
Submitted 21 November 2023
Accepted 13 May 2024
Published 20 June 2024

Corresponding author
Canh Minh Do, canhdo@jaist.ac.jp

Academic editor
Marieke Huisman

Additional Information and
Declarations can be found on
page 38

DOI 10.7717/peerj-cs.2098

Copyright
2024 Minh Do and Ogata

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Symbolic model checking quantum
circuits in Maude
Canh Minh Do and Kazuhiro Ogata
School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi,
Ishikawa, Japan

ABSTRACT
This article presents a symbolic approach to model checking quantum circuits using a
set of laws from quantum mechanics and basic matrix operations with Dirac notation.
We use Maude, a high-level specification/programming language based on rewriting
logic, to implement our symbolic approach. As case studies, we use the approach
to formally specify several quantum communication protocols in the early work of
quantum communication and formally verify their correctness: Superdense Coding,
Quantum Teleportation, Quantum Secret Sharing, Entanglement Swapping, Quantum
Gate Teleportation, TwoMirror-image Teleportation, and QuantumNetwork Coding.
We demonstrate that our approach/implementation can be a first step toward a general
framework to formally specify and verify quantum circuits inMaude. The proposedway
to formally specify a quantum circuit makes it possible to describe the quantum circuit
in Maude such that the formal specification can be regarded as a series of quantum
gate/measurement applications. Once a quantum circuit has been formally specified
in the proposed way together with an initial state and a desired property expressed in
linear temporal logic (LTL), the proposed model checking technique utilizes a built-
in Maude LTL model checker to automatically conduct formal verification that the
quantum circuit enjoys the property starting from the initial state.

Subjects Emerging Technologies, Theory and Formal Methods, Programming Languages,
Software Engineering, Quantum Computing
Keywords Quantum circuits, Dirac notation, Symbolic model checking, Maude

INTRODUCTION
Quantum computing is a rapidly emerging technology that uses the laws of quantum
mechanics to solve complex problems that are very hard for classical computers, such as
discrete logarithms and factoring. Several quantumalgorithms have been proposed showing
a significant improvement over classical algorithms, such as the fast algorithms for discrete
logarithms and factoring proposed by Shor (1994). It is well known that cryptosystems
relying on the hardness of discrete logarithms and factoring will be broken by large-
scale quantum computers running Shor’s fast algorithm in the future. Then, quantum
communication involving quantum cryptography has attracted much attention from both
industry and academia because it provides an efficient and highly secure communication
channel relying on quantum mechanics phenomena, such as superposition, entanglement,
and probabilistic measurement.

How to cite this article Minh Do C, Ogata K. 2024. Symbolic model checking quantum circuits in Maude. PeerJ Comput. Sci. 10:e2098
http://doi.org/10.7717/peerj-cs.2098

https://peerj.com/computer-science
mailto:canhdo@jaist.ac.jp
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2098
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2098

Quantum circuits are a model of quantum computation, comprising a sequence
of quantum gates, measurements, initializations of qubits, and possibly other actions.
Quantum gates operate on quantum bits (qubits), the quantum counterpart of classical
bits, and manipulate the state of a quantum system to perform quantum computations.
The outputs of quantum circuits are quantum states, which can be measured to obtain
classical outcomes with probabilities from which other actions can take place. Quantum
circuits play a crucial role in the development of quantum algorithms because they are
used to design and implement quantum algorithms before actually running on quantum
computers. Because quantum computing is counter-intuitive and radically different from
classical computing, the likelihood of errors in quantum algorithms and circuits is much
higher than in classical algorithms. Therefore, it is critical to verify that quantum circuits
(or algorithms) enjoy desired properties.

Model checking is a formal verification technique widely used in both academia and
industry to systematically verify that systems satisfy desired properties. Quantum programs
and quantum circuits are related concepts, but they differ in their level of abstraction and the
way they represent quantum computations. Quantum circuits are low-level representations
of quantum computation that can be used to implement quantum programs, while
quantum programs are higher-level representations of quantum computations that can
be expressed in a quantum programming language consisting of a series of instructions,
especially the loop instruction. Although there are some model checkers dedicated to
quantum programs, such as Gay, Nagarajan & Papanikolaou (2008), Feng, Yu & Ying
(2013) and Feng et al. (2015) (see Ying & Feng (2018), Ying & Feng (2021), Turrini (2022)
for more details), there is still a gap between model checking quantum programs and
quantum circuits due to different representations and no iteration in quantum circuits,
which should be filled in.Moreover, because the verification of classical circuits usingmodel
checking has been proven to be a tremendously successful technique, model checking that
quantum circuits satisfy desired properties would be a promising approach. There is a
symbolic approach proposed by Shi et al. (2021) to (semi-)automatically reasoning about
quantum circuits in Coq (https://coq.inria.fr/), an interactive theorem prover, but it often
requires human users to provide necessary lemmas to complete its proofs.

This article presents a symbolic approach to model checking quantum circuits using
a set of laws from quantum mechanics and basic matrix operations with Dirac notation
proposed by Dirac (1939). Concretely, quantum states, quantum gates, and measurements
are described in Dirac notation instead of using explicitly complex vectors and matrices as
proposed by Paykin, Rand & Zdancewic (2017), making our representationsmore compact.
Using the set of laws, we can systematically reason about the evolution of quantum states.
We use Maude introduced by Clavel et al. (2007), a high-level specification/programming
language based on rewriting logic presented by Meseguer (2012), to specify quantum
states, some basic quantum gates (e.g., Hadamard gate, controlled-NOT gate, and Pauli
gates), and measurements on a standard basis with Dirac notation. Maude is equipped
with a linear temporal logic (LTL) model checker and its reflective programming (or
meta-programming) facilities have been used to develop several software tools, such
as Maude-NPA introduced by Escobar, Meadows & Meseguer (2007), its parallel version

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 2/42

https://peerj.com
https://coq.inria.fr/
http://dx.doi.org/10.7717/peerj-cs.2098

1Quantitative properties involve
numerical aspects, such as probabilities or
quantitative measures of system behavior,
while qualitative properties focus on the
presence or absence of certain behaviors.
For example, the probability of each
computation of a model is only zero or
one that can be considered as qualitative
properties, while the probability of each
computation of a model is greater or less
than a certain number other than zero or
one that can be considered as quantitative
properties.

developed by Do et al. (2022), and a toolset of some parallel versions of the LTL model
checker presented by Do et al. (2021), Do, Phyo & Ogata (2022), Do et al. (2023) and Phyo
et al. (2023). Therefore, Maude makes it possible/convenient to implement our idea and
carry out case studies. This is why we adopt Maude for the research described in the article.

As case studies, we focus on using our approach to formally specify several quantum
communication protocols in the earlywork of quantumcommunication and formally verify
their correctness: Superdense Coding introduced by Bennett & Wiesner (1992), Quantum
Teleportation presented by Bennett et al. (1993), Quantum Secret Sharing developed
by Hillery, Bužek & Berthiaume (1999), Entanglement Swapping proposed by Zukowski et
al. (1993), Quantum Gate Teleportation suggested by Gottesman & Chuang (1999), Two
Mirror-image Teleportation devised by Williams (2008), and Quantum Network Coding
originated by Satoh, Gall & Imai (2012). In this article, we use eventual properties, a class
of liveness properties, to express the desired properties for these quantum communication
protocols. In addition to the desired properties, any properties that can be expressed in
the scope of LTL can essentially be verified using the Maude LTL model checker with
our approach. In this article, we do not directly tackle quantum circuits for complicated
quantum algorithms, such as Shor (1994) and Grover (1996) because necessary quantum
gates have not been developed yet and our symbolic reasoning for complex numbers is not
sufficient to describe and reason about their behaviors adequately. Therefore, extending
our approach to handle these algorithms would require further research, which would be
one piece of our future work. Our specification is specifically tailored to quantum circuits,
abstracting away from the details of concurrency and communication. To handle quantum
cryptography, such as BB84 introduced by Bennett & Brassard (2014) and B91 introduced
by Ekert (1991), we need to be able to express concurrency and communication among
participants in quantum protocols in our specification. Therefore, extending our approach
to handle such quantum protocols would require further research, which would be one
piece of our future work.

We demonstrate that our approach/implementation can be a first step toward a
general framework to formally specify and verify quantum circuits. The proposed way
to formally specify a quantum circuit makes it possible to describe the quantum circuit
in Maude such that the formal specification can be regarded as a series of quantum
gate/measurement applications. Once a quantum circuit has been formally specified
in the proposed way together with an initial state and a desired property expressed
in LTL, the proposed model checking technique utilizes a built-in Maude LTL model
checker to automatically conduct formal verification that the quantum circuit enjoys
the property starting from the initial state. Moreover, our specification considers the
probabilities frommeasurements in quantum computation based on which the probability
of a computation occurring is accumulated across states and so we are able to analyze both
the quantitative and qualitative properties1 of several quantum communication protocols
with the built-in LTL model checker in Maude. Our implementation is publicly available
at https://doi.org/10.5281/zenodo.10783951.

The present article is an extended and improved version of our conference article
presented by Do & Ogata (2023) with some improvements as follows:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 3/42

https://peerj.com
https://doi.org/10.5281/zenodo.10783951
http://dx.doi.org/10.7717/peerj-cs.2098

• We fully support Pauli gates in our specification and some additional gates, including S,
T , CY , CZ , SW AP , CCY , CCZ , and CSW AP gates. Moreover, the symbolic reasoning
is refined and improved in order to conduct more case studies.
• We verify some more quantum communication protocols: Superdense Coding,
Quantum Secret Sharing, Entanglement Swapping, Quantum Gate Teleportation, Two
Mirror-image Teleportation, and Quantum Network Coding in order to demonstrate
the usefulness of our approach for formally specifying and verifying quantum circuits in
Maude.
• We identify that the original version of Quantum Gate Teleportation does not satisfy
its desired property using our approach and support tool. We then propose a revised
version of the protocol and verify that the revised one satisfies its desired property using
our approach and support tool.
• Lastly, we describe how we specify complex numbers in Maude to symbolically reason
on complex numbers with rational numbers for our case studies.

The rest of the article is organized as follows: ‘Preliminaries’ explains basic quantum
mechanics and Kripke structures; ‘Rewriting Logic and Quantum Circuits’ explains how
we can associate a rewrite theory with a quantum circuit via a Kripke structure; ‘Symbolic
Reasoning’ describes how to construct terms and use a set of laws from quantummechanics
and matrix operations for symbolic reasoning using our approach; ‘Formal Specification’
details how to specify qubits, gates, measurements, and then quantum circuits in order to
symbolically model check quantum circuits in a generic way; ‘Symbolic Model Checking’
demonstrates how to use our symbolic approach to model checking several quantum
communication protocols in depth; ‘Remark on Quantum Gate Teleportation’ provides a
remark on Quantum Gate Teleportation; ‘Experimental Results’ presents our experimental
results; ‘Discussion’ discusses our limitations, some challenges in using the Maude LTL
model checker, a classical model checker, to verify quantum circuits, and how we address
them in this article; ‘RelatedWork’ reviews some existing work; and ‘Conclusion’ concludes
the article with some pieces of future work.

PRELIMINARIES
This section briefly describes some basic notations from quantum mechanics based on
linear algebra (refer to Nielsen & Chuang (2010) for more details) and Kripke structures.

Basic quantum mechanics
This section describes basic quantum mechanics based on the linear algebra approach. In
classical computing, the fundamental unit of information is a bit whose value is either 0
or 1. In quantum computing, the counterpart is a quantum bit or qubit, which has two
basis states, conventionally written in Dirac notation proposed by Dirac (1939) as |0〉 and
|1〉, which denote two column vectors

(
1
0

)
and

(
0
1

)
, respectively. In quantum theory, a

general state of a quantum system is a superposition or linear combination of basis states.
A single qubit has state |ψ〉=α|0〉+β|1〉, where α and β are complex numbers such that
|α|2+|β|2= 1. States can be represented by column complex vectors as follows:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 4/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

Table 1 Quantum gates by names, circuit forms, and the corresponding unitary matrices.

Operator Gate Matrix

Identity (I 2)
(
1 0
0 1

)
Pauli-X (X)

(
0 1
1 0

)
Pauli-Y (Y)

(
0 −i
i 0

)
Pauli-Z (Z)

(
1 0
0 −1

)
Hadamard (H) 1

√
2

(
1 1
1 −1

)

Controlled-NOT (CX)
(the first and second wires
denote the control and target
qubits, respectively)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|ψ〉=
(
α

β

)
=α|0〉+β|1〉,

where {|0〉,|1〉} forms an orthonormal basis of the two-dimensional complex vector space.
Formally, a quantum state is a unit vector in a Hilbert spaceH, which is equipped with an
inner product satisfying some axioms.

The basis {|0〉,|1〉} is called the standard basis. Besides, we have some other bases of
interest, such as the diagonal (or dual, or Hadamard) basis consisting of the following
vectors:
|+〉=

1
√
2
(|0〉+|1〉) and |−〉= 1

√
2
(|0〉−|1〉).

The evolution of a closed quantum system can be performed by a unitary transformation.
If the state of a qubit is represented by a column vector, then a unitary transformation can
be represented by a complex-value matrix U such that UU †

=U †U = I or U †
=U−1,

where U † is the conjugate transpose of U . U acts on the Hilbert space H transforming a
state |ψ〉 to a state |ψ ′〉 by a matrix multiplication such that |ψ ′〉=U |ψ〉. There are some
common quantum gates: the identity gate I , the Pauli gates X , Y , and Z , the Hadamard
gate H , and the controlled-NOT gate CX . Note that the CX gate performs on two qubits,
while the remaining gates perform on a single qubit.

For example, the Hadamard gate on a single qubit performs the mapping |0〉 7→
1
√
2
(|0〉+ |1〉) and |1〉 7→ 1

√
2
(|0〉− |1〉). The controlled-NOT gate on pairs of qubits

performs the mapping |00〉 7→ |00〉,|01〉 7→ |01〉,|10〉 7→ |11〉,|11〉 7→ |10〉, which can be
understood as inverting the second qubit (referred to as the target) if and only if the first
qubit (referred to as the control) is 1. The common quantum gates are shown in Table 1
by names, circuit forms, and matrix representations, where i is the imaginary unit.

A quantum measurement is described as a collection {Mm} of measurement operators,
where the indicesm refer to themeasurement outcomes. It is required that themeasurement

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 5/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

𝑞!

𝑐!
Figure 1 The circuit form of the binary projective measurement, where the measurement outcome of
the qubit qi is stored in the classical bit ci.

Full-size DOI: 10.7717/peerjcs.2098/fig-1

operators satisfy
∑

mM
†
mMm = IH. If the state of a quantum system is |ψ〉 before the

measurement, then the probability for the result m is as follows:
p(m)=〈ψ |M†

mMm|ψ〉,
where 〈ψ | is the dual of |ψ〉 such that 〈ψ |†= |ψ〉 and |ψ〉†=〈ψ |. The state of the quantum
system after the measurement is Mm|ψ〉√

p(m)
provided that p(m)> 0. For example, if a qubit

is in state α|0〉+β|1〉 and measuring with {M0,M1} operators, we have the result 0 with
probability |α|2 at the post-measurement state |0〉 and the result 1 with probability |β|2 at
the post-measurement state |1〉, where M0= |0〉×〈0| and M1= |1〉×〈1|. The quantum
measurement with {M0,M1} operators is called the binary projective measurement. In this
study, we only use the binary projective measurement and its circuit form is depicted in
Fig. 1 as follows:

For multiple qubits, we use the tensor product of Hilbert spaces. LetH1 andH2 be two
Hilbert spaces. Their tensor product H1⊗H2 is defined as a vector space consisting of
linear combinations of the vectors |ψ1ψ2〉= |ψ1〉|ψ2〉= |ψ1〉⊗|ψ2〉, where |ψ1〉 ∈H1 and
|ψ2〉 ∈H2. Systems of two or more qubits may be in entangled states, meaning that states
of qubits are correlated and inseparable. For example, we consider a measurement of the
first qubit of the entangled state 1

√
2
(|00〉+|11〉). The result is either 0 with probability 1

2

leaving its state |00〉 or 1 with probability 1
2 leaving its state |11〉. In either case, a subsequent

measurement of the second qubit gives a non-probabilistic result, which is immediate to
the result of the first measurement before. Entanglement shows that an entangled state of
two qubits cannot be expressed as a tensor product of single-qubit states. We can use H
and CX gates to create entangled states as follows: CX ((H⊗ I)|00〉)= 1

√
2
(|00〉+|11〉).

Kripke structures
A Kripke structure K is a tuple 〈S,I ,T ,A,L〉 as represented by Clarke et al. (2018), where
S is a set of states, I ⊆ S is the set of initial states, T ⊆ S×S is a left-total binary relation
over S, A is a set of atomic propositions, and L is a labeling function whose type is S→ 2A.
Each element (s,s′)∈T is called a state transition from s to s′ and T may be called the state
transitions (with respect to K). For a state s∈ S, L(s) is the set of atomic propositions that
hold in s. A path π is an infinite sequence s0,...,si,si+1,... such that si ∈ S and (si,si+1)∈T

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 6/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-1
http://dx.doi.org/10.7717/peerj-cs.2098

for each i. We use the following notations for paths: π i, si,si+1,..., πi, s0,...,si,si,si,...,
π(i), si, where , is used as ‘‘be defined as.’’ π i is obtained by deleting the first i states
s0,s1,...,si−1 from π . πi is obtained by taking the first i+1 states s0,s1,...,si−1,si and adding
si unboundedly many times at the end. π(i) is the ith state si. Let P be the set of all paths.
π is called a computation if π(0)∈ I . Let C be the set of all computations.

The syntax of a formula ϕ in LTL for K is as follows:
ϕ :=> | p | ¬ϕ | ϕ∧ϕ | ©ϕ | ϕ Uϕ

where p∈A, and© and U are called the next temporal connective and the until temporal
connective, respectively. We introduce the eventual temporal abbreviation � which is
defined as follows:

• �ϕ,> U ϕ
This eventual temporal abbreviation is also used in Clarke et al. (2018).
Let F be the set of all formulas in LTL for K . Given an arbitrary path π ∈P of K and

an arbitrary LTL formula ϕ ∈F of K , K ,π |Hϕ is inductively defined as follows:

• K ,π |H>
• K ,π |H p iff p∈ L(π(0))
• K ,π |H¬ϕ1 iff K ,π 6|Hϕ1
• K ,π |Hϕ1∧ϕ2 iff K ,π |Hϕ1 and K ,π |Hϕ2
• K ,π |H©ϕ1 iff K ,π1

|Hϕ1

• K ,π |Hϕ1 Uϕ2 iff there exists a natural number i such that K ,π i
|Hϕ2 and for all natural

numbers j < i, K ,π j
|Hϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |Hϕ iff K ,π |Hϕ for each computation π ∈ C
of K .

In this article, we refer to�ϕ as eventual properties, which informally state that something
will eventually happen. Termination or halting is one important system requirement
that many systems should satisfy and can be expressed in LTL as an eventual property.
Moreover, we aim to verify whether quantum circuits satisfy certain desired properties
where something good eventually happens. For example, a qubit at the final state for each
possible execution path is the same as another qubit at the initial state with a non-zero
probability. Therefore, it is worthwhile to use eventual properties to express desired
properties for our case studies under verification. For more details, the reader is referred
to ‘Symbolic Model Checking’ to see how we express the desired properties for our case
studies as eventual properties.

REWRITING LOGIC AND QUANTUM CIRCUITS
This section describes how we can associate a rewrite theory with a quantum circuit via a
Kripke structure at a conceptual level, enabling the use of LTL model checking to verify
that the quantum circuit enjoys a desired property.

A rewrite theoryR is a triple (6,E,R), where

• 6 is an order-sorted signature consisting of a set of sorts, subsorts, and function symbols,

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 7/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

• (6,E) forms an order-sorted equational theory with E being a collection of (possibly
conditional) equations t = t ′,
• R is a collection of (possibly conditional) rewrite rules l→ r .

Terms are built from variables, constants, and function symbols from 6, and each term
has a sort. The equations in E are used to reduce a term into a normal form, while the
rewrite rules in Rmodulo E are used tomake local transitions in systems, making it possible
to rewrite one term to another term. We can associate a Kripke structure K =〈S,I ,T ,A,L〉
to a rewrite theory R= (6,E,R) as presented in Clavel et al. (2007, Chapter 13). In short,
each term t in R can be regarded as a state s∈ S in K ; and each rewriting step from t to t ′

can be regarded as a state transition (s,s′)∈T in K , where t and t ′ are terms of the same
sort with their corresponding states s,s′ ∈ S. A and L are not necessary parts of R and can
be specified later in terms of constants and equations, respectively, to determine whether
atomic propositions are true at a given state.

A quantum circuit can be described as a series of applications of quantum gates,
measurements, and conditional gates, which are applied based on the outcomes of
measurements. The input of a quantum circuit is a quantum state, and so is the output. The
input and the output of a quantum circuit can be regarded as the initial state and the final
state belonging to S inK , where the initial state also belongs to I inK . Therefore, a quantum
state can be specified as a term in the rewrite theory R. The application of quantum gates
manipulates a quantum state to perform quantum computation, which is specified in terms
of equations in R so that we can reason about quantum computation. The application of
a quantum gate can be regarded as a deterministic state transition in K since it transforms
a quantum state into another quantum state. As a result, the application of a quantum
gate can be specified by a rewrite rule in R. Besides quantum gates, we can conduct a
measurement on a quantum state to obtain classical outcomes based on which other
quantum actions (e.g., quantum gates) can take place. As mentioned before, we are only
interested in the binary projective measurement in this article. Therefore, the application
of a measurement can be regarded as a non-deterministic state transition in K since the
measurement may make a quantum state collapse into one of two different possibilities
of quantum states with probabilities. As a result, the application of a measurement can be
specified by two rewrite rules inR. Note that there are only two rewrite rules for quantum
measurements, while there are as many rewrite rules as the number of quantum gates
supported by the rewrite theoryR. If the equations inR are sufficient to reason about any
quantum computation and the rewrite rules in R support sufficient quantum gates, the
rewrite theory R can simulate the behavior of any quantum circuit, making it applicable
in a generic sense.

Given a concrete quantum circuit described as a series of quantum gates, quantum
measurement, and conditional gates, along with an initial quantum state, the rewrite
theory R can simulate the behavior of the quantum circuit by addressing all possible
execution paths starting from the initial quantum state. We can associate K with R so
as to conduct LTL model checking and verify that the quantum circuit satisfies a desired
property. The desired property of the quantum circuit can be constructed based on the

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 8/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

atomic propositions (regarded as state predicates) within the scope of LTL language. For
each possible execution path, we can examine each quantum state and check which atomic
propositions hold at the state. Thus, LTL model checking can verify whether the quantum
circuit satisfies the desired property.

SYMBOLIC REASONING
This section introduces some terms used in our symbolic reasoning and a set of laws used
to reduce terms. The ‘‘symbolic’’ word means that we use bra-ket notation, which means
〈ψ | and |ψ〉, instead of explicitly complex vectors and matrices as proposed by Paykin,
Rand & Zdancewic (2017), which makes our representations more compact. Moreover, we
can deal with not only concrete values but also symbolic values (representing arbitrary
values) for complex numbers reasoning.

Terms
Terms are built from scalars and basic vectors with some operations.

• Scalars are complex numbers. We extend rational numbers supported in Maude to deal
with complex numbers. Some operations for scalars, such as multiplication, division,
addition, conjugation, absolute, power, and square roots are specified. The reader who
is interested in how to specify complex numbers in Maude is referred to Appendix A.
• Basic vectors are the ones of the standard basis written in Dirac notation as |0〉 and |1〉.
• Operations for matrices consist of scalar multiplication ·, matrix product ×, matrix
addition +, tensor product ⊗, and the conjugate transpose A† of a matrix A.

In Dirac notation, 〈0| is the dual of |0〉 such that 〈0|†= |0〉 and |0〉†=〈0|; similarly for
〈1|. The terms |j〉×〈k| and the inner product of ket vectors |j〉 and |k〉may bewritten shortly
as |j〉〈k| and 〈j〉k for any j,k∈ {0,1}. By using these notations, we can intuitively explain
how quantum operations work. For example, the X gate performs mapping |0〉 7→ |1〉 and
|1〉 7→ |0〉. Therefore, we specify the X gate as |0〉〈1|+ |1〉〈0| in Maude instead of using
explicitly the matrix representation

(
0 1
1 0

)
. We have X |0〉 = |1〉〈0||0〉+ |0〉〈1||0〉 = |1〉

because of laws L1 and L3 in Table 2 and similarly for X |1〉= |0〉.
We conventionally specify some basic matrices Bi for i∈ [0..3] as follows:
B0= |0〉×〈0|, B1= |0〉×〈1|, B2= |1〉×〈0|, B3= |1〉×〈1|.
The X , Y , Z , CX , and H gates are then a linear combination of the matrices Bi as

follows:
X =B1+B2, Y = (−i) ·B1+ i ·B2, Z =B1+ (−1) ·B3,
CX =B0⊗ I 2+B3⊗X , H = 1

√
2
·B0+

1
√
2
·B1+

1
√
2
·B2+ (− 1

√
2
) ·B3.

Laws
We use a set of laws in Table 2 derived from the properties of quantummechanics and basic
matrix operations, and thus, they are immediately sound. The reader who is interested in
their proofs in Coq is referred to Shi et al. (2021). Because |0〉 and |1〉 can be viewed as
2×1 matrices, then the laws actually describe matrix calculations with Dirac notation, zero
and identity matrices, and scalars. These laws are described by equations in Maude and

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 9/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

Table 2 A set of laws used for symbolic reasoning.

No. Law

L1 〈0 |0 〉= 〈1 |1 〉= 1,〈1 |0 〉= 〈0 |1 〉= 0
L2 Associativity of×,+,⊗ and Commutativity of +
L3 0 ·Am×n=O m×n, c ·O =O , 1 ·A=A
L4 c · (A+B)= c ·A+ c ·B
L5 c1 ·A+ c2 ·A= (c1+ c2) ·A
L6 c1 · (c2 ·A)= (c1 · c2) ·A
L7 (c1 ·A)× (c2 ·B)= (c1 · c2) · (A×B)
L8 A× (c ·B)= (c ·A)×B= c · (A×B)
L9 A⊗ (c ·B)= (c ·A)⊗B= c · (A⊗B)
L10 Om×n×An×p=Am×n×O n×p=O m×p

L11 Im×Am×n=Am×n× I n=Am×n

L12 A+O =O +A=O
L13 Om×n⊗Ap×q=Ap×q⊗O m×n=O mp×nq

L14 A× (B+C)=A×B+A×C
L15 (A+B)×C =A×C+B×C
L16 (A⊗B)× (C⊗D)= (A×C)⊗ (B×D)
L17 A⊗ (B+C)=A⊗B+A⊗C
L18 (A+B)⊗C =A⊗C+B⊗C
L19 (c ·A)†= c∗ ·A†, (A×B)†=B†

×A†

L20 (A+B)†=A†
+B†, (A⊗B)†=A†

⊗B†

L21 I †
m= Im,O

†
m×n=On×m,(A†)†=A

L22 |0〉†=〈0 |, 〈0 |†= |0 〉, |1 〉†= |1 〉, 〈1 |†= |1 〉

are used to automatically reduce terms until no more matrix operation is applicable. Some
laws dedicated to simplifying the expressions about complex numbers are also specified in
Maude by means of equations, but we do not mention them here for brevity.

For example, we would like to reduce the term CX × ((H ⊗ I)×|0〉⊗ |0〉) to check
whether its result is 1

√
2
· |0〉⊗ |0〉+ 1

√
2
· |1〉⊗ |1〉. The term says that the H gate acts on

the first qubit followed by the CX gate where the control and target bits are the first and
second qubits, respectively. The simplification of the term goes as follows:

H×|0〉

= (
1
√
2
·B0+

1
√
2
·B1+

1
√
2
·B2+ (−

1
√
2
) ·B3)×|0〉 (by replacement of H)

=
1
√
2
·B0×|0〉+

1
√
2
·B1×|0〉+

1
√
2
·B2×|0〉+ (−

1
√
2
) ·B3×|0〉 (by law L15)

=
1
√
2
· |0〉×〈0|×|0〉+

1
√
2
· |0〉×〈1|×|0〉+

1
√
2
· |1〉×〈0|×|0〉+ (−

1
√
2
) · |1〉×〈1|×|0〉

(by replacements of B0,B1,B2,and B3)

=
1
√
2
· |0〉+

1
√
2
· |1〉 (by law L1)

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 10/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

(H⊗ I)× (|0〉⊗|0〉)

= (H×|0〉)⊗ (I×|0〉) (by law L16)

= (
1
√
2
· |0〉+

1
√
2
· |1〉)⊗|0〉 (by the result of H×|0〉 and law L11)

=
1
√
2
· |0〉⊗|0〉+

1
√
2
· |1〉⊗|0〉 (by law L18)

CX× ((H⊗ I)× (|0〉⊗|0〉))

= (B0⊗ I+B3⊗X)× (
1
√
2
· |0〉⊗|0〉+

1
√
2
· |1〉⊗|0〉)

(by replacement of CX ,and the result of (H⊗ I)× (|0〉⊗|0〉))

= (B0⊗ I)× (
1
√
2
· |0〉⊗|0〉)+ (B0⊗ I)× (

1
√
2
· |1〉⊗|0〉)+ (B3⊗X)× (

1
√
2
· |0〉⊗|0〉)+

B3⊗X× (
1
√
2
· |1〉⊗|0〉) (by laws L14 and L15)

=
1
√
2
· (B0×|0〉)⊗ (I×|0〉)+

1
√
2
· (B0×|1〉)⊗ (I×|0〉)+

1
√
2
· (B3×|0〉)⊗ (X×|0〉)+

1
√
2
· (B3×|1〉)⊗ (X×|0〉) (by laws L8, L9, and L16)

=
1
√
2
· |0〉⊗|0〉+

1
√
2
· |1〉⊗|1〉 (by replacements of B0,B3,and X ,and laws L1, L11,

and L15)

Using the laws, the term is reduced to a normal form that is a linear combination of
the tensor product of the standard basis with scalars. The whole process is conducted
automatically in Maude and the result is the same as expected. The key idea is to reduce the
matrixmultiplication in the formof 〈i|j〉 into a scalar and simplify thematrix representation
by absorbing ones and eliminating zeros (see law L3). In this manner, our symbolic
reasoning about matrices can be conducted automatically by rewriting in Maude instead
of explicitly calculating matrices.

FORMAL SPECIFICATION
This section shows how we specify in Maude qubits, quantum gates, measurements, and
then quantum circuits in order to symbolically model check quantum circuits in a generic
way.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 11/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

Maude specification of qubits, gates, and measurements
Qubits are specified in Maude as the linear combination of tensor product of the standard
basis in Dirac notation with scalars and similarly for quantum gates. Because |0〉 and |1〉 can
be viewed as 2×1matrices, then qubits and quantum gates are basically matrices. Quantum
gates act on qubits (a quantum state) specified in Maude as a matrix multiplication with
a deterministic transition in Maude. In this article, we only consider binary projective
measurements on the standard basis, and thus the measurement operators are {M0,M1}.
A measurement of a single qubit in a quantum state is specified in Maude by two state
transitions with probabilities p(m) form∈ {0,1}, making a non-deterministic probabilistic
transition. Each of the two transitions shows how its measurement operator acts on the
single qubit in a state and is specified similarly as quantum gates, however, with respect to
the probabilities.

A generic maude specification of quantum circuits
Quantum circuits are composed of a sequence of quantum gates, measurements,
initializations of qubits, and possibly other actions. In this article, we consider the
specification of the whole quantum state of a quantum circuit, the classical bits obtained
from measurements, and the sequence of quantum gates, measurements, and conditional
gates describing how a quantum circuit works. We then build Kripke structures for
quantum circuits in order to conduct model checking that quantum circuits satisfy desired
properties. Some essential elements are shared in the Kripke structures, making a first step
toward a general framework for specifying and verifying quantum circuits.

Elements of quantum circuits
A whole quantum state of a quantum circuit is specified in Maude as a collection of qubits
associated with indices in circuits, where each element is one of the forms as follows:

• (q[i]: ψ〈.〉)| denotes a single qubit in state |ψ〉 at qi,
• (q[i,...,j]: ψ〈.〉)| denotes a single qubit in state |ψ〉 at qi, denotes an entangled state in
state |ψ〉 at qi,...,qj , where the order of i,...,j is relevant.

Note that qi and qj denote the labels of quantum wires (refer to our circuits in ‘Symbolic
Model Checking’ for more visualization), where i and j represent the indices of the qubits
in the whole quantum state of a quantum circuit.

Classical bits are specified in Maude as a map from indices in circuits to Boolean values,
where each entry is in the form of (i 7→ b) , meaning that the value of the classical bit stored
at ci is b whose value is either 0 or 1.

A sequence of quantum gates, measurements, and conditional gates in a quantum circuit
is specified in Maude as a list of actions in which each action is one of the forms as follows:

• I(i) applies the I gate on qi,
• X(i) applies the X gate on qi,
• Y(i) applies the Y gate on qi,
• Z(i) applies the Z gate on qi,
• H(i) applies the H gate on qi,

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 12/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

• CX(i,j) applies the CX gate on qi and qj ,
• M(i) measures qi with the standard basis,
• c[i] == b ? AL checks if the classical bit at ci equals b, then a list AL of actions is executed.

Although our specification supports some additional gates, including S, T , CY , CZ ,
SWAP , CCY , CCZ , and CSWAP gates, we do not mention them here because the
additional gates are not used for our case studies in this article. Note that those gates can
form universal quantum gates, meaning that we may use those gates to describe universal
quantum computation. However, we need to enhance our symbolic reasoning for complex
numbers because its specification is not complete in this article. Based on the actions
specified above, we can describe the circuits for several quantum communication protocols
as shown in ‘Symbolic Model Checking’. The reader who is interested in how quantum
computation works with our specification can refer to Appendix B for more details.

Kripke structures of quantum circuits
Let K be the Kripke structure specifying a quantum circuit. There are five kinds of
observable components in our specification as follows:

• (qstate: qs) represents the whole quantum state qs,
• (bits: bm) indicates the classical bits obtained from measurements and stored in a bit
map bm,
• (prob: p) denotes the probability p at the current quantum state,
• (actions: al) signifies the action list al , guiding us on how the circuit works,
• (isEnd: b) designates termination with Boolean flag b.

Each state in S is expressed as {obs}, where obs is a collection of those observable
components consisting of one qstate observable component, one prob observable
component, one bits observable component, one actions observable component, and one
isEnd observable component. Note that the whole quantum state denotes the quantum
state of a quantum circuit, while each state in S denotes a state under model checking,
which consists of not only the whole quantum state but also other necessary information
for model checking.

The set T of transitions is specified in Maude by eleven rewrite rules in our specification.
Let OCs be a Maude variable of observable component collections, Q and Q’ be Maude
variables of whole quantum states, BM be a Maude variable of bit maps, Prob and Prob’ be
Maude variables of scalars, AL and AL’ be Maude variables of action lists, B be a Maude
variable of Boolean values, and N , N1 , and N2 are Maude variables of natural numbers.

The first six rewrite rules are as follows:
rl [I] : {(qstate: Q) (actions: (I(N) AL)) OCs}
=> {(qstate: Q) (actions: AL) OCs} .

crl [X] : {(qstate: Q) (actions: (X(N) AL)) OCs}
=> {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).X(N) .

crl [Y] : {(qstate: Q) (actions: (Y(N) AL)) OCs}
=> {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).Y(N) .

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 13/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

crl [Z] : {(qstate: Q) (actions: (Z(N) AL)) OCs}
=> {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).Z(N) .

crl [H] : {(qstate: Q) (actions: (H(N) AL)) OCs}
=> {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).H(N) .

crl [CX] : {(qstate: Q) (actions: (CX(N1, N2) AL)) OCs}
=> {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).CX(N1, N2) .

The rules I , X , Y , Z , H , and CX simulate how the I ,X ,Y ,Z ,H , and CX gates act
on the whole quantum state in the qstate observable component if its action appears
in the actions observable component, respectively. In this specification, we consider the
probabilities of measurements in quantum computation and so we can analyze not only
qualitative properties but also quantitative properties for quantum circuits.

The next two rewrite rules are as follows:
crl [M0] : {(qstate: Q) (actions: (M(N) AL)) (prob: Prob) (bits: BM) OCs}
=> {(qstate: Q’) (actions: AL) (prob: (Prob .* Prob ’))

(bits: insert(N, 0, BM)) OCs}
if {qstate: Q’, prob: Prob ’} := (Q).M(P0,N) .

crl [M1] : {(qstate: Q) (actions: (M(N) AL)) (prob: Prob) (bits: BM) OCs}
=> {(qstate: Q’) (actions: AL) (prob: (Prob .* Prob ’))

(bits: insert(N, 1, BM)) OCs}
if {qstate: Q’, prob: Prob ’} := (Q).M(P1,N) .

The rules M0 and M1 say that we measure the qubit at index N with the measurement
operators M0 and M1, respectively; the classical outcomes are stored accordingly into the
bit map in the bits observable component; the probabilities and the post-measurement
states are also updated in the prob and qstate observable components, respectively. These
two rules make a non-deterministic probabilistic transition when measuring a single qubit.

The next rewrite rule describes how to conditionally perform the next actions based on
classical bits obtained from measurements if applicable.
rl [cif]:
{(qstate: Q) (bits: ((N |-> N1),BM)) (actions: ((c[N] == N2 ? AL ’) AL)) OCs}
=> {(qstate: Q) (bits: ((N |-> N1), BM))

(actions: ((if (N1 == N2) then AL’ else nil fi) AL)) OCs} .

This rule says that if c[N] x== N2 ? AL’ is in the action list and the classical bit N1 at
index N equals the conditional value N2 , then the action list AL’ is prepended to the action
list AL in the actions observable component to be executed next; otherwise, it is ignored.

The last two rules are as follows:
rl [end]: {(actions: nil) (isEnd: false) OCs}
=> {(actions: nil) (isEnd: true) OCs} .

rl [stutter]: {(isEnd: true) OCs}
=> {(isEnd: true) OCs} .

The rule end marks the termination if the action list is nil , meaning no more action.
Meanwhile, the rule stutter is necessary to make T total when the isEnd observable
component is true.

For Kripke structure K =〈S,I ,T ,A,L〉 of a quantum circuit, we can reuse S and T , while
I is required to define initial states, and A and L are required to define desired properties

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 14/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

for the quantum circuit. Therefore, our specification can be a first step toward a general
framework to formally specify and verify quantum circuits in Maude.

SYMBOLIC MODEL CHECKING
We have used our symbolic approach to conduct model checking for several quantum
communication protocols in the early stage of quantum communication:

• Superdense Coding introduced by Bennett & Wiesner (1992) for transmitting two
classical bits using an entangled state,
• Quantum Teleportation presented by Bennett et al. (1993) for teleporting an arbitrary
pure state by sending two bits of classical information,
• Quantum Secret Sharing developed by Hillery, Bužek & Berthiaume (1999) for
teleporting a pure state from a sender (Alice) to a receiver (Bob) with the help of a
third party (Charlie),
• Entanglement Swapping proposed byZukowski et al. (1993) for creating a new entangled
state,
• Quantum Gate Teleportation suggested by Gottesman & Chuang (1999) for teleporting
two arbitrary states through the controlled-NOT gate,
• Two Mirror-image Teleportation devised by Williams (2008) for teleporting two
arbitrary states,
• Quantum Network Coding originated by Satoh, Gall & Imai (2012) for sending two
entangled states simultaneously.

Superdense Coding is the simplest one that uses only two qubits; QuantumTeleportation
uses three qubits; QuantumSecret Sharing proposed relying on themechanismofQuantum
Teleportation uses four qubits; Entanglement Swapping uses four qubits; Quantum Gate
Teleportation uses six qubits; Two Mirror-image Teleportation uses six qubits; and
Quantum Network Coding uses ten qubits.

For the sake of simplicity, this section demonstrates how to use our symbolic approach
to conduct model checking experiments for four quantum communication protocols:
Superdense Coding, Quantum Teleportation, Quantum Secret Sharing, and Quantum
Gate Teleportation. Meanwhile, other communication protocols are similar and the full
specifications of all quantum communication protocols concerned in this article are
publicly available at https://doi.org/10.5281/zenodo.10783951. For each case study, we only
need to specify I , A, and L to model check that K satisfies desired properties, while S and
T in K are reused as described in the previous section. In this section, we use qstate(.)

and qubitAt(.) as two functions to get the whole quantum state from a state in S and to
get a single qubit at some index from the whole quantum state, respectively, where the
symbol . denotes its parameter. It is important to note that we use quantum circuits to
represent the quantum communication protocols. Therefore, sending or receiving classical
bits obtained from the measurement outcomes will be abstracted away. However, in the
following introduction of each protocol, we describe how the protocol works, assuming
that participants can communicate with each other (e.g., Alice can send a classical bit to
Bob). This makes it easier for the reader to understand how each protocol works.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 15/42

https://peerj.com
https://doi.org/10.5281/zenodo.10783951
http://dx.doi.org/10.7717/peerj-cs.2098

Superdense coding
Introduction
Superdense Coding (SC) introduced by Bennett & Wiesner (1992) takes advantage of
entanglement in quantummechanics to send two classical bits from Alice to Bob using just
a pair of entangled qubits. Figure 2 depicts the circuit for Superdense Coding. The single
wires denote qubits referred to as qi, while the double wires denote classical bits referred
to as ci. Alice acts on q0 while Bob acts on q1 as follows:

• First, q0 are q1 are initially in the basic state |0〉. We need to prepare an entangled state
between q0 and q1 by applying the sequence of the H gate on q0 and the CX gate on q0
and q1. The entangled state is shared between Alice and Bob using a quantum channel,
where q0 and q1 are manipulated by Alice and Bob, respectively.
• Second, Alice needs to send two classical bits x and y , where x,y ∈ {0,1}, as depicted
in Fig. 2. Depending on the values of x and y that Alice wants to send to Bob, Alice
will apply the σi gate on q0, where i= y+x ∗ (2+ (−1)y) ranging over {0,1,2,3} and
σ0,σ1,σ2, and σ3 are I ,X ,Y ,Z gates, respectively.
• Third, we then apply the sequence of the CX gate on q0 and q1, and the H gate on q0.
• Fourth, wemeasure the qubits q0 and q1, and immediately obtain two classical outcomes
(0 or 1) stored in c0 and c1, respectively.

At the end, the pair (c0,c1) of classical bits obtained from Bob is expected to be the same
as the pair (x,y) of classical bits sent by Alice. We would like to verify the correctness of
Superdense Coding by using our symbolic model checking.

Specification of superdense coding
Regarding the actions specified in ‘Formal Specification’, we can describe the circuit for
Superdense Coding with different values of classical bits used for (x,y) as follows:

• (x,y) = (0,0) with σ0 = I :
H(0) CX(0, 1) I(0) CX(0, 1) H(0) M(0) M(1)

• (x,y) = (0,1) with σ1 = X :
H(0) CX(0, 1) X(0) CX(0, 1) H(0) M(0) M(1)

• (x,y) = (1,1) with σ2 = Y :
H(0) CX(0, 1) Y(0) CX(0, 1) H(0) M(0) M(1)

• (x,y) = (1,0) with σ3 = Z :
H(0) CX(0, 1) Z(0) CX(0, 1) H(0) M(0) M(1)

Let ISC be the set of initial states for Superdense Coding. It consists of four initial states
corresponding to the four possible values used for (x,y) as follows:
{(isEnd: false)
(prob: 1)
(qstate: (q[0]: |0>) (q[1]: |0>))
(bits: empty)
(actions: H(0) CX(0, 1) I(0) CX(0, 1) H(0)

M(0) M(1))}

{(isEnd: false)
(prob: 1)
(qstate: (q[0]: |0>) (q[1]: |0>))
(bits: empty)

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 16/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H𝑞!

𝑞"

𝑐!

𝑐"

H		𝜎!

𝑖 = 𝑦 + 𝑥 ∗ (2 + −1 ")

Initialization Quantum Gates Measurements

Figure 2 Superdense coding.
Full-size DOI: 10.7717/peerjcs.2098/fig-2

(actions: H(0) CX(0, 1) X(0) CX(0, 1) H(0)
M(0) M(1))}

{(isEnd: false)
(prob: 1)
(qstate: (q[0]: |0>) (q[1]: |0>))
(bits: empty)
(actions: H(0) CX(0, 1) Y(0) CX(0, 1) H(0)

M(0) M(1))}

{(isEnd: false)
(prob: 1)
(qstate: (q[0]: |0>) (q[1]: |0>))
(bits: empty)
(actions: H(0) CX(0, 1) Z(0) CX(0, 1) H(0)

M(0) M(1))}

Let us refer to the four initial states as init0 , init1 , init2 , and init3 , respectively.
Initially, for each initial state, the isEnd observable component is false, the prob observable
component is one, the qstate is the basic state (saying |00〉), while the actions observable
component contains the action list describing how Superdense Coding works with respect
to the values of classical bits x and y .

Model checking superdense coding
Let KSC be the Kripke structure for Superdense Coding. To model check that KSC satisfies
desired properties, we specify ASC and LSC for Superdense Coding. ASC has four atomic
propositions isGateI , isGateX , isGateY , and isGateZ . LSC is specified as follows:

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateI
= (Prob > 0) implies (BM[0] == 0 and BM[1] == 0) .

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateX
= (Prob > 0) implies (BM[0] == 0 and BM[1] == 1) .

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateY
= (Prob > 0) implies (BM[0] == 1 and BM[1] == 1) .

eq {(isEnd: true) (bits: BM) (prob: Prob) OCs} |= isGateZ
= (Prob > 0) implies (BM[0] == 1 and BM[1] == 0) .

eq {OCs} |= PROP = false [owise] .

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 17/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-2
http://dx.doi.org/10.7717/peerj-cs.2098

where BM and Prob are Maude variables denoting the classical bit map and the probability
at a state in S, respectively.

The five equations say that isGateI holds at a state if the state contains
(isEnd: true) , (bits: BM) , and (prob: Prob) such that the condition BM[0] == 0 and BM[1] == 0

holds whenever Prob > 0 (a non-zero probability), meaning that the pair (0, 0) of classical
bits obtained from Bob is the same as the classical bits sent by Alice when the gateX is used;
and similar for other propositions. Let gateIProp , gateXProp , gateYProp , and gateZProp be
LTL formulas defined as <> isGateI , <> isGateX , <> isGateY , and <> isGateZ , respectively,
where <> is the eventual temporal connective.

We model check that KSC = 〈S,ISC ,T ,ASC ,LSC 〉 satisfies gateIProp , gateXProp ,
gateYProp , and gateZProp from the initial states init0 , init1 , init2 , and init3 , respectively,
in Maude as follows:
red modelCheck(init0 , gateIProp) .
red modelCheck(init1 , gateXProp) .
red modelCheck(init2 , gateYProp) .
red modelCheck(init3 , gateZProp) .

No counterexample is found in just 1 ms for each model checking experiment and
so KSC satisfies gateIProp , gateXProp , gateYProp , and gateZProp . In other words, for all
possible values of (x,y) and its corresponding gates used, Bob can receive the same classical
values sent by Alice at the end. Thus, we successfully verify the correctness of Superdense
Coding by using our symbolic model checking approach. Note that we do not treat the
input (x,y) to Superdense Coding as a two-bit value symbolically; instead, we conduct four
separate model checking experiments. This is necessary because we need to instantiate the
input to determine which quantum circuit and its desired property should be considered
individually.

Moreover, we conduct some more model checking experiments for Superdense Coding
to confirm that Bob cannot receive bits that differ from the ones sent by Alice using the
following commands:
red modelCheck(init0 , gateXProp) .
red modelCheck(init0 , gateYProp) .
red modelCheck(init0 , gateZProp) .
red modelCheck(init1 , gateIProp) .
red modelCheck(init1 , gateYProp) .
red modelCheck(init1 , gateZProp) .
red modelCheck(init2 , gateIProp) .
red modelCheck(init2 , gateXProp) .
red modelCheck(init2 , gateZProp) .
red modelCheck(init3 , gateIProp) .
red modelCheck(init3 , gateXProp) .
red modelCheck(init3 , gateYProp) .

where each of init0 , init1 , init2 , and init3 is used to check with other properties
compared to the previous experiments. Each command returns a counterexample that
confirms that Bob cannot receive bits that differ from the ones sent by Alice.

Quantum teleportation
Introduction
Quantum Teleportation (QT) introduced by Bennett et al. (1993) also takes advantage of
entanglement in quantum mechanics to send an unknown quantum state |ψ〉 from Alice

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 18/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

to Bob by using only three qubits and two classical bits. Because the no-cloning theorem, as
stated inWootters & Zurek (1982), does not allow copying an arbitrary unknown quantum
state, the protocol becomes extremely important to transmit an arbitrary unknown
quantum state from one source to another. The difference between Superdense Coding
and Quantum Teleportation is that the former transmits two classical bits, while the latter
transmits an arbitrary unknown quantum state.

The circuit depicted in Fig. 3 shows how the protocol works. Alice acts on q0 and q1,
and Bob acts on q2 as follows:

• First, we prepare an unknown state |ψ〉=α|0〉+β|1〉 at q0, where α and β are complex
numbers such that |α|2+|β|2= 1. Initially, q1 and q2 are in the state |0〉.
• Second, we apply a sequence of quantum gates to manipulate three qubits. In this case,
we only consider the single-qubit Hadamard H and two-qubit controlled-NOT CX
gates. We first apply the H gate on q1 followed by the CX gate on q1 and q2 in order to
make an entangled state shared between Alice and Bob. Alice then applies the CX gate
on q0 and q1 followed by the H gate on q0.
• Third, we measure the qubits q0 and q1, and immediately obtain two classical outcomes
(0 or 1) stored in c0 and c1, respectively.
• Fourth, we conditionally apply single-qubit X and Z gates on q2 depending on the two
classical bits in c0 and c1. Concretely, we use the X gate if c1 equals one and followed by
the Z gate if c0 equals one.

At the end, Bob will have |ψ〉 and Alice will not have it anymore. We would like to verify
whether Alice can correctly send an arbitrary unknown quantum state to Bob at the end
by using our symbolic model checking.

Specification of quantum teleportation
We can describe the circuit for Quantum Teleportation based on the actions specified in
‘Formal Specification’ as follows:

H(1) CX(1, 2) CX(0, 1) H(0) M(0) M(1) (c[1] == 1 ? X(2)) (c[0] == 1 ? Z(2))

Let IQT be the set of initial states for Quantum Teleportation. It consists of only one
initial state as follows:
{(isEnd: false)
(prob: 1)
(qstate: (q[0]: a . |0> + b . |1>)

(q[1]: |0>) (q[2]: |0>))
(bits: empty)
(actions: H(1) CX(1, 2) CX(0, 1) H(0)

M(0) M(1)
c[1] == 1 ? X(2)
c[0] == 1 ? Z(2))}

where a and b are Maude constants denoting arbitrary scalars such that |a|2+|b|2= 1.
Initially, the isEnd observable component is false, the prob observable component is one,
the qstate is a symbolic state that is the same as the input state of the protocol, the actions

observable component contains the action list describing how the protocol works.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 19/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>| i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

H

X Z

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0

0

0x1

0x1

𝑞!

𝑞"

𝑞#

𝑐!

𝑐"

Figure 3 Quantum teleportation.
Full-size DOI: 10.7717/peerjcs.2098/fig-3

Model checking quantum teleportation
Let KQT and init be the Kripke structure and the initial state for Quantum Teleportation,
respectively. To model check that KQT satisfies desired properties, we specify AQT and LQT .
AQT has one atomic proposition isSuccess . LQT is specified as follows:

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess
= Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and

qubitAt(Q, 0) =/= qubitAt(qstate(init), 0)) .
eq {OCs} |= PROP = false [owise] .

where Q and Prob areMaude variables denoting thewhole quantum state and the probability
at a state, respectively.

The two equations say that isSuccess holds at a state if the state con-
tains (isEnd: true) , (qstate: Q) , and (prob: Prob) such that the condition
qubitAt(Q, 2) == qubitAt(qstate(init), 0) and qubitAt(Q, 0) == qubitAt(qstate(init), 0)

holds whenever Prob > 0 holds, meaning that at the end, the qubit received by Bob is equal
to the qubit sent by Alice at the beginning, and Alice does not have the qubit anymore with
a non-zero probability. Let teleProp be an LTL formula defined as <> isSuccess .

We want to model check that KQT = 〈S,IQT ,T ,AQT ,LQT 〉 satisfies teleProp from the
initial state init in Maude as follows:
red modelCheck(init , teleProp) .

No counterexample is found in just 3 ms and so KQT satisfies teleProp . In other words,
we successfully verify the correctness of Quantum Teleportation by using our symbolic
model checking approach.

During LTL model checking, each state in a computation reachable from an initial state
contains information on the probability accumulated up to the state from previous states.
Ultimately, we obtain the probability of each computation. We would like to additionally
check that if a computation has a probability greater than 0, the probability is also less

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 20/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-3
http://dx.doi.org/10.7717/peerj-cs.2098

than 1/2. We achieve this by adding the condition Prob > 1/2 to the condition of the first
equation specifying the labeling function for the atomic proposition isSuccess .

The first equation now becomes as follows:
eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess
= Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and

qubitAt(Q, 0) =/= qubitAt(qstate(init), 0) and Prob < 1/2) .

We then conduct the model checking experiment again and no counterexample is
found because each computation indeed has the probability of 1/4 equally. This artificial
model checking experiment demonstrates that we can specify quantitative properties by
considering the accumulated probability across states for each computation.

Moreover, we conduct one more model checking experiment to confirm that
Alice indeed keeps her initial qubit with zero probability by changing the condition
qubitAt(Q, 0) =/= qubitAt(qstate(init), 0) to qubitAt(Q, 0) == qubitAt(qstate(init), 0)

in the condition of the first equation specifying the labeling function for the atomic
proposition isSuccess , and conducting the model checking experiment again. As expected,
a counterexample was found, showing that Alice indeed keeps her initial qubit with zero
probability.

Reachability analysis for quantum teleportation
Besides using LTL model checking, we can also use reachability analysis to verify the
correctness of Quantum Teleportation with the same property mentioned above. Maude is
equipped with the search command with which reachability analysis can be conducted. The
following search command, where TELEPORT is the specification of Quantum Teleportation,
init is the initial state for TELEPORT ,

search in TELEPORT: init
=>* {(qstate: Q) (isEnd: true) (prob: P) OCs}
such that not (

Prob > 0 implies (qubitAt(Q, 2) == qubitAt(qstate(init), 0) and
qubitAt(Q, 0) =/= qubitAt(qstate(init), 0))

) .

finds all states reachable from the initial state that contain (isEnd: true) , (qstate: Q) , and
(prob: Prob) such that it is not the case where the qubit received by Bob at the end is equal
to the qubit sent by Alice at the beginning, and Alice does not have the qubit anymore with
a non-zero probability. Note that the condition used here is the negation of the condition
used to define the atomic proposition isSuccess above. The search command does not
find any state in just 2 ms, meaning that we successfully verify the correctness of Quantum
Teleportation by using reachability analysis.

The reason why we use the Maude LTL model checker is because it is convenient to
express desired properties of quantum circuits in LTL. Quantum circuits look simple
but have non-determinism because of measurements, and then have multiple possible
execution paths. It is necessary to take all such multiple execution paths. Desired properties
of quantum circuits are in the form: for each possible execution path, something good
eventually happens. For example, a qubit at the final state for each possible execution path
is the same as another qubit at the initial state with a non-zero probability. Meanwhile, we

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 21/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

need to find all states that do not satisfy the condition and we need to think in an inverse
way when the search command is used. As written, we can use the search command, but
because times taken by the search command (i.e., 2 ms) and the Maude LTL model checker
(i.e., 3 ms) are comparable and it is convenient to express desired properties of quantum
circuits in LTL, so we use the Maude LTL model checker.

Quantum secret sharing
Introduction
Quantum Secret Sharing (QSS) was first invented by Hillery, Bužek & Berthiaume (1999)
and some attempts to describe quantum circuits for the protocol were presented by Joy
et al. (2019). This protocol also takes advantage of entanglement to send an unknown
quantum state |ψ〉 from Alice to either Bob or Charlie using the mechanism of Quantum
Teleportation.However, this protocol uses four qubits and three classical bits, and especially
neither Bob nor Charlie can independently reconstruct |ψ〉 by themselves. The one wants
to retrieve the unknown quantum state |ψ〉 if and only if some information from the other
is provided. This protocol has been used in many applications, such as quantum money
schemes introduced by Wiesner (1983), Wang et al. (2007), quantum error-correcting
codes introduced by Cleve, Gottesman & Lo (1999), Matsumoto (2017), and a graph-
theoretic protocol introduced by Sarvepalli (2012), Gravier et al. (2015), demonstrating its
importance.

The circuit for Quantum Secret Sharing is depicted in Fig. 4. We suppose that Charlie
will reconstruct the unknown quantum state |ψ〉 sent by Alice with consent from Bob in
the following description. Alice acts on q0 and q1, Bob acts on q2, and Charlie acts on q3 as
follows:

• First, we prepare an arbitrary unknown state |ψ〉=α|0〉+β|1〉 at q0, where α and β are
complex numbers such that |α|2+|β|2= 1. Initially, q1, q2, and q3 are in the basic state
|0〉.
• Second, we apply a sequence of quantum gates to manipulate four qubits. We first apply
the H gate on q1, the CX gate on q1 and q2, and the CX gate on q1 and q3 in order to
make an entangled state shared between Alice, Bob, and Charlie. Alice then applies the
CX gate on q0 and q1 followed by theH gate on q0. Bob then applies theH gate on q2 to
make it possible to measure in X-basis (or the diagonal basis {|+〉,|−〉}) subsequently.
• Third, we measure the qubits q0, q1, and q2 and immediately obtain three classical
outcomes (0 or 1) stored in c0, c1, and c2, respectively.
• Fourth, we conditionally apply single-qubit X , Z , and Z gates on q3 depending on the
three classical bits in c1, c0, and c2. Concretely, we use the X gate if c1 equals one and
similarly for others. We can see that Charlie also needs to use the measurement outcome
from Bob in order to reconstruct |ψ〉 in this step.

At the end, Charlie will have |ψ〉 with consent from Bob, and Alice will not have it
anymore. We would like to verify whether Charlie can correctly reconstruct an arbitrary
unknown quantum state sent by Alice with consent from Bob at the end by using our
symbolic model checking. Note that this property is one aspect of QSS because we do

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 22/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>| i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0

0x1

0x1

𝑞!

𝑞"

𝑞#

𝑐!

𝑐"

𝑞$
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

H

𝑐#

0

0

X Z Z

0x1

Figure 4 Quantum secret sharing.
Full-size DOI: 10.7717/peerjcs.2098/fig-4

not consider the following property under verification: neither Bob nor Charlie can
independently reconstruct |ψ〉 by themselves.

Specification of quantum secret sharing
We can describe the circuit for Quantum Secret Sharing based on the actions specified in
‘Formal Specification’ as follows:

H(1) CX(1, 2) CX(1, 3) CX(0, 1) H(0) H(2) M(0) M(1) M(2)
(c[1] == 1 ? X(3)) (c[0] == 1 ? Z(3)) (c[2] == 1 ? Z(3))

Let IQSS be the set of initial states for Quantum Secret Sharing. It consists of only one
initial state as follows:
{(isEnd: false)
(prob: 1)
(qstate: (q[0]: a . |0> + b . |1>)

(q[1]: |0>) (q[2]: |0>) (q[3]: |0>))
(bits: empty)
(actions:

H(1) CX(1, 2) CX(1, 3) CX(0, 1) H(0) H(2)
M(0) M(1) M(2)
c[1] == 1 ? X(3)
c[0] == 1 ? Z(3)
c[2] == 1 ? Z(3))}

where a and b are Maude constants denoting arbitrary scalars such that |a|2+|b|2= 1.
Initially, the isEnd observable component is false, the prob observable component is one,
the qstate is a symbolic state that is the same as the input state of the protocol, the actions

observable component contains the action list describing how the protocol works.

Model checking quantum secret sharing
Let KQSS and init be the Kripke structure and the initial state for Quantum Secret Sharing,
respectively. To model check that KQSS satisfies desired properties, we specify AQSS and
LQSS. AQSS has one atomic proposition isSuccess . LQSS is specified as follows:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 23/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-4
http://dx.doi.org/10.7717/peerj-cs.2098

2This circuit used here is a revised version
of the original version presented in
Gottesman & Chuang (1999); Ding
& Chong (2020) and the reader is
recommended to refer to ‘Remark on
Quantum Gate Teleportation’ for more
details.

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess
= Prob > 0 implies (qubitAt(Q, 3) == qubitAt(qstate(init), 0) or

(-1) . qubitAt(Q, 3) == qubitAt(qstate(init), 0)).
eq {OCs} |= PROP = false [owise] .

where Q and Prob areMaude variables denoting thewhole quantum state and the probability
at a state, respectively.

The two equations say that isSuccess holds at a state if the state con-
tains (isEnd: true) , (qstate: Q) , and (prob: Prob) such that the condition
qubitAt(Q, 3) == qubitAt(qstate(init), 0) or qubitAt(Q, 3) == qubitAt(qstate(init), 0)

holds whenever Prob > 0 holds, meaning that the qubit received by Charlie with
consent from Bob at the end is equal to the qubit sent by Alice at the beginning with
a non-zero probability. Note that a factor γ on a quantum state for which |γ | = 1
is regarded as a global phase and quantum states that differ only by a global phase
are physically indistinguishable and equivalent as shown in Nielsen & Chuang (2010).
That is why we use (-1). qubitAt(Q, 3) == qubitAt(qstate(init), 0) in addition to
qubitAt(Q, 3) == qubitAt(qstate(init), 0) in the condition. Let secretProp be an LTL
formula defined as <> isSuccess .

We want to model check that KQSS= 〈S,IQSS,T ,AQSS,LQSS〉 satisfies secretProp from
the initial state init in Maude as follows:
red modelCheck(init , secretProp) .

No counterexample is found in just 13 ms and so KQSS satisfies secretProp In other
words, we successfully verify the correctness of the Quantum Secret Sharing by using our
symbolic model checking approach.

Quantum gate teleportation
Introduction
Quantum Gate Teleportation (QGT) is a generalization of quantum teleportation invented
by Gottesman & Chuang (1999) for teleporting two arbitrary states through the controlled-
NOT gate with the use of six qubits and four classical bits. This protocol can be regarded
as a single technique to reduce resource requirements for quantum computers and unifies
known protocols for fault-tolerant quantum computations, demonstrating its importance.

The circuit for Quantum Gate Teleportation2 is depicted in Fig. 5. Alice acts on q0 and
q1, Bob acts on q2, q3, q4, and q5 as follows:
• First, Alice prepares an arbitrary unknown state |ψ〉 = a|0〉+b|1〉 at q0, where a and b
are complex numbers such that |a|2+|b|2= 1. Similarly, Bob also prepares an arbitrary
unknown state |ϕ〉 = c|0〉+d|1〉 at q5. Initially, q1, q2, q3, and q4 are in the basic state
|0〉.
• Second, we prepare an entangled state shared between Alice and Bob from q1 to q4 by
applying a sequence of quantum gates as follows. We first apply the H gate on q1, the
CX gate on q1 and q2, the H gate on q3, the CX gate on q3 and q4, and finally the CX
gate on q3 and q2.
• Third, Alice then applies the CX gate on q1 and q0 followed by the H gate on q1.
Meanwhile, Bob applies the CX gate on q5 and q4 followed by the H gate on q5.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 24/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>| i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0x1

0x1

𝑞!

𝑞"

𝑞#

𝑐!

𝑐"

𝑞$
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

𝑐%

0

0

X

0x1

𝑞%

𝑞&

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

H
0

𝑐&
0

X

X Z

0x1

Z

Z

<latexit sha1_base64="LidxBMs9s++qwhIPXroAfBYTzfY=">AAACCXicbVDLSsNAFJ3UV62vqks3wSK4KomIuiy6cVnBPqANZTK9aYZOJuPMpBBCvsAPcKuf4E7c+hV+gb/htM3Cth64cDjnXs7l+IJRpR3n2yqtrW9sbpW3Kzu7e/sH1cOjtooTSaBFYhbLro8VMMqhpalm0BUScOQz6Pjju6nfmYBUNOaPOhXgRXjEaUAJ1kby+mPQWX+CpQhpPqjWnLozg71K3ILUUIHmoPrTH8YkiYBrwrBSPdcR2suw1JQwyCv9RIHAZIxH0DOU4wiUl82ezu0zowztIJZmuLZn6t+LDEdKpZFvNiOsQ7XsTcX/vF6igxsvo1wkGjiZBwUJs3VsTxuwh1QC0Sw1BBNJza82CbHERJueFlJEmCpKVF4xzbjLPayS9kXdvapfPlzWGrdFR2V0gk7ROXLRNWqge9RELUTQE3pBr+jNerberQ/rc75asoqbY7QA6+sXrzybew==</latexit>|'i

Figure 5 Quantum gate teleportation.
Full-size DOI: 10.7717/peerjcs.2098/fig-5

• Fourth, we measure the qubits q0, q1, q4, and q5 and immediately obtain four classical
outcomes (0 or 1) stored in c0, c1, c4, and c5, respectively.
• Fifth, we conditionally apply the X gate on q2 and q3, the Z gate on q3, the X gate on
q2, and the Z gate on q2 and q3, depending on the four classical bits in c4, c5, c0, and c1.

At the end, Bob will have the controlled-NOT gate of |ϕ〉 and |ψ〉 (i.e., CX (|ϕ〉,|ψ〉) at
the indices q2 and q3. We would like to verify whether Alice can successfully teleport two
arbitrary unknown quantum states through the controlled-NOT gate to Bob at q2 and q3
at the end by using our symbolic model checking.

Specification of quantum gate teleportation
We can describe the circuit for Quantum Gate Teleportation based on the actions specified
in ‘Formal Specification’ as follows:

H(1) CX(1, 2) H(3) CX(3, 4) CX(3, 2) CX(1, 0) H(1) CX(5, 4) H(5)
M(0) M(1) M(4) M(5)
(c[4] == 1 ? X(2) X(3))
(c[5] == 1 ? Z(3))
(c[0] == 1 ? X(2))
(c[1] == 1 ? Z(2) Z(3))

Let IQGT be the set of initial states for Quantum Gate Teleportation. It consists of only
one initial state as follows:
{(isEnd: false)
(prob: 1)
(qstate: (q[0]: a . |0> + b . |1>)

(q[1]: |0>) (q[2]: |0>)
(q[3]: |0>) (q[4]: |0>)
(q[5]: c . |0> + d . |1>))

(bits: empty)
(actions:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 25/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-5
http://dx.doi.org/10.7717/peerj-cs.2098

H(1) CX(1, 2) H(3) CX(3, 4) CX(3, 2) CX(1, 0) H(1) CX(5, 4) H(5)
M(0) M(1) M(4) M(5)
(c[4] == 1 ? X(2) X(3))
(c[5] == 1 ? Z(3))
(c[0] == 1 ? X(2))
(c[1] == 1 ? Z(2) Z(3))}

where a , b , c , and d are Maude constants denoting arbitrary scalars such that
|a|2+|b|2 = |c|2+|d|2 = 1. Initially, the isEnd observable component is false, the prob

observable component is one, the qstate is a symbolic state that is the same as the input
state of the protocol, the actions observable component contains the action list describing
how the protocol works.

Model checking quantum gate teleportation
Let KQGT and init be the Kripke structure and the initial state for Quantum Gate
Teleportation, respectively. To model check that KQGT satisfies desired properties, we
specify AQGT and LQGT . AQGT has one atomic proposition isSuccess . LQGT is specified as
follows:

eq {(isEnd: true) (qstate: Q) (prob: Prob) OCs} |= isSuccess
= Prob > 0 implies (qubitAt(Q, 3 2) == qubitAt(targetQState , 0 1) or

(-1) . qubitAt(Q, 3 2) == qubitAt(targetQState , 0 1)) .
eq {OCs} |= PROP = false [owise] .

where Q and Prob are Maude variables denoting the whole quantum state and the
probability at a state, respectively. targetQState represents the outcome of the protocol,
the controlled-NOT gate of the two arbitrary states, which is defined as follows
eq targetQState = ((q[0]: c . |0> + d . |1>) (q[1]: a . |0> + b . |1>)).CX(0, 1) .

The two equations to specify AQGT say that isSuccess holds at a state if the
state contains (isEnd: true) , (qstate: Q) , and (prob: Prob) such that the condition
qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1) or (-1) . qubitAt(Q, 3 2) == qubitAt(target

QState, 0 1) holds whenever Prob > 0 , meaning that Alice can successfully teleport two
arbitrary unknown quantum states through the controlled-NOT gate to Bob at the end
with a non-zero probability. Again, because of the global phase in quantum states as shown
in Nielsen & Chuang (2010), we use (-1) . qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1)

in addition to qubitAt(Q, 3 2) == qubitAt(targetQState, 0 1) in the condition. Let gateProp
be an LTL formula defined as <> isSuccess .

We want to model check that KQGT = 〈S,IQGT ,T ,AQGT ,LQGT 〉 satisfies gateProp from
the initial state init in Maude as follows:
red modelCheck(init , gateProp) .

No counterexample is found in just 176 ms and so KQGT satisfies
gateProp . In other words, we successfully verify the correctness of Quantum Gate
Teleportation by using our symbolic model checking approach.

REMARK ON QUANTUM GATE TELEPORTATION
This section describes a remark on Quantum Gate Teleportation where we show that a
circuit for the original version of the protocol does not satisfy its desired property, while

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 26/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

Figure 6 A Bell-basis measurement gate.
Full-size DOI: 10.7717/peerjcs.2098/fig-6

Figure 7 A Bell-basis measurement gate inserted upside down.
Full-size DOI: 10.7717/peerjcs.2098/fig-7

we present a revised circuit for the protocol and verify that it satisfies its desired property
using our symbolic model checking approach.

The reader can refer to the circuit for the original version ofQuantumGate Teleportation
from Gottesman & Chuang (1999), Fig. 2. In that figure, they use a Bell measurement
denoted by the box B twice in the circuit. A Bell measurement can be described in terms
of a CX gate, a Hadamard gate, and a measurement in the standard basis. However,
there are two possible orientations for applying the CX gate and the Hadamard gate. The
difference is apparent by comparing Figs. 6 and 7 as also presented by Williams (2008).
The Bell measurement that uses the Bell-basis measurement gate in Fig. 6 is called the up
Bell measurement. Meanwhile, the Bell measurement that uses the Bell-basis measurement
gate inserted upside down in Fig. 7 is called the down Bell measurement. Gottesman &
Chuang (1999) did not explicitly clarify which Bell measurement was used. However, they
described it in their article exactly as follows:

The box B represents measurement in the Bell basis; that is, if the two qubits entering
B are found to be |00〉+ |11〉 (leaving out the

√
2 normalization for clarity), then the

outputs xy = 00; for |01〉+|10〉, xy = 10; for |00〉−|11〉, xy = 01; and for |01〉−|10〉,
xy = 11.

Note that xy denotes the first and second qubits entering the box B. Based on the above
description in the original article, we use the down Bell measurement. If so, the circuit
for Quantum Gate Teleportation is depicted in Fig. 8. Let us call this circuit the original
circuit.

We conducted a model checking experiment with the same initial state and the
desired property described in ‘Quantum Gate Teleportation’ for the original circuit. A
counterexample was found by the Maude LTL model checker, implying that Quantum
Gate Teleportation does not satisfy the property with the use of the original circuit. Because

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 27/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-6
https://doi.org/10.7717/peerjcs.2098/fig-7
http://dx.doi.org/10.7717/peerj-cs.2098

<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>| i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0x1

0x1

𝑞!

𝑞"

𝑞#

𝑐!

𝑐"

𝑞$
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

𝑐%

0

0

X

0x1

𝑞%

𝑞&

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

H
0

𝑐&
0

X

X

Z

0x1

Z

Z

<latexit sha1_base64="LidxBMs9s++qwhIPXroAfBYTzfY=">AAACCXicbVDLSsNAFJ3UV62vqks3wSK4KomIuiy6cVnBPqANZTK9aYZOJuPMpBBCvsAPcKuf4E7c+hV+gb/htM3Cth64cDjnXs7l+IJRpR3n2yqtrW9sbpW3Kzu7e/sH1cOjtooTSaBFYhbLro8VMMqhpalm0BUScOQz6Pjju6nfmYBUNOaPOhXgRXjEaUAJ1kby+mPQWX+CpQhpPqjWnLozg71K3ILUUIHmoPrTH8YkiYBrwrBSPdcR2suw1JQwyCv9RIHAZIxH0DOU4wiUl82ezu0zowztIJZmuLZn6t+LDEdKpZFvNiOsQ7XsTcX/vF6igxsvo1wkGjiZBwUJs3VsTxuwh1QC0Sw1BBNJza82CbHERJueFlJEmCpKVF4xzbjLPayS9kXdvapfPlzWGrdFR2V0gk7ROXLRNWqge9RELUTQE3pBr+jNerberQ/rc75asoqbY7QA6+sXrzybew==</latexit>|'i

Figure 8 A possible circuit for QuantumGate Teleportation based on the description fromGottesman
& Chuang (1999).

Full-size DOI: 10.7717/peerjcs.2098/fig-8

the counterexample is overlong, we just excerpt and present the final state repeated forever
in the counterexample as follows:
{(isEnd: true)
(prob: 1/16)
(qstate:

(q[0]: |0>) (q[1]: |0>)
(q[4]: |0>) (q[5]: |1>)
(q[3 2]: (a .* c) . |0> (x) |0> + (a .* d) . |1> (x) |1> +

(b .* c .* -1) . |0> (x) |1> + (b .* d .* -1) . |1> (x) |0>)
(bits: (0 |-> 0, 1 |-> 0, 4 |-> 0, 5 |-> 1))
(actions: nil)

We can see that the qubits at indices 3 and 2 do not match the controlled-NOT gate
of the two arbitrary states represented by targetQState in ‘Quantum Gate Teleportation
(QGT)’. That is why the original circuit for Quantum Gate Teleportation does not
satisfy the property. To replay the counterexample, we can conduct as follows: the
sequence of quantum gates in the original circuit is applied as usual for the initial state,
followed by the measurements of the first, second, fourth, and fifth qubits such that their
measurement outcomes are 0, 0, 0, and 1, respectively. Furthermore, even if we use the
up Bell measurement in place of the down Bell measurement, its corresponding circuit of
QuantumGate Teleportation also does not satisfy the property. Therefore, regardless of the
use of either up or down Bell measurement, the quantum circuit proposed by Gottesman
& Chuang (1999) does not enjoy the desired property.

We revised the original circuit forQuantumGateTeleportation by changing the positions
of the Z and X gates applied to qubits with respect to the values of c5 and c0, respectively.
Concretely, we apply the Z gate to q3 instead of q2, the X gate to q2 instead of q3 depending
on the values of c5 and c0, respectively, for the revised circuit compared to the original

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 28/42

https://peerj.com
https://doi.org/10.7717/peerjcs.2098/fig-8
http://dx.doi.org/10.7717/peerj-cs.2098

Table 3 Experimental results.

Protocol Qubits States Verification time

Superdense coding 2 16 1 ms
Quantum teleportation 3 27 3 ms
Quantum secret sharing 4 65 13 ms
Entanglement swapping 4 29 3 ms
Two mirror-image teleportation 6 151 15 ms
Quantum gate teleportation 6 168 176 ms
Quantum network coding 10 7,373 2,446 ms

circuit. The revised circuit is depicted in Fig. 5 in ‘QuantumGate Teleportation (QGT)’. For
the revised circuit of Quantum Gate Teleportation, we successfully verified the correctness
of the protocol by using our symbolic model checking approach. This demonstrates the
usefulness of our symbolic model checking approach for verifying quantum circuits.

EXPERIMENTAL RESULTS
This section summarizes our experimental results for verifying the correctness of several
quantum communication protocols with our symbolicmodel checking approach, including
Superdense Coding introduced by Bennett & Wiesner (1992), Quantum Teleportation
introduced by Bennett et al. (1993), Quantum Secret Sharing introduced by Hillery,
Bužek & Berthiaume (1999), Entanglement Swapping introduced by Zukowski et al. (1993),
Quantum Gate Teleportation introduced by Gottesman & Chuang (1999), Two Mirror-
image Teleportation introduced by Williams (2008), and Quantum Network Coding
introduced by Satoh, Gall & Imai (2012). The experiments were conducted with an iMac
that carries a 4 GHz microprocessor with eight cores and 32 GB memory of RAM. The
experimental results are shown in Table 3. The second, third, and fourth columns denote
the number of qubits in each protocol, the number of states in the reachable state space
of each protocol under model checking, and the verification time for each protocol,
respectively.

For case studies ranging from two to ten qubits, model checking experiments were
quickly completed in times from 1 ms to 2,446 ms as shown in Table 3. The number of
states in the reachable state space for Quantum Network Coding with ten qubits is notably
larger compared to the number of states in the reachable state space for each of the first six
protocols. Nevertheless, the model checking experiment for Quantum Networking Coding
could be completed in a short amount of time. Without the aid of computer programs,
such as our support tool implemented in Maude, it is almost impossible to achieve the
same results. These results demonstrate the usefulness of our symbolic model checking
approach to verifying quantum circuits in Maude. As one piece of future work, we would
like to tackle more case studies with a larger number of qubits to present the scalability of
our approach.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 29/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

DISCUSSION
This section discusses some limitations of our approach, challenges in using a classical
model checker to verify quantum circuits with their desired properties, and how we
address these challenges.

Limitations
In the context of symbolic reasoning for complex numbers, we have extended rational
numbers supported in Maude to deal with complex numbers. Our objective is to represent
arbitrary complex numbers in a pure quantum state using fresh constants representing
arbitrary complex numbers and manipulating them without using any concrete values for
real numbers. As a result, our current framework cannot handle any concrete values for real
numbers. Nevertheless, we plan to explore the use of float numbers supported in Maude
for simulating quantum circuits with concrete values in the future. As shown in Appendix
2, we have specified some basic operations for complex numbers, such as multiplication,
division, addition, conjugation, absolute, power, and square roots. Note that the formal
specification of complex numbers is not complete in this article. Hence, there may be some
cases where symbolic reasoning for complex numbers could not further reduce terms. As
part of our future work, we aim to enrich the framework for complex number reasoning
as much as possible.

Regarding symbolic reasoning for quantum computation, we only support a limited set
of quantum gates, including I , X , Y , Z , H , CX , S, T , CY , CZ , SWAP , CCY , CCZ , and
CSWAP gates. Consequently, a restricted set of quantum protocols can be described in our
framework. Although we support a universal set of quantum gates, including the Clifford
gates (i.e., H , S, and CX) and the phase shift gate T , universal quantum computations
could not be handled by our framework at this moment because the symbolic reasoning
for complex numbers is not complete. We would like to extend our symbolic reasoning to
handle more quantum gates so that a wider range of quantum protocols can be verified
using our approach.

Challenges and future prospects
There are some challenges that we need to address in order to use the Maude LTL model
checker, a classical model checker, to verify quantum circuits with their desired properties.
In addition, this section also outlines future prospects in model checking quantum circuits.

• First, we need to devise a way to specify quantum states, quantum gates, and
measurements in a Maude specification to reason about quantum computation. We
specified quantum states, quantum gates, and measurements in Dirac notation and
used a set of laws from quantum mechanics and basic matrix operations to reason
about quantum computation automatically in Maude. Moreover, Maude does not
support complex numbers as a built-in type. Therefore, we extended rational numbers,
a built-in type in Maude, so as to deal with complex numbers symbolically as described
in Appendix A.
• Second, quantum gates can be applied to quantum states in a deterministic way,
while quantum measurements are inherently non-deterministic and the states after

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 30/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

the measurements will collapse. It is natural to use rewriting logic to describe non-
deterministic or concurrent behaviors in Maude in the form of rewrite rules. We
specified a binary projective measurement using two rewrite rules corresponding to two
non-deterministic choices, as described in ‘Formal Specification’.
• Third, we need to appropriately handle both pure and entangled states in our formal
specification and devise a simple notation to conveniently describe the behavior of
quantum circuits. We specified a whole quantum state as a collection of qubits associated
with indices in quantum circuits, enabling flexible reference to specific parts of a quantum
state using indices. The behavior of quantum circuits has been specified as a list of actions,
a convenient and sufficient approach for us to concisely describe their behavior.
• Lastly, we need to represent quantum states and quantum gates in order to effectively
model check quantum circuits with as many qubits as possible. Using Dirac notation
in our specification allows us to avoid many redundancies compared to explicitly
using vectors and matrices to represent quantum states and quantum gates, respectively,
making our representationmore compact than that of Paykin, Rand & Zdancewic (2017).
Early work proposed by Gay, Nagarajan & Papanikolaou (2005) could not support the
analysis of quantum systems with five qubits, while our approach could handle case
studies of up to ten qubits, showing the effectiveness of our approach. However, in order
to handle quantum systems with hundreds of qubits in the future, we need to use or come
up with advanced techniques to effectively simulate quantum computation(e.g., using
decision diagrams for quantum computing proposed by Wille, Hillmich & Burgholzer
(2022), Wille, Hillmich & Burgholzer (2023)) or analyze such quantum systems in a
modular way.

Last but not least, our approach implemented in Maude can be a first step toward a
general framework for specifying and verifying quantum circuits when we can reuse some
essential elements in the Kripke structures. For specifying and verifying a quantum circuit,
we are supposed to define an initial state, describe the behavior of the quantum circuit in
terms of a list of actions, and specify atomic propositions and the labeling function based
on which a desired property can be constructed. Given the system specification with the
initial state and the desired property, the Maude LTL model checker automatically checks
whether the system specification satisfies the desired property reachable from the initial
state.

RELATED WORK
There are several studies in the early work of formal specification and verification of
quantum protocols, such as Gay, Nagarajan & Papanikolaou (2005); Elboukhari, Azizi &
Azizi (2010). For example, Gay, Nagarajan & Papanikolaou (2005) provide a way to use
classical model checkers (e.g., PRISM - a probabilistic model checker) to analyze quantum
protocols. They give each quantum state a unique number and the transition from a
unique number to another unique number models the action of quantum gates and
measurements. Their approach needs to enumerate states, calculate the state transitions
in advance, and then encode them into a PRISM specification. Although they developed

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 31/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

a so-called PRISMGEN tool to automate this, their approach is impractical in reality and
only supports two or three qubits because of the exponential growth of the number of
states. Our approach does not need to enumerate such states in advance because a quantum
state is directly specified in Dirac notation with scalars. Moreover, rewrite rules are used to
specify the action of quantum gates and measurements, making our approach feasible to
deal with more qubits. For example, we have verified the correctness of Quantum Network
Coding that has ten qubits by using our symbolic model checking approach.

Ying (2021) proposes a framework for assertion-based verification of quantum circuits by
using model checking techniques. In this work, quantum circuits are represented by tensor
networks, where a tensor is amulti-dimensional array of complex numbers, and two tensors
sharing indices are connected by a tensor contraction, which basically is matrix calculation.
Quantum states and quantum gates are specified as tensors, and quantum circuits are
specified as tensor networks. Given a quantum state as an input to a quantum circuit, the
output will be the contraction of the quantum state and the quantum circuit. Assertions
or properties about quantum circuits are specified using computation tree quantum logic
(CTQL), an extension of the Birkoff-von Neumann quantum logic presented in Birkhoff
& Neumann (1936). Using tensor network representation of quantum circuits, they can
conveniently implement a reachability analysis algorithm and a model checking algorithm
for quantum circuits by contraction of tensor networks. Compared to our work, Dirac
notation is used to express quantum states and quantum gates instead of tensors, and
quantum circuits are described by an action list with simple notations instead of tensor
networks. Our reasoning on quantum circuits is mainly based on the laws of quantum
mechanics and matrix operations with Dirac notation, but they construct contraction
between tensors in tensor networks. We use LTL to express desired properties for quantum
circuits instead of CTQL. It seems that they cannot deal with quantum circuits together
with the appearance of classical bits obtained from measurements, while our approach can
do so. Moreover, they do not show any case study to which their framework can apply.

Burgholzer & Wille (2021) have proposed an advanced method for equivalence checking
of quantum circuits. Their approach involves two quantum circuits G and G′ as inputs
and they check whether the two quantum circuits are equivalent. They leverage two key
observations: (1) quantum circuits are inherently reversible, and (2) even small differences
in quantum circuits may impact the overall behavior of quantum circuits. Let us suppose
that two quantum circuits are sequences of unitary transformations: G=Um−1 ...U0=U
and G′=U ′m′−1 ...U

′

0=U ′ operating on n qubits. Executing a quantum circuit to evolve
an initial state |ψ〉 to another state |ψ ′〉 such that Um ...U0|ψ〉 =U |ψ〉 = |ψ ′〉 is called
simulation. For (1),G is equivalent toG′ if and only if (U ′0)

−1 ...(U ′m′−1)
−1Um−1 ...U0= I or

(U ′0)
†
...(U ′m′−1)

†Um−1 ...U0= I when (U ′i)
−1
= (U ′i)

† due to their unitary matrices. They
employ decision diagrams to represent matrices and try to resolve (U ′i′)

†Ui into the identity
matrix I for effectively solving the equivalence checking problem. For (2), comparing the
entire matrices of U and U ′ is unnecessary when two quantum circuits are not equivalent.
Comparing some columns of eachU andU ′ is enough to conclude the equivalence checking
problem. Constructing a single column of U (or U ′) equates to simulating G (or G′) with
the standard basis state |i〉 as follows: |u0i 〉 =U0|i〉, |u

(j)
i 〉 =Uj ·u

(j−1)
i for j ∈ {1,...,m−1}.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 32/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

As the results of these simulations, if |ui〉 = |u
(m−1)
i 〉 and |u′i〉 = |u

′(m′−1)
i 〉 are different,

it indicates non-equivalence of the two quantum circuits. These can be quickly checked
through a randomized selection of some columns with simulations. While their approach
is promising, it differs from ours when we take a formal specification for a quantum circuit
and a formal property for a desired property as inputs and check whether the quantum
circuit satisfies the desired property. Nevertheless, we may utilize their idea to extend our
symbolic reasoning to check the equivalence of quantum circuits, which would be one
interesting direction.

The ZX calculus, as proposed by Coecke & Duncan (2011), is a graphical formal language
for quantum systems equipped with a robust set of rewrite rules that enable a graphical
rewriting system for quantum computation. The graphical formalism of the ZX calculus
can be implemented in the automated rewriting systemQuantomatic proposed byKissinger
& Zamdzhiev (2015) for the automatic simplification process. The ZX calculus has various
applications in quantum computing, such as verifying quantum error-correcting codes
and equivalence checking of quantum circuits. For example, Peham, Burgholzer & Wille
(2022) proposed an approach to the equivalence checking of quantum circuits using the
ZX calculus. Given two quantum circuits U and U ′, they produce their corresponding
representations as ZX-diagramsD andD′. These diagrams are then combined intoD†D′ and
simplified using the set of rewrite rules. If the result is in the form of the identity diagram,
they can conclude their equivalence. Otherwise, nothing can be concluded because there
are multiple forms for a ZX diagram in general. This approach is intuitive when we can see
which rewrite rules are used and how ZX diagrams are changed accordingly. Our approach
based on Dirac notation may be less intuitive. However, our approach is to verify whether
quantum circuits satisfy their desired properties, which are different from the equivalence
checking of quantum circuits as mentioned above.

Rand, Paykin & Zdancewic (2018) implement the QWIRE programming language, a
high-level abstraction to describe quantum circuits for programmers, in the Coq proof
assistant and use Coq’s theorem proving features to prove desired properties for quantum
circuits. They explicitly use matrix representations, while we use Dirac notation to reason
about quantum circuits. As the inherent problem of theorem proving, they need to
provide necessary lemmas in order to prove some properties that can be considered the
most challenging task in theorem proving. Our approach is model checking and so it is
completely automatic.

Our symbolic approach to model checking quantum circuits is inspired by Shi et al.
(2021) and so it is the closest work to ours. However, their approach is oriented to theorem
proving, not model checking. They also use Dirac notation with a small set of laws to
specify quantum states, quantum gates, measurements, and reasoning about quantum
circuits in Coq, an interactive theorem prover. However, they usually require human users
to provide necessary lemmas to complete their proofs, which is generally a challenging
task. Meanwhile, our approach is fully automatic and requires no human intervention.
Moreover, our implementation can be a first step toward a general framework to formally
specify and verify quantum circuits in a symbolic way in Maude.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 33/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

CONCLUSION
We have proposed a symbolic approach to model checking quantum circuits using a
set of laws from quantum mechanics and basic matrix operations with Dirac notation.
We have analyzed the correctness of several quantum communication protocols in the
early stage of quantum communication: Superdense Coding, Quantum Teleportation,
Quantum Secret Sharing, Entanglement Swapping, Quantum Gate Teleportation, Two
Mirror-image Teleportation, andQuantumNetwork Coding as case studies to demonstrate
the usefulness of our approach. In particular, we have identified that the original version
of Quantum Gate Teleportation did not satisfy its desired property, and have proposed
a revised version and confirmed its correctness using our approach and support tool.
Moreover, our implementation developed in Maude can be a first step toward a general
framework to formally specify and verify quantum circuits using our symbolic model
checking approach. Our specification considers the probabilities of measurements, and
then we can tackle both qualitative and quantitative properties with the built-in LTL model
checker in Maude.

As one piece of our future work, we would like to extend our symbolic reasoning
to handle more quantum gates and more complicated reasoning on complex number
operations. As usual, we need to conduct more case studies to demonstrate the usefulness
of our approach/implementation. As another line of future work, we also would like
to apply our symbolic approach to model checking quantum programs and quantum
cryptography protocols.

ACKNOWLEDGEMENTS
The authors wish to thank the anonymous reviewers who commented on drafts of this
article.

APPENDIX
A. Symbolic reasoning for scalars
This section describes how we extend the built-in rational numbers in Maude to handle
scalars. Please note that scalars and complex numbers are used interchangeably in this
article. Some operators for scalars are specified to tackle case studies in this article,
including multiplication, division, addition, conjugation, absolute, power, and square
roots. In the sequel, the Maude syntax is used in our description.

In addition to the built-in sort Rat of rational numbers, we introduce two sorts Real

and Complex representing real numbers and complex numbers, respectively, as follows:
sorts Real Complex .
subsort Rat < Real < Complex

where Rat is a sub-sort of Real and Real is a sub-sort of Complex . This indicates that rational
numbers are a subset of real numbers, and real numbers are a subset of complex numbers.
It is worth noting that the built-in sort Nat of natural numbers is a sub-sort of Rat . While it
would be useful to use real numbers to simulate quantum circuits with concrete values (e.g.,

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 34/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

π), it is not the goal of this study. Our objective is to represent arbitrary complex numbers
in a pure quantum state using fresh constants of sort Complex and manipulating them
without using any concrete values for real numbers. As a result, our focus is on specifying
complex numbers with rational numbers for conducting model checking experiments for
case studies in this article. The specification of concrete real numbers is planned as part of
our future work.

We first define an operator representing the imaginary unit for complex numbers as
follows:
op i : -> Complex [ctor] .

where i serves as a constructor of the imaginary unit for complex numbers with the ctor

attribute.
We then define some operators for complex numbers, includingmultiplication, division,

addition, and conjugation, as follows:
op _.*_ : Complex Complex -> Complex [comm assoc prec 32] .
op _./_ : Complex Complex -> Complex [prec 31] .
op _.+_ : Complex Complex -> Complex [comm assoc prec 33] .
op (_)^* : Complex -> Complex [prec 30] .

where _ represents arguments of sort Complex for the operators defined. The _.*_ and
.+ operators satisfy commutativity and associativity with the comm and assoc attributes.
Each operator is assigned a different precedence, indicated by the prec_ attribute, with _

denoting a parameter representing a numerical precedence value.
We next define some operators for complex numbers to represent absolute, power, and

square roots as follows:
op Abs : Complex -> Real .
op Pow : Complex Rat -> Complex .
op Sqrt : Complex. -> Complex .

Now we are ready to define the semantics of the operators introduced above through
equations. Because of the self-explanation of equations, we do not explain each equation
in detail for the sake of brevity. We defined some Maude variables before using them in
equations as follows: N is a Maude variable of sort Nat ; and PR’ are Maude variables of sort
PosRat (for positive rational numbers); R , R1 , and R2 are Maude variables of sort Rat ; and
C , C1 , C2 , and C3 are Maude variables of sort Complex .

We first define the semantics of multiplication, division, and addition for complex
numbers, particularly focusing on cases involving rational numbers.
eq R1 .* R2 = R1 * R2 .
eq R1 ./ R2 = R1 / R2 .
eq R1 .+ R2 = R1 + R2 .

where * , / , and + are built-in operators for multiplication, division, and addition of
rational numbers if applicable.

The properties of the imaginary unit are defined as follows:
eq i .* i = -1 .
eq Abs(i) = 1 .

The semantics of multiplication is defined as follows:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 35/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

eq C .* 1 = C .
eq C .* 0 = 0 .
eq C .* (C)^* = Pow(Abs(C), 2) .
ceq C .* (1 ./ C) = 1 if not C :: Rat .

where C :: Rat to check whether C belongs to the sort of Rat .
The semantics of the division is defined as follows:

ceq 1 ./ (1 ./ C) = C if C =/= 0 .
ceq 1 ./ (C1 .* C2) = (1 ./ C1) .* (1 ./ C2)
if not C1 :: Rat or -else not C2 :: Rat .

The semantics of the addition is defined as follows:
eq C .+ 0 = C .

We would like to construct normal forms for complex numbers with the existence of
multiplication, division, and addition operators.

Therefore, some equations are defined as follows:
--- multiplication distributes over addition
eq C1 .* (C2 .+ C3) = C1 .* C2 .+ C1 .* C3 .
--- constructing normal forms for addition
ceq C .* R1 .+ C .* R2 = C .* (R1 .+ R2) if not C :: Rat .
ceq C .+ R .* C = C .* (R .+ 1) if not C :: Rat .
ceq C .+ C = C .* 2 if not C :: Rat .
--- constructing normal forms for division
ceq C1 ./ C2 = C1 .* (1 ./ C2) if C1 =/= 1 .

The absolute of a positive number is a positive number and so we define it as follows:
eq Abs((Abs(C))) = Abs(C) .
eq Abs((Pow(Abs(C), N))) = Pow(Abs(C), N) .
eq Abs(R) = abs(R) .

where abs is a built-in operator for the absolute of rational numbers if applicable.
The semantics of square roots is defined as follows:

eq Sqrt (1) = 1 .
eq Sqrt (0) = 0 .
eq Sqrt(PR) .* Sqrt(PR) = PR .
eq 1 ./ Sqrt(PR) .* 1 ./ Sqrt(PR) = 1 ./ PR .
eq PR .* (1 ./ Sqrt(PR)) = Sqrt(PR) .
eq Sqrt(PR / PR ’) = Sqrt(PR) .* (1 ./ Sqrt(PR ’)) .
eq Sqrt(PR) .* (R / PR) = R .* (1 ./ Sqrt(PR)) .

It is worth noting that the semantics of square roots is partially implemented for
positive rational numbers in this article, while we leave others as part of our future work.
This decision stems from the sufficiency of using square roots of some positive rational
numbers for the case studies used in this article.

The semantics of power is defined as follows:
eq Pow(R1, R2) = (R1)^(R2) .

where (.)(.) is a built-in operator for the power of rational numbers if applicable.
Lastly, the semantics of conjugate is defined as follows:

eq (Sqrt(PR))^* = Sqrt(PR) .
eq (C1 .* C2)^* = (C1)^* .* (C2)^* .
eq (C1 ./ C2)^* = (C1)^* ./ (C2)^* .
eq (C1 .+ C2)^* = (C1)^* .+ (C2)^* .
eq (R)^* = R .

Based on what we defined above, we can symbolically reason on complex numbers with
rational numbers for our case studies in this article.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 36/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

B. Quantum computation with our specifications
Although many textbooks on quantum mechanics cover the application of quantum
operations to quantum states, this section is specifically dedicated to explaining how these
operations apply to quantum states with respect to the specifications presented in this
article.

It is possible to treat the whole quantum state uniformly. However, we do not take this
way; instead, we specify quantum states as a collection of qubits associated with indices
that start from 0 to N−1, where N is the total number of qubits, as described in ‘A generic
maude specification of quantum circuits’. Our way has some advantages as follows:

• We can flexibly refer to a specific part of a quantum state using indices. This is very
helpful when we want to take a part of the whole quantum state to check whether it
satisfies certain conditions. For example, in Quantum Teleportation protocol, we need
to verify whether the third qubit at the end is equal to the first qubit at the beginning.
• When we apply a quantum gate to the whole quantum state at certain indices, if the
indices of the whole quantum state belong to an isolated part, we can perform a local
computation by considering only that part and leaving other parts unchanged. This may
make the computation faster, especially for a large number of qubits.

How quantum gates are applied to the whole quantum state
Let us suppose that we want to apply a single-qubit quantum gate X (i.e., B1+B2)
to the whole quantum state at index k, and the whole quantum state contains
(q[i,...,k,...,j] : |ψ〉). First, we need to prepare the cylindrical extension U of X to
make it have the same dimension as |ψ〉 as follows:

U = I⊗···⊗X⊗···⊗ I = I⊗···⊗B1⊗···⊗ I+ I⊗···⊗B2⊗···⊗ I .

Then, the whole quantum state after applying the quantum gate X will become to contain
(q[i,...,k,...,j] :U ×|ψ〉). Note that other quantum states associated with indices except
for i,...,k,...,j are not affected and remain unchanged. Therefore, the way we use to
represent the whole quantum state allows us to perform local computations where only
some parts are considered, while other parts remain unchanged.

Let us suppose that we want to apply a two-qubit quantum gateCX (i.e.,B0⊗I+B3⊗X)
to the whole quantum state at indices k and l , and the whole quantum state
contains (q[i,...,k,...,j] : |ψ1〉) (q[i′,...,l,...,j ′] : |ψ2〉). First, we need to combine two
quantum states |ψ1〉 and |ψ2〉 so that the whole quantum state will become to contain
(q[i,...,k,...,j,i′,...,l,...,j ′] : |ψ1〉⊗ |ψ2〉). Second, we need to prepare the cylindrical
extension U of CX to make it have the same dimension as |ψ1〉⊗|ψ2〉 as follows:

U = I⊗···⊗B0⊗···⊗ I⊗···⊗ I+ I⊗···⊗B3⊗···⊗X⊗···⊗ I .

Finally, the whole quantum state after applying the quantum gate CX will become to
contain

(q[i,...,k,...,j,i′,...,l,...,j ′] :U × (|ψ1〉⊗|ψ2〉)).

Note that other quantumstates associatedwith indices except for i,...,k,...,j,i′,...,l,...,j ′

are not affected and remain unchanged.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 37/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

The procedure for applying a three-qubit quantum gate to the whole quantum state is
similar to that for a two-qubit quantum gate. Therefore, it can also be done.

How to detect single and entangled states
We develop some heuristics for detecting single and entangled qubit states from which
they are separated from each other.

Let us suppose that the whole quantum state contains q[i,...,k,...,j] : |ψ〉, and we want
to perform a measurement on the whole quantum state at index k. After the measurement,
the whole quantum state will become to contain (q[i,...,j] : |ψ ′〉) (q[k] : |φ〉), where the
quantum state at index k is separated into |φ〉whose value either |0〉 or |1〉 and the quantum
state at the other indices becomes |ψ ′〉 according to the result of the measurement.

Furthermore, if the whole quantum state contains (q[i,...,k,...,j] : |ψ1〉⊗|φ〉⊗|ψ2〉)
where |φ〉 is either |0〉 or |1〉, we can also detect it. In this case, the whole quantum state
will become to contain (q[i,...,j] : |ψ1〉⊗|ψ2〉) (q[k] : |φ〉). Additionally, we can separate
the tensor product of two Bell states as well. Although these heuristics do not guarantee
coverage of all cases, they are sufficient for the case studies used in this article. We aim to
improve our heuristics to cover as many cases as possible in our future work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by JST SICORP Grant Number JPMJSC20C2, Japan and JSPS
KAKENHI Grant Numbers JP23H03370, JP23K19959, JP24K20757. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
JST SICORP: JPMJSC20C2.
JSPS KAKENHI: JP23H03370, JP23K19959, JP24K20757.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Canh Minh Do conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Kazuhiro Ogata conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 38/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2098

The raw data (implementation, case studies, and code) are available at Zenodo: Canh
Minh Do. (2024). canhminhdo/QTC-Maude: QTC-Maude v1.0.2 (v1.0.2). Zenodo.
https://doi.org/10.5281/zenodo.10783951.

REFERENCES
Bennett C, Brassard G, Crépeau C, Jozsa R, Peres A,WoottersW. 1993. Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.
Physical Review Letters 70:1895–1899 DOI 10.1103/PhysRevLett.70.1895.

Bennett CH, Brassard G. 2014. Quantum cryptography: public key distribution and coin
tossing. Theoretical Computer Science 560:7–11. Theoretical Aspects of Quantum
Cryptography—celebrating 30 years of BB84 DOI 10.1016/j.tcs.2014.05.025.

Bennett CH,Wiesner SJ. 1992. Communication via one- and two-particle opera-
tors on Einstein-Podolsky-Rosen states. Physical Review Letters 69:2881–2884
DOI 10.1103/PhysRevLett.69.2881.

Birkhoff G, Neumann JV. 1936. The logic of quantum mechanics. Annals of Mathematics
37(4):823–843 DOI 10.2307/1968621.

Burgholzer L, Wille R. 2021. Advanced equivalence checking for quantum circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
40(9):1810–1824 DOI 10.1109/TCAD.2020.3032630.

Clarke EM, Henzinger TA, Veith H, Bloem R (eds.) 2018.Handbook of model checking.
Cham, Switzerland: Springer DOI 10.1007/978-3-319-10575-8.

Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott CL (eds.)
2007. All about maude—a high-performance logical framework, how to specify,
program and verify systems in rewriting logic. Lecture notes in computer science, vol.
4350. Berlin, Heidelberg: Springer DOI 10.1007/978-3-540-71999-1.

Cleve R, Gottesman D, Lo H-K. 1999.How to share a quantum secret. Physical Review
Letters 83:648–651 DOI 10.1103/PhysRevLett.83.648.

Coecke B, Duncan R. 2011. Interacting quantum observables: categorical algebra and di-
agrammatics. New Journal of Physics 13(4):043016
DOI 10.1088/1367-2630/13/4/043016.

Ding Y, Chong F. 2020. Quantum computer systems: research for noisy intermediate-
scale quantum computers. Synthesis Lectures on Computer Architecture 15:1–227
DOI 10.2200/S01014ED1V01Y202005CAC051.

Dirac PAM. 1939. A new notation for quantum mechanics.Mathematical Proceedings of
the Cambridge Philosophical Society 35(3):416–418 DOI 10.1017/S0305004100021162.

Do CM, Ogata K. 2023. Symbolic model checking quantum circuits in maude. In: The
35th international conference on software engineering and knowledge engineering, SEKE
2023. 103–108 DOI 10.18293/SEKE2023-014.

Do CM, Phyo Y, Ogata K. 2022. Sequential and parallel tools for model checking
conditional stable properties in a layered way. IEEE Access 10:133749–133765
DOI 10.1109/ACCESS.2022.3230844.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 39/42

https://peerj.com
https://doi.org/10.5281/zenodo.10783951
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.2307/1968621
http://dx.doi.org/10.1109/TCAD.2020.3032630
http://dx.doi.org/10.1007/978-3-319-10575-8
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.2200/S01014ED1V01Y202005CAC051
http://dx.doi.org/10.1017/S0305004100021162
http://dx.doi.org/10.18293/SEKE2023-014
http://dx.doi.org/10.1109/ACCESS.2022.3230844
http://dx.doi.org/10.7717/peerj-cs.2098

Do CM, Phyo Y, Riesco A, Ogata K. 2021. A parallel stratified model checking tech-
nique/tool for leads-to properties. In: 2021 7th international symposium on system
and software reliability (ISSSR). 155–166 DOI 10.1109/ISSSR53171.2021.00011.

Do CM, Phyo Y, Riesco A, Ogata K. 2023. Optimization techniques for model checking
leads-to properties in a stratified way. ACM Transactions on Software Engineering and
Methodology 32(6):1–38 DOI 10.1145/3604610.

Do CM, Riesco A, Escobar S, Ogata K. 2022. Parallel Maude-NPA for cryptographic
protocol analysis. In: Rewriting logic and its applications—14th international work-
shop, WRLA 2022, Lecture notes in computer science, vol. 13252. Springer, 253–273
DOI 10.1007/978-3-031-12441-9_13.

Ekert AK. 1991. Quantum cryptography based on Bell’s theorem. Physical Review Letters
67:661–663 DOI 10.1103/PhysRevLett.67.661.

Elboukhari M, Azizi M, Azizi A. 2010. Verification of quantum cryptography protocols
by model checking. International Journal of Network Security & its Applications
2:43–53 DOI 10.5121/ijnsa.2010.2404.

Escobar S, Meadows CA, Meseguer J. 2007.Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Foundations of security analysis and design
V, FOSAD 2007/2008/2009 tutorial lectures, lecture notes in computer science, vol. 5705.
Cham: Springer, 1–50 DOI 10.1007/978-3-642-03829-7_1.

Feng Y, Hahn EM, Turrini A, Zhang L. 2015. QPMC: a model checker for quantum
programs and protocols. In: FM 2015: formal methods. Cham: Springer International
Publishing, 265–272 DOI 10.1007/978-3-319-19249-9_17.

Feng Y, Yu N, YingM. 2013.Model checking quantumMarkov chains. Journal of
Computer and System Sciences 79(7):1181–1198 DOI 10.1016/j.jcss.2013.04.002.

Gay SJ, Nagarajan R, Papanikolaou N. 2005. Probabilistic model-checking of quantum
protocols. CoRR abs/quant-ph/0504007 DOI 10.48550/arXiv.quant-ph/0504007.

Gay SJ, Nagarajan R, Papanikolaou N. 2008. QMC: a model checker for quantum
systems. In: Gupta A, Malik S, eds. Computer aided verification, 20th inter-
national conference, CAV 2008, Princeton, NJ, USA, July 7–14, 2008, Proceed-
ings. Lecture notes in computer science, vol. 5123. Cham: Springer, 543–547
DOI 10.1007/978-3-540-70545-1_51.

Gottesman D, Chuang IL. 1999. Demonstrating the viability of universal quan-
tum computation using teleportation and single-qubit operations. Nature
402(6760):390–393 DOI 10.1038/46503.

Gravier S, Javelle J, Mhalla M, Perdrix S. 2015. On weak odd domination and graph-
based quantum secret sharing. Theoretical Computer Science 598:129–137
DOI 10.1016/j.tcs.2015.05.038.

Grover LK. 1996. A fast quantum mechanical algorithm for database search. In:
Proceedings of the twenty-eighth annual ACM symposium on theory of comput-
ing, STOC ’96. New York: Association for Computing Machinery, 212–219
DOI 10.1145/237814.237866.

Hillery M, Bužek V, Berthiaume A. 1999. Quantum secret sharing. Physical Review A
59(3):1829–1834 DOI 10.1103/physreva.59.1829.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 40/42

https://peerj.com
http://dx.doi.org/10.1109/ISSSR53171.2021.00011
http://dx.doi.org/10.1145/3604610
http://dx.doi.org/10.1007/978-3-031-12441-9_13
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.5121/ijnsa.2010.2404
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-319-19249-9_17
http://dx.doi.org/10.1016/j.jcss.2013.04.002
http://dx.doi.org/10.48550/arXiv.quant-ph/0504007
http://dx.doi.org/10.1007/978-3-540-70545-1_51
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1016/j.tcs.2015.05.038
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1103/physreva.59.1829
http://dx.doi.org/10.7717/peerj-cs.2098

Joy D, Sabir M, Behera B, Panigrahi P. 2019. Implementation of quantum secret sharing
and quantum binary voting protocol in the IBM quantum computer. Quantum
Information Processing 19:33 DOI 10.1007/s11128-019-2531-z.

Kissinger A, Zamdzhiev V. 2015. Quantomatic: a proof assistant for diagrammatic rea-
soning. In: Felty AP, Middeldorp A, eds. Automated deduction—CADE-25. Cham:
Springer International Publishing, 326–336 DOI 10.1007/978-3-319-21401-6_22.

Matsumoto R. 2017. Unitary reconstruction of secret for stabilizer-based quantum secret
sharing. Quantum Information Processing 16(8):202 DOI 10.1007/s11128-017-1656-1.

Meseguer J. 2012. Twenty years of rewriting logic. The Journal of Logic and Al-
gebraic Programming 81(7):721–781. Rewriting Logic and its Applications
DOI 10.1016/j.jlap.2012.06.003.

NielsenMA, Chuang IL. 2010.Quantum computation and quantum information: 10th an-
niversary edition. Cambridge: Cambridge University
Press DOI 10.1017/CBO9780511976667.

Paykin J, Rand R, Zdancewic S. 2017. QWIRE: a core language for quantum circuits.
SIGPLAN Not. 52(1):846–858 DOI 10.1145/3093333.3009894.

Peham T, Burgholzer L, Wille R. 2022. Equivalence checking of quantum circuits with
the ZX-calculus. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
12(3):662–675 DOI 10.1109/jetcas.2022.3202204.

Phyo Y, AungMN, Do CM, Ogata K. 2023. A layered and parallelized method of
eventual model checking. Information 14(7):384 DOI 10.3390/info14070384.

Rand R, Paykin J, Zdancewic S. 2018. QWIRE practice: formal verification of quantum
circuits in Coq. Electronic Proceedings in Theoretical Computer Science 266:119–132
DOI 10.4204/eptcs.266.8.

Sarvepalli P. 2012. Nonthreshold quantum secret-sharing schemes in the graph-state
formalism. Physical Review A 86:042303 DOI 10.1103/PhysRevA.86.042303.

Satoh T, Gall FL, Imai H. 2012. Quantum network coding for quantum repeaters.
Physical Review A 86(3):032331 DOI 10.1103/physreva.86.032331.

ShiW, Cao Q, Deng Y, Jiang H, Feng Y. 2021. Symbolic reasoning about quantum
circuits in Coq. Journal of Computer Science and Technology 36(6):1291–1306
DOI 10.1007/s11390-021-1637-9.

Shor P. 1994. Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th annual symposium on foundations of computer science. 124–134
DOI 10.1109/SFCS.1994.365700.

Turrini A. 2022. An introduction to quantum model checking. Applied Sciences
12(4):2016 DOI 10.3390/app12042016.

Wang Z-Y, Yuan H, Shi S-H, Zhang Z-J. 2007. Three-party qutrit-state sharing. The
European Physical Journal D 41(2):371–375 DOI 10.1140/epjd/e2006-00215-y.

Wiesner S. 1983. Conjugate coding. SIGACT News 15(1):78–88
DOI 10.1145/1008908.1008920.

Wille R, Hillmich S, Burgholzer L. 2022. Tools for quantum computing based
on decision diagrams. ACM Transactions on Quantum Computing 3(3):1–17
DOI 10.1145/3491246.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 41/42

https://peerj.com
http://dx.doi.org/10.1007/s11128-019-2531-z
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1007/s11128-017-1656-1
http://dx.doi.org/10.1016/j.jlap.2012.06.003
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1145/3093333.3009894
http://dx.doi.org/10.1109/jetcas.2022.3202204
http://dx.doi.org/10.3390/info14070384
http://dx.doi.org/10.4204/eptcs.266.8
http://dx.doi.org/10.1103/PhysRevA.86.042303
http://dx.doi.org/10.1103/physreva.86.032331
http://dx.doi.org/10.1007/s11390-021-1637-9
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.3390/app12042016
http://dx.doi.org/10.1140/epjd/e2006-00215-y
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/3491246
http://dx.doi.org/10.7717/peerj-cs.2098

Wille R, Hillmich S, Burgholzer L. 2023. Decision diagrams for quantum computing.
In: Topaloglu RO, ed. Design automation of quantum computers. Cham: Springer
International Publishing, 1–23 DOI 10.1007/978-3-031-15699-1_1.

Williams CP. 2008. Explorations in quantum computing. 2nd edition. London: Springer
Publishing Company, Incorporated DOI 10.1007/978-1-84628-887-6.

WoottersWK, ZurekWH. 1982. A single quantum cannot be cloned. Nature
299(5886):802–803 DOI 10.1038/299802a0.

YingM. 2021. Model checking for verification of quantum circuits. In: Formal methods.
Cham: Springer International Publishing, 23–39 DOI 10.1007/978-3-030-90870-6_2.

YingM, Feng Y. 2018.Model checking quantum systems—a survey. ArXiv arXiv:1807.09466v1.
YingM, Feng Y. 2021.Model checking quantum systems: principles and algorithms.

Cambridge: Cambridge University Press DOI 10.1017/9781108613323.
Zukowski M, Zeilinger A, HorneMA, Ekert AK. 1993. ‘‘Event-ready-detectors’’ Bell

experiment via entanglement swapping. Physical Review Letters 71:4287–4290
DOI 10.1103/PhysRevLett.71.4287.

Minh Do and Ogata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2098 42/42

https://peerj.com
http://dx.doi.org/10.1007/978-3-031-15699-1_1
http://dx.doi.org/10.1007/978-1-84628-887-6
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1007/978-3-030-90870-6_2
http://arXiv.org/abs/1807.09466v1
http://dx.doi.org/10.1017/9781108613323
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.7717/peerj-cs.2098

