q1 followed by724

the HHH gate on q0. Bob then applies the HHH gate on q2 to make it possible to measure in X-basis (or725

the diagonal basis {|+ð , |−ð}) subsequently.726

• Third, we measure the qubits q0, q1, and q2 and immediately obtain three classical outcomes (0 or727

1) stored in c0, c1, and c2, respectively.728

• Fourth, we conditionally apply single-qubit XXX , ZZZ, and ZZZ gates on q3 depending on the three classical729

bits in c1, c0, and c2. Concretely, we use the XXX gate if c1 equals one and similarly for others. We730

can see that Charlie also needs to use the measurement outcome from Bob in order to reconstruct731

|ψð in this step.732

At the end, Charlie will have |ψð with consent from Bob, and Alice will not have it anymore. We733

would like to verify whether Charlie can correctly reconstruct an arbitrary unknown quantum state sent by734

Alice with consent from Bob at the end by using our symbolic model checking. Note that this property is735

one aspect of QSS because we do not consider the following property under verification: neither Bob nor736

Charlie can independently reconstruct |ψð by themselves.737

6.3.2 Specification of Quantum Secret Sharing738

We can describe the circuit for Quantum Secret Sharing based on the actions specified in Section 5 as739

follows:740

H(1) CX(1, 2) CX(1, 3) CX(0, 1) H(0) H(2) M(0) M(1) M(2)741

(c[1] == 1 ? X(3)) (c[0] == 1 ? Z(3)) (c[2] == 1 ? Z(3))742

Let IQSS be the set of initial states for Quantum Secret Sharing. It consists of only one initial state as743

follows:744

18/32PeerJ Comput. Sci. reviewing PDF | (CS-2023:11:93151:3:2:NEW 1 May 2024)

Manuscript to be reviewedComputer Science



<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>

|ψi

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>

|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>

|0i

H

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0

0x1

0x1

��

��

��

��

��

��

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>

|0i

H

H

��

0

0

X Z Z

0x1

Figure 4. Quantum Secret Sharing

{(isEnd: false)745

(prob: 1)746

(qstate: (q[0]: a . |0> + b . |1>)747

(q[1]: |0>) (q[2]: |0>) (q[3]: |0>))748

(bits: empty)749

(actions:750

H(1) CX(1, 2) CX(1, 3) CX(0, 1) H(0) H(2)751

M(0) M(1) M(2)752

c[1] == 1 ? X(3)753

c[0] == 1 ? Z(3)754

c[2] == 1 ? Z(3))}755

where a and b are Maude constants denoting arbitrary scalars such that |a|2 + |b|2 = 1. Initially, the756

isEnd observable component is false, the prob observable component is one, the qstate is a symbolic757

state that is the same as the input state of the protocol, the actions observable component contains the758

action list describing how the protocol works.759

6.3.3 Model Checking Quantum Secret Sharing760

Let KQSS and init be the Kripke structure and the initial state for Quantum Secret Sharing, respectively.761

To model check that KQSS satisfies desired properties, we specify AQSS and LQSS. AQSS has one atomic762

proposition isSuccess. LQSS is specified as follows:763

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess764

= Prob > 0 implies (qubitAt(Q, 3) == qubitAt(qstate(init), 0) or765

(-1) . qubitAt(Q, 3) == qubitAt(qstate(init), 0)).766

eq {OCs} |= PROP = false [owise] .767

where Q and Prob are Maude variables denoting the whole quantum state and the probability at a state,768

respectively.769

The two equations say that isSuccess holds at a state if the state contains (isEnd: true),770

(qstate: Q), and (prob: Prob) such that the condition qubitAt(Q, 3) == qubitAt(771

qstate(init), 0) or (-1) . qubitAt(Q, 3) == qubitAt(qstate(init), 0) holds772

whenever Prob > 0, meaning that the qubit received by Charlie with consent from Bob at the end is773

equal to the qubit sent by Alice at the beginning with a non-zero probability. Note that a factor γ on a774

quantum state for which |γ|= 1 is regarded as a global phase and quantum states that differ only by a775

global phase are physically indistinguishable and equivalent as shown in Nielsen and Chuang (2010).776

That is why we use (-1) . qubitAt(Q, 3) == qubitAt(qstate(init), 0) in addition777

to qubitAt(Q, 3) == qubitAt(qstate(init), 0) in the condition. Let secretProp be778

an LTL formula defined as <> isSuccess.779

We want to model check that KQSS = ïS, IQSS,T,AQSS,LQSSð satisfies secretProp from the initial780

state init in Maude as follows:781
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red modelCheck(init, secretProp) .782

No counterexample is found in just 13ms (see Table 3) and so KQSS satisfies secretProp. In other783

words, we successfully verify the correctness of the Quantum Secret Sharing by using our symbolic model784

checking approach.785

6.4 Quantum Gate Teleportation (QGT)786

6.4.1 Introduction787

Quantum Gate Teleportation is a generalization of quantum teleportation invented by Gottesman and788

Chuang (1999) for teleporting two arbitrary states through the controlled-NOT gate with the use of six789

qubits and four classical bits. This protocol can be regarded as a single technique to reduce resource790

requirements for quantum computers and unifies known protocols for fault-tolerant quantum computations,791

demonstrating its importance.792

The circuit for Quantum Gate Teleportation3 is depicted in Figure 5. Alice acts on q0 and q1, Bob acts793

on q2, q3, q4, and q5 as follows:794

• First, Alice prepares an arbitrary unknown state |ψð = a |000ð+ b |111ð at q0, where a and b are795

complex numbers such that |a|2 + |b|2 = 1. Similarly, Bob also prepares an arbitrary unknown state796

|ϕð= c |000ð+d |111ð at q5. Initially, q1, q2, q3, and q4 are in the basic state |000ð.797

• Second, we prepare an entangled state shared between Alice and Bob from q1 to q4 by applying a798

sequence of quantum gates as follows. We first apply the HHH gate on q1, the CCCXXX gate on q1 and q2,799

the HHH gate on q3, the CCCXXX gate on q3 and q4, and finally the CCCXXX gate on q3 and q2.800

• Third, Alice then applies the CCCXXX gate on q1 and q0 followed by the HHH gate on q1. Meanwhile, Bob801

applies the CCCXXX gate on q5 and q4 followed by the HHH gate on q5.802

• Fourth, we measure the qubits q0, q1, q4, and q5 and immediately obtain four classical outcomes (0803

or 1) stored in c0, c1, c4, and c5, respectively.804

• Fifth, we conditionally apply the XXX gate on q2 and q3, the ZZZ gate on q3, the XXX gate on q2, and the ZZZ805

gate on q2 and q3, depending on the four classical bits in c4, c5, c0, and c1.806

At the end, Bob will have the controlled-NOT gate of |ϕð and |ψð (i.e., CCCXXX(|ϕð , |ψð) at the indices q2807

and q3. We would like to verify whether Alice can successfully teleport two arbitrary unknown quantum808

states through the controlled-NOT gate to Bob at q2 and q3 at the end by using our symbolic model809

checking.810

6.4.2 Specification of Quantum Gate Teleportation811

We can describe the circuit for Quantum Gate Teleportation based on the actions specified in Section 5 as812

follows:813

H(1) CX(1, 2) H(3) CX(3, 4) CX(3, 2) CX(1, 0) H(1) CX(5, 4) H(5)814

M(0) M(1) M(4) M(5)815

(c[4] == 1 ? X(2) X(3))816

(c[5] == 1 ? Z(3))817

(c[0] == 1 ? X(2))818

(c[1] == 1 ? Z(2) Z(3))819

Let IQGT be the set of initial states for Quantum Gate Teleportation. It consists of only one initial state820

as follows:821

{(isEnd: false)822

(prob: 1)823

(qstate: (q[0]: a . |0> + b . |1>)824

(q[1]: |0>) (q[2]: |0>)825

(q[3]: |0>) (q[4]: |0>)826

3This circuit used here is a revised version of the original version presented in Gottesman and Chuang (1999); Ding and Chong

(2020) and the reader is recommended to refer to Section 7 for more details.
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Figure 5. Quantum Gate Teleportation

(q[5]: c . |0> + d . |1>))827

(bits: empty)828

(actions:829

H(1) CX(1, 2) H(3) CX(3, 4) CX(3, 2) CX(1, 0) H(1) CX(5, 4) H(5)830

M(0) M(1) M(4) M(5)831

(c[4] == 1 ? X(2) X(3))832

(c[5] == 1 ? Z(3))833

(c[0] == 1 ? X(2))834

(c[1] == 1 ? Z(2) Z(3))}835

where a, b, c, and d are Maude constants denoting arbitrary scalars such that |a|2 + |b|2 = |c|2 + |d|2 = 1.836

Initially, the isEnd observable component is false, the prob observable component is one, the qstate837

is a symbolic state that is the same as the input state of the protocol, the actions observable component838

contains the action list describing how the protocol works.839

6.4.3 Model Checking Quantum Gate Teleportation840

Let KQGT and init be the Kripke structure and the initial state for Quantum Gate Teleportation,841

respectively. To model check that KQGT satisfies desired properties, we specify AQGT and LQGT . AQGT842

has one atomic proposition isSuccess. LQGT is specified as follows:843

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess844

= Prob > 0 implies (qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1) or845

(-1) . qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1)) .846

eq {OCs} |= PROP = false [owise] .847

where Q and Prob are Maude variables denoting the whole quantum state and the probability at a state,848

respectively. targetQState represents the outcome of the protocol, the controlled-NOT gate of the849

two arbitrary states, which is defined as follows850

eq targetQState = ((q[0]: c . |0> + d . |1>) (q[1]: a . |0> + b . |1>)).CX851

(0, 1) .852

The two equations to specify AQGT say that isSuccess holds at a state if the state contains853

(isEnd: true), (qstate: Q), and (prob: Prob) such that the condition qubitAt(Q, 3854

2) == qubitAt(targetQState, 0 1) or (-1) . qubitAt(Q, 3 2) == qubitAt(855

targetQState, 0 1) holds whenever Prob > 0, meaning that Alice can successfully teleport856

two arbitrary unknown quantum states through the controlled-NOT gate to Bob at the end with a non-857

zero probability. Again, because of the global phase in quantum states as shown in Nielsen and Chuang858
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(2010), we use (-1) . qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1) in addition859

to qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1) in the condition. Let gateProp860

be an LTL formula defined as <> isSuccess.861

We want to model check that KQGT = ïS, IQGT ,T,AQGT ,LQGT ð satisfies gateProp from the initial862

state init in Maude as follows:863

red modelCheck(init, gateProp) .864

No counterexample is found in just 176ms (see Table 3) and so KQGT satisfies gateProp. In other865

words, we successfully verify the correctness of Quantum Gate Teleportation by using our symbolic866

model checking approach.867

7 REMARK ON QUANTUM GATE TELEPORTATION868

This section describes a remark on Quantum Gate Teleportation where we show that a circuit for the869

original version of the protocol does not satisfy its desired property, while we present a revised circuit for870

the protocol and verify that it satisfies its desired property using our symbolic model checking approach.871

The reader can refer to the circuit for the original version of Quantum Gate Teleportation from Gottes-872

man and Chuang (1999), Figure 2. In that figure, they use a Bell measurement denoted by the box B873

twice in the circuit. A Bell measurement can be described in terms of a CCCXXX gate, a Hadamard gate, and a874

measurement in the standard basis. However, there are two possible orientations for applying the CCCXXX gate875

and the Hadamard gate. The difference is apparent by comparing Figure 6 and Figure 7 as also presented876

by Williams (2008). The Bell measurement that uses the Bell-basis measurement gate in Figure 6 is called877

the up Bell measurement. Meanwhile, the Bell measurement that uses the Bell-basis measurement gate878

inserted upside down in Figure 7 is called the down Bell measurement. Gottesman and Chuang (1999)879

did not explicitly clarify which Bell measurement was used. However, they described it in their paper880

exactly as follows:881

The box B represents measurement in the Bell basis; that is, if the two qubits entering B882

are found to be |000000ð+ |111111ð (leaving out the
√

2 normalization for clarity), then the outputs883

xy = 00; for |000111ð+ |111000ð, xy = 10; for |000000ð− |111111ð, xy = 01; and for |000111ð− |111000ð, xy = 11.884

Note that xy denotes the first and second qubits entering the box B. Based on the above description in the885

original paper, we use the down Bell measurement. If so, the circuit for Quantum Gate Teleportation is886

depicted in Figure 8. Let us call this circuit the original circuit.887

We conducted a model checking experiment with the same initial state and the desired property888

described in Section 6.4 for the original circuit. A counterexample was found by the Maude LTL model889

checker, implying that Quantum Gate Teleportation does not satisfy the property with the use of the890

original circuit. Because the counterexample is overlong, we just excerpt and present the final state891

repeated forever in the counterexample as follows:892

{(isEnd: true)893

(prob: 1/16)894

(qstate:895

(q[0]: |0>) (q[1]: |0>)896

(q[4]: |0>) (q[5]: |1>)897

(q[3 2]: (a .* c) . |0> (x) |0> + (a .* d) . |1> (x) |1> +898

(b .* c .* -1) . |0> (x) |1> + (b .* d .* -1) . |1> (x) |0>)899

(bits: (0 |-> 0, 1 |-> 0, 4 |-> 0, 5 |-> 1))900

(actions: nil)901

We can see that the qubits at indices 3 and 2 do not match the controlled-NOT gate of the two arbitrary902

states represented by targetQState in Section 6.4. That is why the original circuit for Quantum Gate903

Teleportation does not satisfy the property. To replay the counterexample, we can conduct as follows: the904

sequence of quantum gates in the original circuit is applied as usual for the initial state, followed by the905

measurements of the first, second, fourth, and fifth qubits such that their measurement outcomes are 0, 0,906

0, and 1, respectively. Furthermore, even if we use the up Bell measurement in place of the down Bell907

measurement, its corresponding circuit of Quantum Gate Teleportation also does not satisfy the property.908
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Bell↑ ≡
H

Figure 6. A Bell-basis measurement gate

Bell³ ≡
H

Figure 7. A Bell-base measurement gate inserted

upside down
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Figure 8. A possible circuit for Quantum Gate Teleportation based on the description from Gottesman

and Chuang (1999)

Therefore, regardless of the use of either up or down Bell measurement, the quantum circuit proposed909

by Gottesman and Chuang (1999) does not enjoy the desired property.910

We revised the original circuit for Quantum Gate Teleportation by changing the positions of the911

ZZZ and XXX gates applied to qubits with respect to the values of c5 and c0, respectively. Concretely, we912

apply the ZZZ gate to q3 instead of q2, the XXX gate to q2 instead of q3 depending on the values of c5 and c0,913

respectively, for the revised circuit compared to the original circuit. The revised circuit is depicted in914

Figure 5 in Section 6.4. For the revised circuit of Quantum Gate Teleportation, we successfully verified915

the correctness of the protocol by using our symbolic model checking approach. This demonstrates the916

usefulness of our symbolic model checking approach for verifying quantum circuits.917

8 EXPERIMENTAL RESULTS918

This section summarizes our experimental results for verifying the correctness of several quantum commu-919

nication protocols with our symbolic model checking approach, including Superdense Coding introduced920

by Bennett and Wiesner (1992), Quantum Teleportation introduced by Bennett et al. (1993), Quantum921

Secret Sharing introduced by Hillery et al. (1999), Entanglement Swapping introduced by Zukowski et al.922

(1993), Quantum Gate Teleportation introduced by Gottesman and Chuang (1999), Two Mirror-image923

Teleportation introduced by Williams (2008), and Quantum Network Coding introduced by Satoh et al.924

(2012). The experiments were conducted with an iMac that carries a 4 GHz microprocessor with eight925

cores and 32 GB memory of RAM. The experimental results are shown in Table 3. The second, third, and926

fourth columns denote the number of qubits in each protocol, the number of states in the reachable state927

space of each protocol under model checking, and the verification time for each protocol, respectively.928

For case studies ranging from two to ten qubits, model checking experiments were quickly completed929

in times from 1ms to 2,446ms as shown in Table 3. The number of states in the reachable state space930

for Quantum Network Coding with ten qubits is notably larger compared to the number of states in the931

reachable state space for each of the first six protocols. Nevertheless, the model checking experiment for932
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Table 3. Experimental results

Protocol Qubits States Verification Time

Superdense Coding 2 16 1ms

Quantum Teleportation 3 27 3ms

Quantum Secret Sharing 4 65 13ms

Entanglement Swapping 4 29 3ms

Two Mirror-image Teleportation 6 151 15ms

Quantum Gate Teleportation 6 168 176ms

Quantum Network Coding 10 7,373 2,446ms

Quantum Networking Coding could be completed in a short amount of time. Without the aid of computer933

programs, such as our support tool implemented in Maude, it is almost impossible to achieve the same934

results. These results demonstrate the usefulness of our symbolic model checking approach to verifying935

quantum circuits in Maude. As one piece of future work, we would like to tackle more case studies with a936

larger number of qubits to present the scalability of our approach.937

9 DISCUSSION938

This section discusses some limitations of our approach, challenges in using a classical model checker to939

verify quantum circuits with their desired properties, and how we address these challenges.940

9.1 Limitations941

In the context of symbolic reasoning for complex numbers, we have extended rational numbers supported942

in Maude to deal with complex numbers. Our objective is to represent arbitrary complex numbers in a943

pure quantum state using fresh constants representing arbitrary complex numbers and manipulating them944

without using any concrete values for real numbers. As a result, our current framework cannot handle any945

concrete values for real numbers. Nevertheless, we plan to explore the use of float numbers supported946

in Maude for simulating quantum circuits with concrete values in the future. As shown in Appendix A,947

we have specified some basic operations for complex numbers, such as multiplication, division, addition,948

conjugation, absolute, power, and square roots. Note that the formal specification of complex numbers949

is not complete in this paper. Hence, there may be some cases where symbolic reasoning for complex950

numbers could not further reduce terms. As part of our future work, we aim to enrich the framework for951

complex number reasoning as much as possible.952

Regarding symbolic reasoning for quantum computation, we only support a limited set of quantum953

gates, including III, XXX , YYY , ZZZ, HHH, CCCXXX , SSS, TTT , CCCYYY , CCCZZZ, SSSWWWAAAPPP, CCCCCCYYY , CCCCCCZZZ, and CCCSSSWWWAAAPPP gates. Consequently,954

a restricted set of quantum protocols can be described in our framework. Although we support a universal955

set of quantum gates, including the Clifford gates (i.e., HHH, SSS, and CCCXXX) and the phase shift gate TTT , universal956

quantum computations could not be handled by our framework at this moment because the symbolic957

reasoning for complex numbers is not complete. We would like to extend our symbolic reasoning to958

handle more quantum gates so that a wider range of quantum protocols can be verified using our approach.959

9.2 Challenges and Future Prospects960

There are some challenges that we need to address in order to use the Maude LTL model checker, a961

classical model checker, to verify quantum circuits with their desired properties. In addition, this section962

also outlines future prospects in model checking quantum circuits.963

• First, we need to devise a way to specify quantum states, quantum gates, and measurements in a964

Maude specification to reason about quantum computation. We specified quantum states, quantum965

gates, and measurements in Dirac notation and used a set of laws from quantum mechanics and966

basic matrix operations to reason about quantum computation automatically in Maude. Moreover,967

Maude does not support complex numbers as a built-in type. Therefore, we extended rational968
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numbers, a built-in type in Maude, so as to deal with complex numbers symbolically as described969

in Appendix A.970

• Second, quantum gates can be applied to quantum states in a deterministic way, while quantum971

measurements are inherently non-deterministic and the states after the measurements will collapse.972

It is natural to use rewriting logic to describe non-deterministic or concurrent behaviors in Maude973

in the form of rewrite rules. We specified a binary projective measurement using two rewrite rules974

corresponding to two non-deterministic choices, as described in Section 5.975

• Third, we need to appropriately handle both pure and entangled states in our formal specification976

and devise a simple notation to conveniently describe the behavior of quantum circuits. We specified977

a whole quantum state as a collection of qubits associated with indices in quantum circuits, enabling978

flexible reference to specific parts of a quantum state using indices. The behavior of quantum979

circuits has been specified as a list of actions, a convenient and sufficient approach for us to980

concisely describe their behavior.981

• Lastly, we need to represent quantum states and quantum gates in order to effectively model check982

quantum circuits with as many qubits as possible. Using Dirac notation in our specification allows983

us to avoid many redundancies compared to explicitly using vectors and matrices to represent984

quantum states and quantum gates, respectively, making our representation more compact than that985

of Paykin et al. (2017). Early work proposed by Gay et al. (2005) could not support the analysis of986

quantum systems with five qubits, while our approach could handle case studies of up to ten qubits,987

showing the effectiveness of our approach. However, in order to handle quantum systems with988

hundreds of qubits in the future, we need to use or come up with advanced techniques to effectively989

simulate quantum computation (e.g., using decision diagrams for quantum computing proposed990

by Wille et al. (2022, 2023)) or analyze such quantum systems in a modular way.991

Last but not least, our approach implemented in Maude can be a first step toward a general framework992

for specifying and verifying quantum circuits when we can reuse some essential elements in the Kripke993

structures. For specifying and verifying a quantum circuit, we are supposed to define an initial state,994

describe the behavior of the quantum circuit in terms of a list of actions, and specify atomic propositions995

and the labeling function based on which a desired property can be constructed. Given the system996

specification with the initial state and the desired property, the Maude LTL model checker automatically997

checks whether the system specification satisfies the desired property reachable from the initial state.998

10 RELATED WORK999

There are several studies in the early work of formal specification and verification of quantum protocols,1000

such as Gay et al. (2005); Elboukhari et al. (2010). For example, Gay et al. (2005) provide a way to use1001

classical model checkers (e.g., PRISM - a probabilistic model checker) to analyze quantum protocols.1002

They give each quantum state a unique number and the transition from a unique number to another unique1003

number models the action of quantum gates and measurements. Their approach needs to enumerate states,1004

calculate the state transitions in advance, and then encode them into a PRISM specification. Although1005

they developed a so-called PRISMGEN tool to automate this, their approach is impractical in reality1006

and only supports two or three qubits because of the exponential growth of the number of states. Our1007

approach does not need to enumerate such states in advance because a quantum state is directly specified1008

in Dirac notation with scalars. Moreover, rewrite rules are used to specify the action of quantum gates and1009

measurements, making our approach feasible to deal with more qubits. For example, we have verified1010

the correctness of Quantum Network Coding that has ten qubits by using our symbolic model checking1011

approach.1012

Ying (2021) proposes a framework for assertion-based verification of quantum circuits by using model1013

checking techniques. In this work, quantum circuits are represented by tensor networks, where a tensor1014

is a multi-dimensional array of complex numbers, and two tensors sharing indices are connected by a1015

tensor contraction, which basically is matrix calculation. Quantum states and quantum gates are specified1016

as tensors, and quantum circuits are specified as tensor networks. Given a quantum state as an input1017

to a quantum circuit, the output will be the contraction of the quantum state and the quantum circuit.1018

Assertions or properties about quantum circuits are specified using computation tree quantum logic1019
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(CTQL), an extension of the Birkoff-von Neumann quantum logic presented in Birkhoff and Neumann1020

(1936). Using tensor network representation of quantum circuits, they can conveniently implement a1021

reachability analysis algorithm and a model checking algorithm for quantum circuits by contraction of1022

tensor networks. Compared to our work, Dirac notation is used to express quantum states and quantum1023

gates instead of tensors, and quantum circuits are described by an action list with simple notations instead1024

of tensor networks. Our reasoning on quantum circuits is mainly based on the laws of quantum mechanics1025

and matrix operations with Dirac notation, but they construct contraction between tensors in tensor1026

networks. We use LTL to express desired properties for quantum circuits instead of CTQL. It seems1027

that they cannot deal with quantum circuits together with the appearance of classical bits obtained from1028

measurements, while our approach can do so. Moreover, they do not show any case study to which their1029

framework can apply.1030

Burgholzer and Wille (2021) have proposed an advanced method for equivalence checking of quantum1031

circuits. Their approach involves two quantum circuits G and G′ as inputs and they check whether1032

the two quantum circuits are equivalent. They leverage two key observations: (1) quantum circuits are1033

inherently reversible, and (2) even small differences in quantum circuits may impact the overall behavior of1034

quantum circuits. Let us suppose that two quantum circuits are sequences of unitary transformations: G =1035

Um−1 . . .U0 =U and G′ =U ′
m′−1

. . .U ′
0 =U ′ operating on n qubits. Executing a quantum circuit to evolve1036

an initial state |ψð to another state |ψ ′ð such that Um . . .U0 |ψð=U |ψð= |ψ ′ð is called simulation. For (1),1037

G is equivalent to G′ if and only if (U ′
0)

−1
. . .(U ′

m′−1
)−1

Um−1 . . .U0 = I or (U ′
0)

†
. . .(U ′

m′−1
)†

Um−1 . . .U0 =1038

I when (U ′
i )

−1 = (U ′
i )

† due to their unitary matrices. They employ decision diagrams to represent matrices1039

and try to resolve (U ′
i′)

†Ui into the identity matrix I for effectively solving the equivalence checking1040

problem. For (2), comparing the entire matrices of U and U ′ is unnecessary when two quantum circuits1041

are not equivalent. Comparing some columns of each U and U ′ is enough to conclude the equivalence1042

checking problem. Constructing a single column of U (or U ′) equates to simulating G (or G′) with the1043

standard basis state |ið as follows: |u0
i ð=U0 |ið, |u( j)

i ð=U j ·u( j−1)
i for j ∈ {1, . . . ,m−1}. As the results1044

of these simulations, if |uið = |u(m−1)
i ð and |u′ið = |u′(m

′−1)
i ð are different, it indicates non-equivalence1045

of the two quantum circuits. These can be quickly checked through a randomized selection of some1046

columns with simulations. While their approach is promising, it differs from ours when we take a1047

formal specification for a quantum circuit and a formal property for a desired property as inputs and1048

check whether the quantum circuit satisfies the desired property. Nevertheless, we may utilize their idea1049

to extend our symbolic reasoning to check the equivalence of quantum circuits, which would be one1050

interesting direction.1051

The ZX calculus, as proposed by Coecke and Duncan (2011), is a graphical formal language for1052

quantum systems equipped with a robust set of rewrite rules that enable a graphical rewriting system1053

for quantum computation. The graphical formalism of the ZX calculus can be implemented in the1054

automated rewriting system Quantomatic proposed by Kissinger and Zamdzhiev (2015) for the automatic1055

simplification process. The ZX calculus has various applications in quantum computing, such as verifying1056

quantum error-correcting codes and equivalence checking of quantum circuits. For example, Peham et al.1057

(2022) proposed an approach to the equivalence checking of quantum circuits using the ZX calculus.1058

Given two quantum circuits U and U ′, they produce their corresponding representations as ZX-diagrams1059

D and D′. These diagrams are then combined into D†D′ and simplified using the set of rewrite rules. If1060

the result is in the form of the identity diagram, they can conclude their equivalence. Otherwise, nothing1061

can be concluded because there are multiple forms for a ZX diagram in general. This approach is intuitive1062

when we can see which rewrite rules are used and how ZX diagrams are changed accordingly. Our1063

approach based on Dirac notation may be less intuitive. However, our approach is to verify whether1064

quantum circuits satisfy their desired properties, which are different from the equivalence checking of1065

quantum circuits as mentioned above.1066

Rand et al. (2018) implement the QWIRE programming language, a high-level abstraction to describe1067

quantum circuits for programmers, in the Coq proof assistant and use Coq’s theorem proving features1068

to prove desired properties for quantum circuits. They explicitly use matrix representations, while we1069

use Dirac notation to reason about quantum circuits. As the inherent problem of theorem proving, they1070

need to provide necessary lemmas in order to prove some properties that can be considered the most1071

challenging task in theorem proving. Our approach is model checking and so it is completely automatic.1072

Our symbolic approach to model checking quantum circuits is inspired by Shi et al. (2021) and1073

so it is the closest work to ours. However, their approach is oriented to theorem proving, not model1074
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checking. They also use Dirac notation with a small set of laws to specify quantum states, quantum gates,1075

measurements, and reasoning about quantum circuits in Coq, an interactive theorem prover. However,1076

they usually require human users to provide necessary lemmas to complete their proofs, which is generally1077

a challenging task. Meanwhile, our approach is fully automatic and requires no human intervention.1078

Moreover, our implementation can be a first step toward a general framework to formally specify and1079

verify quantum circuits in a symbolic way in Maude.1080

11 CONCLUSION1081

We have proposed a symbolic approach to model checking quantum circuits using a set of laws from1082

quantum mechanics and basic matrix operations with Dirac notation. We have analyzed the correctness of1083

several quantum communication protocols in the early stage of quantum communication: Superdense1084

Coding, Quantum Teleportation, Quantum Secret Sharing, Entanglement Swapping, Quantum Gate Tele-1085

portation, Two Mirror-image Teleportation, and Quantum Network Coding as case studies to demonstrate1086

the usefulness of our approach. In particular, we have identified that the original version of Quantum Gate1087

Teleportation did not satisfy its desired property, and have proposed a revised version and confirmed its1088

correctness using our approach and support tool. Moreover, our implementation developed in Maude1089

can be a first step toward a general framework to formally specify and verify quantum circuits using our1090

symbolic model checking approach. Our specification considers the probabilities of measurements, and1091

then we can tackle both qualitative and quantitative properties with the built-in LTL model checker in1092

Maude.1093

As one piece of our future work, we would like to extend our symbolic reasoning to handle more1094

quantum gates and more complicated reasoning on complex number operations. As usual, we need to1095

conduct more case studies to demonstrate the usefulness of our approach/implementation. As another line1096

of future work, we also would like to apply our symbolic approach to model checking quantum programs1097

and quantum cryptography protocols.1098
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APPENDIX1101

A SYMBOLIC REASONING FOR SCALARS1102

This section describes how we extend the built-in rational numbers in Maude to handle scalars. Please1103

note that scalars and complex numbers are used interchangeably in this paper. Some operators for scalars1104

are specified to tackle case studies in this paper, including multiplication, division, addition, conjugation,1105

absolute, power, and square roots. In the sequel, the Maude syntax is used in our description.1106

In addition to the built-in sort Rat of rational numbers, we introduce two sorts Real and Complex1107

representing real numbers and complex numbers, respectively, as follows:1108

sorts Real Complex .1109

subsort Rat < Real < Complex1110

where Rat is a sub-sort of Real and Real is a sub-sort of Complex. This indicates that rational1111

numbers are a subset of real numbers, and real numbers are a subset of complex numbers. It is worth1112

noting that the built-in sort Nat of natural numbers is a sub-sort of Rat. While it would be useful to use1113

real numbers to simulate quantum circuits with concrete values (e.g., π), it is not the goal of this paper.1114

Our objective is to represent arbitrary complex numbers in a pure quantum state using fresh constants1115

of sort Complex and manipulating them without using any concrete values for real numbers. As a1116

result, our focus is on specifying complex numbers with rational numbers for conducting model checking1117

experiments for case studies in this paper. The specification of concrete real numbers is planned as part of1118

our future work.1119

We first define an operator representing the imaginary unit for complex numbers as follows:1120

op i : -> Complex [ctor] .1121
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where i serves as a constructor of the imaginary unit for complex numbers with the ctor attribute.1122

We then define some operators for complex numbers, including multiplication, division, addition, and1123

conjugation, as follows:1124

op _.*_ : Complex Complex -> Complex [comm assoc prec 32] .1125

op _./_ : Complex Complex -> Complex [prec 31] .1126

op _.+_ : Complex Complex -> Complex [comm assoc prec 33] .1127

op (_)ˆ* : Complex -> Complex [prec 30] .1128

where _ represents arguments of sort Complex for the operators defined. The _.*_ and _.+_ operators1129

satisfy commutativity and associativity with the comm and assoc attributes. Each operator is assigned1130

a different precedence, indicated by the prec_ attribute, with _ denoting a parameter representing a1131

numerical precedence value.1132

We next define some operators for complex numbers to represent absolute, power, and square roots as1133

follows:1134

op Abs : Complex -> Real .1135

op Pow : Complex Rat -> Complex .1136

op Sqrt : Complex. -> Complex .1137

Now we are ready to define the semantics of the operators introduced above through equations.1138

Because of the self-explanation of equations, we do not explain each equation in detail for the sake of1139

brevity. We defined some Maude variables before using them in equations as follows: N is a Maude1140

variable of sort Nat; PR and PR’ are Maude variables of sort PosRat (for positive rational numbers);1141

R, R1, and R2 are Maude variables of sort Rat; and C, C1, C2, and C3 are Maude variables of sort1142

Complex.1143

We first define the semantics of multiplication, division, and addition for complex numbers, particularly1144

focusing on cases involving rational numbers.1145

eq R1 .* R2 = R1 * R2 .1146

eq R1 ./ R2 = R1 / R2 .1147

eq R1 .+ R2 = R1 + R2 .1148

where *, /, and + are built-in operators for multiplication, division, and addition of rational numbers if1149

applicable.1150

The properties of the imaginary unit are defined as follows:1151

eq i .* i = -1 .1152

eq Abs(i) = 1 .1153

The semantics of multiplication is defined as follows:1154

eq C .* 1 = C .1155

eq C .* 0 = 0 .1156

eq C .* (C)ˆ* = Pow(Abs(C), 2) .1157

ceq C .* (1 ./ C) = 1 if not C :: Rat .1158

where C :: Rat to check whether C belongs to the sort of Rat.1159

The semantics of the division is defined as follows:1160

ceq 1 ./ (1 ./ C) = C if C =/= 0 .1161

ceq 1 ./ (C1 .* C2) = (1 ./ C1) .* (1 ./ C2)1162

if not C1 :: Rat or-else not C2 :: Rat .1163

The semantics of the addition is defined as follows:1164

eq C .+ 0 = C .1165

We would like to construct normal forms for complex numbers with the existence of multiplication,1166

division, and addition operators. Therefore, some equations are defined as follows:1167
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--- multiplication distributes over addition1168

eq C1 .* (C2 .+ C3) = C1 .* C2 .+ C1 .* C3 .1169

--- constructing normal forms for addition1170

ceq C .* R1 .+ C .* R2 = C .* (R1 .+ R2) if not C :: Rat .1171

ceq C .+ R .* C = C .* (R .+ 1) if not C :: Rat .1172

ceq C .+ C = C .* 2 if not C :: Rat .1173

--- constructing normal forms for division1174

ceq C1 ./ C2 = C1 .* (1 ./ C2) if C1 =/= 1 .1175

The absolute of a positive number is a positive number and so we define it as follows:1176

eq Abs((Abs(C))) = Abs(C) .1177

eq Abs((Pow(Abs(C), N))) = Pow(Abs(C), N) .1178

eq Abs(R) = abs(R) .1179

where abs is a built-in operator for the absolute of rational numbers if applicable.1180

The semantics of square roots is defined as follows:1181

eq Sqrt(1) = 1 .1182

eq Sqrt(0) = 0 .1183

eq Sqrt(PR) .* Sqrt(PR) = PR .1184

eq 1 ./ Sqrt(PR) .* 1 ./ Sqrt(PR) = 1 ./ PR .1185

eq PR .* (1 ./ Sqrt(PR)) = Sqrt(PR) .1186

eq Sqrt(PR / PR’) = Sqrt(PR) .* (1 ./ Sqrt(PR’)) .1187

eq Sqrt(PR) .* (R / PR) = R .* (1 ./ Sqrt(PR)) .1188

It is worth noting that the semantics of square roots is partially implemented for positive rational numbers1189

in this paper, while we leave others as part of our future work. This decision stems from the sufficiency of1190

using square roots of some positive rational numbers for the case studies used in this paper.1191

The semantics of power is defined as follows:1192

eq Pow(R1, R2) = (R1)ˆ(R2) .1193

where (_)ˆ(_) is a built-in operator for the power of rational numbers if applicable.1194

Lastly, the semantics of conjugate is defined as follows:1195

eq (Sqrt(PR))ˆ* = Sqrt(PR) .1196

eq (C1 .* C2)ˆ* = (C1)ˆ* .* (C2)ˆ* .1197

eq (C1 ./ C2)ˆ* = (C1)ˆ* ./ (C2)ˆ* .1198

eq (C1 .+ C2)ˆ* = (C1)ˆ* .+ (C2)ˆ* .1199

eq (R)ˆ* = R .1200

Based on what we defined above, we can symbolically reason on complex numbers with rational1201

numbers for our case studies in this paper.1202

B QUANTUM COMPUTATION WITH OUR SPECIFICATIONS1203

Although many textbooks on quantum mechanics cover the application of quantum operations to quantum1204

states, this section is specifically dedicated to explaining how these operations apply to quantum states1205

with respect to the specifications presented in this paper.1206

It is possible to treat the whole quantum state uniformly. However, we do not take this way; instead,1207

we specify quantum states as a collection of qubits associated with indices that start from 0 to N − 1,1208

where N is the total number of qubits, as described in Section 5.2. Our way has some advantages as1209

follows:1210

• We can flexibly refer to a specific part of a quantum state using indices. This is very helpful when1211

we want to take a part of the whole quantum state to check whether it satisfies certain conditions.1212

For example, in Quantum Teleportation protocol, we need to verify whether the third qubit at the1213

end is equal to the first qubit at the beginning.1214
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• When we apply a quantum gate to the whole quantum state at certain indices, if the indices of the1215

whole quantum state belong to an isolated part, we can perform a local computation by considering1216

only that part and leaving other parts unchanged. This may make the computation faster, especially1217

for a large number of qubits.1218

How quantum gates are applied to the whole quantum state1219

Let us suppose that we want to apply a single-qubit quantum gate XXX (i.e., BBB1 +BBB2) to the whole quantum1220

state at index k, and the whole quantum state contains (q[i, . . . ,k, . . . , j] : |ψð). First, we need to prepare1221

the cylindrical extension UUU of XXX to make it have the same dimension as |ψð as follows:1222

UUU = III ¹·· ·¹XXX ¹·· ·¹ III = III ¹·· ·¹BBB1 ¹·· ·¹ III + III ¹·· ·¹BBB2 ¹·· ·¹ III.

Then, the whole quantum state after applying the quantum gate XXX will become to contain (q[i, . . . ,k, . . . , j] :1223

UUU ×|ψð). Note that other quantum states associated with indices except for i, . . . ,k, . . . , j are not affected1224

and remain unchanged. Therefore, the way we use to represent the whole quantum state allows us to1225

perform local computations where only some parts are considered, while other parts remain unchanged.1226

Let us suppose that we want to apply a two-qubit quantum gate CCCXXX (i.e., BBB000 ¹ III + BBB333 ¹ XXX) to1227

the whole quantum state at indices k and l, and the whole quantum state contains (q[i, . . . ,k, . . . , j] :1228

|ψ1ð) (q[i′, . . . , l, . . . , j′] : |ψ2ð). First, we need to combine two quantum states |ψ1ð and |ψ2ð so that the1229

whole quantum state will become to contain (q[i, . . . ,k, . . . , j, i′, . . . , l, . . . , j′] : |ψ1ð¹ |ψ2ð). Second, we1230

need to prepare the cylindrical extension UUU of CCCXXX to make it have the same dimension as |ψ1ð¹ |ψ2ð as1231

follows:1232

UUU = III ¹·· ·¹BBB000 ¹·· ·¹ III ¹·· ·¹ III + III ¹·· ·¹BBB333 ¹·· ·¹XXX ¹·· ·¹ III.

Finally, the whole quantum state after applying the quantum gate CCCXXX will become to contain1233

(q[i, . . . ,k, . . . , j, i′, . . . , l, . . . , j′] : UUU × (|ψ1ð¹ |ψ2ð)).

Note that other quantum states associated with indices except for i, . . . ,k, . . . , j, i′, . . . , l, . . . , j′ are not1234

affected and remain unchanged.1235

The procedure for applying a three-qubit quantum gate to the whole quantum state is similar to that1236

for a two-qubit quantum gate. Therefore, it can also be done.1237

How to detect single and entangled states1238

We develop some heuristics for detecting single and entangled qubit states from which they are separated1239

from each other. Let us suppose that the whole quantum state contains q[i, . . . ,k, . . . , j] : |ψð, and we want1240

to perform a measurement on the whole quantum state at index k. After the measurement, the whole1241

quantum state will become to contain (q[i, . . . , j] : |ψ ′ð) (q[k] : |φð), where the quantum state at index k1242

is separated into |φð whose value either |000ð or |111ð and the quantum state at the other indices becomes1243

|ψ ′ð according to the result of the measurement. Furthermore, if the whole quantum state contains1244

(q[i, . . . ,k, . . . , j] : |ψ1ð¹ |φð¹ |ψ2ð) where |φð is either |000ð or |111ð, we can also detect it. In this case, the1245

whole quantum state will become to contain (q[i, . . . , j] : |ψ1ð¹ |ψ2ð) (q[k] : |φð). Additionally, we can1246

separate the tensor product of two Bell states as well. Although these heuristics do not guarantee coverage1247

of all cases, they are sufficient for the case studies used in this paper. We aim to improve our heuristics to1248

cover as many cases as possible in our future work.1249
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