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ABSTRACT
With the rapid advancement of robotics technology, an increasing number of re-
searchers are exploring the use of natural language as a communication channel
between humans and robots. In scenarios where language conditioned manipulation
grounding, prevailingmethods rely heavily on supervisedmultimodal deep learning. In
this paradigm, robots assimilate knowledge from both language instructions and visual
input. However, these approaches lack external knowledge for comprehending natural
language instructions and are hindered by the substantial demand for a large amount of
paired data, where vision and language are usually linked through manual annotation
for the creation of realistic datasets. To address the above problems, we propose the
knowledge enhanced bottom-up affordance grounding network (KBAG-Net), which
enhances natural language understanding through external knowledge, improving
accuracy in object grasping affordance segmentation. In addition, we introduce a semi-
automatic data generation method aimed at facilitating the quick establishment of the
language following manipulation grounding dataset. The experimental results on two
standard dataset demonstrate that our method outperforms existing methods with the
external knowledge. Specifically, our method outperforms the two-stage method by
12.98% and 1.22% of mIoU on the two dataset, respectively. For broader community
engagement, we will make the semi-automatic data construction method publicly
available at https://github.com/wmqu/Automated-Dataset-Construction4LGM.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Robotics
Keywords Affordance grounding, Affordance segmentation, Multimodal learning, Knowledge
engineering, Dataset construction, Robotic interaction

INTRODUCTION
Natural language is one of the most intuitive and flexible ways for humans to communicate
with robots. Without the requirement of complex programming languages or graphical
interfaces, natural language enables more natural and convenient interactions between
humans and robots. Therefore, language-following robot manipulation has attracted
increased attention.

Learning how to follow language instructions involves dealingwith a symbolic grounding
between the language instructions and robot perception and action, which is a challenging
problem. Object affordance, as defined by Gibson (1977), refers to the functional aspect
an object part can provide. Understanding and grounding these affordances in natural
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Figure 1 Object affordance segmentation tasks take an image and a text description as input, pre-
dicting masks for the specified objects mentioned in the description. (A) Most methods employ visual-
linguistic encoders and decoders to predict object-level masks. (B) We propose knowledge enhancement
based on natural language instructions to form new text features, followed by utilizing visual-linguistic
encoders and decoders to predict part-level masks. Image source credit: ID 114060752, © Ian Andreiev,
Dreamstime.com.

Full-size DOI: 10.7717/peerjcs.2097/fig-1

language is a critical and intuitive means for agents to communicate effectively with
humans. For example, consider a natural language instruction like ‘‘Help me cut this
watermelon.’’ Accompanied by an image, as shown in Fig. 1, humans can effortlessly
identify the target object, ‘‘knife,’’ and understand that the ‘‘blade’’ of the knife is the
specific part meant for the task of ‘‘cutting’’.

In recent years, the mainstream methods adopt supervised deep learning methods
and have shown promising results. However, in the domain of affordance grounding,
two primary unresolved issues still persist: First, the task underscores the importance
of commonsense knowledge in identifying the target object and its relevant affordance
part. Most existing methodologies in affordance detection, such as those outlined in Yin
& Zhang (2022), Zhang et al. (2022) and Chen et al. (2024), predominantly treat the task
as an image semantic segmentation problem. These methods are typically limited to a
set of predefined affordance categories and fail to capture the subtleties required for
language-driven fine-grained segmentation. As depicted in Fig. 1A, previous studies have
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often processed text and images through separate encoders, using a decoder subsequently
to generate object-level segmentation masks. However, understanding affordances in some
instances, such as recognizing that a ‘knife is used to cut’, necessitates commonsense
knowledge. This aspect is often overlooked, thus neglecting the role of knowledge in
affordance grounding. Consequently, the first key question arises: How can we more
effectively integrate knowledge-enhanced text features with visual features to achieve more
accurate, context-aware segmentation?

Additionally, deep learning approaches typically require offline datasets comprising
language instructions and visual data (such as images or videos). Existing works Hristov
et al. (2017), Ahn et al. (2018), Hatori et al. (2018), Magassouba et al. (2019), Chen et al.
(2020), Mi et al. (2020a), Shridhar, Mittal & Hsu (2020), Mi et al. (2020b), Nguyen et al.
(2020), Shridhar et al. (2020), Huang et al. (2022) have created various datasets under
differing conditions for model training and testing. Although synthetic datasets are more
accessible in a simulated environment, methods trained on synthetic data must address
the challenge of domain shift problem when applied in a real-world scenarios. Realistic
datasets, typically sourced from actual environments, such as MS COCO (Lin et al., 2014),
ImageNet (Deng et al., 2009), or Kinect cameras, are used for language following target
grounding, where instructions are manually generated and the most relevant objects in
the visual data are annotated according to these instructions. However, annotating these
realistic datasets tend to be a time-consuming and labor-intensive process. This leads to the
second critical inquiry: How can we efficiently acquire a realistic, fine-granularity dataset
for the language following manipulation grounding task?

To address the aforementioned issues and limitations, we propose the knowledge
enhanced bottom-up language-guided affordance grounding network (KBAG-Net), which
enhances visual language understanding through external knowledge. Our approach
incorporates extra knowledge via a bimodal language feature interaction module, which
then merges with visual features using a bottom-up fusion strategy. This method allows
the enriched language features to guide low-level visual features during the process
of affordance segmentation, ensuring a more context-aware output. Additionally, we
propose a semi-automatic data generation method aimed at constructing a comprehensive
language-following manipulation grounding benchmark from realistic images. This
method automates the generation of data instructions, providing multiple types of
annotations (both object-level and part-level) that correspond to these instructions
within a unified framework, as shown in Fig. 2. By leveraging this approach, the manual
effort required for dataset construction is substantially reduced, thereby enabling quicker
generation of datasets tailored for diverse application scenarios.

In conclusion, grounding affordances in semantic representations facilitates
communication and collaboration between humans and robots. By expressing affordances
in a language-agnostic and interpretable manner, robots can effectively convey their
intentions and reasoning to humans, fostering mutual understanding and trust. This work
not only addresses the critical need for better integration of knowledge into deep learning
models for affordance detection but also significantly alleviates the burdens associated with

Qu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2097 3/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2097


Figure 2 An example snippet of generated language following manipulation grounding dataset.Multi-
ple types refers to explicit instructions and implicit instructions. Multiple granularities refer to object-level
and part-level annotation for images. Image source credits: Nguyen et al. (2017).

Full-size DOI: 10.7717/peerjcs.2097/fig-2

the creation of realistic, finely-granulated datasets. The key contributions of this work are
as follows.

• Knowledge Enhanced Affordance Grounding Method: We propose a bottom-up
language-guided multimodal fusion network, which facilitates dense learning of the
correlations between image feature information and knowledge-enhanced text feature
information.
• Unified Framework for Dataset Generation: We have integrated three effective
components into a unified framework and employed a pre-trained large language
model to generate instructions. This unified approach significantly reduces the manual
effort required for dataset construction and facilitates rapid dataset construction tailored
to various application scenarios.
• The proposed method has been empirically validated to exhibit finer granularity
and higher precision in object-level affordance segmentation compared to existing
approaches.

In the subsequent sections, we begin by reviewing the related work in the field, and then
detail the architecture and mechanisms of our proposed knowledge enhanced bottom-up
language-guided affordance grounding network. Following the methodology, we introduce
a unified framework designed for semi-automatic generation of datasets. Finally, we
evaluate the performance and efficiency of both KBAG-Net and our dataset generation
framework, followed by a conclusion of the work in the final section.
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RELATED WORKS
Language conditioned manipulation grounding
Language conditioned manipulation grounding tasks have attracted extensive attention
recently. In contrast to traditional visual perception tasks with predefined object category
labels, the language conditioned manipulation grounding task involves more intricate
language and visual information. Some works Chen et al. (2020),Mi et al. (2020a), Nguyen
et al. (2020), Shridhar et al. (2020) focus on grounding tasks for different objects, while
some works Hristov et al. (2017), Ahn et al. (2018), Magassouba et al. (2019), Hatori et
al., (2018), Shridhar, Mittal & Hsu (2020), Mi et al. (2020b) focus on the grounding of
spatial relationships and attributes of objects. Several studies have focused on human–
robot interactions with natural language. Utilizing question asking can increase accuracy
and eliminate ambiguity (Hatori et al., 2018; Chen et al., 2020). In order to improve the
generalization ability, some end-to-end approaches attempt to scale and broaden the
data collected (Mees, Hermann & Burgard, 2022; Jang et al., 2022). According to the data
types, the existing datasets in Table 1 can be divided into simulated dataset and realistic
dataset. The simulated datasets are primarily employed for tasks that involve extended
interactions based on natural language instructions (Shridhar et al., 2020;Mees, Borja-Diaz
& Burgard, 2023), which focus on learning robotic control directly from image-instruction
pairs. However, the simulated datasets have the problem of domain shifting in practical
applications. In addition, most realistic datasets are manually annotated, resulting in
higher costs. Automatically constructing datasets faces the challenge of lacking diverse in
instructions and fine-granularity annotations for images. To address these challenges, we
propose a unified framework that generates language instructions and fine-granularity
image annotations simultaneously.

Object affordance detection
The concept of affordance consists of object affordance and environment affordance. In
this article, we specifically focus on the visual affordance of objects in images. Myers et al.
(2015) propose jointly applying geometric properties and local shapes to identify object
affordance.Do, Nguyen & Reid (2018) propose AffordanceNet to simultaneously detect the
affordance of multiple objects in RGB images. More recently,Mi et al. (2020a) propose an
attention-based architecture to learn the affordance of objects. Zhai et al. (2022) propose
OSAD-Net for detecting object affordances in a scene through collaboration learning.
Zhao, Cao & Kang (2020) utilize a relationship-aware network to implement affordance
segmentation in an end-to-end way. In addition, several researchers have introduced
context like the object shape (Chen et al., 2024), boundary (Yin & Zhang, 2022) to improve
the performance of affordance segmentation. On one hand, these methods neglect the
correlation between natural language and object affordance. In our approach, we segment
the corresponding affordance part, which better aligns with realistic scenarios. On the other
hand, existing methods lack of the commonsense for affordance learning. In this work, we
introduce external knowledge to understand the usability of objects better.
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Table 1 List of typical natural language manipulation grounding datasets. The blank space in the table indicates that it is not detailed in the arti-
cle.

Work Natural
language

Object and task
categories

Language generation
method

Statistics
of corpus

Hristov et al. (2017) Pick up the blue cube.
Put the red block on top of
the yellow cell.

3 for shape (cell,
block, cube); pick up,
put, drop, take

2,000 labeled image
patches, 4,000 symbols

Ahn et al. (2018) Pick up the yellow thing
on the right column.

blocks; pick up 477 images, 20,349
unambiguous language
commands, 7,119
ambiguous language
commands

Hatori et al. (2018) Pick the white packet in
center and put it into the
upper left box.

commodities and daily
household items;
pick and place

human-annotated
on Amazon
Mechanical Turk

1,180 images, 91,590
language instructions

Bring me the empty bottle
from the right wooden table.

fetch annotated by an
expert user

308 images, annotate
1,010 targetsMagassouba

et al.
(2019)

Move the object with
the black lid to
the top left box.

commodities and daily
household items;
pick-and-place

human-annotated
on Amazon
Mechanical Turk

1,180 images, 91,590
language instructions

Chen et al. (2020) Could you please
pour me some water?

blend, pour, fry, brush,
dip, dump, fill, heat, rub,
sprinkle, season

Mi et al. (2020a) I am thirsty, I want to
drink some water.

42 objects are commonly
used in household; object
affordance detection

human-annotated 12,349 RGB images and
14,695 bounding box
annotations for object
affordance detection

Shridhar, Mittal & Hsu (2020) Pick up the toy with
the black and yellow face.
Pick up the leftmost
blue cup.

pick up and place human-annotated 3,000 images,
21,586 instructions

Mi et al. (2020b) Bring me the red cup
in the box and the second
bottle from the left.

pick up, move human-annotated 163 images (133 from
RefCOOCO, 30
captured by
Kinect V2), 415
expressions

Nguyen et al. (2020) Give me an item
that can contain.
Hand me something to eat.

object affordance
detection

template 655 verb-object pairs
over 50 verbs and 216
object classes

Shridhar et al. (2020) Rinse off a mug and place
it in the coffee maker.

long horizon tasks 25,743 language directives
corresponding to 8,055
expert demonstration
episodes

Huang et al. (2022) A bottle is in the right
back of the book.
Put the bottle to the
right side of the book.

100 kinds of daily
objects; pick and place

template PD dataset: 41 expressions
for 8 kinds of relative spatial
relations and 14 kinds
of adjectives; CA dataset:
47 expressions for 10 kinds
of orientation relations
(continued on next page)
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Table 1 (continued)

Work Natural
language

Object and task
categories

Language generation
method

Statistics
of corpus

Mees et al. (2022) ‘‘open drawer’’→
‘‘push block in drawer’’→
‘‘pick object from drawer’’→
‘‘stack blocks’’→
‘‘close drawer’’

blocks, light bulb, LED;
long horizon tasks,
e.g., Rotate, Push, Move
slider, Open/close, Lift

collect from crowd-
sourced natural
language instructions

over 400 crowd-sourced
natural language instructions
corresponding to over 34 tasks
and label episodes

Prompt learning
Prompt learning, a recent trend in the field of few-shot learning of NLP (Jiang et al.,
2020; Brown et al., 2020; Zhu et al., 2023), involves leveraging pretrained language models
through cloze-style prompts to enhance the performance of downstream tasks. Brown
et al. (2020) propose a method for adjusting the behavior of a frozen GPT-3 model
through prompt design. In order to efficiently deploy prompt-learning pipelines for
researchers and developers, Ding et al. (2021) present OpenPrompt that modularizes the
entire framework of prompt-learning. In the latest research, prompt learning is applied to
large vision-language models in computer vision (Du et al., 2022; Zhou et al., 2022b; Zhou
et al., 2022a). CoOp (Zhou et al., 2022b) turns discrete words in a prompt into continuous
prompt learning for adapting pre-trained vision-language models. In order to generalize
to unseen classes, CoCoOp (Zhou et al., 2022a) generates an input-conditional prompt
instead of the fixed learned vectors for each input image.

In general, to determine the verb associated with an object, the common approach is to
establish amapping between the object’s category and its corresponding verb. However, the
method of dictionary mapping is a challenge for unseen objects to generate corresponding
verbs. To address this issue, we utilize a large language model as a knowledge base and
use prompt-learning to predict the probability distribution across the vocabulary for
the <MASK> token’s position, thus obtaining the verb of the object.

METHODOLOGY
In this section, we first present the overall framework of our approach. As shown in Fig. 3,
image I and expression X are input into a multi-modal encoder for feature extraction
respectively. The language instructions undergo enhanced encoding through external
knowledge K , and the visual encoder concurrently extracts low-level and high-level
representations of visual features. Subsequently, the bimodal language feature interaction
module refines the text features that have been enhanced with knowledge. Following this,
the enhanced text features are fused separately with the low-level and high-level visual
features. Ultimately, the amalgamated multi-modal features are fed into the part-level
affordance grounding module to achieve the affordance segmentation of objects, yielding
the final segmentation mask fmask .

Multimodel encoder
Visual encoder. Given an image I ∈RH×W×3 with the height H , the width W and three
color channels, we employ ResNet101 (He et al., 2016) as the visual backbone, a deep
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Figure 3 An overview of knowledge enhanced bottom-up language-guided affordance grounding net-
work (KBAG-Net). Image source credits: Nguyen et al. (2017).

Full-size DOI: 10.7717/peerjcs.2097/fig-3

residual network widely recognized for its effectiveness in various computer vision tasks.
In our model, we denote res_i as the output features of the i− th block in ResNet101.
Specifically, we use res_2 and res_5 to represent low-level visual features F l

v and high-level
visual features Fh

v , respectively. The choice of these specific layers is strategic: low-level
features are adept at capturing intricate details such as edges and textures, which are
essential for detailed image analysis. On the other hand, high-level features excel at
capturing advanced semantic information about objects, providing a broader context
and understanding of the objects in the images. Our approach aims to fully leverage the
strengths of both low-level and high-level visual features.

Knowledge enhanced text encoder. In our approach, we handle an expression
X ={x1,...,xm} consisting ofm words, where xi represents the i− th word in the sequence.
Our initial step involves utilizing an entity recognition algorithm to identify and extract
object entities within the expression, which we denoted the entities as E ={e1,...,en} with
n<m. Each entity serves as a key to retrieve corresponding knowledge from the collected
knowledge. The collection of knowledge will be illustrated in the experiments section.

For every identified entity ej ∈ E in the expression X , we match it with a corresponding
fact kj in our knowledge base. Each fact kj is composed of multiple sentences, providing
a rich context for the entity. To process and extract features from both the expression
X and the knowledge K , we employ BERT (Devlin et al., 2019), an effective language
representation model to capture contextual features. The features extracted from the
expression and the knowledge are denoted as LX and LK , respectively. Then, we design a
bimodal language feature interaction module to align and fusion the two features. This
process of knowledge selection is pivotal, as it significantly enhances the model’s capability
to comprehend and interpret natural language instructions with greater semantic context.
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Figure 4 An illustration of the bimodal language feature interaction (BLFI) module.
Full-size DOI: 10.7717/peerjcs.2097/fig-4

Bimodal language feature interaction
The bimodal language feature interaction (BLFI) module is a cornerstone of our approach,
designed to enhance the understanding of instructions by focusing on two key aspects: (a)
emphasizing key information within LX and LK , and (b) filtering out irrelevant information
from these features. This dual focus ensures that our model captures the most significant
elements of the language and knowledge features. As depicted in Fig. 4, the BLFI module
operates in two distinct stages: knowledge alignment and knowledge fusion.

Knowledge alignment
In this initial stage, we address the semantic discrepancies between Lx (language features)
and LK (knowledge features) by implementing two cross-attention modules. In the cross-
attention mechanism, one type of feature acts as the query, while the other serves as both
the key (K ) and value (V ).

Weight matricesWQ
j ,W K

j , andW V
j are used to update the corresponding K ,Q, and V ,

as shown in Eqs. (1) and (2). For instance, LX functions as Q1, with LK being K1 and V1.
The attention mechanism then computes the attention values, leading to a more aligned
feature representation with the following equation.

MH (LX ,LK ,LK )=Concat (head1,head2,...,headh)W 0, (1)
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headj =Attention(LXW
Q
j ,LKW

K
j ,LKW

V
j ), (2)

L̃X =Attention(Q,K ,V )=
∑ 1

z
exp(

QKT
√
dk

)V . (3)

In Eq. (1),W 0 denotes the learnable matrix. z in Eq. (3) represents the normalization factor
and V are knowledge features. dk denotes the dimension of features. The computation of
L̃K is similar to that of the L̃X .

Knowledge fusion
Following the alignment stage, LX undergoes layer normalization and is connected via
residual connections, resulting in an enhanced feature set L̃X . A similar process is applied
to LK , yielding L̃K . Although space constraints limit a detailed description, it is essential to
note that this stage is pivotal for merging the aligned features, thereby creating a unified and
enriched representation that encapsulates both the textual and knowledge-based aspects of
the data.

Through these stages, the BLFI module ensures that the model not only identifies but
also emphasizes the crucial elements in the language and knowledge features, effectively
filtering out less relevant information. This refined processing enhances the model’s ability
to understand and interpret instructions, leading to more accurate and contextually rich
outputs.

Bottom-up language-guided multi-modal fusion
Ourmodel employs a bottom-up language-guidedmulti-model fusion (BULG)module, an
innovative approach to integrative visual features with knowledge-enhanced text features.
Traditional multimodal methods often rely on attentionmechanisms to fuse text and visual
features. These methods, as illustrated in Figs. 5A, 5B, 5C, typically focus on object-level
alignment using text features that contain limited information. However, in our approach,
the knowledge-enhanced text features are rich in semantic content, playing a pivotal role
in part-level affordance grounding.

Inspired by structure (c) from Fig. 5 and the work on attention mechanism (Vaswani et
al., 2017), our novel BULG structure addresses two critical factors. (1) Enhanced role of
text information: We employ multi-layer self-attention mechanisms to iteratively extract
information from text features. This method allows for a deeper understanding of the text
content, leveraging its rich semantic nature. (2) Fine-grained multimodal alignment: Given
the details characteristic of the task, our model requires precise alignments between text
and visual features. This alignment is crucial for accurately capturing the nuanced interplay
between different modalities.

In the BULGmodule, illustrated in Fig. 6, we combine a intra-modal interaction module
and a cross-modal interaction module. The right part of the module takes text features
Ftext as input, employing N layers of self-attention to generate refined text features ftext .
Simultaneously, in the left part, the input comprises ftext and low-level visual features F l

v .
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Figure 5 An illustration of the structure of existing attention-based multimodal fusionmethods.
Full-size DOI: 10.7717/peerjcs.2097/fig-5

Figure 6 An illustration of the bottom-up language-guidedmulti-modal (BULG) module.
Full-size DOI: 10.7717/peerjcs.2097/fig-6

Initially, F l
v undergoes unimodal interaction to extract critical visual features from f lv . These

features are then combined with ftext in the multimodal interaction module, employing a
bottom-up guided attention mechanism to enhance visual features learning. This process
results in the generation of multimodal features fm1.

For the fusion process, we handle text and visual features distinctly based on their
level. With low-level visual features F l

v , we apply a bottom-up text-guided approach to
form fm1. High-level visual features Fh

v , containing rich object-level semantic information,
are directly fused with text features to produce multimodal features fm2. This process is
described mathematically as:

fm2=Concat (g (Fh
v ·Wv) ·g (Ftext ·Wt )). (4)
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Here, Wv and Wt are two transformation matrices that align the visual and text
representations into a uniform feature dimension, facilitating effective fusion. ‘Concat’ is
the concatenation operation. g denotes the LeakyRelu activation function.

Part-level affordance grounding
In this subsection, we detail how our model leverages text-guided multimodal features to
detect various affordances in images.

Our process begins with the integration of multimodal feature fm1 and fm2.fm1 is the
multi-model feature from bottom-up language-guided multi-modal block. The first step
involves passing fm1 through an ASPP module, as described in the DeepLab framework
by Chen et al. (2017). ASPP is effective in capturing multi-scale contextual information,
which is crucial for affordance understanding in complex images. The output feature from
ASPP is denoted as f Am1 and is calculated as follows:

f Am1=ASPP(fm1). (5)

Next, we concatenate f Am1 with fm2 and pass this combined feature through our
segmentation module. This process yields the final segmentation result, represented
as:

fmask = unsample(Concat (unsample(f Am1),fm2)). (6)

By employing filters with various sampling rates and fields of view, ASPP allows the
model to capture both detailed and broader contextual elements in images. To achieve
more precise segmentation results, we upsample the feature map by a factor of four,
ensuring a finer granularity in the final output.

Loss function
For training our model, we utilize the Sigmoid Binary Cross Entropy (BCE) (Mao, Mohri &
Zhong, 2023) loss function. This loss function is particularly suited for binary classification
tasks, such as segmenting specific affordances in images. The BCE loss for our task is
defined as:

L=
H×W∑
l=1

[yl log (pl)+ (1−yl)log (1−pl)], (7)

where yl and pl are the l-th elements of the ground-truth mask and predicted mask fmask ,
respectively. Here,W and H denote the width and height of the image respectively.

SEMI-AUTOMATIC DATASET CONSTRUCTION
In this section, we first introduce the notation and formulation used for semi-automatic
dataset construction, and then describe the three components of the process in detail.

Notation and formulation
Given an unlabeled image I , our goal is to automatically generate the annotation A for
the image. Specifically, each A= {L,B,M } comprises a language instruction L referring
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Figure 7 The framework of semi-automated dataset construction. It consists of object detection and re-
correction module, prompt-based instruction generation module and object affordance masks generation
module. Image source credits: Nguyen et al. (2017).

Full-size DOI: 10.7717/peerjcs.2097/fig-7

to a candidate object, the corresponding object location B and the affordance mask M
of the object part. The affordance mask M is a mask of the object part that is related to
the manipulation verb in the instruction, such as ‘‘contain‘‘ and ‘‘cut’’. Importantly, a
candidate object may have both bounding box and mask annotations within our dataset
generation process. The overall framework, as illustrated in Fig. 7, comprises three key
components, each contributing to the automatic annotation process:

First, the object detection and re-correction module takes an unlabeled image as input,
utilizes an object detector to predict the bounding box coordinate, and object regions
accordingly. The cropped regions are then fed into the CLIP (Radford et al., 2021), which
generates possible class labels for the cropped regions. The results of the object detector and
the CLIP are compared to filter the wrong predictions. Then, the prompt-based instruction
generation module automatically generates positional relationships and predicts verbs
related to the candidate objects. Finally, the object affordance mask generation module is
responsible for producing affordance masks for target objects using DeepLabV3+ (Chen et
al., 2018). We provide detailed implementation insights in the following subsections.

Object detection and re-correction module
In this subsection, we delve into the object detection and re-correction module, a critical
component of our automatic data annotation process. Its primary objective is to enhance
the quality of object class labels obtained from an initial object detector, such as Faster
RCNN, and to mitigate issues like incorrect category predictions and the presence of
redundant bounding boxes. To achieve this, we leverage the power of the Visual and
Language model CLIP (Radford et al., 2021), which has demonstrated state-of-the-art
capabilities in understanding visual concepts from a vast corpus of image-text pairs. CLIP
comprises two encoders, one for text and another for images. We employ a specific input
template, ‘‘This is a photo of a {label}’’, for the text encoder, where {label} represents the
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object category outputted by the object detector. For the image encoder, we use the cropped
region as input. These two encoders result in feature vectors ft and fv , respectively. At last,
the CLIP adopts a dot product to compute the similarities between two features (ft and
fv) from each modality, followed by Softmax-based probability predictions for all object
categories.

Let pi denote the probability of a region proposal being predicted as the ith object
category by CLIP, which is computed as Eq. (8). In the equation, cos(·,·) denotes cosine
similarity and τ is a temperature parameter learned by CLIP during training. max(pi) is
the maximum of the prediction possibilities.

pi=
exp

(
cos(ft ,fv)

τ

)
∑K

j=1exp
(
cos(ft ,fv)

τ

) . (8)

When the object detector and CLIP both predict the object as the ith category, we first
compute the average score Si of the object detector and the CLIP follow Eq. (9):

Si=
ri+max(pi)

2
. (9)

To enhance the quality of category labels, we introduce a score Si, computed as the average
of the probability score from the object detector (ri) and the maximum CLIP prediction
probability (max(pi)), as expressed in Eq. (9). Then, the average score Si is compared with a
score threshold ST . This threshold filtering helps eliminate predictions with low confidence,
ensuring that only high-confidence category predictions are considered. Additionally, we
address cases where the object detector and CLIP provide conflicting category predictions.
In such situations, we prioritize the prediction from CLIP to improve label accuracy.
Predictions from the object detector that do not align with CLIP predictions are discarded,
further refining the category labels. Figure 7A provides a visual representation of the
process.

Prompt-based instruction generation module
This module is responsible for generating manipulation instructions, which can be
categorized into two types: explicit and implicit instructions. The explicit instructions
contain specific details, including the object category, verb, and positional relationship,
providing comprehensive guidance formanipulation tasks. For example, ‘‘Handme the cup
on the right to contain’’. The implicit instructions focus primarily on themanipulation verb
itself, omitting specific object category references. An example of an implicit instruction is
‘‘Hand me something to contain’’, where the object category is not explicitly mentioned.

Generating explicit instructions requires careful consideration of both positional
relationships and appropriate verbs to convey the desired manipulation task. To achieve
this, we employ a multi-step approach, as shown in Fig. 7B:

Positional relationship analysis: Distinguishing among multiple objects of the same
class is challenging. We address this issue by analyzing spatial relationships in both
horizontal (left, middle and right) and vertical (top and bottom) dimensions. By calculating
the center coordinates of bounding boxes obtained from the object detection and re-
correction module, the position relationship is determined by comparing the center
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Table 2 Templates for the Text and implicit instructions.

Text templates Implicit templates

I need the {xinp} An item that can {verb}
Hand me the {xinp} An object that can {verb}
Pass me the {xinp} Give me something that can {verb}
I want use the {xinp} Give me an item that can {verb}
Bring me the {xinp} Hand me something to {verb}
I want use the {xinp} Give me something to {verb}
Get the {xinp} I want something to {verb}
Give me the {xinp} I need something to {verb}
Fetch the {xinp}
Bring the {xinp}

coordinates. These offsets help us construct instructions such as ‘‘Bring the cup on the left
to contain’’ and ‘‘I want the bowl on the top to contain’’.

Prompt construction: Prompt-learning uses pre-trained language models as knowledge
bases resulting in great performance on different downstream tasks. Using prompt-learning
can automate the process of finding the object-verb pair relationship. Denote xinp as the
original input and xprompt as the prompt that is fed into the MLM. The mapping from
xinp to xprompt is performed using a template m. This template defines where each input
sequence and the placement will be placed in the prompt. The template used in our work is
‘‘{‘‘placeholder’’: Text}. In other words, give me something to [MASK ]. ’’. The Text contains
xinp as shown in Table 2. Feeding the prompt into the MLM will produce a probability
distribution p([MASK ]|xprompt ), which predicts the token most likely filled in the blank.
The xinp is the output of the object detection and re-correction module. We use GPT-2
(Radford et al., 2019) as a pre-training language model and adopt OpenPrompt (Ding et
al., 2021), an open-source and unified easy-to-use toolkit, to implement prompt-learning.

Prompt-based instructions generation: To ensure diversity in our instructions, we
generate explicit and implicit instructions simultaneously. As shown in Table 2, we start by
randomly selecting an explicit template and construct a Text from xinp. The Text is then
mapped to xprompt , which is used as input to the MLM. The MLM outputs a probability
distribution p([MASK ]|xprompt ) describing which verb most likely fills in the mask. The
verb with the highest probability will be added to the end of the explicit instruction and
also serves as the basis for the implicit instruction.

Object affordance masks generation module
After object detection and prompt-based instruction generation, we take a crucial step
towards enhancing the realism and applicability of our generated dataset. Existing datasets
typically provide object bounding boxes for each instruction, which may not suffice for
tasks requiring part-level instruction grounding. Consider an instruction such as ‘‘Use the
cup to contain’’. In such cases, the robot agent needs to focus on the specific part of the
object that provides the ‘‘contain’’ affordance. To address this need, our goal is to provide
not only the object bounding box but also the affordance mask for each instruction. This
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addition enhances the practicality of the generated dataset and its suitability for a wider
range of real-world applications. Our approach involves the following key steps, as shown
in Fig. 7C.

Object region cropping: For each instruction, we begin by cropping the object region
Io from the original image. This isolated region serves as the basis for affordance mask
prediction.

Affordance mask prediction: We employ the DeepLabV3+ (Chen et al., 2018)
segmentation model, fine-tuned on an affordance dataset, to predict the affordance
category for each pixel within the object region. This prediction results in an object
affordance maskMo. Importantly, since an object may possess multiple affordance classes,
the pixel values in the affordance mask Mo are assigned as n unique labels {0,1,...,n−1}.
If the pixel values correspond to the affordance class specified in the instruction, they are
kept and set as ones. Otherwise, they are set to zeros.

Remapping of the affordance mask: To align the object affordance mask Mo with the
coordinates of the object region, we remapped it to an initial affordance mask that is
initialized as zeros and shares the same size as the original image. The outcome of this
process is the pixel-wise segmentation of the object partM corresponding to the instruction.
This segmentation provides crucial information about which part of the object is relevant
to the instruction, facilitating precise instruction grounding.

EXPERIMENT
We designed our experimental setup to address two distinct yet related challenges:
affordance grounding and semi-automatic dataset generation. The experiments were
structured to evaluate the effectiveness and efficiency of our proposed methods through a
series of tests and comparisons.

For affordance grounding challenge, we employed both comparison and ablation studies
to assess the performance of KBAG-Net. The comparison study evaluates KBAG-Net against
existing methods to establish its relative effectiveness. The ablation study, on the other
hand, aims to isolate and understand the impact of each design choice within KBAG-Net
on its overall performance.

Regarding the semi-automatic dataset generation framework, we utilized the framework
to generate a dataset, which was then compared against a human-annotated dataset to
evaluate the quality of the auto-generated dataset. This comparison aims to determine the
effectiveness of the framework in reducing the labor-intensive process of manual dataset
annotation. In summary, the experiments are specifically designed to address the following
key research questions:

RQ1: How does KBAG-Net perform compared with existing related methods?
RQ2: How does each design choice in KBAG-Net affect its performance?
RQ3: How is the quality of generated data by our method compared with manual

annotation?
RQ4: Does the proposed semi-automatic data construction method alleviate labor-

intensive annotation?
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Experiments setup for affordance grounding
Before evaluating the semi-automatic data construction, it is crucial to first validate the
effectiveness of KBAG-Net using manually annotated datasets. This initial step ensures
that the performance measurements are not adversely influenced by any noise potentially
introduced in the semi-automatically generated data. For this purpose, we utilized two
well-established datasets: IIT-AFF VL and UMD VL (Qu et al., 2024). We first introduce
the datasets in details, then present the evaluation metrics for the affordance grounding
task. At last, the knowledge collection process is illustrated.

Datasets For a comprehensive evaluation of our method, we utilized two visual language
datasets IIT-AFF VL and UMD VL dataset (https://github.com/WenQu-NEU/Affordance-
Grounding-Dataset). The IIT-AFF VL and UM VL datasets comprises a total of 15,905
language instruction expressions, each paired with a corresponding RGB image (images
within original IIT-AFF (Nguyen et al., 2017) (https://sites.google.com/site/iitaffdataset/) and
UMD (Myers et al., 2015) (https://users.umiacs.umd.edu/~fer/affordance/part-affordance-
dataset/index.html), thereby ensuring a one-to-one mapping between images and
instructions. Following the IIT-AFF dataset, the IIT-AFF V-L dataset includes ten object
categories and nine affordance classes. The dataset contains 24,677 affordance regions at
the pixel level. The UMD VL dataset comprise of seven affordance classes and 17 object
categories. The two datasets are split into training (80%), testing (10%) and validation
(10%). The experiments following the dataset split ensuring a comprehensive and fair
evaluation for the compared methods.

Evaluationmetric To assess the performance of our method, we employed two
evaluation metrics: structural similarity (denoted as Fωβ ) (Margolin, Zelnik-Manor &
Tal, 2014) and Mean Intersection-over-Union (mIoU). The Fωβ evaluates the agreement
between model’s predictions and ground truth and provides insights into the precision in
delineating object boundaries. The mIoU calculates the intersection regions over union
regions of the predicted segmentation mask and the ground truth, providing a quantitative
measure of the accuracy in terms of area overlap.

Knowledge collection Addressing the challenge of enabling models to comprehend
natural language instructions, particularly in understanding common sense and contextual
information, is pivotal in our approach. For instance, interpreting an instruction like
‘Use the knife to cut some apple’ requires not just recognizing objects in images but
also understanding their affordance parts based on common knowledge, a capability that
existing methods in affordance detection and visual grounding often lack.

To bridge this gap, we collect object and affordance-related knowledge from three
comprehensive knowledge bases: ConceptNet (Speer, Chin & Havasi, 2017) is instrumental
in providing relational knowledge in a triadic form. This structure is particularly useful for
understanding relationships between objects and their affordances. WebChild (Tandon, De
Melo & Weikum, 2017) offers detailed commonsense knowledge extracted from language
usage across major networks. It enriches our model with nuanced insights into everyday
object functions and uses. With its vast and diverse content, Wikipedia serves as a rich
resource for knowledge. It provides extensive information on a wide range of object types
and their associated affordances.
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Figure 8 Example of the collected knowledge examples. The knowledge is stored as key-value pairs,
where the entities like ‘hammer’, ‘spoon’ and ‘cup’ are utilized as the keys.

Full-size DOI: 10.7717/peerjcs.2097/fig-8

Our collection process involves several steps: (a) We began by gathering facts for each
object category. This involved matching the starting or ending nodes in ConceptNet and
WebChildwith corresponding category labels andWikipedia articles. (b) To standardize the
information, we converted data from ConceptNet and WebChild into sentences, treating
each sentence in a Wikipedia article as a standalone fact.(c) We adopted a key-value pair
format for the knowledge base, where the key represents an object and the value details
facts about the object, including its function, shape, and other relevant attributes. Figure 8
showcases a subset of the knowledge we have accumulated.

In our model, we opted for unstructured knowledge due to its flexibility and ease of
updating and expansion, as opposed to the rigid structure of conventional databases.
Furthermore, unstructured knowledge more closely mirrors the natural language
expression, making it more suitable for our purposes. To ensure the quality and accuracy of
the collected knowledge, we conducted manual checks to eliminate biases and redundant
information. The final composition of our knowledge base includes contributions from
Wikipedia (59.87%), WebChild (27.88%), and ConceptNet (12.25%).

Quantitative and qualitative results (RQ1)
Comparedmethod. In order to validate the effectiveness of our model, we conducted
comparisons with eight established methods. These comparisons are detailed in Tables 3
and 4. To ensure a fair and unbiased comparison, all models were trained from scratch
with the same sample size and the number of classes. This approach guarantees that any
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Table 3 Performance on the IIT vision language dataset. The bold text is used to emphasize the highest value for each metric.

Affordance/Method Image Only Multimodal-based

DeepLabV 3+ OCRNet AffordanceNet GSE BPN ADOSMNet Two-Stage BKINet KBAG-Net(ours)

mIoU Fω
β

mIoU Fω
β

Fω
β

Fω
β

Fω
β

Fω
β

mIoU Fω
β

mIoU Fω
β

mIoU Fω
β

contain 85.68 63.98 88.35 70.85 79.61 87.92 80.62 88.05 73.18 66.11 81.79 65.90 90.69 71.58

cut 69.29 61.58 79.20 61.94 75.68 65.34 79.23 85.63 67.45 58.68 63.37 43.01 76.38 62.73

display 87.03 39.30 89.46 41.42 77.81 91.90 80.55 86.68 74.37 39.18 96.68 77.17 89.91 42.50

engine 78.6 73.99 79.82 73.96 77.50 81.91 81.49 87.01 58.94 51.53 78.52 75.87 82.82 76.91

grasp 75.95 29.28 78.59 31.61 68.48 79.76 72.96 84.99 70.60 29.42 69.12 59.31 85.92 34.64

hit 85.08 40.07 94.97 39.12 70.75 90.51 88.84 86.05 89.96 35.93 64.25 75.00 93.03 40.43

pound 79.47 54.82 79.21 53.16 69.57 75.95 77.59 84.43 72.66 46.09 35.56 51.28 79.06 51.37

support 79.60 67.88 81.36 61.09 69.81 78.41 80.96 84.77 76.98 56.59 71.44 68.63 86.68 64.40

w-grasp 88.58 70.08 82.13 73.20 70.98 89.43 74.56 85.02 67.56 64.06 52.43 76.06 84.06 76.57

Average 81.03 55.66 83.68 56.26 73.35 82.33 79.64 85.85 72.41 49.73 68.13 65.83 85.39 57.90

Table 4 Performance on the UMD vision language dataset. The bold text is used to highlight the best value for each metric.

Affordance/Method Image 0nly Multimodal-based

DeepLabV 3+ OCRNet AffordanceNet Two-Stage BKINet KBAG-Net (ours)

mIoU Fωβ mIoU Fωβ Fωβ mIoU Fωβ mIoU Fωβ mIoU Fωβ
contain 85.80 81.27 85.40 81.72 59.75 86.11 83.38 79.03 47.81 85.74 82.09
cut 82.3 78.6 82.76 79.42 64.26 82.07 80.62 42.32 43.65 83.15 80.20
grasp 69.5 80.03 71.02 80.54 65.97 71.39 78.70 75.98 51.80 75.76 81.87
pound 85.42 81.29 85.61 81.70 76.73 85.20 82.08 61.45 67.17 85.32 82.91
scoop 85.57 79.74 85.92 80.65 77.0 85.79 81.65 70.84 86.83 86.38 82.79
support 83.77 81.11 85.03 82.04 79.45 85.86 81.34 89.37 90.47 87.51 82.62
w-grasp 80.80 76.04 81.01 77.06 78.65 78.97 73.00 86.46 88.08 80.38 78.67
Average 81.88 79.73 82.39 80.45 71.6 82.19 80.11 72.20 67.97 83.41 81.59

observed performance differences are attributable solely to the distinct model architectures
and training methodologies.

• DeepLabV3+ (Chen et al., 2018) employs dilate convolutions and an encoder–decoder
structure to achieve fine-grained segmentation results throughmulti-scale feature fusion
and spatial pyramid pooling.
• OCRNet (Yuan, Chen & Wang, 2020) introduces object-contextual representations in
conjunction with attentionmechanisms. Since affordance segmentation is closely related
to object classes, we set OCRNet an appropriate image-only baseline for comparison.
• AffordanceNet (Do, Nguyen & Reid, 2018) is a classical affordance detection method.
It segments images based on affordance categories without the integration of language
instructions, providing a language-agnostic baseline.
• BPN (Yin & Zhang, 2022) proposes a boundary-preserving network which considers
the relationship between object categories and object affordances. It is an image-only
method for affordance detection. Because this dataset is a closed-source dataset, we
employed the results of the IIT-AFF dataset reported in the original articles.
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• GSE (Zhang et al., 2022) utilizes a repeated multi-scale feature-map-fusion network to
produce category-relevant feature maps. Because this dataset is a closed-source dataset,
we employed the results of the IIT-AFF dataset reported in the original articles.
• ADOSMNet (Chen et al., 2024) is the state-of-the-art affordance detection method. We
considered it an upper bound in our comparisons since it is an image-onlymethod which
eliminates the need to interpret language. We employed the results (with ResNet101)
of the IIT-AFF dataset reported in the original articles. Unfortunately, BPN, GSE and
ADOSMNet’s performance on the UMD VL dataset could not be compared because the
UMD vision language dataset delete the repeated images in the UMD dataset to avoid
data bias.
• Two-stagemethod:We design a two-stage approach to integrate Fast R-CNN (Ren et al.,
2015) and DeepLabV3+ as a baseline method. Firstly, Fast R-CNN is used to detect and
crop the target objects. Subsequently, the cropped regions are input into DeepLabV3+
to generate affordance segmentation masks for the targets. This approach can provide
deep insights into the impact of language composition in the affordance grounding task.
• BKINet (Ding et al., 2023) represents the state-of-the-art multi-modal method with
knowledge incorporation. It is designed for the referring image segmentation task,
incorporating specific knowledge of the target object in the image.

The image-only methods provide an access to the impact of language instructions.
The two-stage method and multi-modal methods evaluate how different integration of
text and image data affect the performance for affordance grounding. Different kinds
of methods provide comprehensively evaluate of our method for language-following
affordance segmentation and multimodal understanding.

Quantitative evaluation. Table 3 summarizes the results of the IIT-AFF VL dataset. The
results clearly show that KBAG-Net has achieved substantial improvements. Compared to
DeepLabV3+, our approach exhibits a notable increase in performance, demonstrating a
gain of +2.9% in mIoU and +2.35% in Fωβ , respectively. Against OCRNet, our method
shows superior results with increases of +1.72% in mIoU and +1.64% in Fωβ . It is
noteworthy that KBAG-Net achieves these results using an end-to-end architecture, and
no further post-processing step like object detection and crop as the two-stagemethod. Our
approach displays a significant enhancement over two-stage method with improvements
of +12.98% in mIoU and +8.17% in Fωβ . While our Fωβ scores are slightly lower than
those of KBAG-Net, our model surpasses KBAG-Net in mIoU by a significant margin
of +17.26%. The higher mIoU with lower F-score could be due to imbalanced class
distributions. The discrepancy of Fωβ scores may be attributed to our method’s handling of
certain affordance classes, notably ‘‘grasp’’ and ‘‘hit’’. These classes often present significant
challenges in accurately delineating edge regions, which is crucial for achieving high Fωβ
scores. Therefore, the model has high precision but low recall for certain affordance classes,
leading to a lower average F-score. Overall, our method has a stronger performance in
terms of overall segmentation accuracy.

Table 4 provides a comprehensive summary of our model’s performance on the UMD
VL dataset. In these experiments, KBAG-Net consistently outperforms other comparative
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Figure 9 Visualization of the final results by our model. ‘o_image’ is the overlay of the predicted mask
on the original image, ‘pred_mask’ is the predicted mask, and ‘gt’ represents the ground truth segmenta-
tion mask of the image. Image source credits: Nguyen et al. (2017) andMyers et al. (2015).

Full-size DOI: 10.7717/peerjcs.2097/fig-9

methods, affirming its robustness and effectiveness. Specifically, our model surpasses the
second best (OCRNet)+1.02% in mIoU and+1.14% Fωβ . It is worth noting that the UMD
dataset only contains clutter-free scenes. Therefore, the improvement of KBAG-Net over
compared methods is not as significant as those observed on the IIT-AFF dataset.

In conclusion, the results from our extensive experiments, as detailed in Table 3 and
Table 4, clearly demonstrate that our KBAG-Net method marks a significant advancement
over existing technologies in the realm of fine-grained part-level affordance segmentation.
A key strength of our approach is its ability to operate in an end-to-end manner, effectively
eliminating the need for any additional post-processing or data augmentation steps. This
streamlined process not only simplifies the workflow but also contributes to the robustness
of the results. The performance across different affordance categories, as reflected in the
mIoU and Fωβ scores, reveals insightful trends. The ‘‘grasp’’ category presents a more
challenging scenario. This is primarily due to the complexity of scenes and the irregular
shapes of objects requiring grasping, which inherently lead to greater difficulties in achieving
precise segmentation.

Qualitative results. To further validate the effectiveness of our proposed module in
identifying the object’s graspable region and generating accurate mask predictions, we
showcase a selection of results in Fig. 9. These visual representations show that our method
can effectively detect part-level regions of masks according to the language, and the
predicted results are close to the ground truth.

Ablation studies (RQ2)
In order to comprehensively understand the contribution of each component within
our framework, we conducted a series of ablation studies. These studies are essential for
isolating and evaluating the impact of individual elements of our model on its overall
performance.
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Table 5 Ablation study on the IIT-AFF vision language dataset. The symbolX indicates the addition of the corresponding component. Bold text
is utilized to emphasize the best values achieved for each metric.

Knowledge enhancement Multimodal fusion Metrics

w/KB w/BLFI w/BULG Attention Overall Acc Mean Acc FreqWAcc Mean IoU Fωβ
1 – – – – 95.13 81.33 90.93 71.89 52.01
2 X – – – 95.87 82.83 92.19 73.43 52.38
3 X X – – 96.26 81.78 92.93 73.49 52.88
4 – – X – 96.36 81.79 93.13 74.22 53.33
5 X – X – 96.01 84.15 92.46 76.16 53.35
6 X X – a 95.87 83.67 92.28 73.45 51.98
7 X X – b 95.25 86.98 91.34 72.67 51.50
8 X X – c 95.75 82.56 91.98 75.16 52.39
9 X X X – 96.21 85.83 92.80 78.40 54.00

The components of the network. In validate the effectiveness of the BULG module,
Knowledge, and BLFI module, we conducted ablation studies on IIT-AFF VL dataset, with
the results presented in Table 5. The notation ‘w/KB’ indicates the incorporation of the
knowledge information. The notations ‘w/BLFI’ and ‘w/BULG’ denote the addition of
the Bimodal Language Feature Interaction and Bottom-up Language-guided Multi-modal
Fusion, respectively. The ‘Attention’ column refers to the three types of typical multimodal
attention mechanism displayed in Fig. 5. The baseline method (first row of Table 5)
combines image features with text features via simple concatenation. The ablation studies
reveal significant findings:

(1) Knowledge based only (second row of Table 5): The introduction of external
knowledge alone enhances the model’s understanding of natural language instructions,
evidenced by increases in mIoU and Fωβ by 1.24% and 0.37%, respectively, compared to
the baseline.

(2) Knowledge with BLFI module (fourth row of Table 5): The incorporation of the
BLFI module to filtering text information noise results in further improvements in text
features, with subsequent increases in mIoU and Fωβ .

(3) Knowledge with BULG module (fifth row of Table 5): The fusion of knowledge
information with textual feature, combined with the BULG module’s dense multimodal
information interaction, significantly aligns visual and text features. This configuration
shows a substantial improvement over the baseline, with mIoU and Fωβ increasing by 2.33%
and 1.32%, respectively.

(4) Full integration (last line of Table 5): Utilizing all three components simultaneously
results in the most significant performance enhancements, with increase of 6.51% in mIoU
and 1.99% in Fωβ compared to the baseline.

Further evaluations were conducted to assess different attention mechanisms for
multimodal fusion, with results from the sixth to ninth rows of the Table 4 illustrating
the effectiveness of replacing the attention mechanism in multimodal fusion with three
alternative mechanisms as shown in Fig. 5. The outcomes confirm the effectiveness of the
proposed BULG module.
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Table 6 Model efficiency analysis.

Model FPS Params mIoU Fωβ
DeepLabV 3+ 4.28 39.75 82.49 55.55
Two-Stage 2.61 81.86 72.41 49.73

BKINet 10.85 156.48 68.13 65.83
KBAG-Net 6.16 68.26 85.39 57.90

Model efficiency analysis. As shown in Table 6, we calculate the number of parameters
and FPS for comparison methods. Our method achieves the best performance in terms
of mIoU while utilizing fewer parameters compared to two other multimodal methods.
Compared to DeepLabV3+, our model has demonstrated a significant improvement in
terms of computational overhead, processing speed, and performance, with enhancements
of +2.9% and +2.35% on IIT-AFF VL dataset, respectively. Compared to the two-stage
methods, we achieved better performance and processing speed at a relatively lower
computational overhead, resulting in increases of +12.98% and +8.17% on IIT-AFF.
Although our computational overhead and processing speed do not match the levels of
BKINet, our performance has shown improvements of+17.26% on the mIoU metric. The
total number of parameters in our CNN model is less than half that of the BKINet.

Data quality and efficiency analysis (RQ3 and RQ4)
To evaluate the proposed semi-automatic method whether generate high-quality dataset,
we used the framework to generate two datasets, which is used to validate the quality. We
conducted experiments on two publicly available datasets: IIT-AFF dataset (Nguyen et al.,
2017) and UMD dataset (Myers et al., 2015), which have ground truths of object detection
and affordance segmentation. We add manipulation instructions for part of the dataset
manually, and compare the generated annotations (instructions, object bounding boxes
and affordance masks) with the ground-truth to evaluate the quality of the generated data
by our method.

Generated data analysis. Some examples of generated data are shown in Fig. 10. The left
examples are generated from the IIT-AFF dataset and the right examples are generated from
the UMD dataset. For the instructions, we mixed the generated instructions and manual
annotations together, and selected five volunteers to choose the generated instructions
from the mixed instructions. The test shows that it is difficult to distinguish the generated
instructions from the manual annotations. For the quality of object bounding boxes, we
evaluate the performance based on the object detection mean average precision (mAP).
The mAP achieved on the IIT-AFF dataset is 80%, and that on the UMD dataset is 99%.
The results show that our method can generate both object-level and part-level annotation
for implicit and explicit instructions automatically, which improves the data annotation
efficiency for the manipulation grounding task. The false annotation in the generated data
could be further removed by humans, which is much easier than data labeling.

Data construction efficiency analysis. For the IIT-AFF andUMDdatasets, we generated
two types of instructions for each object class. Table 7 presents the statistical information
of the vision-language dataset generated based on the IIT-AFF and the UMD datasets.
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Figure 10 Visualization of the IIT-AFF dataset and the UMD dataset with generated instructions and
image annotations. Image source credits: Nguyen et al. (2017) andMyers et al. (2015).

Full-size DOI: 10.7717/peerjcs.2097/fig-10

We list the explicit and implicit instructions for the corresponding object classes. To
generate the object bounding boxes and the instructions, it takes approximately 75 hours
for the two datasets. The affordance masks generation takes approximately 9 and a half
hours. According to prior study Papadopoulos et al. (2017), skilled annotators may need
an average of 79s to label a polygon-based instance mask for an image in MS COCO.
Compared with human annotation, our method could save considerable time and reduce
manual annotation efforts for dataset construction.

Organization and application of the datasets. We use a structured JSON file format
to store these data, ensuring that they are easily accessible and well-organized for various
applications. Each entry in the JSON file corresponds to an image and contains a set of
key properties related to the detected objects in that image. These properties include box,
explicit_sentence, guid, implicit_sentence, label. ’guid’ represents the object id number
for each annotation. The specific format of this JSON structure is illustrated in Fig. 11,
providing a visual reference for clarity.

Additionally, we employ a naming convention for object part-level masks to ensure
consistency and easy retrieval. These mask filenames follow a specific format that
includes the RGB name, index references, and object-specific information. For example,
‘‘ILSVRC2014_train_00059832_0_0.png’’ has ‘‘ILSVRC2014_train_00059832’’ as the
RGB name, ‘‘first-index’’ corresponds to the index of the value array in the JSON file
corresponding to the image name, and ‘‘second-index’’ represents the index of the object’s
explicit instruction array. This structured organization and naming convention enhance
the usability of our dataset, making it well-suited for a wide range of robotic manipulation
and language-grounding tasks.

Using object visual grounding as a test, we evaluate the performance of the TransVG
(Deng et al., 2021), which is an end-to-end visual grounding model, on the IIT-AFF and
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Table 7 Automatic generated data statistics of instruction for IIT-AFF and UMD dataset.

dataset category explicit_instruction implicit_instruction

bowl 845 513
tvm 2,306 2,750
pan 2,555 1,707
hammer 3,152 1,943
knife 2,632 1,826
cup 2,957 1,942
racket 2,475 1,620

IIT-
AFF

bottle 2,482 2,120
bowl 1,855 1,855
cup 2,792 1,396
hammer 2,232 1,116
knife 6,722 3,449
ladle 2,426 1,346
mug 8,882 5,249
saw 1,607 804
scissors 3,516 2,026
scoop 1,156 595
shears 789 467
spoon 5,604 2,871

UMD

trowel 240 120

UMD datasets with generated instruction(Using ground-truth image annotation). The
TransVG predicts the object bounding box according to the image and language. As shown
in Table 8, we assess its accuracy in two scenarios: using explicit and implicit instruction
as language expressions for visual grounding. The accuracy percentages refer to the
localization accuracy of object bounding boxes. For the TransVG model, we utilize both
ResNet50 and ResNet101 as convolutional backbone networks. Under the ResNet-101
backbone, TransVG achieves accuracy rates of 88.00% and 99.86% on the generated
IIT-AFF and UMD datasets based on explicit instructions, respectively. However, when
it comes to implicit instruction, TransVG achieves 75.14% and 99.76% with the same
backbone. The high accuracy achieved on the UMD dataset can be attributed to the
dataset’s unique characteristics, where each image contains only one object, captured from
various angles, making object localization relatively straightforward.

The results illustrate that the difficulty of the benchmark dataset is determined by at
least two aspects: the diversity of the objects appearance and the complexity of the language
instructions. Since the object in the UMD dataset is lack of variation, the complexity of
instructions has limited influence for the performance(0.11 and 0.1 for two backbones). In
contrast, the images in the IIT-AFF dataset have more diversity in the object appearance,
the performance drop about 12.32 and 12.86 for the implicit instructions with two different
backbones. Compared with existing datasets of visual grounding, our generated language-
groundedmanipulation dataset (IIT-AFF implicit) demonstrates a level of difficulty similar
to that of Flickr30K Entities (Plummer et al., 2015) and presents a more challenging task
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Figure 11 JSON format of the generated dataset.
Full-size DOI: 10.7717/peerjcs.2097/fig-11

than RefCOCO (Yu et al., 2016). Besides the REC task, the generated dataset can also be
applied to the RIS task. In future work, we plan to assess the suitability of existing RIS
methods on our generated language following manipulation datasets. Additionally, we
anticipate that our dataset may have broader applications beyond the REC and RIS tasks,
which we will explore in subsequent research.
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Table 8 Performance of the TransVGmodel on the language following IIT-AFF and UMD datasets, as
well as three visual grounding datasets. Accuracy (%) is used as the metric for performance.

dataset backbone Accuracy

ResNet50 87.28
IIT-AFF(explicit)

ResNet101 88.00
ResNet50 74.96

IIT-AFF(implicit)
ResNet101 75.14
ResNet50 99.78

UMD(explicit)
ResNet101 99.86
ResNet50 99.67

UMD(implicit)
ResNet101 99.76
ResNet50 69.76

ReferItGame
ResNet101 70.73
ResNet50 78.47

Flickr30K
ResNet101 79.10
ResNet50 82.67

RefCOCO
ResNet101 82.72

CONCLUSIONS
In this article, we present a novel knowledge enhanced bottom-up affordance grounding
network that is designed for fine-grained part-level affordance segmentation. One of
the standout contributions is the integration of knowledge through the BLFI module,
demonstrating the significant impact of tailored knowledge in the context of affordance
segmentation. Additionally, the introduction of the BULG module showcases how the
fusion of visual features, guided by enhanced text features, can substantially improve
the learning of correlations between image regions and language instructions. Finally,
we introduce a unified framework for semi-automatic dataset generation. The pipeline
showcases the ability to automatically generate instructions with multiple types and
annotate images with multiple granularities. Experimental results affirm the effectiveness
of incorporating external knowledge in the comprehension of natural language commands.
The unified framework significantly reduces the manual effort involved in dataset
construction for diverse application scenarios. The research of affordance understanding
and grounding holds significant promise for enhancing robot interaction capabilities in
various domains. By imbuing robots with the ability to perceive and understand affordances
in their environment, they can better interpret and respond to human intentions, leading to
more intuitive and efficient human–robot interactions. In future, understanding implicit
language instruction poses a set of challenges within existing visual grounding methods,
demanding further exploration.
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