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ABSTRACT
Mixed integer nonlinear programming (MINLP) addresses optimization problems
that involve continuous and discrete/integer decision variables, as well as nonlinear
functions. These problems often exhibit multiple discontinuous feasible parts due to
the presence of integer variables. Discontinuous feasible parts can be analyzed as
subproblems, some of which may be highly constrained. This significantly impacts
the performance of evolutionary algorithms (EAs), whose operators are generally
insensitive to constraints, leading to the generation of numerous infeasible solutions.
In this article, a variant of the differential evolution algorithm (DE) with a gradient-
based repair method for MINLP problems (G-DEmi) is proposed. The aim of the
repair method is to fix promising infeasible solutions in different subproblems using
the gradient information of the constraint set. Extensive experiments were conducted
to evaluate the performance of G-DEmi on a set of MINLP benchmark problems and
a real-world case. The results demonstrated that G-DEmi outperformed several state-
of-the-art algorithms. Notably, G-DEmi did not require novel improvement
strategies in the variation operators to promote diversity; instead, an effective
exploration within each subproblem is under consideration. Furthermore, the
gradient-based repair method was successfully extended to other DE variants,
emphasizing its capacity in a more general context.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Scientific Computing and Simulation
Keywords Differential evolution, Gradient-based repair method, Integer constraint handling,
MINLP problems, Real-world optimization

INTRODUCTION
Mixed integer nonlinear programming (MINLP) problems represent the subset of
optimization problems that involve continuous and discrete/integer decision variables, as
well as nonlinear functions. In engineering and related fields, discrete and integer variables
are commonly used to represent values restricted to specific sets. Discrete variables are
often used when values are limited to standard elements, such as rod diameters, structural
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beam dimensions, and commercial resistance values. Integer variables are frequently
employed to represent groups of identical elements, such as the number of products
manufactured, pins in an electrical connector, or gear teeth in a gear train.

A MINLP problem can be expressed by Eq. (1):

min f ðx; yÞ
subject to : giðx; yÞ � 0; i ¼ 1;…; n

hjðx; yÞ ¼ 0; j ¼ 1;…;m

xlk � xk � xuk ; k ¼ 1;…; n1

ylq � yq � yuq : integer; q ¼ 1;…;m1

½x; y� 2 �

(1)

where f ðx; yÞ is the objective function (OF) of the problem, x is a vector of continuous
variables, y is a vector of integer variables. xlk and xuk are the lower and upper bounds of xk,
respectively, whereas ylq and yuq are the lower and upper bounds of yq, respectively. The
decision variable space is defined by �, and giðx; yÞ and hjðx; yÞ denote the ith inequality
constraint and the jth equality constraint, respectively.

One key challenge in MINLP problems is that the presence of integer variables generates
a nonconvex search space, which can lead to a combinatorial explosion in the number of
possible solutions. This is because the discrete variables create a set of discontinuous
feasible parts, and the optimization algorithm must explore each part separately. Figure 1
illustrates a generic MINLP problem with a search space defined by two variables, x and y.
The variable x can take all real values, and y is limited to integer values 0; 1;…; 4f g. The
gray area is the feasible region defined by the constraints. Contour lines connect points
from discontinuous parts with equal fitness values through steps. However, these steps
solely provide a visual indication of the function’s behavior in the search space, which
cannot be evaluated for non-integer values of y. The figure reveals another important
aspect of MINLP problems: the high variability in the sizes of the discontinuous feasible
parts (red lines). This phenomenon is attributed to the coexistence of constraints and
integer variables.

Stochastic optimization methods such as EAs have been updated to address the
challenges posed byMINLP problems, e.g., genetic algorithms (Deep et al., 2009), evolution
strategies (Costa & Oliveira, 2001), differential evolution (Lampinen & Zelinka, 1999),
particle swarm optimization (PSO) (Wang, Zhang & Zhou, 2021), ant colony optimization
(Liao et al., 2013), among others (see Boukouvala, Misener & Floudas, 2016 and Ploskas &
Sahinidis, 2022 for a comprehensive survey of algorithms and software). EAs have
successfully been applied to solve remarkable MINLP problems, such as the design of an
interplanetary space mission trajectory (based on the Galileo mission from NASA in 1989)
(Schlüter et al., 2013), optimal control problems for an F8 aircraft (Sager, 2011), as well as
optimal batch plant design problems (Ponsich & Coello, 2011; Ji & Gu, 2024). Recently,
EAs have been used to optimize hyperparameters for convolutional neural networks (Liu
& Wang, 2023), reduce neural network structure complexity (Sildir, Sarrafi & Aydin,
2022), and design a multimodal hub-and-spoke transportation network for emergency
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relief during the COVID-19 pandemic (Li et al., 2023). However, premature convergence
remains a major concern for EAs when addressing MINLP problems with variable-size
discontinuous feasible parts. In such cases, the population tends to converge on the biggest
feasible parts because the EAs tend to detect feasible solutions more easily within these
regions. Consequently, this approach may limit the exploration of smaller feasible parts
that could contain better solutions.

As can be seen in Fig. 1, a MINLP problem can be expressed as a set of k subproblems,
where k corresponds to all the admissible values of y, in this case, 0; 1; ::; 4f g. Note that the
global minimum is the optimal solution for all subproblems. However, due to the
dimension of k in several problems, its overall combinatorial enumeration could be
computationally expensive or even prohibitive. Two important issues are derived from this
approach: (i) an efficient combinatorial exploration in the space of discrete variables, and
(ii) an efficient exploration and exploitation within each generated subproblem.

Commonly used operators in EAs are often blind to constraints, making it difficult to
solve highly constrained problems (Craenen, Eiben & Marchiori, 2001; Hamza, Essam &
Sarker, 2015). This has a high cost for algorithm performance in solving highly constrained
MINLP problems due to the challenge of generating feasible solutions. To address this
point, the operators in diverse proposals have been modified to achieve higher diversity
and more opportunities to explore each subproblem. As optimization problems become
more complex, particularly within the realm of MINLP problems, the challenge of
effectively exploring highly constrained spaces becomes a substantial obstacle. This work
proposes a DE variant with a gradient-based repair method for MINLP problems (G-
DEmi). Unlike previous methods focused on diversification to enhance performance, G-
DEmi takes a distinctive approach. It attempts to improve promising but infeasible
solutions in different subproblems by using gradient information extracted from the
constraint set. The proposal was evaluated using benchmark problems selected from
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Figure 1 Hypothetical example: The gradient area represents the feasible region defined by the
constraints, and the red lines are the discontinuous feasible parts that also satisfy the integer
constraints. Full-size DOI: 10.7717/peerj-cs.2095/fig-1
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Liu et al. (2021a), Datta & Figueira (2013), Liu et al. (2023), and MINLPLib (2023), which
encompassed several challenges posed by mixed variables. Additionally, the subway
optimization problem was also addressed as a real-world problem. The proposal was
rigorously compared with other state-of-the-art EAs using descriptive and inferential
statistics. The results show that the proposal consistently outperforms competitors in
terms of solution quality and algorithm robustness. Notably, G-DEmi achieved high
success rates even in highly constrained problems where other algorithms failed to find
feasible solutions. These findings indicate that the gradient-based repair method
significantly contributes to the performance of G-DEmi across a wide range of MINLP
problems. This algorithm proved its efficiency in exploring each generated subproblem
since it did not require new operators to promote a higher diversity but the conventional
DE operators. Furthermore, the repair method was successfully extended to other DE
variants, highlighting its robustness and effectiveness in a more general context.

This article is organized as follows: “Related Work on Evolutionary Algorithms for
MINLP Problems” presents an overview of the state-of-the-art works referred to the
development of EAs for MINLP problems. “Base Methods” gives a brief description of DE
and the gradient-based repair method. The proposed algorithm, G-DEmi, is introduced in
“Proposed Algorithm”. “Experimental Study” describes the experimental study conducted
on G-DEmi, and “Real-World Case Study” addresses the real-world case study.
“Conclusions” presents the final considerations.

RELATED WORK ON EVOLUTIONARY ALGORITHMS FOR
MINLP PROBLEMS
In the field of MINLP, several techniques have been employed to address its complexities.
The initial approach involved genetic algorithms with binary coding to represent integer
and real variables (Li & Gen, 1996). This approach has been extended to other algorithms
such as particle swarm optimization (Datta & Figueira, 2011), differential evolution (Datta
& Figueira, 2013), and artificial bee colony (Wang et al., 2017). However, the effectiveness
of these techniques is significantly affected by problem dimensionality and the ranges of
the integer and real variables.

To address the issues of integer variables, some studies proposed truncation or rounding
methods during the optimization process (Deep et al., 2009; MathWorks, 2023). However,
these operations may introduce search bias or drastic reductions in diversity, potentially
impacting the performance of the algorithm. More refined strategies have been proposed
instead of simple rounding or truncation. A triangular mutation rule was introduced by
Mohamed (2017), which is based on three randomly selected vectors and the difference
vectors between the best, medium, and worst individuals within that triplet. This operator
was designed to improve the global and local search capabilities and to increase the
convergence speed of DE. Jalota & Thakur (2018) proposed a variant of GA with BEX
crossover and power mutation. Additionally, a truncation technique based on the floor and
ceiling function was applied to maintain the randomness in the evolutionary process.
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Another variation of DE with cluster strategy into the mutation operator was presented by
Mohamed et al. (2019). This approach selects three random elements from different
clusters to perform the mutation. Song et al. (2023) proposed a hybrid sine and cosine
algorithm that uses a position update formula to enhance its search capability. In addition,
they proposed three mutation strategies with different balances between exploration and
exploitation to prevent local convergence.

Another approach involves estimation-of-distribution algorithms (EDAs) combined
with different strategies for solving MINLP problems.Wang et al. (2019) proposed an EDA
with an adaptive-width histogram model and a learning-based histogram model to handle
continuous and discrete variables, respectively. Sun & Gao (2019) proposed a probabilistic
model to update the discrete variables in PSO. It uses social cognitive and self-cognitive
coefficients to generate a probability distribution. Subsequently, Wang, Zhang & Zhou
(2021) employed a learning-based histogram model for discrete variables in PSO. Li et al.
(2021) proposed an EDA algorithm for mixed variables to find the best parameters of a
convolutional neural network. Peng et al. (2021) implemented a histogrammodel in DE for
handling discrete variables.

Other studies have presented specific strategies for directly addressing discrete variables.
Schlüter (2012) proposed a discretized version of the multi-kernel function for the mixed-
integer distributed ant colony optimization (MIDACO) algorithm. MIDACO employs an
oracle penalty function proposed by Schlüter & Gerdts (2010), which significantly biases
the search towards promising regions of the solution space. Lin et al. (2018) proposed a set-
based DE approach that preserves the original search mechanism, avoiding space
transformation. Liu, Li & Ge (2022) proposed a hybrid quantum annealing-double-elite
spiral search algorithm to address MILNP problems. The algorithm was applied to solve
the integer subproblems using a quantum-tunneling-based annealing mechanism.

Recent works have focused on overcoming the limitations due to search spaces in
MINLP problems. Liu et al. (2021b) proposed a multi-objective DE aimed at identifying
solutions that equally satisfy integer and fitness conditions. In Liu et al. (2021a), a cutting
and repulsion strategy was proposed to suppress unpromising discontinuous feasible parts
during exploration and to escape from local optima. In Liu et al. (2023), a surrogate-
assisted DE was proposed, featuring an adaptive pre-screening operation to prevent
excessive exploitation in local regions, which restricts the number of individuals sharing
the same integer values. Hamano et al. (2022) suggested a strategy to generate integer
variables with a lower-bounding marginal probability model to avoid stagnation caused by
the discretization granularity in the search space. In Molina-Pérez et al. (2022, 2023), an
EDA was presented, where a link strategy between the histogram model and the
e-constrained method reduces the influence of the larger discontinuous feasible parts in the
exploration. A kriging-assisted DE was proposed to deal with mixed-integer variables by
Liu et al. (2024). Promising regions near the feasible region are created to promote
exploration from infeasible regions. Solutions are then guided to promising feasible regions
through local search. Molina-Pérez et al. (2024) proposed a DE variant that explores
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promising regions from infeasible contours by considering a group of “good fitness-
infeasible solutions”. This approach aims to reduce the vulnerability of solutions to being
attracted by non-promising large discontinuous feasible parts.

While numerous proposals exist to address MINLP problems, certain studies have
focused on particular problems or relatively simple problem sets. In several cases, the
implementation of additional operators has been required to prevent premature
convergence in the search space, although the underlying reasons for this have not been
explicitly stated. Only in recent works the distinctive landscape that mixed variables create
within the search space has been clearly addressed. This perspective, involving
disconnected feasible regions of varying sizes, has enabled more efficient strategies for
solving increasingly complex problems.

In this context, gradient-based repair methods have shown high effectiveness in
overcoming the limitations of EAs in handling constraints. The first and most commonly
used technique was proposed by Chootinan & Chen (2006). It uses Newton’s root-finding
method to repair infeasible solutions. More recently, several gradient-based methods have
been introduced, including repair method on surrogates of the constraint functions (Koch
et al., 2015), random direction repair method (Xu et al., 2021), heuristic repair with
historical information (Du et al., 2022), and adaptive repair method (Yang et al., 2023).
However, these tools haven’t received proper attention in MINLP problems, despite their
potential utility, especially considering the search space comprising multiple constrained
subproblems. We propose G-DEmi, with a gradient-based repair method to rectify
promising infeasible solutions in different subproblems using gradient information
derived from the constraint set. Unlike prior methods, this novel approach aims to directly
address the constraint challenges by reducing the insensitivity of DE to constraints in
MINLP problems. Notably, G-DEmi improves the performance without needing new
operators for higher diversity than those employed in the conventional DE.

BASE METHODS
Differential evolution
Storn & Price (1997) proposed a population-based optimization algorithm, DE, that has
gained popularity for its high success rate and straightforward implementation. DE
consists of four fundamental processes: initialization, mutation, crossover, and selection,
which are repeated in each cycle.

The initial population P is created through random sampling from the search space.
Each individual in the population, denoted as xi ¼ ðxi;1;…; xi;jÞ, represents a solution to
the problem with xi being the ith individual, i ¼ 1;…;NP. j is the number of decision
variables and NP is the population size. A mutant vector vi ¼ ðvi;1;…; vi;jÞ is generated for
every individual xi as the base of the evolution. Several mutation operators have been
proposed (Abbasa, Ahmadb & Jabeenc, 2017). In this study, the following versions were
employed:

. DE/rand/1:

vi ¼ xr1 þ Fðxr2 � xr3Þ (2)
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. DE/current-to-rand/1:

vi ¼ xi þ randðxr1 � xiÞ þ Fðxr2 � xr3Þ (3)

. DE/best/1:

vi ¼ xbest þ Fðxr1 � xr2Þ (4)

. DE/rand-to-best/1:

vi ¼ xr1 þ randðxbest � xr2Þ þ Fðxr3 � xr4Þ (5)

where xbest is the best individual in the population; vectors xr are different between each
other and from xi, and randomly chosen from the population; and F is the scaling factor.

DE executes a crossover operation between the target vector xi and its mutant vector vi
to generate the trial vector ui ¼ ðui;1;…; ui;jÞ. The binomial crossover is defined in Eq. (6),
where the control crossover parameter CR is a value in ½0; 1�. A uniformly distributed
random number randj is generated for each decision variable j in the interval ½0; 1�, and
jrand is a random integer in the range ½1;NP�.

ui;j ¼ vi;j; if randj � CR or j ¼ jrand:
xi;j; otherwise:

�
(6)

During the selection step, the best individual is chosen between xi and ui to be carried
forward to the next generation. A set of feasibility rules (Deb, 2000) is employed to
compare them as follows:

1. Between two infeasible solutions, the one with lower constraint violation is preferred.

2. If one solution is infeasible and the other one is feasible, the feasible solution is preferred.

3. Between two feasible solutions, the one with better objective function value is preferred.

Gradient-based repair method
The technique of gradient-based repair was first introduced for genetic algorithms
(Chootinan & Chen, 2006). Takahama & Sakai (2009) incorporated this approach in a
modified proposal version of the constraint handler e-constrained. This method uses the
gradient information of the constraint set to guide the infeasible solutions toward feasible
regions. The gradient can be obtained directly from the constraints or, if the analytical
derivation is challenging, it can be estimated by numerical techniques such as the finite
differences (Chapra & Canale, 2010).

VðxÞ is defined by Eq. (7) as a vector that contains the violation degree for each
inequality (g) and equality (h) constraint in a given problem, for a particular solution
vector x. Parameters n and m are the number of inequality and equality constraints,
respectively, and e specifies the tolerance for equality constraints. Preserving the sign of the
equality violation is a crucial aspect of the method and is represented by the function
sgnðhÞ.
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VðxÞ ¼

maxðg1ðxÞ; 0Þ
..
.

maxðgnðxÞ; 0Þ
sgnðh1Þ �maxð h1ðxÞj j � e; 0Þ

..

.

sgnðhmÞ �maxð hmðxÞj j � e; 0Þ

2
666666664

3
777777775
: (7)

The gradient matrix of these constraints with respect to the N components of x, denoted
as rVðxÞ, is defined by Eq. (8):

rVðxÞ ¼

qg1ðxÞ
qx1

qg1ðxÞ
qx2

. . . qg1ðxÞ
qxN

..

. ..
. ..

.

qgnðxÞ
qx1

qgnðxÞ
qx2

. . . qgnðxÞ
qxN

qh1ðxÞ
qx1

qh1ðxÞ
qx2

. . . q h1ðxÞ
qxN

..

. ..
. ..

.

qhmðxÞ
qx1

qhmðxÞ
qx2

. . . qhmðxÞ
qxN

2
66666666664

3
77777777775
: (8)

The forward approximation of finite differences provides an estimate of these
derivatives, as defined in Eq. (9), where Dx represents the step size and ej is a unitary
vector of the same dimension as x, with a value of 1 for the jth component and 0 for
the rest.

rVðxÞi;j �
fiðx þ Dx � ejÞ � fiðxÞ

Dx
: (9)

This repair method aims to transform x into a feasible solution, which involves
setting the elements of the vector VðxÞ to zero. By employing Newton-Raphson’s
method (Burden, Faires & Burden, 2015), a repaired vector xkþ1 can be iteratively
obtained through Eq. (10), which represents a linear approximation of VðxkÞ in the
direction of the origin. However, it is common that the number of variables differs
from the number of constraints. In this case, the rVðxkÞ matrix is non-invertible and
the Moore-Penrose pseudoinverse (Campbell & Meyer, 2009) must be used, as shown
in Eq. (11):

xkþ1 ¼ xk �rVðxkÞ�1VðxkÞ (10)

xkþ1 ¼ xk �rVðxkÞþVðxkÞ (11)

where xkþ1 and xk represent the updated and current values of the vector x, respectively,

rVðxkÞ�1 and rVðxkÞþ represents the inverse and the Moore-Penrose pseudoinverse
matrix of the gradient matrix rVðxkÞ, respectively. A computationally efficient way of
findingrVðxkÞþ is by employing singular value decomposition (Barata & Hussein, 2012).
Before proceeding with the pseudoinverse, removing all zero elements of VðxkÞ and their
corresponding values in rVðxkÞ is important.
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PROPOSED ALGORITHM
Gradient-based repair method for MINLP problems
As mentioned above, MINLP problems can be analyzed as multiple subproblems, some of
which may be highly constrained. This impacts the performance of EAs, whose operators
are typically insensitive to constraints, leading to the generation of many infeasible
solutions. We propose a basic DE implementation with a gradient-based repair method for
MINLP problems, G-DEmi. The repair strategy explores the subproblems independently
to improve the exploration inside them. Specifically, for repairing a vector with mixed
variables [x, y], only the real variables x are modified while the integer variables y remain
fixed.

In contrast to the variants previously described (Chootinan & Chen, 2006; Takahama &
Sakai, 2009) with a probability-based approach for repairing solutions, our method repairs
only trial vectors u that satisfy two conditions: (i) they lost the tournament against their
target vectors, but have a better objective function value, and (ii) they belong to a
subproblem (y) where no solution has been repaired in the current generation. These
conditions aim to promote the repair of trial vectors with a higher potential to improve OF,
exploring each subproblem independently without repairing similar solutions multiple
times.

The repair method is explained in Algorithm 1. A mixed trial vector u ¼ ½xuk ; yu�T is
defined, where only the xuk component is updated during the iterative repair process. As a
result, the constraint violation degree vector and the gradient matrix can be found by

Algorithm 1 Gradient-based repair method.

Input: u; kmax;Tmin;

Output: u;

1: initialize k ¼ 1;

2: while no stopping criteria is satisfied do

3: calculate Vðxuk ; yuÞ in Eq. (12) according to Eq. (7);

4: calculate rVðxuk ; yuÞ in Eq. (13) according to Eq. (8);

5: remove all zero elements of Vðxuk ; yuÞ and their corresponding values in rVðxuk ; yuÞ;
6: calculate pseudoinverse rVðxuk ; yuÞþ;
7: calculate xukþ1 according to Eq. (11);

8: xuk  xukþ1;

9: u ¼ ½xuk ; yu�T;
10: k kþ 1;

11: end while

Stopping criteria:
. k � kmax : maximum number of iterations reached.
. Vðxuk ; yuÞ ¼ 0: all elements of the constraint violation degree vector are zero.
. Tu � Tmin: maximum absolute difference between xukþ1 and xuk is equal or lower than Tmin.
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Eqs. (12) and (13), respectively. Both elements are updated in lines 3 and 4 of
Algorithm 1. After removing all zero elements of Vðxuk ; yuÞ and their corresponding
values in rVðxuk ; yuÞ, the pseudoinverse rVðxuk ; yuÞþ is determined in line 6. Finally,
the trial vector is updated between lines 7 and 9. The algorithm stops when all
elements of vector Vðxuk ; yuÞ become zero, indicating a feasible trial vector. Additionally,
two stopping criteria are employed to prevent long repair cycles that could cause
arbitrary increases in execution time. The first is the maximum number of iterations,
which stops the process after kmax iterations. The second is the minimum tolerance,
which stops the process if the maximum variation in the trial vector during repair is lower
than Tmin.

VðuÞ ¼ Vðxuk ; yuÞ (12)

rVðuÞ ¼ ðx
u
k ; y

uÞ
qxuk

: (13)

The repairing procedure is illustrated with the following example: consider a scenario
with an inequality and an equality constraint, given by Eq. (14).

g1ðx; yÞ ¼ x1
2 þ x2

2 þ y2 � 12 � 0

h1ðx; yÞ ¼ x1 þ x2 þ y � 5:5 ¼ 0:
(14)

Assume u ¼ ½2 1 1�T and an equality tolerance of e ¼ 1� 10�04. In the first iteration
(where k ¼ 1), xu1 ¼ ½2 1�T and yu ¼ 1. Therefore, Vðxu1; yuÞ and rVðxu1; yuÞ are
computed by Eqs. (15) and (16), respectively.

Vðxu1; yuÞ ¼ maxð�6; 0Þ
�maxð1:5� e; 0Þ

� �
¼ 0
�1:4999

� �
(15)

rVðxu1; yuÞ ¼
qg1ðxu1 ; yuÞ

qx1
qg1ðxu1 ; yuÞ

qx2
qh1ðxu1 ; yuÞ

qx1
qh1ðxu1 ; yuÞ

qx2

" #
¼ 4 2

1 1

� �
(16)

As can be seen, only h1ðxu1; yuÞ was violated. Therefore, the element of g1ðxu1; yuÞ in
Vðxu1; yuÞ and their corresponding values inrVðxu1; yuÞ need to be removed. This leads to

Vðxu1; yuÞ ¼ �1:4999. Then, rVðxu1; yuÞ and its pseudoinverse rVðxu1; yuÞþ are

computed as shown in Eq. (17).

rVðxu1; yuÞ ¼ 1 1½ � ) rVðxu1; yuÞþ ¼
0:5
0:5

� �
(17)

Using Eq. (11), the vector xu2 is generated as follows:

xu2 ¼
2
1

� �
� 0:5

0:5

� �
�1:4999½ � ¼ 2:75

1:75

� �

Molina-Pérez et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2095 10/35

http://dx.doi.org/10.7717/peerj-cs.2095
https://peerj.com/computer-science/


The updated vector Vðxu2; yuÞ is obtained by Eq. (18). As can be seen, the values of
ðxu2; yuÞ satisfy all constraints. Therefore, the trial vector has been successfully repaired,

and its new values are u ¼ ½2:75 1:75 1�T.

Vðxu2; yuÞ ¼ maxð�0:3750; 0Þ
maxð0� e; 0Þ

� �
¼ 0

0

� �
(18)

Figure 2 provides an explanation of the gradient-based repair method within the context
of DE, for a hypothetical MINLP problem. The feasible region is represented by a gray
area, and includes discontinuous feasible parts generated by discrete variables shown as red
lines. The objective space is defined by three contour curves: the worst level, a better level,
and the best level. In Fig. 2A, the standard DE variant illustrates two instances of target-
trial selection. Notably, the target solutions generated infeasible trials, making the target
vectors the survivors in both cases, as indicated by the arrow directions. On the other hand,
the gradient-based repair DE variant takes into account that both trial solutions have a
better value in the objective space than their respective target vectors. This implies that
both trial vectors must be repaired and compete again with their targets. Figure 2B
illustrates how the repaired vectors enter the feasible regions and outperform their targets.
This analysis highlights the advantages of the gradient-based repair method over the
traditional selection method for finding feasible solutions within potentially promising
subproblems, thereby promoting exploration within better feasible regions. Given the
insensitivity of DE to constraints, repair might be essential to achieve feasibility in highly
constrained subproblems.

Overall implementation
Algorithm 2 describes G-DEmi. To generate the initial population Pg in step 1, random
real and integer values for the solution vector ½x; y� are taken. The objective function f ðxgÞ

Discontinuous feasible partsFeasible region

A)

Repair

Repair

Target

Trial
Target

Trial

Better level

Target

Trial
Target

Trial

Selection

Selection

Selection

B)

Worst level

Best level

Worst level

Better level Better level

Best level

Figure 2 Gradient-based repair method in MINLP context: (A) Standard DE variant with target-trial
selection. (B) DE with gradient-based repair method. Full-size DOI: 10.7717/peerj-cs.2095/fig-2
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and the constraint violation degree GðxgÞ are then evaluated. In step 8, a trial vector ug;i is
generated for each target vector xg;i, using mutation and binomial crossover (rand/1/bin).
The integer variables in ug;i are rounded in step 9 before evaluating the vector in step 10. In
the selection operation (steps 11 to 20), the trial vector is compared to its corresponding
target vector. In step 11, the best solution is selected according to the feasibility rules
described in “Base Methods”. If the trial vector fails to improve its target but still has a
lower objective function value ðf ðug;iÞ < f ðxg;iÞÞ, and no other vector of the same
subproblem has been repaired in the current generation ðyug;i =2YÞ, this trial vector is
repaired in step 14. In step 16, following the feasibility rules, the better solution between
the repaired vector and its target vector passed to the population of the next generation
Pgþ1. Through these steps, G-DEmi generates a new population in each generation.

Algorithm 2 G-DEmi framework.

Input: NP;CR; F; kmax;Tmin; Evalmax ;

Output: best solution;

1: initialize population Pg ;

2: evaluate f ðxgÞ and GðxgÞ for each individual in Pg ;

3: Eval 1;

4: g  1;

5: while Eval < Evalmax do

6: Y [;

7: for each individual xg;i in Pg do

8: generate a trial vector ug;i;

9: round the integer variables in ug;i;

10: evaluate f ðug;iÞ and Gðug;iÞ
11: if ug;i is better than xg;i then

12: store ug;i into Pgþ1;

13: else if f ðug;iÞ < f ðxg;iÞ and yug;i=2Y then

14: repair ug;i according to Algorithm 1;

15: evaluate f ðug;iÞ and Gðug;iÞ
16: if ug;i is better than xg;i then

17: store ug;i into Pgþ1;

18: end if

19: Y ¼ Y [ yug;i;

20: end if

21: update Eval;

22: end for

23: g  g þ 1;

24: end while
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EXPERIMENTAL STUDY
Settings
Twenty-eight benchmark MINLP minimization problems (F1-F28) were employed to
thoroughly evaluate the performance of G-DEmi. They were proposed in Liu et al. (2021a),
Datta & Figueira (2013), Liu et al. (2023) and MINLPLib (2023). Some problems have
several discontinuous feasible parts with different sizes, and the best solution is located in
the smallest part (F1-F4). Other problems have equality constraints (F5, F7, F13, and F14),
large dimensionality (F8-F12 and F15, F16, and F18), or binary variables (F17, F22, and
F23). Finally, F19 and F26-F28 are highly constrained problems. The details of these test
functions can be found in Supplemental File S1, and a summary of their main features is
presented in Table 1, where n is the number of variables of the problem; n1 and n2 are the

Table 1 Main features of the 28 benchmark MINLP problems.

Problem n n1 n2 IC EC AC OF type

F1 2 1 1 1 0 1 Nonlinear

F2 3 1 2 1 0 1 Nonlinear

F3 2 1 1 3 0 1 Linear

F4 2 1 1 2 0 1 Linear

F5 2 1 1 0 1 1 Nonlinear

F6 2 1 1 2 0 1 Nonlinear

F7 5 3 2 0 3 3 Nonlinear

F8 8 5 3 6 0 6 Linear

F9 8 5 3 6 0 6 Linear

F10 8 5 3 6 0 6 Linear

F11 15 12 3 5 0 4 Nonlinear

F12 15 10 5 5 0 4 Nonlinear

F13 6 4 2 0 4 4 Nonlinear

F14 6 4 2 0 4 4 Nonlinear

F15 10 7 3 8 0 4 Nonlinear

F16 10 5 5 8 0 4 Nonlinear

F17 6 3 3 6 0 3 Nonlinear

F18 20 10 10 1 0 1 Linear

F19 6 4 2 6 3 6 Linear

F20 3 1 2 2 0 2 Nonlinear

F21 5 3 2 6 0 2 Nonlinear

F22 13 3 10 9 0 6 Nonlinear

F23 7 3 4 9 0 4 Nonlinear

F24 7 4 3 4 0 0 Nonlinear

F25 4 2 2 3 0 2 Nonlinear

F26 8 4 4 0 4 4 Nonlinear

F27 8 3 5 0 3 3 Nonlinear

F28 8 4 4 5 4 5 Nonlinear
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numbers of continuous and discrete variables, respectively; IC and EC are the numbers of
inequality and equality constraints, respectively; and AC is the number of active
constraints for the best-known solution so far.

A performance evaluation was conducted to compare G-DEmi with six state-of-the-art
algorithms. Four different versions of DE were considered, including MI-EDDE
(Mohamed et al., 2019), BOToP (Liu et al., 2021b), FROFI (Wang et al., 2015), and SADE
(Qin & Suganthan, 2005; Huang, Qin & Suganthan, 2006), as well as two EAs based on
different paradigms: PSOmv (Wang, Zhang & Zhou, 2021) based on particle swarm
optimization, and EDAmv (Molina-Pérez et al., 2022) based on estimation of distribution.
The versions of FROFI and SADE were combined with the cutting and repulsion strategy
(CaR) proposed in Liu et al. (2021a), resulting in FROFI-CaR and SADE-CaR, respectively.
Furthermore, we conducted experiments to evaluate the effectiveness of the gradient-based
repair method in other state-of-the-art DE variants. Two recent approaches were
considered for this purpose: chaotic local search-based differential evolution (CJADE)
(Gao et al., 2019) and DE with CaR plus surviving solutions (DE-CaR+S) (Molina-Pérez
et al., 2024). CJADE has demonstrated high efficacy in optimization problems with
continuous variables, while DE-CaR+S has reported remarkable results in MINLP
problems. We performed the following comparative analysis: CJADE-CaR (CJADE with
CaR strategy) vs. G-CJADEmi (CJADE with gradient-based repair) and DE-CaR+S vs. G-
DEmi+S (DE with gradient-based repair plus surviving solutions).

Due to the stochastic nature of EAs, more than simply assessing the quality of
outcomes is required to evaluate their performance. Hence, in this experiment,
descriptive and inferential statistics were employed. To achieve this, each problem was
solved with a maximum of 200,000 OF evaluations and 30 independent runs. The
equality-constraint tolerance was set at 1� 10�04. A run was considered successful if

jf ðxbestÞ � f ðx	Þj � 1� 10�04, where x	 denotes the best-known solution and xbest
represents the best solution generated by the algorithm. All algorithms and their instances
were executed using the same computing resources: an Intel Core i7 -4790 CPU @3.6 GHz
and 32 GB RAM with Windows 10 Enterprise N and MATLAB 2023a (The MathWorks,
Natick, MA, USA).

The iRace parameter tuning tool was used to select parameter sets for all algorithms
(López-Ibáñez et al., 2016). The tuning process used a representative set of test problems
consisting of F1, F3, F5, F7, F9, F10, F12, F14, F16, F18, F20, F22, F24, F26, and F28. For
each algorithm, 2,000 experiments were conducted in iRace. The parameters used in each
algorithm are presented in Table 2, where population size is denoted by NP, crossover rate
by CR, scaling factor by F, maximum number of repair iterations by kmax, minimum repair
tolerance by Tmin, proportion of population partitions by Pa, and initial tolerance for
equality constraints by e0. Parameters tc and cp are the controllers of the e-constrained
method. For algorithms with a learning process, L denotes the learning iteration count, a is
the learning rate, r represents the chaotic search radius, c is the rate of parameter
adaptation, p is the greediness of the mutation strategy, e is the link parameter, rM is the
mutation rate, b represents the mutation factor, w denotes the number of histogram bins, e
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represents the end bins parameter, Ac is the acceleration coefficient, and q represents the
shrinking parameter. The failure threshold is denoted by T. In replacement strategies, NR
indicates the number of surviving replacements, and d is the improvement tolerance.
Additionally, l1 and l2 represent the count of weighted difference vectors.

As described above, G-DEmi rounds the values of integer variables after the rand/1/bin
operation. The value of F suggested by iRace (higher than the 0.5 recommended by
Storn & Price, 1997) can be effective in reducing the repeated integer values after rounding
and encouraging the exploration of different discontinuous feasible parts. The value of CR
indicates that crossover is also significant in this scheme to prevent accelerated
convergence. The population of 50 individuals coincides with several successful DE
experiments for MINLP problems (Mohamed et al., 2019; Liu et al., 2021a).

Benchmark results and analysis
The experimental results were analyzed using descriptive statistics. The selected indicators
are widely recognized in the field for assessing algorithms, providing a comprehensive view
of their performance (Liu et al., 2021b, 2021a). The feasible rate (FR) represents the
percentage of runs in which the algorithm finds at least one feasible solution, whereas the
successful rate (SR) represents the percentage of runs in which the algorithm finds the
optimal solution within the given tolerance. Ave and Std denote the average and the
standard deviation of the best OF values of each problem from its 30 independent runs. If
an algorithm cannot achieve 100% FR, then the Ave and Std values are denoted as “NA”.
Mean FR and mean SR denote the mean feasible rate and the mean successful rate achieved
by the algorithm over the twenty-eight test problems. T represents the average execution
time for each problem in seconds.

Inferential statistics were employed to evaluate the statistical significance of the
differences in results. A comparison between G-DEmi and the other algorithms was
carried out using the Wilcoxon Rank-Sum Test (WRST) with a 0.05 significance level

Table 2 Algorithm parameters.

Algorithm NP CR F or b kmax Tmin T Additional parameters

MI-EDDE 60 0.8086 [0.6268–0.9459] – – – Pa ¼ 10, e0 ¼ 4:3137

BOToP 40 {0.1, 0.2, 1.0} {0.6, 0.8, 1.0} – – – –

SADE-CaR 60 Adaptative Adaptative – – 800 –

FROFI-CaR 60 {0.1, 0.2, 1.0} {0.6, 0.8, 1.0} – – 400 –

G-DEmi 50 0.793 0.7 50 1� 10�64 – –

CJADE-CaR 50 Adaptative Adaptative – – 400 r ¼ 0:0851, c ¼ 0:3686, p ¼ 0:05, L ¼ 50, q ¼ 0:9733.

G-CJADEmi 50 Adaptative Adaptative 50 1� 10�64 – r ¼ 0:1447, c ¼ 0:0304, p ¼ 0:1, L ¼ 100, q ¼ 0:9188.

DE-CaR+S 50 [0.5154–0.9154] [0.4806–0.5501] – – 400 d ¼ 0:4� 10�04, NR ¼ 5, l1 ¼ 1, l2 ¼ 3.

G-DEmi+S 60 [0.7241–0.9241] [0.5295–0.6726] 80 1� 10�64 – NR ¼ 3, l1 ¼ 1, l2 ¼ 3.

PSOmv 300 – – – – – Ac ¼ 1:2482, a ¼ 0:0173.

EDAmv 100 – [0.2165–0.6306] – – – w ¼ 4, eb ¼ 2:4722, tc ¼ 1000, cp ¼ 7:2427, ep ¼ 0:3508,
rM ¼ 0:6603.
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Table 3 Performance comparison conducted over 30 independent runs with 200,000 OF evaluations for MI-EDDE, BOToP, SADE-CaR,
FROFI-CaR, and G-DEmi (Part 1 of 2).

Prob. Parameter MI-EDDE BOToP SADE-CaR FROFI-CaR G-DEmi

F1 FR 100 100 100 100 100

SR 0 100 100 100 100

Ave 1.70E+01 + 1.30E+01 1.30E+01 � 1.30E+01 � 1.30E+01

Std 4.62E−3 7.23E−15 9.57E−13 3.03E−11 7.23E−15

T 6.20E+00 6.06E+00 5.30E+00 7.28E+00 3.60E+00

F2 FR 100 100 100 100 100

SR 0 100 100 100 100

Ave 2.00E+00 + 1.00E+00 � 1.00E+00 � 1.00E+00 � 1.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 6.38E+00 3.35E+00 1.07E+01 6.23E+00 3.67E+00

F3 FR 100 100 100 100 100

SR 16.67 96.67 100 100 100

Ave −3.58E+00 + −3.98E+00 � −4.00E+00 � −4.00E+00 � −4.00E+00

Std 1.90E−01 9.13E−02 0.00E+00 0.00E+00 0.00E+00

T 6.26E+00 7.33E+00 5.39E+00 7.60E+00 3.72E+00

F4 FR 100 100 100 100 100

SR 100 100 100 100 100

Ave −6.00E+00 � −6.00E+00 � −6.00E+00 � −6.00E+00 � −6.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 6.33E+00 4.92E+00 5.30E+00 7.50E+00 3.43E+00

F5 FR 100 100 100 100 100

SR 100 93.33 100 100 100

Ave 2.50E−01 � 3.16E−01 � 2.50E−01 � 2.50E−01 � 2.50E−01

Std 8.47E−17 2.51E−01 8.47E−17 8.47E−17 2.54E−05

T 6.42E+00 2.39E+00 5.62E+00 4.87E+00 3.48E+00

F6 FR 100 100 100 100 100

SR 96.67 100 100 100 100

Ave −6.71E+03 � −6.78E+03 � −6.78E+03 � −6.78E+03 � −6.78E+03

Std 2.66E+02 2.78E−12 2.78E−12 2.78E−12 2.78E−12

T 6.48E+00 5.74E+00 5.25E+00 5.82E+00 3.60E+00

F7 FR 100 83.33 100 100 100

SR 0 16.67 0 100 100

Ave 1.00E+00 + NA 1.00E+00 + 2.11E−01 � 2.11E−01

Std 0.00E+00 NA 0.00E+00 1.46E−16 1.13E−16

T 6.41E+00 1.90E+00 1.07E+01 7.79E+00 7.45E+00

F8 FR 100 100 100 100 100

SR 0 0 90 86.67 96.67

Ave 7.21E+03 + 7.09E+03 + 7.06E+03 � 7.06E+03 � 7.06E+03

Std 1.60E+02 3.90E+01 9.33E+00 1.03E+01 6.90E+00

T 6.78E+00 8.77E+00 9.67E+00 7.75E+00 1.52E+01

F9 FR 100 100 100 100 100

(Continued)
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(Derrac et al., 2011). Additionally, we applied the Bonferroni correction to control the
family-wise error rate that arises from multiple pairwise comparisons (Dinno, 2015). The
symbols indicating the superiority, inferiority, or similarity of our proposal compared to
each competitor are denoted by “+,” “−,” and “�”, respectively.

Tables 3 and 4 present the statistical values of each problem, in separate rows. For
example, in problem F1, all algorithms successfully found feasible solutions across all
executions, yielding 100% FR. The success rates indicate that MI-EDDE failed every run
(SR = 0), whereas the other competing algorithms consistently achieved the optimal
solution (SR = 100). Based on WRST, G-DEmi was comparable to the other competitors,

Table 3 (continued)

Prob. Parameter MI-EDDE BOToP SADE-CaR FROFI-CaR G-DEmi

SR 0 50.00 86.67 73.33 100

Ave 7.81E+03 + 7.15E+03 + 7.09E+03 � 7.13E+03 + 7.08E+03

Std 4.03E+02 1.21E+02 1.72E+01 8.67E+01 0.00E+00

T 6.47E+00 8.16E+00 9.77E+00 7.79E+00 8.72E+00

F10 FR 100 100 100 100 100

SR 0 53.33 96.67 83.33 100

Ave 8.83E+03 + 7.44E+03 + 7.15E+03 � 7.24E+03 � 7.13E+03

Std 1.29E+02 3.95E+02 8.52E+01 2.66E+02 0.00E+00

T 6.59E+00 7.31E+00 9.72E+00 7.82E+00 8.12E+00

F11 FR 100 100 100 100 100

SR 0 26.67 6.67 93.33 60.00

Ave 3.36E+01 + 3.38E+01 � 3.40E+01 + 3.35E+01 − 3.35E+01

Std 6.39E−02 5.60E−01 7.90E−01 3.31E−02 4.95E−02

T 7.02E+00 1.30E+01 9.48E+00 1.27E+01 5.49E+01

F12 FR 100 100 100 100 100

SR 46.67 46.67 10.00 26.67 100

Ave 5.88E+01 + 4.22E+01 � 4.21E+01 + 4.20E+01 + 4.17E+01

Std 2.65E+01 8.26E−01 1.83E−01 1.64E−01 3.69E−13

T 6.88E+00 1.30E+01 9.53E+00 1.27E+01 4.57E+01

F13 FR 80 100 100 100 100

SR 0 0 0 60.00 100

Ave NA 8.95E+03 + 8.94E+03 + 8.89E+03 + 8.88E+03

Std NA 2.13E+01 4.47E+01 5.06E+00 5.47E−12

T 6.83E+00 4.07E+00 1.25E+01 7.80E+00 1.60E+01

F14 FR 86.67 96.67 100 100 100

SR 16.67 0 23.33 63.33 100

Ave NA NA 8.95E+03 + 8.95E+03 + 8.95E+03

Std NA NA 5.05E+00 2.57E+00 3.70E−12

T 6.74E+00 2.82E+00 1.26E+01 7.82E+00 6.87E+00

Note:
Values in boldface indicate the best result.
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Table 4 Performance comparison conducted over 30 independent runs with 200,000 OF evaluations for MI-EDDE, BOToP, SADE-CaR,
FROFI-CaR, and G-DEmi (Part 2 of 2).

Prob. Parameter MI-EDDE BOToP SADE-CaR FROFI-CaR G-DEmi

F15 FR 100 100 100 100 100

SR 13.33 0 0 26.67 96.67

Ave 2.97E+01 + 3.05E+01 + 2.88E+01 + 2.87E+01 + 2.84E+01

Std 1.18E+00 9.50E-01 3.12E-08 1.86E−01 7.53E−02

T 6.54E+00 6.12E+00 9.18E+00 8.03E+00 1.16E+01

F16 FR 100 100 100 100 100

SR 66.67 0 100 100 100

Ave 2.94E+01 + 3.11E+01 + 2.85E+01 � 2.85E+01 � 2.85E+01

Std 1.24E+00 3.79E−15 1.10E−10 1.87E−14 9.67E−15

T 6.66E+00 6.33E+00 9.76E+00 8.02E+00 9.60E+00

F17 FR 100 0 100 100 100

SR 13.33 0 0 0 100

Ave 6.06E+00 + NA 8.62E+00 + 7.67E+00 + 6.01E+00

Std 4.13E−02 NA 3.28E+00 2.07E−14 2.71E−15

T 6.41E+00 4.32E+00 1.06E+01 7.82E+00 5.04E+00

F18 FR 100 100 100 100 100

SR 33.33 86.67 76.67 100 100

Ave −2.17E+01 + −2.17E+01 + −2.17E+01 + −2.17E+01 � −2.17E+01

Std 1.51E−02 1.42E−02 1.06E−02 6.09E−13 1.72E−08

T 6.72E+00 9.85E+00 1.04E+01 8.82E+00 1.51E+01

F19 FR 0 0 0 0 100

SR 0 0 0 0 100

Ave NA NA NA NA 9.92E+01

Std NA NA NA NA 0.00E+00

T 6.52E+00 6.99E+00 1.33E+01 7.20E+00 8.17E+00

F20 FR 100 90 100 100 100

SR 73.33 40 76.67 100 100

Ave −5.54E+00 + NA −5.57E+00 + −5.68E+00 � −5.68E+00

Std 2.53E−01 NA 2.39E−01 9.03E−16 9.03E−16

T 6.40E+00 1.21E+01 1.17E+01 7.75E+00 3.85E+00

F21 FR 100 100 100 100 100

SR 100 100 100 100 100

Ave −3.07E+04 � −3.07E+04 � −3.07E+04 � −3.07E+04 � −3.07E+04

Std 1.38E−11 1.48E−11 1.45E−11 1.48E−11 1.44E−11

T 6.40E+00 1.18E+01 1.18E+01 7.91E+00 4.43E+00

F22 FR 100 100 100 100 100

SR 93.33 100 100 100 100

Ave −1.50E+01 � −1.50E+01 � −1.50E+01 � −1.50E+01 � −1.50E+01

Std 6.24E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 6.86E+00 1.59E+01 1.39E+01 9.02E+00 4.10E+00

F23 FR 100 100 100 100 100

(Continued)
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except for MI-EDDE, which was significantly inferior. Additionally, MI-EDDE had the
fastest average execution time of 5.91 s. The remaining problems were analyzed similarly.

Mean FR, mean SR, and the final count of WRST are provided in the last section of
Table 4. It can be observed that G-DEmi reached feasible solutions in all executions for all
problems, 100% of Mean FR, surpassing the 84.52% for MI-EDDE, 82.86% for BOToP,
85.83% for SADE-CaR, and 90.36% for FROFI-CaR. Note that the highly constrained
condition of problems F19 and F26-F28 had no influence on the FR of G-DEmi. However,

Table 4 (continued)

Prob. Parameter MI-EDDE BOToP SADE-CaR FROFI-CaR G-DEmi

SR 100 50 100 100 93.33

Ave 3.56E+00 � 3.58E+00 + 3.56E+00 � 3.56E+00 � 3.56E+00

Std 1.36E−15 3.87E−02 1.36E−15 1.36E−15 5.61E−03

T 6.60E+00 5.88E+00 1.28E+01 7.92E+00 5.00E+00

F24 FR 100 100 100 100 100

SR 96.67 50 100 100 100

Ave 6.83E+02 � 6.83E+02 + 6.83E+02 � 6.83E+02 � 6.83E+02

Std 2.92E−02 8.13E−02 7.00E−14 4.22E−14 6.68E−14

T 6.70E+00 7.88E+00 1.16E+01 7.97E+00 6.22E+00

F25 FR 100 100 100 100 100

SR 100 100 100 13.33 100

Ave 6.06E+03 � 6.06E+03 � 6.06E+03 � 6.06E+03 + 6.06E+03

Std 9.25E−13 9.25E−13 9.25E−13 5.71E+00 9.25E−13

T 6.49E+00 9.84E+00 1.06E+01 7.77E+00 4.20E+00

F26 FR 0 0 0 0 100

SR 0 0 0 0 100

Ave NA NA NA NA 1.39E−07

Std NA NA NA NA 2.71E−07

T 6.72E+00 1.15E+01 1.22E+01 8.03E+00 5.68E+00

F27 FR 0 13.33 3.33 30 100

SR 0 0 0 30 100

Ave NA NA NA NA 5.98E+00

Std NA NA NA NA 0.00E+00

T 6.64E+00 2.74E+00 1.21E+01 7.79E+00 5.70E+00

F28 FR 0 36.67 0 100 100

SR 0 0 0 100 100

Ave NA NA NA 6.06E+00 � 6.06E+00

Std NA NA NA 2.71E−15 2.71E−15

T 6.74E+00 2.19E+00 1.21E+01 1.07E+01 8.74E+00

Mean FR 84.52 82.86 85.83 90.36 100.00

Mean SR 38.10 46.79 59.52 73.45 98.10

WRST [+/�/−] [20/8/0] [17/11/0] [13/15/0] [10/17/1]

Note:
Values in boldface indicate the best result.
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this condition significantly affected the performance of the competing algorithms. In terms
of mean SR, G-DEmi obtained the highest value at 98.10%, followed by FROFI-CaR at
73.45%, SADE-CaR at 59.52%, BOToP at 46.79%, and MI-EDDE at 38.10%. The final
count of WRST shows that G-DEmi significantly outperformed MI-EDDE in 20
problems, whereas both algorithms had similar results in eight problems, with MI-EDDE
never surpassing the performance of G-DEmi. BOToP is significantly outperformed by
G-DEmi in 17 problems, equaled in 11 problems, and never achieving better results than
G-DEmi. Similarly, FROFI-CaR was surpassed by G-DEmi in 10 problems, whereas its
results were similar for 17 problems, and it only significantly exceeded G-DEmi in one
problem (F11).

In this experiment, there were some outlier values that should be noted. For problems
F1-F3, the solutions of MI-EDDE tended to converge towards local optima deliberately
located in the most accessible discontinuous feasible parts. In contrast, problems F7 and
F13, with equality constraints, affected the performance of other algorithms but not the G-
DEmi proposal. In problems F8-F10, certain points were attractive to the algorithm
population, with MI-EDDE and POToP showing the worst performances. Problem F11
has more than 10 real variables and a high sensitivity of the objective function to small
variations in the decision variables. As a result, G-DEmi did not reach the solution before
finishing the execution in 40% of the cases. Remarkable advantages of G-DEmi over
PSOmv and EDAmv are shown in Tables S5 and S6 in Supplementary File S2. PSOmv and
EDAmv obtained Mean FR values of 85.83% and 88.45%, and Mean SR values of 14.17%
and 37.74%, respectively. G-DEmi outperformed PSOmv in 25 problems, with only three
instances of similar performance. On the other hand, EDAmv was outperformed in 21
problems and only achieved similar performances in seven problems. G-DEmi did not
exhibit inferior performance with respect to PSOmv and EDAmv in any case.

The experiments involving the gradient-based repair method with other DE variants are
reported in Tables 5 and 6. These tables present the results of CJADE-CaR vs. G-CJADEmi
and DE-CaR+S vs. G-DEmi+S. The comparison highlights that G-CJADEmi
outperformed CJADE-CaR, achieving 100% of Mean FR and 90.48% of Mean SR
compared to 98.81% and 69.05%, respectively. G-CJADEmi exhibited better results in 12
problems and similar results in 14 problems, but CJADE-CaR performed better in
problems F15 and F23. In the second competition, G-DEmi+S surpassed DE-CaR+S with a
Mean FR of 99.52% vs. 90.24% and a Mean SR of 91.55% vs. 83.93%. G-DEmi+S achieved
better results in seven problems, with no significant difference in 19 problems, and was
outperformed in F12 and F23 by DE-CaR+S. In general, the variants with gradient-based
repair exhibited notable superiority, with G-DEmi as the most promising in terms of
feasibility and success.

Additionally, an analysis was conducted to examine the convergence of G-DEmi during
the evolutionary process. Three problems were selected for this: F3 with two variables, F12
with 15 variables and high sensitivity of OF to changes in decision variables, and F27
highly constrained. Figure 3 shows the convergence curves of the median solutions in
terms of solution quality for problem F12. Each curve starts from the generation of at least
one feasible solution. A star marker on each curve shows when the algorithm reached the
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Table 5 Performance comparison conducted over 30 independent runs with 200,000 OF evaluations for CJADE-CaR, G-CJADEmi, DE-CaR
+S, and G-DEmi+S (Part 1 of 2).

Problem Parameter CJADE-CaR G-CJADEmi DE-CaR+S G-DEmi+S

F1 FR 100 100 100 100

SR 100 100 100 100

Ave 1.30E+01 � 1.30E+01 1.30E+01 � 1.30E+01

Std 5.27E−12 7.23E−15 6.79E−12 7.23E−15

T 5.21E+00 1.37E+01 1.16E+01 4.87E+00

F2 FR 100 100 100 100

SR 100 100 100 100

Ave 1.00E+00 � 1.00E+00 1.00E+00 � 1.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 6.20E+00 1.09E+01 1.49E+01 1.03E+01

F3 FR 100 100 100 100

SR 100 100 100 100

Ave −4.00E+00 � −4.00E+00 −4.00E+00 � −4.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 5.76E+00 1.35E+01 1.52E+01 1.10E+01

F4 FR 100 100 100 100

SR 100 100 100 100

Ave −6.00E+00 � −6.00E+00 −6.00E+00 � −6.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 5.77E+00 1.24E+01 1.69E+01 1.03E+01

F5 FR 100 100 100 100

SR 100 100 100 100

Ave 2.50E−01 � 2.50E−01 2.50E−01 � 2.50E−01

Std 8.47E−17 8.47E−17 8.47E−17 8.47E−17

T 5.69E+00 1.36E+01 1.47E+01 1.03E+01

F6 FR 100 100 100 100

SR 100 100 100 100

Ave −6.78E+03 � −6.78E+03 −6.78E+03 � −6.78E+03

Std 2.78E−12 2.78E−12 2.78E−12 2.78E−12

T 5.85E+00 1.32E+01 1.66E+01 1.06E+01

F7 FR 100 100 100 100

SR 0 93.33 90 100

Ave 9.59E−01 + 2.43E−01 2.83E−01 � 2.11E−01

Std 3.26E−02 1.36E−01 2.20E−01 1.13E−16

T 5.56E+00 2.04E+01 1.60E+01 1.86E+01

F8 FR 100 100 100 100

SR 83.33 96.67 96.67 100

Ave 7.06E+03 + 7.06E+03 7.06E+03 + 7.06E+03

Std 1.15E+01 9.33E+00 9.33E+00 2.78E−12

T 3.74E+00 4.10E+01 2.28E+01 3.23E+01

F9 FR 100 100 100 100

(Continued)
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Table 5 (continued)

Problem Parameter CJADE-CaR G-CJADEmi DE-CaR+S G-DEmi+S

SR 50 100 100 100

Ave 7.12E+03 + 7.08E+03 7.08E+03 � 7.08E+03

Std 4.73E+01 0.00E+00 5.13E−12 0.00E+00

T 4.19E+00 2.84E+01 2.06E+01 2.51E+01

F10 FR 100 100 100 100

SR 73.33 100 96.67 100

Ave 7.18E+03 + 7.13E+03 7.13E+03 + 7.13E+03

Std 1.42E+02 0.00E+00 8.05E−04 0.00E+00

T 4.47E+00 2.77E+01 1.98E+01 2.54E+01

F11 FR 100 100 100 100

SR 20 63.33 100 53.33

Ave 3.49E+01 + 3.36E+01 3.35E+01 � 3.36E+01

Std 1.41E+00 1.15E−01 5.52E−06 6.63E−02

T 3.56E+00 3.44E+01 2.12E+01 7.06E+01

F12 FR 100 100 100 100

SR 23.33 43.33 100 76.67

Ave 4.22E+01 + 4.37E+01 4.17E+01 − 4.18E+01

Std 3.33E−01 9.92E+00 5.77E−08 1.42E−01

T 3.66E+00 2.48E+01 1.85E+01 5.64E+01

F13 FR 100 100 100 100

SR 53.33 100 100 100

Ave 8.89E+03 + 8.88E+03 8.88E+03 � 8.88E+03

Std 1.36E+01 5.55E−12 5.55E−12 5.55E−12

T 5.15E+00 2.93E+01 1.90E+01 8.08E+01

F14 FR 100 100 100 100

SR 90 100 100 100

Ave 8.95E+03 � 8.95E+03 8.95E+03 � 8.95E+03

Std 1.33E+00 3.70E−12 3.70E−12 3.70E−12

T 5.43E+00 3.03E+01 1.78E+01 4.65E+01

Note:
Values in boldface indicate the best result.

Table 6 Performance comparison conducted over 30 independent runs with 200,000 OF evaluations for CJADE-CaR, G-CJADEmi, DE-CaR
+S, and G-DEmi+S (Part 2 of 2).

Problem Parameter CJADE-CaR G-CJADEmi DE-CaR+S G-DEmi+S

F15 FR 100 100 100 100

SR 90 16.67 73.33 16.67

Ave 2.84E+01 − 2.87E+01 2.85E+01 � 2.87E+01

Std 1.05E−01 1.56E−01 1.86E−01 1.56E−01

T 4.58E+00 2.03E+01 1.81E+01 3.95E+01

F16 FR 100 100 100 100

SR 100 100 100 100

(Continued)
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Table 6 (continued)

Problem Parameter CJADE-CaR G-CJADEmi DE-CaR+S G-DEmi+S

Ave 2.85E+01 � 2.85E+01 2.85E+01 � 2.85E+01

Std 1.03E−14 1.43E−14 1.56E−12 1.36E−14

T 5.38E+00 1.80E+01 1.85E+01 3.37E+01

F17 FR 100 100 100 100

SR 26.67 100 100 100

Ave 8.21E+00 + 6.01E+00 6.01E+00 � 6.01E+00

Std 2.96E+00 2.71E−15 3.50E-09 2.71E−15

T 3.78E+00 1.43E+01 1.42E+01 1.59E+01

F18 FR 100 100 100 100

SR 46.67 90 100 100

Ave −2.17E+01 � −2.17E+01 −2.17E+01 � −2.17E+01

Std 1.67E−03 2.43E−02 4.34E−09 9.24E−15

T 4.53E+00 1.76E+01 3.75E+01 5.12E+01

F19 FR 66.67 100 10 100

SR 6.67 93.33 6.67 90

Ave NA 9.98E+01 NA 1.00E+02

Std NA 2.06E+00 NA 2.48E+00

T 3.86E+00 1.49E+01 1.47E+01 1.64E+01

F20 FR 100 100 100 100

SR 100 100 100 96.67

Ave −5.68E+00 � −5.68E+00 −5.68E+00 � −5.67E+00

Std 9.03E−16 9.03E−16 9.03E−16 1.08E−01

T 6.25E+00 1.48E+01 1.67E+01 1.05E+01

F21 FR 100 100 100 100

SR 100 100 100 100

Ave −3.07E+04 � −3.07E+04 −3.07E+04 � −3.07E+04

Std 1.34E−11 1.48E−11 1.48E−11 1.48E−11

T 5.89E+00 1.48E+01 1.73E+01 1.35E+01

F22 FR 100 100 100 100

SR 100 100 100 100

Ave −1.50E+01 � −1.50E+01 −1.50E+01 � −1.50E+01

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T 6.46E+00 1.49E+01 1.97E+01 1.49E+01

F23 FR 100 100 100 100

SR 90 46.67 100 80

Ave 3.56E+00 − 3.69E+00 3.56E+00 − 3.56E+00

Std 6.75E−03 3.19E-01 1.36E−15 9.00E−03

T 5.88E+00 1.36E+01 1.65E+01 1.52E+01

F24 FR 100 100 100 100

SR 100 100 100 100

Ave 6.83E+02 � 6.83E+02 6.83E+02 � 6.83E+02

(Continued)
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Table 6 (continued)

Problem Parameter CJADE-CaR G-CJADEmi DE-CaR+S G-DEmi+S

Std 9.44E−14 2.99E−14 1.10E−13 1.32E−13

T 6.09E+00 1.43E+01 1.71E+01 1.50E+01

F25 FR 100 100 100 100

SR 100 100 80 100

Ave 6.06E+03 � 6.06E+03 6.06E+03 + 6.06E+03

Std 9.25E−13 9.25E−13 4.21E+00 9.25E−13

T 6.01E+00 1.67E+01 1.95E+01 1.24E+01

F26 FR 100 100 0 90

SR 80 100 0 90

Ave 1.12E−02 + 3.36E−08 NA NA

Std 4.23E−02 1.42E−07 NA NA

T 4.74E+00 1.61E+01 5.06E+01 1.34E+01

F27 FR 100 100 56.67 96.67

SR 0 90 6.67 66.67

Ave 6.95E+00 + 5.99E+00 NA NA

Std 2.42E−01 4.63E−02 NA NA

T 5.39E+00 1.58E+01 4.36E+01 1.56E+01

F28 FR 100 100 60 100

SR 0 100 0 93.33

Ave 1.66E+03 + 6.06E+00 NA 6.21E+00

Std 1.29E+03 2.71E−15 NA 6.04E−01

T 5.25E+00 4.43E+01 4.14E+01 1.85E+01

Mean FR 98.81 100 90.24 99.52

Mean SR 69.05 90.48 83.93 91.55

WRST [+/�/−]
[12/14/2] [7/19/2]

Note:
Values in boldface indicate the best result.
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Figure 3 Convergence curves of the median solutions from the 30 runs for problem F12.
Full-size DOI: 10.7717/peerj-cs.2095/fig-3

Molina-Pérez et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2095 24/35

http://dx.doi.org/10.7717/peerj-cs.2095/fig-3
http://dx.doi.org/10.7717/peerj-cs.2095
https://peerj.com/computer-science/


global solution. It is observed that G-DEmi converged rapidly and found the global
optimum before 100,000 evaluations (blue point). In contrast, the other algorithms
consumed 200,000 evaluations without achieving this result. In Supplemental File S2, Figs.
S1 and S2 show the curves for F3 and F27, indicating an even more favorable outcome for
G-DEmi.

Likewise, the impact of the parameters kmax and Tmin on the performance of G-DEmi
was analyzed through the described problems. For each problem, 30 executions of 200,000
evaluations were carried out using different combinations of them, while the other
parameters remained fixed at previously reported values. In Supplemental File S2, Tables
S2, S3, and S4 show the average execution times [s] and the average OF values for each
instance. The best values are highlighted in bold. In general, the performance was adversely
affected by the option of no repair (kmax ¼ 0), and better performances were seen as kmax

increased and Tmin decreased. However, it is important to note that a longer repair process
resulted in higher time consumption. Therefore, the execution times could be a
determining factor for reasonable values such as those used. Values of kmax equal to 50 and
100, and Tmin of 1� 10�60 and 1� 10�80 proved effective in this study. The consistency of
the performance suggests that both parameters have a robust behavior concerning the
algorithm’s performance.

In summary, the comprehensive analysis of the applied metrics reveals that the general
performance of G-DEmi surpassed the other state-of-the-art algorithms. Notably, WRST
confirmed the statistical significance of the observed differences in results. The variety of
the solved problems indicates that the gradient-based method contributes to the
performance of G-DEmi in a wide range of MINLP problems. Even in highly constrained
problems with challenging feasible regions, the proposed approach has consistently
demonstrated remarkable success rates. The successful integration of the gradient-based
repair method across both standard and advanced versions of DE emphasizes the
robustness and effectiveness of this approach within the context of this evolutionary
algorithm.

It is important to note that, unlike the methods that promote diversity using
additional variation operators such as composite trial generation, self-adaptive
parameters, or dynamic parameters, G-DEmi uses the conventional variation operators of
DE/rand/1/bin. The success of G-DEmi is due to the efficient search process within each
subproblem provided by the gradient-based repair method. The proposed repair method
compensates, to a large extent, the insensibility of DE to constraints in the context of
MINLP problems.

REAL-WORLD CASE STUDY
Description
An important number of real-world optimization problems are MINLP problems. For this
reason, we selected a well-known real problem as a case study to evaluate the performance
of G-DEmi. The subway optimization problem (SOP) was proposed in Bock & Longman
(1982) for the New York subway system as a dynamic nonlinear mixed-integer control
problem. The aim is to minimize the energy consumption of a train between two stations,
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taking into account the dynamic model and other constraints. The decision variables for
this problem include the operating modes for the route (integer variables) as well as the
switching times for each operating mode (real variables). A significant challenge in solving
this problem is the presence of mixed variables, specifically in the form of time-dependent
integer variables (Belotti et al., 2013).

In this study, we address the variant of SOP illustrated in Fig. 4 and described in
Sager (2005), Sager, Bock & Reinelt (2009), Lee & Leyffer (2011). The subway starts with
zero values of time, position, and velocity, and is required to come to a complete stop (zero
velocity) at a position 2,112 ft ahead, within a maximum time of 65 s. A path constraint is
added to a subset of the track, requiring that the subway’s velocity never exceeds 24 mph
(35.2 ft/s) from 1,200 ft to the end of the track. The initial conditions of the problem are
represented by the values (0, 0, 0) for time, position, and velocity, while the final conditions
correspond to (65, 2,112, 0).

Optimal control problem
The SOP is expressed as an optimal control problem in Eq. (19):

min
x;w

Z tf

0
Lðx;wÞdt

subject to : x0
: ¼ x1
x1
: ¼ f1ðx;wÞ
x1 � 35:2 if x0 � 1;200

xð0Þ ¼ ð0; 0ÞT ; xðtf Þ ¼ ð2;112;0ÞT
wðtÞ 2 1; 2; 3; 4f g; t 2 ½0; tf �:

(19)

The arrival time of the subway to the next station is denoted by the terminal time
tf ¼ 65 s. The differential states x0ð�Þ and x1ð�Þ represent the position of the train in ft and

velocity in ft/s, respectively. The subway can operate under four modes: wð�Þ ¼ 1 in serial,
wð�Þ ¼ 2 in parallel, wð�Þ ¼ 3 in coasting, and wð�Þ ¼ 4 in braking. The Lagrange term for
each of the four modes is defined in Eqs. (20)–(22):

Lðx; 1Þ ¼

ep1
3;600 ; if x1 � v1
ep2
3;600 ; if v1 < x1 � v2
e
P5

i¼0 cið1Þð0:1cx1Þ
�i

3;600 ; if v2 < x1

8>><
>>: (20)

(0, 0, 0) (65, 2112, 0)1200 ft

24
mph

Figure 4 Diagram of the SOP with velocity constraint. Full-size DOI: 10.7717/peerj-cs.2095/fig-4
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Lðx; 2Þ ¼
0; if x1 � v2
ep3
3;600 ; if v2 < x1 � v3
e
P5

i¼0 cið2Þð0:1cx1�1Þ
�i

3;600 ; if v3 < x1

8><
>: (21)

Lðx; 3Þ ¼ 0; Lðx; 4Þ ¼ 0: (22)

The acceleration function f ðx;wÞ for each operating mode is represented by Eqs. (23)–
(26):

f1ðx; 1Þ ¼

gea1
weff

; if x1 � v1
gea2
weff

; if v1 < x1 � v2
gðeTðx1;1Þ�Rðx1ÞÞ

weff
; if v2 < x1l

8><
>: (23)

f1ðx; 2Þ ¼
0; if x1 � v2

gea3
weff

; if v2 < x1 � v3
gðeTðx1;2Þ�Rðx1ÞÞ

weff
; if v3 < x1

8><
>: (24)

f1ðx; 3Þ ¼ � gRðx1Þ
weff

� C (25)

f1ðx; 4Þ ¼ �umax: (26)

In Eqs. (27)–(29), the drag force per car (R) and the tractive force per car (T) are
denoted in lb. The specific parameter values used in this model can be found in
Supplemental File S3.

Rðx1Þ ¼ cac2x21 þ
bW
2;000

cx1 þ 1:3
2;000

W þ 116 (27)

Tðx1; 1Þ ¼
X5

i¼0 bið1Þð0:1cx1 � 0:3Þ�i (28)

Tðx1; 2Þ ¼
X5

i¼0 bið2Þð0:1cx1 � 1Þ�i: (29)

Decision variables
The present problem comprises eight operational states along the subway track. Each state
is defined by a time interval in which one of the four operating modes is active. These states
can be mathematically expressed by Eq. (30).

wðtÞ ¼

w0 for t0 � t < t1
w1 for t1 � t < t2
w2 for t2 � t < t3
..
. ..

.

w7 for t7 � t < tf :

8>>>>><
>>>>>:

(30)

Since it is already known that t0 ¼ 0, tf ¼ 65, and w0 ¼ 1 (serial mode)
and w7 ¼ 4 (braking mode), the decision variable vector is defined as
d = ½t1; t2; t3; t4; t5; t6; t7;w1;w2;w3;w4;w5;w6�.
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Numeric scheme
In this work, the single shooting method is used to convert the boundary value problem
into an initial value problem. Therefore, the final conditions xðtf Þ are considered as two
additional equality constraints. The dynamic model is then solved using Runge Kutta 45
with a relative error tolerance of 1� 10�04. The path constraint is activated at an unknown
time, 1,200 ft away from the initial position, and an event detection technique is used to
determine the exact time of constraint activation. The bisection method is employed with a
tolerance of 1� 10�06 to enclose the solution between the times before and after the event.
Similarly, the same process is used to determine the exact time when the subway stops after
the braking mode, and when the finishing line is crossed.

Results and analysis
The case study was solved using MI-EDDE, SADE-CaR, FROFI-CaR, CJADE-CaR, G-
CJADEmi, DE-CaR+S, G-DEmi+S, and G-DEmi algorithms. BOToP was unsuitable for
this problem because its procedure involves evaluating solutions without integrity
conditions, which was impossible in this case. Each algorithm was executed 30 times with
100,000 evaluations per run. Table 7 shows the final results of each competing algorithm.
As can be seen, MI-EDDE, SADE-CaR, CJADE-CaR, DE-CaR+S, and FROFI-CaR failed
to find feasible solutions in any of the runs. In contrast, all DE variants with gradient-based
repair consistently produced feasible solutions in all 30 runs, with standard deviation
values consistently below 0.05. In this study, G-CJADEmi reported the best results,
yielding 1.355 kWh as the best fitness solution, with a corresponding decision vector of:

d	 ¼ ½0; 2:6747071; 15:9101142; 32:4524515; 34:1250172; 37:3175333; 49:6483266;
57:8272705; 65; 1; 2; 1; 4; 3; 1; 3; 4�:

In Sager (2005), the best solution reported was 1.384 kWh. However, it is important to
note that a fair comparison with Sager’s result is challenging due to the unknown
parameters of the numerical methods employed in that particular previous work.

Figure 5 shows the time-velocity curves of the best solutions obtained in this
experiment, including the solution reported in Sager (2005). The current operation mode is

Table 7 SOP results in 30 independent runs.

Parameter FR Best Median Worst Ave Std Desv Ave. Time per run [min]

G-DEmi 100 1.369E+00 1.406E+00 1.459E+00 1.409E+00 1.937E−02 5.76E+01

G-CJADEmi 100 1.355E+00 1.388E+00 1.462E+00 1.397E+00 2.656E−02 9.03E+01

G-DEmi+S 100 1.376E+00 1.414E+00 1.489E+00 1.420E+00 3.056E−02 3.73E+01

MI-EDDE 0 – – – – – 1.29E+01

SADE-CaR 0 – – – – – 2.73E+01

FROFI-CaR 0 – – – – – 5.04E+00

CJADE-CaR 0 – – – – – 3.01E+00

DE-CaR+S 0 – – – – – 2.85E+00

Note:
Values in boldface indicate the best result.

Molina-Pérez et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2095 28/35

http://dx.doi.org/10.7717/peerj-cs.2095
https://peerj.com/computer-science/


represented by w, and the red points indicate operation mode changes. As can be seen, the
behavior of the best solutions is based on three key factors that contribute to reducing
energy consumption: (i) returning to cruising speed (w ¼ 1) after the initial acceleration
(flattened zone of the curve), (ii) maintaining the path constraint active, and (iii) entering a
coasting zone (w ¼ 3) before the final braking operation. The behavior exhibited by all of
these solutions primarily consisted of these factors.
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Figure 5 Time-velocity curves of the best solution from: (A) Sager (2005). (B) G-DEmi. (C) G-
CJADEmi. (D) G-DEmi+CaR. The vertical dashed line indicates x0 ¼ 1200 ft, and the horizontal
dashed line corresponds to x1 = 32.5 ft/s. The upper right quadrant of the axes depicts the path con-
straint. Full-size DOI: 10.7717/peerj-cs.2095/fig-5
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The previous results verified the effectiveness of DE variants with gradient-based repair
in solving a real-world optimization problem, such as SOP. However, as in several test
problems, these variants had a higher running time. This suggests that the gradient-based
repair method could be a highly time-consuming process, particularly when dealing with
dynamic models as constraints. In Supplementary File S4, a time complexity analysis was
conducted for the G-DEmi proposal, demonstrating how the repair process can
significantly increase the algorithm’s complexity. Therefore, other strategies, such as
surrogate or coevolutionary methods, can be combined with the repair method to reduce
the required time.

CONCLUSIONS
In the MINLP problems, several discontinuous feasible parts are generated, which can be
analyzed as individual subproblems. The number of generated subproblems can be
considerable in many cases. Consequently, it becomes imperative to guide the search
towards promising subproblems, as well as an efficient exploration and exploitation within
each subproblem. However, traditional evolutionary algorithms exhibit insensitivity to
constraints, severely impacting their effectiveness in exploring highly constrained
subproblems, constituting a search bias towards subproblems with more accessible feasible
regions.

To address this issue, we proposed a variant of DE called G-DEmi, which incorporates a
gradient-based repair method for MINLP problems. The repair method aims to fix
infeasible solutions within different subproblems by using the gradient information of the
constraint set.

We conducted extensive experiments to evaluate the performance of G-DEmi. This
included testing it on 28 benchmark problems with diverse features, as well as applying it
to a real-world MINLP problem. The results consistently demonstrated that G-DEmi
outperformed several state-of-the-art algorithms. Notably, G-DEmi achieved high success
rates even in highly constrained problems where other algorithms failed to find feasible
solutions. These findings indicate that the gradient-based repair method significantly
contributes to the overall performance of G-DEmi. Furthermore, the gradient-based repair
method was successfully applied in other DE variants, highlighting its robustness and
effectiveness in a more general context of this evolutionary algorithm.

Another important point is that G-DEmi does not require additional strategies in the
variation operators to promote diversity. Instead, it successfully uses the conventional
variation operators of DE/rand/1/bin. The key to its success lies in the efficient search
process within each subproblem, which is due to the gradient-based repair method.
Therefore, this approach significantly mitigates the insensitivity of DE to constraints in the
context of MINLP problems.

The repair method could be highly time-consuming, particularly in real-world
problems with complex constraints. Therefore, its combination with strategies such as
surrogate or coevolutionary methods is recommended for future work to reduce the time
required for the repair process. However, gradient-based repair methods become
impractical when the constraint set lacks proper behavior or differentiation. In those cases,
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exploring alternative approaches, such as direct methods for constraint repairing, is
advisable. The integration of the gradient-based repair method into other evolutionary
approaches could be a significant contribution, allowing for the assessment of its
capabilities in a broader context. Additionally, future research will encompass the
evaluation of G-DEmi in scalability, large-scale, and multi-objective mixed-integer
problems.
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