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ABSTRACT
More sophisticated data access is possible with artificial intelligence (AI) techniques
such as question answering (QA), but regulations and privacy concerns have limited
their use. Federated learning (FL) deals with these problems, and QA is a viable
substitute for AI. The utilization of hierarchical FL systems is examined in this research,
along with an ideal method for developing client-specific adapters. The User Modified
Hierarchical Federated Learning Model (UMHFLM) selects local models for users’
tasks. The article suggests employing recurrent neural network (RNN) as a neural
network (NN) technique for learning automatically and categorizing questions based
on natural language into the appropriate templates. Together, local and global models
are developed, with the worldwide model influencing local models, which are, in turn,
combined for personalization. The method is applied in natural language processing
pipelines for phrase matching employing template exact match, segmentation, and
answer type detection. The (SQuAD-2.0), a DL-based QAmethod for acquiring knowl-
edge of complicated SPARQL test questions and their accompanying SPARQL queries
across the DBpedia dataset, was used to train and assess the model. The SQuAD2.0
datasets evaluate the model, which identifies 38 distinct templates. Considering the top
two most likely templates, the RNN model achieves template classification accuracy of
92.8% and 61.8% on the SQuAD2.0 and QALD-7 datasets. A study on data scarcity
among participants found that FL Match outperformed BERT significantly. A MAP
margin of 2.60% exists between BERT and FL Match at a 100% data ratio and an MRR
margin of 7.23% at a 20% data ratio.

Subjects Data Mining and Machine Learning, Data Science, Text Mining, Neural Networks
Keywords Federated learning, Natural language processing, Question answering, Accuracy, Exact
match, Artificial intelligence, Data science, Neural network, Machine learning, F1 score

INTRODUCTION
Question answering (QA) aims to provide appropriate answers to user-posedNL questions.
QA is a widely used and essential artificial intelligence (AI) technique that has garnered
significant attention in the academic and industry communities in recent years because of its
enormous prospective advantages to practical applications like Google Assistant, Apple’s
Siri, Amazon Alexa, and other assistants providing information with high intelligence
(Chen et al., 2019). QA searches articles for relevant responses to a particular topic. It is a
field of study that intersects two well-known research areas: natural language processing
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(NLP) and information retrieval (IR). In contrast to search engine-performed document
retrieval, question answering is based on extracting pertinent, concise replies that are more
topic-specific than long, topic-related materials (Yang et al., 2019). With rare exceptions,
supervised learning problems involving labelled data are commonly associated with quality
assurance (QA). Federated learning (FL) (Ng, Teo & Kwan, 2000), a unique machine
learning technique that preserves anonymity, has recently attracted much attention from
researchers.Mostmachine learningmodels are trained in a single location, giving themodel
owner complete access to all training data. On the other hand, FL uses a decentralized
method for training models. When clients engage in the most widely used FL approach,
they get access to a global model through a central orchestrating server. The most popular
FL technique is using a central orchestrating server to give participating clients access to a
global model. The local data from these consumers is then used to train the models. After
receiving the updated local model parameters, the central server uses them to compile
and update the global model by combining the model parameters from each client. This
cooperative learning technique protects privacy in three main steps: The current global
model G is made available to all participating users by (i) a centralized server, also called a
server agent (SA); (ii) the users use their local data to train the received model G, and (iii)
they upload their locally trained models Gi back to the centralized server so that they can
be combined and updated to create a new global model. Thus, this method is viable for
cutting FL’s communication costs.

Existing AI models in QA methods face numerous restrictions, mainly stemming from
federal data dependency and privacy concerns. Traditional QA techniques need access to
huge centralized datasets, which may not constantly be possible owing to data privacy rules
or the inaccessibility of varied datasets. Furthermore, centralized techniques face tasks in
familiarizing with the degrees of local contexts and languages. FL develops as a promising
alternative, leveraging decentralized training through manifold devices while maintaining
data privacy. FL permits methods to be proficient collaboratively on local data, modifying
the essential for central data sources and addressing privacy concerns. By harnessing the
cooperative knowledge of varied datasets across dispersed devices, FL provides a possible
solution to the restrictions of centralized QA methods, fostering flexibility, scalability, and
privacy protection.

This work presents a unique hypernetwork-based FL framework, the User Modified
Hierarchical Federated Learning Model (UMHFLM), that uses the information of various
data distributions on clients to get beyond the restrictions that have been identified. Instead
of simply fitting a single global adapter to all heterogeneous data distributions, the essential
idea is to build the adapter parameters suited to each client via hyper networks by taking
the information of client data distribution (Fig. 1).

The rest of the article is organized as follows. The first section covers the introduction of
this research study. The second section provides the related works and the proposed model
is discussed in third section. Then, fourth section gives the result analysis and final section
concludes the article.
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Figure 1 UMHFLM’s conceptual illustration.Data distributions on clients to overcome restrictions. In-
stead of fitting a single global adapter to all heterogeneous data distributions, hyper networks are used to
build adapter parameters for each client based on client data distribution information.

Full-size DOI: 10.7717/peerjcs.2092/fig-1

LITERATURE SURVEY
Federated learning (FL) is a privacy-preserving machine learning (ML) method where
a central server coordinates a loose federation of local clients. It aggregates local model
updates to train a global model while each client keeps its local dataset. FL allows sharing
without data leaks. However, traditional FL can leak training data unexpectedly. Differential
privacy or robust aggregation can be used for federated model privacy and integrity.
In user-level privacy, median aggregation can replace average (Bonawitz et al., 2021).
A single client stores data for ML model training, which the model owner can view.
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Collecting diverse and rich data sets to train robust DL models is difficult. This issue was
addressed by McMahan et al.’s (2016) decentralized learning model. FL lets any number
of clients train ML models with local data and share model updates during training.
Raw data exposure is reduced. FL’s challenges include unbalanced non-IID client data,
high client participation, and increased communication costs in the federation (Zhang
et al., 2016). Recent articles suggest class imbalanced learning in non-FL settings involves
separating representation and classification phases, creating high-quality classification
representations during representation learning, and balancing decision boundaries
between dominant and minority classes during classification, according to FL research
(Narayanan, Rao & Prasad, 2021). Elgohary, Zhao & Boyd-Graber (2018) uses FL settings
to select clients with complementary class distributions for updates and requires them
to reveal their distribution to the server to address class imbalance using an auxiliary
dataset. A hierarchical attention network for answering questions in narrative paragraph
reading comprehension is introduced (Rajpurkar et al., 2016)—horizontal and vertical
attention and fusion across layers at different granularities. SemBERT (Wang, Yan & Wu,
2018), a contextual semantics-aware BERT backbone, is also introduced in a survey of 31
QA systems (Wang et al., 2017) compared database interfaces, open domains, ontologies,
and web document focus. They also detailed the systems and their success rate and
corrected answers.QA aims to answer user questions correctly using feature engineering
in early research. Statistical syntax-based models softly align questions with answers, while
WorldNet’s lexical semantic information improves matching (Kim et al., 2023). A machine
translation model converts query and answer terms, introducing synonyms (Kim, 2014).
Feature-based approaches are laborious and challenging in capturing semantic information
between questions and answers. Recent studies like BERT and RoBERT have introduced
(Lewis & Mensink, 2012) a value-shared weighting and question term importance-based
attention-based neural matching model (Li, Yu & Dai, 2023; Kacupaj et al., 2020) using
large-scale labeled data without considering distributed and isolated data issues. The
author proposes adding a proximal term to local objectives to address non-IID data and
heterogeneous updates. They use server and client control to estimate update directions,
mimicking centralizedmethods and normalizing and scaling client updates before updating
the global model (Usbeck et al., 2023). Azad & Deepak (2019) surveyed Natural Language
Interfaces for databases (NLIDB) for QA systems, not KGQA systems, using a set of 10
questions to evaluate 24 QA systems and compare them to other SQL query conversion
systems. ML tasks performed well on the SQuAD dataset, released less than a year ago. A
logistic regression (LR) model based on linguistic features by Liu et al. (2023) in June 2016
achieved an F1-score of 51%, up from 20%. The author reaches 77.3% F1 using BiDAF
encoding, a bidirectional LSTM, and multistage decoding (Chen et al., 2017). Microsoft
Research Asia’s top model, submitted five days before this article, scored 84% F1 on the
SQuAD dataset, closer to human reading comprehension at 91% F1 (Ren et al., 2022).Chen
et al. (2021) present to accept FL for QA with the singular concern on the arithmetical
heterogeneity of theQAdata. Here the heterogeneitymentions the fact thatmarkedQAdata
are classically with non-identical and independent distribution (non-IID) and unbalanced
dimensions in practice. Lin et al. (2021) provide the FedNLP, a benchmarking structure
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for assessing FL models on four dissimilar task inventions such as sequence tagging, text
classification, seq2seq, and question answering. Chen et al. (2024) intend a fine-tuning
structure personalized to varied multi-modal FL, named Federated Dual-Adapter Teacher
(FedDAT). Particularly, this technique influences a Dual-Adapter Teacher (DAT) to find
out the data heterogeneity by legalizing the consumer local upgrades and using mutual
knowledge distillation (MKD) for an effective knowledge transfer. Shamsian et al. (2021)
developed a new technique for this issue utilizing hyper networks, called pFedHN for
modified federated hyper networks. In this model, a central hyper network system is
proficient in producing a set of methods, one approach for every client. In Qu et al.
(2022), the authors reveal that self-attention-based architectures (e.g., Transformers) are
stronger in delivery shifts and hence recover FL over assorted data. Concretely, the authors
conduct the primary rigorous experimental study of dissimilar neural structures through
an assortment of federated techniques, real benchmarks, and assorted data splits.

PROPOSED METHODOLOGY
This section presents the User Client Modified Hierarchical Federated Learning Model
(UMHFLM) over the heterogeneous QA data.

Task definition
Quality assurance focuses on assessing a user’s response to a question for relevancy. Define
TaskQA members in this article. They each have a private QA dataset SQuAD2.0; Dtask

∈ {Dtask 1,. . .DtaskN}. Equation (1) describes the training dataset Dtask_Training from
participant ’ t ’:

DTraining
task =Queryntask,Answer

n
task,Reply

n
task

DTraining
task

n−1 (1)

where, Queryntask,Answer
n
task , Reply

n
task ∈[0,1] stand for the ith question, user answer, and

matching score DTraining
task samples, respectively. The annotated QA data in real-world

scenarios usually have non-IID and unbalanced sizes (Abebe Fenta, 2023). They are
typically delicate and private in the interim. Consequently, without disclosing the original
data, the objective is to create a trustworthy, individual QA model for every participant
that incorporates all participant information.

Overview of the model
This work presents a new federated learning matching system for QA, ‘‘FLMatch,’’ to
address the FL for QA in heterogeneous settings by using dispersed QA datasets in a
privacy-preserving manner to quantify the relevance between questions and responses. In
particular, this study considers the quality assurance model for every participant, which
comprises both shared and private modules (Crane, 2018). This allows participants to
efficiently utilize the knowledge of other participants while still capturing the unique
features of the local data. Thus, the fundamental concept that drives the design of the
FLMatch framework is illustrated in Fig. 2.
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Figure 2 A comprehensive FLmodel that aligns with data flow. Federated learning matching system for
QA, ‘‘FL Match,’’ to address FL in heterogeneous settings by quantifying question-response relevance us-
ing dispersed QA datasets confidentially.

Full-size DOI: 10.7717/peerjcs.2092/fig-2

Common information features
A single participant’s labeled data typically needs to be revised to train a reliable quality
assurance model. In the FLMatch structure, to gather the shareable QA matching expertise
amongst many participants, a shared backbone is proposed to mitigate the data sparsity
issue. This model uses a cutting-edge neural matching model to determine if a potential
response to a question is relevant.

Domain knowledge maintenance
Sharing the same model amongst participants may not be the best course of action because
the QA data held by each participant may differ in size and properties. To mitigate the
statistical heterogeneity, this article utilizes a private patch tailored to the unique domain
information of each participant. Each participant’s backbone is patched, and the patch is
trained only using the relevant private local QA data. As a result, the features particular
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to each participant are evaluated by the patch component and help to create a distinctive
model for them.

Privacy-based learning
By sharing all model parameters or training samples, participants may compensate for a
lack of data, even at the expense of their privacy. Thus, this model suggests employing
FL (Shahamiri, 2021) technology to maximize FLMatch’s performance. This work merely
uploads the local shared module’s parameters—typically containing less sensitive data
about privacy—to the central server.

Federated learning
When training ML models, data are typically stored at a single client, allowing the model
owner unrestricted access to the data. Since sensitive data are often involved, gathering rich
and diverse data sets can be challenging. This makes it difficult to train effective DL models
requiring extensive and varied data sets. FL decentralizes ML model training to solve this
issue. Many users can participate in FL’s ML model training process. Every client uses its
local data to train a model and then distributes the model updates (like model parameters)
to other users. After that, additional places can be used, and the model changes can be
made. One of FL’s primary features is that clients only share model updates rather than
local raw data. By doing this, the chance of raw data being exposed is reduced. Many issues
can arise in a federated setting, including imbalanced non-IID client data, many clients
involved, and expensive communication expenses. Furthermore, the model formalizes FL
by rewriting the objective in Eq. (2). This model assumes that there are ‘K’ users, with ‘k’
users holding Pk of data. Each user calculates the average loss on user ‘k’, or Fk(w). nk or nk
= |Pk |, is the number of training samples for each user. ‘n’ represents the total number of
samples for all K users. In FLAvg, a central orchestrating server is required. Motivated by
prior research utilizing decentralized training algorithms (Ida, 2012), this study expands
FLAvg to function in an End-to-End scenario, eliminating the requirement for a central
server. FLAvgP2P is another name for the algorithm that was developed. Every client in
FLAvgP2P has a unique model and interacts with other users directly. Every user model
starts with the same weight, w0, before training. Each user U in a round ‘x’ trains the
model using its local data Ld , producing a model. Next, every user aggregates and compiles
updates from randomly selected neighbors. Where C is the fraction of neighbors (e.g., 0.1)
and N is the total number of neighbors in the network for that client. Rt where | Rt | is
computed by fn. After that, the local model is modified. The total number of neighbors in
the network is represented by N of that client, and C is the proportion of neighbors (e.g.,
0.1). The local model is then updated,

w fn
x+1=

NRW k
x

NX
+

∑
k−R

nk
nx

wk
x (2)

where Nk represents the number of samples at neighbor ‘k’, and nx is the total number of
representatives from user U and the clients in Rx . X is the local minibatch size; Y is the
number of times each client trains over the local data set per round, i.e., epoch; and ‘ η’
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is the learning rate. FLAvgP2P shares four hyperparameters with FLAvg. In Algorithm-I,
FLAvgP2 is present.

Algorithm: Federated averaging peer-to-peer (FLAvgP2P)
Step 1. User ‘U’ executes:
Step 2. Initialize Wr =0
Step 3. For Each round x = 1, 2, . . .Do
Step 4. X = (split PR into batches of size B)
Step 5. For Each local epoch, i from 1 to E, Do
step 6. For Each batch, Do
Step 7.W R

x =W R
x −η1l(W R

x ;Y )
Step 8.M =Max{R,X,1}
Step.9. Rx = (Random Set of R neighbors)
Step10. For Each User k =Rx Do
Step.11. W R

x =AssignWeight (k)
Step.12. w fn

x+1=
NRW k

x
NX
+
∑

k−R
nk
nx
wk
x Step.13. End

In this work, several participants’ backbone-patch architecture-based QA models are
trained on data via FL to protect their privacy. A central server in FLMatch manages several
clients for backbone sharing and patch updates, as seen in Fig. 3. In this case, the clients are
distinct QA participants who use privately held data to train their models. The following
actions are part of the training phase, which begins with the server randomly initializing
the shared backbone’s parameters ‘p’:
1. To train the models for the following round, the server assigns the global shared

backbone’s parameters, or ‘p’, to each client.
2. By adding a private patch to the shared backbone, each client uses privately stored

data to train their local models. Let ‘px’ formally represent the local shared backbone
parameters for each client ‘x ’, and βx represents the private patch parameters. The loss
function for every client ‘x’ is defined by Eq. (3), a pairwise ranking loss across the
training dataset.
DTraining
task (3)

where a QA matching model is indicated by f Regarding the question Qx , the symbols
a+x and a −x indicate a pertinent response and a negative response, respectively. All
the parameters of the local client model are shown by px = (px , βx). To bemore precise,
‘p’ and ‘ βx ’ are initialized randomly while θ t is initialized using the parameters of the
standard model, Eq. (4).
LengthQx(Qx,A+x ,A

−

x ,Px)=Max
(
Q1− f (Qx,A+x )+ f (Qx,A

−

x ) (4)
(3) Minimizing a global loss overall ‘d’ distributed clients is the objective for each
training period (i.e.,), Eq. (5)
Min{P1 .....pd}Length(P1 ....Pr ). (5)
After every training period, every client notifies the server of the updated local shared
backbone’s parameters px .
(4) After gathering parameters from every client, the server updates the global backbone
while monitoring each client for parameter aggregation. Formally, this work changes
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Figure 3 SQuAD2.0 dataset generation workflow. In order to train their models, the clients are distinct
participants in quality assurance who use data that is privately held.

Full-size DOI: 10.7717/peerjcs.2092/fig-3

the globally shared backbone’s parameters that are kept on the central server based on
the information provided by the U clients, Eq. (6)

R=
1
N

R∑
N−1

Px . (6)

UMHFLM
This model goes into detail on the proposed framework in this section. To lessen
the detrimental effects of client heterogeneity, the fundamental technique is to create
individualized UMHFLM modules for each customer. First, this work builds latent
vectors that reflect each client’s data distribution to accomplish this. The settings of
the UMHFLM modules are then customized for each client by conditioning the resultant
embeddings on the hypernetworks (Zhang et al., 2023). This article successfully factorizes
the hypernetworks’ weights, considering the numerous parameters that are derived from
them. This model contains the formation of modified UMHFLM units personalized to
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every user’s exact necessities. Originally, latent vectors are built to arrest the shades of every
customer’s data distribution, permitting modified method selection for users’ tasks. Next,
the UMHFLM modules’ formations are modified for every customer by conditioning the
resultant embedding on hypersystems. This procedure emphasizes a complete approach
to find customer heterogeneity within FL structures, offering comprehensive insights
into both the ranked FL construction and the growth of client-specific adapters, thereby
improving flexibility and performance across assorted consumer bases.

Adapter architecture
Determining the structure of the UMHFLMmodules that will be developed is the first step
in this process. Although several modules have been presented, this study concentrates
on the Adapter because of its versatility in various domains, including audio and vision-
and-image, and its proven effectiveness in completing specific duties. Within each block
of the UMHFLM, the adaptor comprises feed-forward and down-projection functions
interspersed between the feed-forward and self-attention layers. The process of adapting
can be expressed as shown in Eq. (7)

Adptionl (x)=U lGeLU
(
d lx
)
+x (7)

where, d lx represents the weights for the down- and up-projection in the UMHFLM’s
l thlayer, respectively; d denotes the UMHFLM’s hidden dimension and ‘b’ the bottleneck
dimension.

User embeddings’ construction
This work considered two forms of information to represent the clients’ characteristics: (a)
label embeddings and (b) context embeddings (Duan et al., 2021a;Duan et al., 2021b). The
explicit information on class distribution for each client is communicated in part through
label embedding. The label distributions on mini-batches can adequately represent the
data distributions of clients because they are often sampled using a uniform distribution.
As a result, this model builds label embeddings using the mini batches’ label distributions.
The label embeddings can be obtained in Eq. (8) if Batch = Di represents the client i’s
mini-batches:

Length(Batch)=WLength(xl .....x|Batch|)+BatchLength (8)

where avg(.) indicates average pooling withinmini-batches,Wlength ∈RC ×x and BatchLength
∈Rx are the linear transformation weights and biases for the number of classes C, and ‘x’ is
the dimensionality of input embeddings. Additionally, xi is a one-hot label vector for the
instance xi,[;]. These values are represented by the concatenating function and batch length,
respectively. Notably, this work chooses a uniform distribution for the inference phase to
produce adapters that are not biased toward dominating classes because the test data labels
are unavailable. By adopting a more comprehensive perspective, considering the contextual
information in the data can help improve this work understanding of each customer (e.g.,
languages, text styles). To be more precise, layer-specific adapters are created by extracting
contextual information from each layer. By averaging word vectors over the lengths using
l2 normalization, context embeddings are extracted, drawing inspiration from the sentence

Saranya and Amutha (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2092 10/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2092


embeddings. Assuming that the sample vectors xj from the PLM’s l th layer are fl(x j), the
l th layer’s context embeddings can be obtained in Eq. (9):

f l (Batch)=WfMax(f lx1,...,f lxBatch)+Batchf (9)

where Wf Rd ×x and Batchf = ∈ Rx are the linear transformation weights and biases,
respectively, andMax(.) indicates themax-pooling over the batch. Two types of embeddings
are added together to provide comprehensive client embeddings. To further encourage
the generator to encode more diversified layer-wise information, the study additionally
appends layer-index embeddings into the client embeddings of each layer.

Client-conditional hyper networks
This research customizes the adapters for each heterogeneous client based on the client
embeddings (Sattler et al., 2020). This work describes the client-conditional hypernetworks,
which produce adapter parameters by taking the client embeddings lab as inputs. They
are inspired by the idea of hypernetworks that generate parameters based on supplied
input embeddings. Formally, Eq. (10) shows how hypernetworks act to create the adapter
parameters (i.e., Ul, Dl):

U l
BatchD

l
Batchh(IB)= (WU ,WD)I

Length
Batch (10)

where the weights for the hyper networks are represented by the letter ‘I’, which stands for
the input embedding x, W length

D = Rr∗d∗sW length
U = Rd∗r∗N . It should be noted that various

layers exchange hypernetworks with encoded layer-specific data for input embedding.

Factorization of hyper networks
Although hypernetworks can be used to create customized adapters, hypernetworks
usually include many parameters. Thus, the proposed hypernetworks are factorized into
two smaller weights (Fotouhi et al., 2024). The resulting parameters are also not skewed
towards any of the local majority classes in the data distribution of the client because the
resultant matrices from the factorized components are l2 normalized. Two factorized parts
are used to recreate the up-projection weights in Eq. (11) formally:

U l
Batch=WUIBBatch= ∂(fU sU )IBatch (11)

where x, α(.) indicates the normalization and fu=Rd∗s, Su=Rd∗s∗r shows the factorized
components from WU with latent factor x.

Regarding factorization, the expressivity and complexity of the resultant adapters are
determined mainly by the hidden factor ‘s.’ To account for the increased dimensionality
of latent components, the two projection weights are coupled in the same way as if they
were tied auto-encoders (i.e.,) DLength

Batch = U Length
Batch . This method allows the memory needs to

be met without sacrificing task precision.

Aggregation phase
The corresponding trained models are sent back to the centralized server to update the
global model when the training step on each client’s data is complete. Every client sends
the layer-index embeddings and the hypernetwork parameters to the server, updating the
global hypernetworks since the training models are hypernetworks.
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Template-based QA (TQA)
The focus of quality assurance (QA) techniques has historically relied on extracting
responses from raw text. Ontologies are used to annotate Web resources and enhance
retrieval using query expansion (Enesi et al., 2019). Because of this (Duan et al., 2021a;Duan
et al., 2021b), TQA was selected to train a recursive neural network model for template
categorization. To obtain the answer(s), a SPARQL query template is essentially the last
query’s blueprint, which must be created from the question. Query building, relationship
extraction, and named entity recognition and disambiguation are most QA systems’
primary quality assurance activities. There will only be a solution that works flawlessly
in some situations or domains (Bao et al., 2019). As a result, specific environments for
which the QA components are experts have been developed. These components may be
bootstrapped into modular question-answering pipelines. Most quality assurance systems
do the conversion of queries into triples and compare them to a current knowledge
base using similarity or ranking criteria to obtain the answer. Nevertheless, these triples
frequently need to capture the natural language question’s semantic structure, leading
to incorrect answers or poor SPARQL queries. On the other hand, this work’s domain-
independent method can be used in any domain with minor modifications to the neural
network. The necessary representations are automatically learned by RNN employing
labeled instances furnished in the TQA dataset (Casado et al., 2021). The dataset uses a
list of seed entities and predicates, enabling list filtering to form sub graphs of DBpedia
for instantiating SPARQL templates, which in turn provide acceptable SPARQL searches.
These SPARQL queries are subsequently used to instantiate Normalized Natural Question
Templates (NNQTs) (d’Hondt et al., 2019; D’hondt et al., 2020), which serve as canonical
structures but are often grammatically incorrect. These questions are manually edited and
paraphrased by researchers.

RESULT AND DISCUSSION
Dataset analysis
A. SQuAD2.0. (Stanford Question Answering Dataset) This work defines the SQuAD
Question Answering Task formally as follows: The challenge is to predict the answer span
{ts; ts+1;. . . ,te-1; te} given a three-tuple (Q; P; (ts; te)) with question Q, context paragraph
C, and start and end indices {ts; te}. Each ai represents an index of the context paragraph
corresponding to the answer. For the SQuAD task, a peer-to-peer DL model is created
in this article. 10% was used for validation and hyperparameter adjustment, and the
remaining 80% of the dataset was used to train the model. To maintain the integrity of the
QA models, the last 10% of the dataset is set aside by SQuAD’s developers for testing and
privacy. This study assessed and thoroughly trained the proposed model on the withheld
data using Python as the work’s last evaluation tool.

With a few minor encoding stage simplifications, this system also implemented the
general structure of the model. Even though the proposed model performed exceptionally
well during training, this article finally concluded that, given the time restrictions of this
project, the model implementation could have been more practical. This work had around

Saranya and Amutha (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2092 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2092


Figure 4 SQuAD2.0 task based on sequence-to-sequence model. This models are utilized for tasks that
involve the generation of new sentences based on a given input. These tasks include summarization, trans-
lation, and generative question answering.

Full-size DOI: 10.7717/peerjcs.2092/fig-4

ten days to turn in the project, and this study estimated that for completion, a single epoch
under the proposed model BiDAF (Seo et al., 2016) algorithm would take about 10 h.
Consequently, this article thought that a whole 10-epoch training would take about seven
days, which was too expensive. In the following part, this study will review how this model
implemented this model and speculate on why it turned out to be too computationally
complex for its needs (Fig. 4).

Model evaluation
Data sets are frequently split into training and test sets to assess ML models. The test
data, or held-out samples, are used to evaluate the model and assess its performance
objectively. This study assessed each model in each experiment using test data and
metric accuracy. Other metrics like precision, recall, and F1-score were not considered
except in the trials using heuristics based on F1-scores, as these metrics are better suited
for use in situations when there are imbalances in classes. The accuracy metric was
suitable since the SQuAD2.0 dataset is balanced.

(a) Exact Match (EM): This metric measures the percentage of predictions that precisely
match any one of the ground truth answers.
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(b) F1-score: This metric measures the average overlap between the ground truth response
and the prediction. By treating the ground truth and the prediction like bags of tokens,
this work computes their F1. and gets the average of all the questions by dividing each
question’s maximum F1 by the total number of ground truth answers.
The two primary metrics frequently utilized for QA systems are exact match (EM)
and F1-score, employed for the evaluation. For each pair (Q, A), these metrics are
calculated. Overall, for potential correct answers, the maximum score is calculated if a
question has more than one valid answer. If the characters of the model’s prediction
(EM) match the personalities of (one of) the true answer(s) for each pair (Q, A), then
EM = 1; otherwise, EM = 0. This article evaluated the aggregated averaged global
model in the centralized trials on the test set after every communication round. This
study assessed the FL experiments conducted by peers. The tenth communication cycle
is what comes after each client’s model. Due to computing expenses, this task was
conducted every tenth round, as opposed to simply one global model in the centralized
FL experiments, because it required the evaluation of 100 client models on the test
data. The peer-to-peer FL experiments included 100 individual models; therefore, it
was also necessary to examine how the accuracies of the models varied. As a result,
this study looked at the model’s accuracy for each of the 100 customers on every tenth
communication cycle. This work also computed the model accuracy average in the
peer-to-peer experiments. Here is the Eq. (12):

AccuracyModelAvg =

∑x
x=1AccuracymodelAvg (W x )

x
. (12)

In this case, ‘x’ stands for the total number of clients in the network. Using the supplied
model weights wx , the function ModelTestAcc determines the model test accuracy. In
the experiments, assume led, x = 100.
Token overlap between the tokens in the correct answer and the expected answer is
represented by precision, and recall represents the percentage of tokens in a correct
answer, which were accurately predicted in a question. False positive (FP) indicates
tokens that do not give the correct answer; however, in the expected answer, true
positive (TP) indicates tokens that are identical between the correct answer and the
predicted answer, and false negative (FN) displays tokens, which are not in the expected
answer but are in the correct answer.

Communication costs
FollowingMcMahan et al. (2016), this article preserved the communication round number
at which a target model accuracy of 92.8% had been attained in every experiment. By using
the accuracy of the target model as a benchmark, this study assessed the communication
costs across many studies. For each experiment, this work counted the number of models
sent in the network at the round, where a 92.8%model accuracy was obtained to determine
the communication cost. The number of models provided by the central server and each
client was contained in FLAvg and was calculated in Eq. (13):

CentralizedFL=N ∗R∗X ∗2+x (13)
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where X is the total number of clients in the network, × is the percentage of clients the
central server communicates with, and N denotes the round.

When 97% average model accuracy was obtained in the FLAvgP2P experiments, the
world tallied all the models submitted by each client, which was computed as follows Eq.
(14):

FLE2E =R∗N ∗A∗X . (14)

In this case,N is round, and 92.8% is the percentage of neighbors a client communicates
with. Since it is a complete graph, the number of neighbors a client has, represented by the
symbol A (equal to 99 in all experiments), is the same for all. Lastly, X represents the total
number of network clients.

Accuracy
The correct answers the FL system gives for a percentage of questions are called Accuracy.
There is only one correct response for every question. The span prediction task’s accuracy
is similar to EM and may be calculated using Eq. (15) as follows:

Accuracy = EM =
No of Correct Answer

No of Questions
. (15)

Recall is the proportion of tokens in a correct answer that have been successfully predicted
in a question, whereas precision indicates the percentage of token overlap between the
correct answer and the predicted answer.

The TP indicate
s the tokens that are identical between the predicted and correct answers, the tokens that

are not in the correct answer but are in the expected response are marked by the FP, and
the tokens that are not in the expected answer but are in the correct answer are shown by
the FN. Using Eqs. (16) and (17), the precision and recall can be calculated as follows:

Precision=
No of TP

No of TP+No of FP
(16)

Recall =
No of TP

No of TP+No of FP
. (17)

An indicator of the accuracy of a test is the F1 score. It is the precision and recall
weighted average. It provides the calculation for this score. It is calculated in tets instance
by comparing each word in the prediction to each in the true answer. The F1-score is based
on how many words the prediction and the truth share, Eq. (18)

F1= 2∗
Precision+Recall
Precision+Recall

. (18)

The 15,000-question pre-processed dataset was divided into train and test datasets, with
80% of the data being training and 20% being test. There were 13,936 questions in the
training dataset and 984 questions in the test dataset. On the test SQuAD and QALD-7
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datasets, this RNNmodel’s obtained template classification accuracy was 92.8% and 61.8%,
respectively. Equation (19) is used to calculate the accuracy:

Acc (x,x)=
1
N

N∑
i=1

1(x i= xi) (19)

where, for example, is the predicted value of the ith and ‘‘x’’ is the matching reality value.
There is a total of N samples. Table 1 tabulates the hyperparameters of themodel. The input
vector was the 444-dimensional word vector concatenated. The optimizer used was the
Adam Optimizer, with a small batch size of 25 instances. The loss function employed was
cross-entropy loss, which has been shown to work better for tasks involving multivariate
classification. Due to the limited training instances and periodic learning rate curtailment,
the model needed strict regularization to prevent overfitting and improve its generalization
performance. To do this, three strategies were employed:
1. Weight decay: The weights are modified by a part of the weight update rule known

as Weight Decay, or l2 regularization, following each pass by calculating the product
of a factor smaller than 1. This may be considered gradient descent on a quadratic
regularization term (comparable to l2 Normalization) and keeps the weights from
getting too big. 2.25×10−3 was the weight decay utilized in the model.

2. Dropout: Powerful machine learning systems are deep neural networks that contain
numerous parameters. One problem with these linear networks is overfitting. During
training, randomly removed units and their connections are included in the neural
network’s dropout. This mitigates overfitting by keeping the model from forming
intricate co-adaptations on the training set. The dropout in the model is 0.2.

3. Adaptive learning rate: It was discovered that 1×10−2 was the ideal initial learning rate
for the model. However, after extensive testing in later epochs, it was found that, on the
test dataset, when the model’s performance peaked, it rapidly overfitted the training
dataset. To counteract this, a constant factor periodically decreases the learning rate
after a predetermined number of epochs. Once every two epochs, the model was added
with a step decay factor of 0.25 to keep the model from overfitting the dataset.

Model comparison
(1) Compared to individual models like RE2, ESIM, and BERT, the typical federated
learning approach FLAvg performs better overall regarding MAP and MRR. The results
show that the FL technique, rather than training the model of a single participant on
the data, may be able to train a more accurate QA model by using helpful information
from several participants. (2) In some domains, individual models may perform better
than FLAvg, LG-FLAvg, and FLP2P. For instance, BERT’s comparative development over
the FLQA set based on MAP is approximately 3.13% compared to FLAvg. One possible
explanation is that FLAvg trains a single model for each client, making modeling the FLQA
benchmark’s statistical heterogeneity challenging. (3) When compared to the original FL
frameworks (FLAvg, LG-FLAvg, and FLP2P), CoverQuery’s performance has significantly
decreased. According to the results, FL offers a higher level of privacy guarantee and is more
successful than standard privacy-enhanced approaches. (4) With its proposed FLMatch
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Table 1 Model parameter.

Parameter Value

Input dimensions 444× 1
LSTM 150× 1
Epochs 7
Mini batch size 25
Learning rate 1× 10−2

Weight delay (Regulation) 2.25× 10−3

Embedded learning rate 1× 10−3

Dropout 0.2
Loss function Cross-entropy loss
Optimizer Adam
Learning rate scheduler Stepwise learning rate decay
Step LR step size Once every two epochs,
Step LR decay 0.25

Table 2 The advantages of suggested FLMatch over BERT are shown by comparing performance mea-
sures and t-tests.

QA TYPE-I QA TYPE-II QA TYPE-III QA TYPE-IV

Models MAP MRR MAP MRR MAP MRR MAP MRR

BERT 0.7109 0.71829 0.8919 0.82617 0.8671 0.8719 0.8181 0.8919
Proposed F
LMatch model

0.7516 0.7618 0.9102 0.8178 0.8919 0.9192 0.8367 0.9181

model, the best performance is attained. To gain general knowledge from multiple clients,
the recommended method of breaking down the QA model into a private patch for
capturing a shared backbone and the local data characteristics has been validated by the
findings.

This work created multiple public QA collections based on the new benchmark dataset
FLQA to make FL for QA research easier (Table 2).

• QA TYPE-I is a corpus of information regarding mobile applications’ privacy policies
that spanmany categories. Crowdworkers inquire about a particularmobile application’s
privacy. The writers then assemble seven professionals with legal backgrounds to craft
answers to questions.
• QA TYPE-II is a biomedical semantic indexing and QA competition. Biomedical
professionals can voice their information demands and will receive succinct responses
that synthesize data from many sources.
• QA TYPE-III For the financial opinion mining and quality assurance task of WWW’18.
Instead of economic data, themodel uses Task 2 data—Opinion-basedQA. The questions
are answered based on a corpus of documents from multiple financial data sources.
• QATYPE-IV,motivated by the strong commercial and scientific interest in the insurance
domain, QA pairs in this area. Professionals possessing extensive topic knowledge have
produced responses to the questions gathered from real-world users.
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Performance analysis
This work achieved 75.18% F1 and 56.19% EM scores, submitting the best model to the test
set leaderboard. The best model was a combination of an encoder that used co-attention
and a decoder that used CNN, the highway network, and a search mechanism. For brevity,
this work refers to this best model as UMHFLM.

Performance across length
Figure 5 displays the F1-scores and the exact match (EM) for answers up to 15 tokens so
that you can assess how well the algorithm performed while predicting responses of varying
durations. This proposed model anticipates that the model’s performance will deteriorate
with increasing answer length, as is the case with many NLP applications, including neural
machine translation. Nevertheless, for answers up to length 12, there is no discernible
decline in the F1-score. However, the model observes a steady decrease in accuracy for
both EM after that. This makes sense intuitively since the number of words increases, and
the computation of the proper answer span gets harder. The graph shows that the EM
and F1 scores decrease as response lengths do. Furthermore, this work notes that when
the answer length increases, the difference between F1, EM, and accuracy drops at distinct
rates.

Performance across question head
This article also looks at how well this model performs with various question head terms.
Figure 6 shows that queries that begin with frequently asked words, including {‘HOW’;
‘WHAT’; ‘WHEN’ } have high F1-scores. However, this research also notes that the model
could do better when asked questions that begin with the terms {‘WHY’; ‘WITH’ }. This
work also observes a significant distinction for {‘WHY’ } questions between F1 and EM.
Finding the answer’s critical portion is simpler for questions of this type, but determining
the precise answer’s range is considerably more difficult. Interestingly, other published
State-Of-The-Art models also exhibit subpar performance on ‘‘WHY’’ questions, suggesting
that obtaining high accuracy for this type of question is inherently challenging.

Performance across questions with non-interrogative head
This work could not locate any research that looked at the system’s performance for
questions that started with non-interrogative words, even though it is usual for current
literature to analyze performance across questions beginning with different interrogative
words. These questions are typically more sophisticated and rhetorical and are called
non-interrogative. This article examined how well the proposed model performed for
these questions, and Fig. 7 displays the results for several of them. This work finds that
this model’s effectiveness varies significantly across different start words, but this study can
identify some intriguing events. Figs. 8 and 9 illustrates how effectively this model works
for questions that begin with ‘‘about’’ and ‘‘approximately.’’ The stark contrast between the
F1-score andEM for questions that start with ‘‘although’’ is themost intriguing finding. This
work may easily anticipate that questions beginning with ‘‘although’’ will be structurally
complicated sentences based on how this research uses the language daily. Based on the
performance of this model on questions of this type, the model can observe that while it is
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Figure 5 Variations in the ground truth answer length (up to 15) for CCHNS.
Full-size DOI: 10.7717/peerjcs.2092/fig-5

challenging to obtain the precise answer in this instance, this model performs remarkably
well in getting the general idea of the solution. This work believes that further research
on enhancing performance for non-interrogative questions will result in systems that
can comprehend natural language’s complex meaning. Ultimately, the model obtained
the following outcomes: ‘‘Test ’’ denotes the hidden test set kept up to date by ‘y ’, the
SQuAD2.0 creators.

F1 and EM scores
Unfortunately, the performance of this BiDAF model was not up to pace. The final F1
and EM scores for the training set were approximately 10% and 6%, respectively. For EM
and F1, the approximate final validation scores were 3.7% and 7.6%, respectively. The
outcomes outperform this model’s initial baseline. Plots of the data collected during the
four training epochs are shown above. According to this study, the model’s average loss
and global norm decrease slowly while its F1 and EM scores rise shown in Table 3. Given
the low learning rate in these early epochs, the proposed model F1 and EM scores may
move slowly. The model in this work was trained using a fixed learning rate of 0.0001.
This article should have started with a more significant learning rate, especially during the
first epoch when the model does not have to care about fine-grained learning, even though
a low learning rate is best for later epochs. Although tinkering with the initial value and
decay rate would have taken a lot of time, having an exponentially declining learning rate
would have been nice. This model’s sluggish development was also caused by the massive
number of parameters it had to learn.

This is why the research developed word vectors that effectively capture syntactic and
semantic information using trainable 300d GloVe vectors. It sounds okay, but the 41 m
parameters the model had to learn were significantly increased. Due to time constraints,
it is only possible to train for four epochs, which took roughly eleven hours each. This
model was learning appropriately based on the global norm and diminishing loss of this
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Figure 6 Comparisons of performance for various question heads.
Full-size DOI: 10.7717/peerjcs.2092/fig-6

work, in addition to its F1/EM scores. This work would expect these measurements to be
relatively low once the model has completed training and the optimal set of parameters
has been identified. Nevertheless, considering the concave F1 and EM curves, the model
predicts that the scores would not increase significantly. This can point to a severe issue
with the model or a flaw in the test code. For a reasonable model to overfit the training set
and obtain noticeably greater training accuracy, tens of millions of parameters should be
plenty.

Time performance
The most significant challenge to testing, refining, and training the models proposed in this
study was time. Testing minor or hyperparameter adjustments was particularly challenging

Saranya and Amutha (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2092 20/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2092/fig-6
http://dx.doi.org/10.7717/peerj-cs.2092


Figure 7 Comparisons of performance for questions that are non-interrogative.
Full-size DOI: 10.7717/peerjcs.2092/fig-7

because the recommended BiDAF model required more than 10.5 h per GPU epoch to
train. They asserted that forgetting errors constituted the primary source of this research’s
limitations. A batch size more significant than four resulted in out-of-memory issues that
may manifest hours into training on the forty million parameter model utilized in this
work. Looking back, this study should have run a much larger batch using smaller GloVe
vectors or restricting the context paragraph size to a few hundred. An evaluation of the
model’s bidirectional dynamic RNNs with the setting ‘‘Swap Memory = True’’ revealed
no discernible effect on memory efficiency. The model also carefully examined test code
to hunt for explicit for-loops that might be utilizing excessive amounts of memory or
carrying out tensor calculations inefficiently; nevertheless, nothing unusual was found. The
attention flow layer, which is the core of the BiDAF model, also significantly prolonged
the training duration. This layer consumed many processing resources since it created the
attention layer’s similarity matrix from the 200-dimensional hidden states of every word
in the question and context paragraph.
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Figure 8 Result analysis F1 and EM(a).
Full-size DOI: 10.7717/peerjcs.2092/fig-8

The used SQuAD2.0 (Stanford Question Answering Dataset) benchmark dataset for
evaluatingmachine comprehension andquestion answering systems.Unlike its predecessor,
SQuAD1.1, SQuAD2.0 incorporates unanswerable questions, adding a layer of complexity
that better reflects real-world scenarios. This enhancement encourages models to not
only identify answers within a given context but also recognize when questions cannot
be answered, fostering more robust and accurate performance evaluation. By including
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Figure 9 Result analysis losses and global Norm(a).
Full-size DOI: 10.7717/peerjcs.2092/fig-9
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Table 3 Analysis of F1 and EM scores.

Performance measures Training Validation Dev Test

F1 76.25% 59.78% 54.19% 55.91%
EM 62.23% 44.18% 40.4% 41.4%

unanswerable questions, SQuAD2.0 promotes the development of AI systems capable of
discerning between answerable and unanswerable queries, thus advancing the state-of-
the-art in natural language understanding and question answering. In future, we plan to
validate the performance of the proposed model on large scale real time dataset.

CONCLUSION AND FUTURE WORK
QA learning is enhanced by the Federated Learning Matching framework FLMatch, which
converts models into shared and private modules utilizing local data and shared knowledge.
This machine learning technique uses collaborative training, private incremental learning,
and a private data pipeline to address data-sharing concerns. By maintaining privacy-
preserving information, the FLMatcQA benchmark dataset enhances QA performance by
simulating many real-world circumstances. By considering client data distribution, the
proposed hyper network-based FL framework, the User Modified Hierarchical Federated
Learning Model (UMHFLM), reduces the number of communication rounds between
edge nodes and centralized servers by generating client-customized adapters. The FLMatch
FL method offers semantics and uniformity for superior classification representations to
manage data heterogeneity and class imbalance. The work uses recursive neural networks
(RNN) to convert QA tasks over linked data into template classification and slot-filling
tasks. For the SQuAD2.0-QA challenge, a Deep Learning model demonstrated encouraging
initial results but had trouble responding to interrogative and non-interrogative questions.
According to the research, neural models lack information on the learning process, making
debugging difficult. Even well-designedmodels might take hours or days to train, which can
result in out-of-memory catastrophes. The RNNmodel finds 38 templates using SQuAD2.0
datasets, and it classifies the two most likely templates with 92.8% and 61.8% accuracy,
respectively. With aMAPmargin of 2.60% and anMRRmargin of 7.23% at 100% and 20%
data ratios, FLMatch surpassed B E R T in a trial. This work submitted the best model to the
test set leader board with 75.18% F1 and 56.19% EM scores. Hyper-parameter tweaking,
training intricate ensemble models, investigating CNNs for character-level embeddings
and attention, and using reinforcement learning concepts from other AI domains can all
be used to enhance the SQuAD2.0 challenge in natural language processing. One method
is to use grammar and syntactic structure to design rules that resemble Markov decision
processes.
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