
Live software documentation of design
pattern instances
Filipe Lemos1, Filipe F. Correia1,2, Ademar Aguiar1,2 and Paulo G. G.
Queiroz2,3

1 Faculty of Engineering, University of Porto, Porto, Portugal
2 INESC TEC, Porto, Portugal
3 Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil

ABSTRACT
Background: Approaches to documenting the software patterns of a system can
support intentionally and manually documenting them or automatically extracting
them from the source code. Some of the approaches that we review do not maintain
proximity between code and documentation. Others do not update the
documentation after the code is changed. All of them present a low level of liveness.
Approach: This work proposes an approach to improve the understandability of a
software system by documenting the design patterns it uses. We regard the creation
and the documentation of software as part of the same process and attempt to
streamline the two activities. We achieve this by increasing the feedback about the
pattern instances present in the code, during development—i.e., by increasing
liveness. Moreover, our approach maintains proximity between code and
documentation and allows us to visualize the pattern instances under the same
environment. We developed a prototype—DesignPatternDoc—for IntelliJ IDEA that
continuously identifies pattern instances in the code, suggests them to the developer,
generates the respective pattern-instance documentation, and enables live editing
and visualization of that documentation.
Results: To evaluate this approach, we conducted a controlled experiment with 21
novice developers. We asked participants to complete three tasks that involved
understanding and evolving small software systems—up to six classes and 100 lines of
code—and recorded the duration and the number of context switches. The results
show that our approach helps developers spend less time understanding and
documenting a software system when compared to using tools with a lower degree of
liveness. Additionally, embedding documentation in the IDE and maintaining it
close to the source code reduces context switching significantly.

Subjects Human-Computer Interaction, Software Engineering
Keywords Design patterns, Liveness, Software documentation

INTRODUCTION
Throughout the life cycle of a software project, developers often record knowledge as
different software artifacts, which can help understand what has been done, how the
system works, and why it was made in such a way. This information is important for new
project team members but also for the original developers, who may lose some of their
knowledge, making documentation particularly useful when trying to reconnect with a
part of the system. Without a clear notion of how the software works internally, developers

How to cite this article Lemos F, Correia FF, Aguiar A, Queiroz PGG. 2024. Live software documentation of design pattern instances.
PeerJ Comput. Sci. 10:e2090 DOI 10.7717/peerj-cs.2090

Submitted 3 February 2024
Accepted 6 May 2024
Published 16 August 2024

Corresponding author
Filipe F. Correia,
filipe.correia@fe.up.pt

Academic editor
Marvin Wyrich

Additional Information and
Declarations can be found on
page 34

DOI 10.7717/peerj-cs.2090

Copyright
2024 Lemos et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2090
mailto:filipe.�correia@�fe.�up.�pt
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2090
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

may break existing designs when adding new features or modifying existing ones.
Documentation can also support reuse, given that to reuse a piece of software, we first have
to understand and learn how it works (Aguiar, 2003). Furthermore, successful software
keeps evolving to meet its changing requirements, and to keep its full value, its artifacts
need to be updated when new knowledge is acquired. It is often a challenge to keep all these
artifacts consistent—i.e., to make sure that two related artifacts do not express different
ideas (Correia, 2010, 2015).

These issues span several types of documentation artifacts. Use cases, class diagrams,
and other models help describe software systems’ functionality and architectural and
design details. Source code also plays a part in preserving knowledge, as developers often
strive for self-documenting code (Spinellis, 2010).

Designing software has been an early concern of software developers (Parnas, 1972),
gained renewed interest and research avenues with design patterns (Gamma et al., 1995)
and is ingrained in the activity of professionals, and a subject of research (Tang et al., 2010;
Farshidi, Jansen & van der Werf, 2020; Sousa, Ferreira & Correia, 2021; Riehle,
Harutyunyan & Barcomb, 2021). Therefore, in this work, we focus specifically on
documenting software design. Some of the early results of this research are part of Filipe
Lemos’ masters thesis: https://hdl.handle.net/10216/128568.

Documenting object-oriented design
Design patterns offer reusable solutions to recurring design problems and are particularly
useful when designing and describing complex object-oriented software systems. A good
way to document software is by describing the pattern instances that compose it. According
to Odenthal & Quibeldey-Cirkel (1997), good practices for documenting pattern instances
include providing an overview of the design context, highlighting the reason why the pattern
was instantiated, and describing the design in detail. This description must comprise
outlining the pattern’s participant roles, illustrating the possible interactions between them,
providing the benefits and consequences of using the pattern and, finally, identifying special
features of its implementation by referencing the source code. Due to the widely-known
vocabulary established by patterns, using them to document software systems can make it
easier to share knowledge and design experience with other developers.

Programming vs. documenting
In their practice, software developers regularly have to switch from programming to
documenting. These two activities are firmly related to each other since the output of each
one serves as input to the other, creating a mutual feedback loop. This loop induces a
constant context-switching, which may impede smooth flow (Power & Conboy, 2014) or
lead to the loss of important knowledge. To avoid context-switching, developers may find
themselves constantly postponing one of these two activities, often the documenting one, to
remain longer in the same context. This may bring on inconsistencies since one of the
artifacts is not evolving with the other. We may try to sync them back together later but,
the more we increase the volume of pending changes, the harder it gets to ensure the
artifacts become in-sync again. This can have a critical impact on the reuse and the ability

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 2/40

https://hdl.handle.net/10216/128568
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

to understand the software since we will be dealing with outdated or inconsistent
documentation.

Liveness in software development
To address the duality between programming and documenting in this work, we rely on the
notion of Live Software Development (LiveSD) (Aguiar et al., 2019). LiveSD consists of the
extension of Live Programming to the entire software development life-cycle. While Live
Programming promotes a constant awareness of the program state to help to reduce the
edit-compile-run cycle, LiveSD aims to go beyond programming, as a way to support
technical agility—the application of the inspect and adapt principle used in agile methods
to technical software development activities.

Tanimoto (2013) defined liveness as a set of behaviors by a programming environment
that provide information to programmers about what they are constructing. Additionally,
Tanimoto proposes six levels to define liveness: (1) Informative; (2) Directly requested
feedback; (3) Delayed non requested feedback; (4) Instantaneous feedback; (5) Predictive
and suggestive feedback and (6) Strategically predictive.

Level 1 is merely informative; in our specific context it can consist of the description of
which design pattern instances exist in a given codebase, in text format, or using a UML
diagram. Level 2 assumes an executable artifact, allowing the developer to receive feedback
upon request. For instance, the developer may press a button to show an informative box
listing a set of design pattern instances extracted from the source code. In level 3, the
feedback is provided sometime after an event (delayed automatic response). This feedback
may, for example, warn the developer that some method is missing in a pattern instance, a
few seconds after saving the program, without direct request by the developer. Level 4
provides feedback in real-time. The feedback is not requested by the developer but can be
triggered by an event. For example, running the program in the background to search for
design pattern instances and, after a few seconds without typing, results are displayed on
the screen. In level 5, while running the program in the background, the system predicts
future actions and suggests them to the developer. Finally, in level 6, systems predict future
actions in the large, for a large unit of software.

Increasing liveness in the context of documentation of pattern instances is part of our
main research objectives, as described in the next section.

RESEARCH STRATEGY
The purpose of this work is to streamline the process that comprises the creation and
the documentation of software, making it easier to switch between the activity of
programming—in particular, instantiating design patterns, and the activity of
documenting—in particular, describing its design pattern instances.

Research questions
Our research is based on the hypothesis that by increasing the level of liveness of
documenting pattern instances, we will streamline the process of switching between

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 3/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

programming and documenting, making it easier to understand a system’s design and to
document it.

In other words, we equate an increase of liveness to a higher immediacy in the
awareness regarding the relationship between the code and its pattern-instance
documentation, within the same environment, and we expect that it will: (a) allow
developers to understand a software system design more easily, as developers will be
exposed to the design documentation when reading or writing source code; (b) allow
developers to keep design documentation up to date more easily, as they will quickly gain
awareness when code and documentation drift apart; and (c) reduce the overall amount of
context switching between coding and documenting activities, supported by a constant
awareness on the code and its respective documentation. Therefore, to evaluate and discuss
our hypothesis we formulate the following research questions:

. RQ1. To what extent can liveness make it easier to understand a software system’s design
in terms of its pattern instances?

. RQ2. To what extent can liveness make it easier to keep software documentation updated?

. RQ3. To what extent can liveness reduce context switching between programming and
documenting?

To answer these questions, we consider an approach to document pattern instances that
seeks to reduce the length of the feedback loops between programming and documenting.
We build this work around the ideas of providing awareness towards existing
documentation during programming activities and providing awareness towards the
existing implementation during documenting activities.

Methodology
This research was conducted according to the three stages detailed below.

Literature review

We first review existing approaches that may support our vision. In particular, we compare
them and highlight the extent to which they support liveness and good practices for
keeping software documentation consistent with the source code (cf. “RelatedWork”). The
works that we analyze were collected through a literature review that follows precepts of a
systematic literature review (Kitchenham, 2004). The bulk of our search was carried out
between October 2019 and January 2020, and further completed in October 2023 (cf.
“Detecting Pattern Instances in Code”). We used IEEE Xplore and Google Scholar
databases and focused on approaches and tools for the documentation and detection of
design patterns, using the terms “documenting”, “design patterns” and “detection” to
narrow down the number of results. The articles analyzed met the following inclusion
criteria: presented approaches to document or detect design patterns; or presented tools to
document or detect design patterns on source code. Articles that met the following
exclusion criteria were not explored further: presented approaches or tools to document
solutions that are not design patterns; or were not written in English.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 4/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Approach implementation
We use these good practices and the notion of liveness to conceive DesignPatternDoc,
an IDE plugin that supports pattern-based software documentation (cf. “The
Designpatterndoc Plugin”). The plugin provides the fourth level of liveness for each activity
in relation to the other—programming and documenting. Namely, this tool (a) identifies
pattern instances in the source code and suggests, in real-time, how to document them,
and (b) supports editing and visualizing pattern-instance documentation during
programming.

Controlled experiment

We used the DesignPatternDoc plugin to run a controlled experiment with users and
generate insights regarding our research questions. The controlled experiment follows the
process described byWohlin et al. (2012) and is divided into five main activities: definition,
planning, operation, analysis and interpretation, and finally, presentation.

In summary, we divided the participants into control and experimental groups. The
latter had access to our tool. We asked both groups to complete a set of software
development tasks, which involved understanding and evolving a software system. During
the experiment, we measured the duration of the tasks and the number of accesses to
external documentation. We also collected qualitative data regarding the experiment
format and the tools used to identify possible effects on the outcome of the experiment,
with the help of an online form. Together, these elements help us answer the research
questions and support the discussion of the validity of the hypothesis. “Empirical Study”
describes in detail the experimental design, data analysis, and limitations of our study.

RELATED WORK
Information about the pattern instances can be made available by creating documentation
describing such instances or by detecting pattern instances in the source code. In this
section, we will explore some good documentation practices and the approaches or tools
developed so far to tackle these problems.

Good documentation practices
The works are analyzed in light of the patterns for creating consistent software
documentation that have before been distilled by Correia et al. (2009) from practices and
tools: Information Proximity, Co-Evolution, Domain-Structured Information and
Integrated Environment. As far as we know, these patterns constitute the only collection
that tries to capture recurring good solutions for keeping software documentation
consistent. Correia et al. (2009) demonstrate the validity of these patterns through a few
real-world known uses, as commonly done in the patterns community, and we highlight
some of such known uses in the next paragraphs.

Information proximity addresses preserving documentation consistency when related
information is scattered across documents/artifacts. Easing the access to artifacts that
contain related information, by using links between artifacts, using a single source,
transclusion, or views. This pattern has been used successfully in tools such as Javadoc

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 5/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

(Friendly, 1996), WikiWikiWeb (Cunningham, 1995), and others described by Bayer &
Muthig (2006).

Co-evolution addresses updating related information scattered across artifacts, more
precisely, defining when it should be updated. It distinguishes between synchronous co-
evolution (update immediately after changes occur) and time-shifted co-evolution (track
pending changes and update them when needed). This pattern has been successfully used
in tools such as Javadoc, WikiWikiWeb (Cunningham, 1995) and in the work of D’Hondt
et al. (2002).

Domain-structured information tries to solve the problem of structuring the
information in documentation, to automatically assess consistency among the related
artifacts. This is achieved by formalizing contents according to their domain concepts,
avoiding multiple interpretations of the same information. This pattern has been
successfully applied on DART (Radev et al., 2020) and other documentation tools such as
OpenAPI (2018).

Integrated environments try to solve the problem of maintaining consistency among
independent but content-related artifacts. These environments allow handling several
types of artifacts uniformly and provide a structure for them to interoperate with each
other. This pattern has been successfully used by the Eclipse IDE, Visual Studio, IntelliJ
IDEA, and other IDEs.

Documenting pattern instances
Pattern instances have been documented through text-based approaches, such as code
annotations or HTML pages, graphical representations like UML diagrams or by filling
out pattern code templates.

Text-based
This is the most commonly used approach. It can be achieved by annotating the source
code with comments or by providing external documentation pages (Sametinger &
Riebisch, 2002; Torchiano, 2002; Hedin, 1998; Odenthal & Quibeldey-Cirkel, 1997; Hallum,
2002). A good example of a tool that belongs to this category is Javadoc (Li et al., 2007).
These approaches normally start by defining new tags for documenting pattern instances
in different formats (Fig. 1). Even though most of these approaches assure information
proximity, co-evolution is hardly supported. For example, Sametinger & Riebisch (2002)
use links to automatically update the documents when the code annotations change.
However, these annotations are not updated when the source code is modified, which may
lead to inconsistencies.

Graphical representation

Design patterns can be represented by standard notation UML diagrams, making this
representation familiar to developers. As a result, some approaches believe that the ability
to visualize the system’s design patterns graphically, such as UML diagrams, can ease the
comprehension of the software (Tøese & Tilley, 2007; Schauer & Keller, 1998; Dong, Yang
& Zhang, 2007). However, if the system comprises many classes, this representation can
become hard to understand (Fig. 2).

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 6/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Pattern code templates
Some approaches require developers to document design pattern instances by filling out
pattern code templates. These approaches use code checkers, which validate specific
pattern instances if they respect their specification, such as intent, rules, and participants.

Figure 1 A class with patterns documented (left) and an external documentation example of the same class (right), adapted from Hallum
(2002). Full-size DOI: 10.7717/peerj-cs.2090/fig-1

Figure 2 A simple design pattern instance diagram using the standard UML notation (left) and a more complex diagram using the same
notation (right), inspired by Schauer & Keller (1998). Full-size DOI: 10.7717/peerj-cs.2090/fig-2

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 7/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-1
http://dx.doi.org/10.7717/peerj-cs.2090/fig-2
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Discussion
We characterize the approaches for documenting pattern instances according to the good
documentation practices introduced in “Good Documentation Practices” (information
proximity, co-evolution, and domain-structured information), their liveness level, how
they present the pattern instances descriptions and, whether they can validate the
implemented patterns or not.

As we can see from Table 1, none of the presented approaches will simultaneously (i)
maintain proximity between documentation and source code, (ii) update this
documentation when changes to the source code are introduced and (iii) provide a liveness
level above 3.

The closest approach to fulfill the three features mentioned above that we found was
Cornils’. Still, it only warns developers that the code no longer respects the specified design
pattern and does not support automatic co-evolution. Moreover, contacting the authors
revealed that the tool is no longer available.

Detecting pattern instances in code
Recovering design pattern instances from source code has been a topic of interest for the
last two decades. This has led to the development of several approaches and tools to detect
and visualize them. Some require the source code to be compilable; others also need it to be
executed. Known as design pattern detection tools, they can be categorized in several ways,
such as the level of automation, the level of liveness, the supported language, how they
display the discovered patterns, and the type of analysis, among others.

These tools have been shown effective in recognizing pattern instances, but they have
some limitations. Firstly, many do not scale when analyzing large systems, becoming
significantly slower, especially those that perform dynamic analysis. Secondly, most of
these tools are unavailable. Additionally, some are not up-to-date regarding the current
programming language versions as they are no longer actively maintained. Finally, the
results often contain many false-positive pattern instances, requiring manual confirmation

Table 1 Overview of approaches for documenting pattern instances.

Strategy Approach IP CE DSI Validation Liveness Visualization

Text-Based Sametinger & Riebisch (2002) Yes Yes Yes No 1 Code annotations, html pages

Torchiano (2002) Yes Yes Yes No 1 Code annotations, html pages

Hallum (2002) Yes Yes Yes No 1 Code annotations, html pages

Odenthal & Quibeldey-Cirkel (1997) Yes Yes No No 1 Code annotations

Graphical Tøese & Tilley (2007) No No No No 1 UML

Schauer & Keller (1998) No No No No 1 UML

Dong, Yang & Zhang (2007) No No No No 1 Javadoc html pages

Template Florijn, Meijers & van Winsen (1997) No No No Yes n/a UML

Lovatt, Sloane & Verity (2005) No No No Yes 3 n/a

Cornils & Hedin (2000) Yes Yes No Yes 3 Boxes next to editor

Note:
IP, Indicates which of the approaches support Information Proximity; CE, Indicates which of the approaches support Co-Evolution; DSI, Indicates which of the
approaches support Domain-Structured Information; n/a, Information is not available.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 8/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

by the developer. The latter can be particularly challenging since developers inexperienced
in design patterns may rely on the tool to guide them.

The design pattern detection tools were categorized according to the level of
automation, the target’s system language, how they display the detected pattern instances,
if they are restricted to an Integrated Development Environment (IDE), their liveness level,
and their limitations. To clarify, by automation level we refer to how independent they are,
from the developer’s interaction, which can range from manual to automatic. Table 2
overviews the 40 analyzed tools.

Through the analysis of the previous table, it is possible to see that two-thirds of the
tools use a static analysis strategy. In other words, most tools do not need to run the target
systems to detect design pattern instances. Nevertheless, there are some patterns that they
cannot differentiate since they focus only on the static structure of the classes, ignoring
their run-time behavior. An example is how most of these tools can not distinguish
between the State and the Strategy pattern, which are structurally identical. Still, a few tools
can do data flow and control flow analysis to infer behavior, such as PINOT (Shi & Olsson,
2006).

We can draw few conclusions regarding their automation level due to the difficulty of
obtaining this information for many tools. A few of them require constant user interaction,
throughout the detection process like ePAD (De Lucia et al., 2010a, 2015) or FUJABA
(Niere et al., 2002), and several that are completely autonomous, such as PAT, DPAD,
Columbus (Prechelt & Krämer, 1998; Zhang & Liu, 2013; Ferenc et al., 2002). Note that, by
completely autonomous we mean a maximum of one click, which is the execution of the
tool on a given source code.

Most of these tools were designed to identify design pattern instances in C++ or Java.
This might be because the design patterns they are trying to detect are those specified by
the Gang of Four (GoF), who wrote the design patterns book in a C++ context (Gamma
et al., 1995). Moreover, several of these design patterns described by the GoF are not useful
outside this context or are defined significantly differently.

In terms of visualization, detected design pattern instances are displayed in several
formats, including textual (plain or structured), Hypertext Markup Language (HTML),
Extensible Markup Language (XML), or even in a graphical representation format like
UML. We also noticed that most of the Eclipse plugins use a UML representation, which
might be explained by this IDE’s built-in ability to display diagrams in this format.
Moreover, the tools that provide a graphic user interface like SPOOL, MAISA and
FUJABA (Keller et al., 1999; Nenonen & Gustafsson, 2000; Niere et al., 2002), among
others, also use UML representation for the detected pattern instances. As we have seen in
“Graphical representation”, the ability to visualize design patterns graphically can ease the
comprehension of the software, which might be why these approaches tend to use this type
of representation. Textual representations were mostly associated with command-line-like
tools (Diamantopoulos, Noutsos & Symeonidis, 2016; Shi & Olsson, 2006).

Regarding IDEs, we have often encountered Eclipse. However, the amount of tools not
restricted to any IDE is higher. Also, some tools can be used in different ways. For example,

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 9/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Table 2 Overview of approaches or tools to detect design pattern instances in source code.

Type Tool Authors Automation TL V IDE Limitations

Static PAT Prechelt & Krämer (1998) Automatic C++ Text No Unavailable

SPOOL Keller et al. (1999) Automatic C++ UML No Unavailable

HEDGEHOG Blewitt, Bundy & Stark (2001) Automatic Java Text No Unavailable

SPQR Smith & Stotts (2003) Automatic C++ XML No Unavailable

CrocoPat Beyer & Lewerentz (2003) Automatic Java n/a No Needs a pattern specification language

Columbus Ferenc et al. (2005) Automatic C++ n/a No Unavailable

PINOT Shi & Olsson (2006) Automatic Java Text No Can’t detect pattern with incomplete
data

n/a Rasool & Mäder (2011) Automatic Java, C# Text,
UML

No Unavailable

DPF Bernardi, Cimitile & Di Lucca (2013) Automatic n/a n/a Eclipse Needs a domain specific language syntax

n/a Chihada et al. (2015) Automatic n/a n/a No Unavailable

FINDER Dabain, Manzer & Tzerpos (2015) Automatic Java Text No Does not scale

DP-CORE Diamantopoulos, Noutsos & Symeonidis
(2016)

Automatic Java Text No Detects few patterns by default

DesPaD Oruc, Akal & Sever (2016) Automatic Java Text No Does not scale

PatRoid Rimawi & Zein (2019) Automatic Java Text No Does not allow user feedback

DPDML Oberhauser (2020) Automatic Independent Text No Incomplete

GEML Barbudo et al. (2021) Automatic Java UML No Need to train the tool’s algorithms

PatternDetectorByDL Wang et al. (2022) Automatic Java UML No Web

DPDF Nazar, Aleti & Zheng, 2022 Automatic Java UML No Does not allow user feedback

FUJABA Niere et al. (2002) Semi-auto. Java UML n/a Variants has to be defined explicitly

n/a Tsantalis et al. (2006) Semi-auto. Java Text No Unavailable

DeMIMA Guéhéneuc & Antoniol (2008) Semi-auto. Java, C++ Text,
UML

No Unavailable

MAISA Nenonen & Gustafsson (2000) n/a Prolog UML,
Text

No Needs diagrams expressed as Prolog
facts

n/a Ferenc et al. (2002) n/a C++ UML,
Text

No Unavailable

WoP Dietrich & Elgar (2007) n/a Java XML Eclipse Unavailable

n/a De Lucia et al. (2007) n/a Java HTML No Unavailable

D^3 Stencel & Wegrzynowicz (2008) n/a Java n/a No Unavailable

n/a Rasool, Philippow & Mäder (2010) n/a Any EA sup.
lang.

n/a VS Unavailable

MARPLE Arcelli Fontana & Zanoni (2011) n/a Independent UML Eclipse Unavailable

n/a Mayvan & Rasoolzadegan (2017) n/a Independent UML Eclipse Unavailable

Dynamic n/a Heuzeroth et al. (2003) Automatic Java n/a No Unavailable

n/a De Lucia et al. (2009) Automatic Java UML Eclipse Unavailable

n/a De Lucia et al. (2010b) Automatic Java n/a n/a Unavailable

DPAD Zhang & Liu (2013) Automatic Java Text Eclipse Unavailable

n/a Wendehals (2004) Semi-auto. Independent n/a No Unavailable

DPVK Wang & Tzerpos (2005) Semi-auto. Eiffel Text Eclipse Unavailable

ePAD De Lucia et al. (2010a) Manual Java UML Eclipse Low precision for some patterns

ePADevo De Lucia et al. (2015) Manual Java UML Eclipse Unavailable

PTIDEJ Guéhéneuc (2005) n/a AOL, Java, C++ UML No Users can’t specify layout information

n/a Li et al. (2007) n/a C++ UML No Unavailable

n/a Lee, Youn & Lee (2008) n/a Java n/a n/a Unavailable

Note:
Type, Indicates what type of code analysis Technique is used by the approaches; TL, Indicates the Target Language;V, Indicates how the Visualization of pattern instances
is achieved by the approaches; IDE, Indicates which of the approaches are restricted to an IDE; VS, Stands for Visual Studio. NET; n/a. Information is not available.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 10/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

PTIDEJ (Guéhéneuc, 2005) can be imported as a library for a Java, C++, or AOL project or
used as a plugin for Eclipse.

Since feedback is only provided through a direct request by the user, these tools support
the second liveness level. In fact, design pattern instances are only displayed after we
explicitly execute the tools on a particular software system.

Additionally, we would like to highlight one interesting feature not directly
contemplated in Table 2. Not all tools search the software systems for every design pattern
they may find. Some, such as PAT or DP-CORE (Prechelt & Krämer, 1998;
Diamantopoulos, Noutsos & Symeonidis, 2016) allow checking the source code for a
specific design pattern. This could be interesting if, after the developer specified the design
pattern he was implementing, the tool could constantly check if that design pattern is
found. For this purpose, the pattern detection tool would be running in the background. A
negative result could be used to inform the developer that the design pattern was not
properly implemented.

Finally, we would like to highlight that many of the tools presented in Table 2 were
proposed more than 10 years ago, which could give the impression that this topic has
stopped progressing, been abandoned, or been considered resolved. We believe the
prevalence of relatively old tools in our review is due to our focus on tools supporting the
GoF design patterns, which were published in 1995 and were very popular in the second
half of the 1990’s and early 2000’s. Therefore, many works proposing tools that support
these patterns are also from this time. Since then, new design patterns continued to
emerge, and we believe the approach presented in this article can be easily extended to
support such new design patterns. Additionally, with the increasing popularity of artificial
intelligence methods, we realize that new work aimed at detecting design patterns has
taken advantage of these techniques mainly from 2019 onward.

THE DESIGNPATTERNDOC PLUGIN
We developed a plugin for IntelliJ IDEA, named DesignPatternDoc to make it easier to
switch-contexts between creating and documenting software, as detailed below.

Live pattern instance documentation
Our approach uses liveness to tackle the problem of switching between the activity of
programming and documenting. We focus on increasing the amount of feedback about the
pattern instances in the source code and provide this kind of feedback anytime the
reference to a pattern participant is inspected or edited by a developer. This intends to
allow proximity between the artifacts and make some tasks easier to perform, like editing
and creating documentation or comprehending the design of the software systems.
Ultimately, since the increase in the liveness level makes it easier to maintain and consume
documentation, it could also reduce inconsistencies between the artifacts. During the rest
of the section, we explore the principles used as guidelines for the design of the approach,
the prototype’s implementation and architecture, and the features that cover that
architecture.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 11/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

The goal of this work is to address the challenge of understanding a software system in
terms of its design patterns, by reducing the mutual feedback loop between programming
and documenting, easing the transition between these phases. By doing this, we will also
ease the creation, consistency maintenance, and use of pattern-based software
documentation. We seek to design a tool with a high level of liveness that supports good
documentation practices and provides visual awareness of the pattern instance
descriptions and the program state to the developer (like displaying missing pattern
participants). More specifically, our tool design has the supporting guiding principles
described below.

. Liveness at a higher level can provide almost instant awareness about relevant aspects of
a system. Higher liveness can mean instant access to the documentation of pattern
instances when editing the source code, alerting the developer when the documentation
is incomplete, and easier awareness of the effects of editing the documentation, among
other benefits.

. Information proximity is a convenient strategy to access live feedback, if we look at the
current state of source code and of documentation as possible forms of feedback of each
other. More specifically, we can use links and transclusion to ease access to the pattern
instances documentation directly from the source code.

. Co-evolution can be supported by liveness, as immediate feedback about possible
inconsistencies between artifacts supports synchronous co-evolution. In other words, it
enables to update of all the related artifacts every time a developer introduces a change.
For example, after renaming a class that plays a role in a pattern instance, its
documentation also needs updating. Doing so helps to avoid obsolete documentation.

. Domain-structured information allows feedback to be provided at a granular level.
More specifically, this means structuring the pattern instances according to a data model,
capable of representing them in a rich format, instead of using plain text to represent
them.

. Integrated environments makes it easier to increase the level of liveness of one artifact
in terms of another by maintaining all related artifacts (e.g., source code and its
documentation) under the same environment, reducing the need to switch context
constantly when alternating between software development phases.

Design and functionality of the plugin
We developed a prototype of a tool that follows the principles described above. This tool is
a plugin for the IntelliJ IDEA Integrated Development Environment, which can analyze
source code, live-suggest and generate pattern-based documentation for specific pattern
instances, and display inconsistencies. Based on our principles, we have created a more
concrete desideratum for the design of the prototype and illustrate with functionalities of
the plugin whenever possible1.

1 Additional illustrations of the plugin
capabilities can be found in the experi-
ment materials, in particular in the
instructions for the experimental group.
See file questionnaire/experi-
mentalGroup.pdf of the experimental
package, which is accessible through DOI
10.5281/zenodo.10849701 (Lemos &
Correia, 2024). The materials are descri-
bed in more detail in “Empirical Study”.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 12/40

http://dx.doi.org/10.5281/zenodo.10849701
http://dx.doi.org/10.5281/zenodo.10849701
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Functionalities
Identifying pattern instances in the source code
The plugin runs a detection tool a few seconds after the developer stops typing. This
detection tool scans the project folder for the design patterns supported by it. This service
is executed periodically and, in each execution, exports a set with all the design patterns
(name, roles, participants) found. The output may be an empty set. The contents of this set
are used to suggest pattern instance documentation to the user, as shown below. The
plugin contains three different types of code inspections: one is responsible for
highlighting the objects that we believe to play a role in a pattern instance; the second one
is responsible for updating the persisted pattern instances after renaming an object; the
third and last one is responsible for alerting the user when the source code is incomplete or
inconsistent regarding its documentation (e.g., missing a role).

Suggesting detected pattern instances to the developer
The developer should be able to decide whether to accept or reject those suggestions. This
is important since we do not want to be intrusive. The liveness in this context should be at
level four. If there are any pattern instance suggestions, they should be instantly available
to the user. Figure 3 shows the names of the classes that play a role in a pattern highlighted
with a different background color, and a popup that is displayed when hovering one of
those names with the mouse pointer and that features more information about the pattern
instance in question.

Renaming inspection
Instead of turning the documentation obsolete after renaming a certain object, it makes
sure the documentation is kept updated. This code inspection supports the undo operation
after renaming an object.

Figure 3 Example of a pattern instance suggestion. Full-size DOI: 10.7717/peerj-cs.2090/fig-3

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 13/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-3
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Incomplete documentation inspection
This feature highlights all the pattern participants from a pattern instance, where at least
one role is not played by any object. Figure 4 illustrates this situation. This helps the user
spotting which objects should be created to complete the design pattern. If the missing
pattern participants were already implemented, it warns the developer that the
documentation hasn’t been updated yet. This highlighting provides two types of quick fix:
(1) Edit the documentation or (2) Delete the pattern instance.

Creating and displaying documentation in the IDE
This should reduce the context switching between software creation and documentation
since both artifacts will be created and viewed in the same environment. Here,
documentation visualization should correspond to, at least, the fourth liveness level.
Figure 5 shows how the names of classes that participate in pattern instances are postceded

Figure 4 Example of an incomplete documentation warning.
Full-size DOI: 10.7717/peerj-cs.2090/fig-4

Figure 5 Example of a pattern instance visualization. Full-size DOI: 10.7717/peerj-cs.2090/fig-5

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 14/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-4
http://dx.doi.org/10.7717/peerj-cs.2090/fig-5
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

in the editor by a reference to the pattern and the role that the class plays in it. Hovering
the class name with the mouse pointer also shows additional information about the pattern
instance.

Pattern instance live editor
Persisted pattern instances can be edited via the pattern instance live editor as presented in
Fig. 6, located on the right side of IntelliJ’s file editor. The content on this window is
displayed if the mouse’s cursor is on top of a class, that plays a role in at least one persisted
pattern instance. Changing the cursor’s position among the different class names, in each
file, updates the window’s content, accordingly. Any change to a pattern participant (name,
role), will update the UML preview after a few seconds. Since large images have to be
resized to fit the dialog, we provide a “ZoomUML” button (bottom of Fig. 6), which can be
accessed to display the real-sized UML in a new window.

Pattern hints
Pattern hints are text extensions that are appended in front of the lines where the class
names of pattern participants are found (see Fig. 7). These extensions provide details on
the roles played by that object in each pattern instance. The style and color were selected to
mimic the text extensions displayed by IntelliJ debugging mode.

Figure 6 Example of the live pattern instance editor. Full-size DOI: 10.7717/peerj-cs.2090/fig-6

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 15/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-6
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Manual pattern instance documentation
Even though pattern instances can be persisted by accepting the tool’s suggestion, manual
documentation of a pattern instance is also possible. By right-clicking on a class name, the
developer will be presented with that option (see Fig. 8). This will automatically place that
class as one of the pattern participants of a default design pattern. At the same time, the
pattern instance live editor will display the new pattern instance for further editing.

Architecture
An overview of our prototype’s conceptual architecture is depicted in Fig. 9. Two types of
data store are represented: (1) the Accepted Pattern Instances Store and (2) the Detected
Pattern Instances Store. The first one is responsible for persisting the pattern instances’
documentation that was either manually created or the outcome of accepting a pattern
instance suggestion. To store this information the plugin relies on IntelliJ IDEA to persist
the plugin state as XML, which results in a pattern_instances.xml file. This file can be
committed to the project’s version control for an easy way to share it with other team
members. The second data store is responsible for managing a collection of all the pattern
instances detected by the selected tool (view the first desideratum in “Functionalities”). It is
used as input for the component described in the second desideratum—the Pattern
Instance Suggester. Having these as separate data stores allows different strategies, such as
using persistent storage for one and volatile storage for the other. Namely, there is no need
to persist the pattern instances found by the detection component, as it will scan the source
code every few seconds. Since there will be potentially simultaneous read/write requests
from multiple sources to the Accepted Pattern Instances Store component, it is also
important to note that it needs to support concurrent access.

Figure 7 Example of pattern hints. Full-size DOI: 10.7717/peerj-cs.2090/fig-7

Figure 8 Example of manual documentation. Full-size DOI: 10.7717/peerj-cs.2090/fig-8

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 16/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-7
http://dx.doi.org/10.7717/peerj-cs.2090/fig-8
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

As to the other components, the Pattern Instances Detector runs in the background
every few seconds or a couple of seconds after the developer stops modifying the source
code. Its output is stored in volatile memory. We designed the pattern detection strategy to
be easy to replace, as long as the output matches the same format, using the Factory
Method design pattern. The Pattern Instances Suggester component visually informs the
developer every time a pattern instance is detected. The feedback that it provides is
instantaneous and the least intrusive as possible. Moreover, it does not modify the
persisted documentation without the explicit agreement of the developer, who can ignore
the suggestions. On the other hand, accepting the suggestion will automatically generate
the pattern instance documentation for that detected design pattern.

The last desideratum is attended by the Pattern Instances Viewer and Pattern Instances
Editor components. As we want to reduce the feedback loop between programming and
documenting, the documentation should be kept in proximity to the source code,
avoiding the developer changing context to consume it and allowing easier detection of
when they are not in sync. Given this, we designed a component responsible for providing
the persisted documentation in the IDE, where the source code is edited. Namely, we
allow the developer to inspect the reference to a given class, to view the pattern instances
where it plays at least one role. This is the responsibility of the Pattern Instances Viewer.
We defined how these pattern instances are visually represented using our findings in the
literature review presented in “Related Work” and will describe it in more detail in the
next section. The Pattern Instances Editor component allows editing persisted pattern
instances and manually creating new ones in a live manner. The pattern instance viewer
will immediately show any changes a developer applies to the documentation of a given
pattern instance. Hence its direct dependency on the Pattern Instances Viewer
component.

Finally, since we want all these components to co-exist in the same context, they should
all belong to the same development environment. Given that source code is nowadays, to a
large extent, created in IDEs, and we want documentation to be created and consumed in
the same environment, we assume all of these components exist within an IDE.

IDE

Accepted
Pattern Instances

Store

Detected
Pattern Instances

Store

Pattern Instances
Suggester

Pattern Instances
Editor

Pattern Instances
Viewer

Pattern Instances
Detector

Figure 9 Prototype’s conceptual overall architecture. Full-size DOI: 10.7717/peerj-cs.2090/fig-9

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 17/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-9
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Design decisions
Java language
Most of the existing approaches to detect design pattern instances are designed for Java
systems (cf. “Related Work”). Many of these approaches are theoretical, or their
implementation is not public—most articles do not reference a tool, nor were we able to
find them by other means. We also filtered out the tools made for a specific IDE since
reusing these would not be an easy task. This constrained our options regarding which
programming language to support, as we sought to leverage one of the existing pattern
instance detection tools rather than build one into our implementation, leading us to
choose Java.

Static analysis
Another important decision was regarding the source code analysis technique used by the
detection tool. We decided to go for a static analysis tool. Since these tools do not require
running the code being developed, they grant less computational effort for providing live
feedback. Notwithstanding, there are some drawbacks, as discussed in “Detecting Pattern
Instances in Code”, but their overall performance is very satisfactory. From a hardware
perspective, our design decisions guarantee that if the machine can run IntelliJ IDEA it will
be able to efficiently run the plugin and guarantee the proposed liveness level.

Based on DP-CORE
We experimented with the tools that respected these criteria and provided public access to
their source code. Unfortunately, we only managed to run the DP-CORE tool successfully.
This tool supports detecting a limited number of design patterns2, but its performance
seemed good enough to test our hypothesis. Moreover, it allows easy expansion to new
pattern definitions through a declarative language, which allows overcoming the limited
number of supported patterns, if needed. This tool is wrapped by the Pattern Instance
Detector component in our architecture.

Graphical visualization
Two approaches are most prominent for pattern instance visualization (cf. “Documenting
Pattern Instances”): text based and graphical representations. Since pattern instances
are often represented with UML diagrams, the latter would seem the most appropriate
approach. Still, we have also seen that most of the graphical approaches rely on
external documentation to display the diagrams, which went against our desideratum.
Nevertheless, we found that PlantUML3 is well integrated into IntelliJ IDEA and allows
visual representation of UML diagrams directly in the IDE environment, resolving this
disadvantage. It is, therefore, used by the Pattern Instance Viewer component in our
design.

Integrated into intelliJ IDEA
Lastly, we chose the IntelliJ IDEA IDE as the environment into which we would integrate
these components and functionality for its widespread use (Vermeer, 2020) and
extensibility, which allowed us to implement these features as a plugin.

2 DP-CORE supports six patterns, all from
the Design Patterns book (Gamma et al.,
1995): Abstract Factory, Bridge, Builder,
Command, Observer and Visitor.

3 PlantUML is a tool for generating dif-
ferent types of diagrams from a simple
domain-specific language. More infor-
mation is available at https://plantuml.
com.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 18/40

https://plantuml.com
https://plantuml.com
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Domain model
Our prototype implements the domain model represented in Fig. 10. It represents design
patterns and pattern instances using the TYPE OBJECT pattern (Johnson & Woolf, 1996), so
that it is easy to extend the plugin with new patterns. The main goal of our approach is to
allow documenting pattern instances of a software system. Each pattern instance is
documented by describing the developer’s intent when using that pattern and by
identifying one or more pattern participants. Participants are the classes that play each
respective role of the design pattern in the specific pattern instance. These classes are
identified by their fully-qualified name in the object attribute (Fig. 11).

Availability
The source code for the plugin is freely available in GitHub under the MIT License (https://
github.com/SoftwareForHumans/DesignPatternDoc). Furthermore, it is published in IntelliJ
IDEA’s marketplace (https://plugins.jetbrains.com/plugin/14102-designpattern-doc).

EMPIRICAL STUDY
Using a controlled experiment seems appropriate given our research goals. According to
Wohlin et al. (2012), “Experiments are launched when we want control over the situation
and want to manipulate behavior directly, precisely and systematically”. For this study, it is
possible to control who uses one method (our plugin) and another (a simpler tool).

Therefore, we design and perform a controlled experiment to assess the approach
described in “Live Pattern Instance Documentation”, namely the effects of reducing the
length of the feedback loop between programming and documenting activities, and more
specifically to answer the research questions that we present at the beginning of this article

DesignPattern

+ name: String

PatternRole

+ name: String

*

*
1

*

PatternInstance

+ intent: String

1..*

*

PatternParticipant

+ object: String

1 1..*

1 1..*

RoleLink

+ linkType: String

Figure 10 Domain objects of the DesignPatternDoc plugin.
Full-size DOI: 10.7717/peerj-cs.2090/fig-10

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 19/40

https://github.com/SoftwareForHumans/DesignPatternDoc
https://github.com/SoftwareForHumans/DesignPatternDoc
https://plugins.jetbrains.com/plugin/14102-designpattern-doc
http://dx.doi.org/10.7717/peerj-cs.2090/fig-10
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

(cf. “Research Questions”). These research questions are answered with the help of specific
dependent variables, as described below:

. RQ1: Investigates whether liveness would help improve the comprehension of the
software’s design. To help answer this research question we measure the time
participants spend understanding and documenting the design of a software system.

. RQ2: Seeks to find out if it is possible to reduce the effort (time) to keep documentation
updated by increasing the level of liveness. For this particular research question, we
measure the time participants spend documenting a software system.

. RQ3: Evaluates if, by increasing liveness integrated into the IDE, we can observe a
reduction in context-switching. To answer this research question we measure the
number of times that the participant switches context between the IDE and the external
documentation.

Study design and conduction
This section details the different aspects considered when designing the empirical study.
The materials we used, together with the data collected during the experiment, are
available as an experimental package accessible through the DOI 10.5281/zenodo.
10849701 (Lemos & Correia, 2024). It includes the instructions and materials that were
used by the participants (questionnaire/*.pdf,TaskN/src/* and

DesignPatternsReferenceCard.pdf), the data collected from the questionnaire
pertaining to task duration and code understanding (answers/*Group.csv), the data
collected manually by the researchers pertaining to task duration and the number of
context switches (data.csv), and the scripts for running the data analysis (syntax.sps).
Due to a logistic error by the researchers, the source code and diagrams produced by the

IntelliJ IDEA

DesignPatternDoc Plugin

Accepted
Pattern Instances

Store

Detected
Pattern Instances

Store

Pattern Instances
Suggester

Pattern Instances
Editor

Pattern Instances
Viewer

Pattern Instances
Detector

DPCORE PlantUML

Figure 11 Prototype’s overall architecture. Full-size DOI: 10.7717/peerj-cs.2090/fig-11

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 20/40

http://dx.doi.org/10.5281/zenodo.10849701
http://dx.doi.org/10.5281/zenodo.10849701
http://dx.doi.org/10.7717/peerj-cs.2090/fig-11
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

participants were not preserved after the data analysis and, therefore, are not part of the
replication package.

Participants
Participants are admitted for participation in the study if they have previous experience in
Design Patterns, and are randomly distributed among the control and the experimental
groups. To ensure that this random assignment leads to an equivalent set of skills between
the two groups of participants, some information about the participant’s background is
collected through a few questions. In our run of the experiment, we recruited the
participants via an e-mail targeting students of two courses lectured at the Faculty of
Engineering of the University of Porto—the Master in Informatics and Computing
Engineering (MIEIC) and the Master in Software Engineering (MESW). In total, we had
the collaboration of 21 students with 10 of them allocated to the control group and 11 to
the experimental group.

Data sources and variables
We collect data from five different sources: (a) the answers to assessment questions,
(b) the source code produced in each task, (c) the pattern instances documentation
produced in each task, in PNG format, (d) the tasks’ duration, and (e) the number of
times that the participant switches context between the IDE and the external
documentation. The data collected from these sources provide the dependent variables for
our study. We describe how they are measured in the Data Collection paragraphs, later in
this section.

Environment
The participants engage in the experiment remotely through a desktop connection, gaining
access to a pre-configured development environment. In particular, participants are given
access to IntelliJ IDEA, with or without the DesignPatternDoc plugin, depending on the
group. Participants are given a different source code folder for each task, with a few classes
in each folder, amounting to around 100 lines of Java code on average. For some tasks, the
plugin has some pattern instances documentation, whereas, for the control group, we
provide a PDF file with the same documentation. Additionally, each participant has access
to a GoF design pattern reference sheet, available during the entire experiment. Both
resources (PDF and reference sheet) make what, in this article, we often refer to as external
documentation.

Procedure
The participants are first assigned to the groups, corresponding to the two different
treatments—the control group (CG) use IntelliJ IDEA, and the experimental group (EG)
use IntelliJ IDEA with the DesignPatternDoc Plugin. The session itself takes around 50 min
for each participant and is structured according to the following steps.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 21/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

. Background questions (1 min)

Before starting the tasks, the participants are submitted to a small questionnaire to
determine how comfortable they are with the tools, technologies, and concepts required for
the experiment. This is used to discard the possibility of statistical deviations caused by
skill dissimilarities between the two groups.

. Plugin walkthrough—EG participants only (2 min)

We want to avoid any time required to learn to use the DesignPatternDoc plugin can
substantially affect the performance of the experimental group during the tasks (cf. the
next step). To this end, we provide a quick overview of the tool to the participants in this
group, to help them gain some familiarity with it, where a screenshot and a small
description illustrate each plugin feature.

. Tasks (45 min)

The participants complete four programming and documentation tasks, which include (1)
identifying the pattern instances present in a software system, (2) documenting a software
system in terms of its pattern instances, (3) completing a system’s implementation by
exploring the provided pattern instance documentation and, finally, (4) the complete cycle
—understanding, documenting and expanding a system.

. Assessment questions (2 min)

The participants answer questions designed to assess effects that are difficult to measure
directly in an objective way, such as the extent to which the participants find the tool useful.

Data collection
Much of the data is collected via a Google Form, including: (a) the total duration of each
task, (b) the modified source code itself, (c) the produced pattern instance documentation
and (d) the answers to the questionnaire items. The questionnaire is designed using five-
level Likert items (Likert, 1932) with the format: (1) strongly disagree, (2) disagree, (3)
neutral, (4) agree and (5) strongly agree. The complete form is part of the experimental
package referred in the beginning of this section, and includes the following tasks:

T11. [The provided source code sample] contains one or more pattern instances. Which
design pattern(s) are represented in the system?

T12. Document the pattern instances that you have found as a UML class diagram. Do it as
was instructed previously, using [the tool], and specifying pattern roles as class stereotypes.

T21. John is trying to implement a simple system for controlling the light of a lightbulb, in
his house. Unfortunately, he can’t get it to work. Which pattern participant(s) are missing
[in the provided source code sample]?

T22. Create new objects and/or modify those already provided to complete the system.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 22/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

T31. Identify the main GoF pattern in this code and explain what changes (objects, pattern
roles) would you need to apply to the system to contemplate [the provided set of]
requirements.

T32. Implement those changes and add the pattern instances documentation required to
understand the extended system. (Here submit only the [documentation])

Some data is collected manually during the experimental sessions by one of the
researchers, who has screen access to the environment used by the participants. The
researcher mainly acts as a spectator and measures the time of each task (including sub-
tasks) using a stopwatch. During the execution of the tasks, he also counts the number of
context switches—in other words, the number of times a participant leaves the IDE to
access the external documentation (or the other way around). Specifically for the EG, he
counts the times each participant uses the documentation features, such as viewing the
generated pattern instances when hovering code elements with the mouse pointer or via
the live editor. The participants are asked to submit their answers every time a task is
completed, and to think aloud to help the researcher understand their intent and follow
changes in context, like moving to the next question or accessing the external
documentation. The researcher intervenes only at the end of each task to inform the
participant whether the result is correct. This includes validating the source code and the
documentation that participants are asked to produce and ensuring that the total time
spent during a task allows for achieving working solutions.

Data analysis
We perform the data analysis with the help of the SPSS Statistics software. The collected
data—tasks’ duration, number of accesses to internal or external documentation, and
questionnaire answers—are aggregated in a single data file. This is included in the
replication package in the CSV and SAV formats. The SPS file contains instructions in
SPSS’s command syntax language, and running it with the SAV file, produces descriptive
statistics and results for hypothesis testing, using t-tests for variables with normally
distributed data and Mann-Whitney U tests for the remaining variables.

Pilot experiments
The experimental design is tested with pilot studies to identify unsuspected issues in the
developed plugin, instructions, or data collection. The pilots follow the same protocol and
environment meant to be used during the controlled experiment. They allow us to identify
minor issues in the instructions that we fix for the real run of the experiment. In our run of
the experiment, we conducted three pilots.

Data analysis
Throughout this section, the control and experimental groups are, respectively, denoted by
CG and EG. The null and alternative hypotheses are, respectively, denoted by H0 and H1.
In each of the analyses below, we take H0 as no difference existing between the two groups
but H1 will vary according to the specific analysis at hand. Other symbols that we use
include: n, the sample size; u and r, respectively, the u-statistic and the effect size of Mann-

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 23/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Whitney U tests; t and d respectively, the t-statistic and the effect size of t-tests; q, the
probability that H0 is true; and a, the significance level of statistical test results.

The experiment had the collaboration of 21 participants (n), which translates to 19
degrees of freedom when interpreting statistical tests. Moreover, we use a 5% significance
level (a) when interpreting the results of statistical tests and the guidelines proposed by
Cohen (1988) for interpreting effect sizes.

Sample background
We evaluate the participants’ background through a questionnaire about their comfort
with the concepts and technologies used in the experiment. This attempts to ensure that
the two groups are similar and that any differences in the performance of the groups are a
consequence of the tools provided during the experiment. The questionnaire results are in
Table 3 and show no meaningful differences between the two groups.

Task duration

We wanted to investigate if the time spent in the execution of the tasks by the control
group was significantly greater than the time spent by the experimental group (H1 : CG >
EG).

We started by inspecting the total time spent by the participants on the execution of the
programming tasks. The box plot presented in Fig. 12 shows that the CG indeed spent
more time than the EG, but this high-level analysis is not very useful to answer our
research questions (cf. “Research Questions”), so we also tested H1 for each task.

Figure 13 allows to see a clear difference in the completion times for most tasks of the
two treatments, which supports our hypothesis. Nevertheless, we also submitted the
hypothesis to statistical tests, and the results can be seen in Table 4. Note that the time
spent (seconds) during tasks T11, T22, and T32 does not follow a normal distribution;
therefore, we resorted to MW-U tests for such tasks and t-tests for the remainder.

These results allow us to rejectH0 and show the CG as significantly slower than the EG
(q < 0:05) with large effect sizes (r > 0.5, d > 0.5) for all tasks except T22. In T21 the
participants can lean on the provided documentation to discover which design pattern is at
stake and the extent to which it is partially implemented. These test results lead us to
believe that the EG effectively used the plugin’s feedback to its advantage during that task.
Conversely, T22 consists merely of completing the implementation using the knowledge
obtained in T21. The plugin does not yet provide any particular support for this, thus
putting the CG and the EG on equal footing. This is a flaw in our experimental design.
Namely, we should not be expecting the plugin, in its current version, to have a positive
impact on this task’s duration, since it does not yet use existing documentation to suggest
how a developer could complete the instance of the pattern.

In sum, we can conclude that for those tasks that involve understanding which pattern
instances were being implemented by the system or, even the act of documenting the
system using pattern instances, the time spent by the control group was significantly
greater than the time spent by the experimental group.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 24/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Context switching
To evaluate if we can reduce the context switching between programming and
documenting, we observed how each group accessed the external documentation. We
believed that the context switching would be higher in the control group (H1 : CG > EG).

Running an independent-samples Mann-Whitney U test over our context-switching
data produced the results seen in Table 5. We find that context switching is indeed
significantly greater for the CG when compared with the EG (q < 0:05) with large effect
sizes (r > 0.5) for every task except for T22. In the latter, we cannot reject H0; we believe
that the cause for this is the flaw in the experimental design that we have previously
described (cf. “Task Duration”). Nevertheless, we find that, for most tasks, the participants
using live documentation embedded in the IDE (i.e., the EG) switched context significantly

Table 3 Summary of the answers to the background questions.

CG EG

�x r �x r

BG1 3.5 0.40 3.6 0.41

BG2 3.7 0.34 3.6 0.36

BG3 2.6 0.40 2.8 0.33

BG4 2.7 0.42 2.8 0.33

BG5 2.6 0.40 2.9 0.34

Note:
BG1, At this point I am comfortable working with IntelliJ.
BG2, At this point I am comfortable programming in Java.
BG3, At this point I know well the GoF design patterns.
BG4, At this point I recognize GoF design patterns in code.
BG5, At this point I can implement GoF design patterns.

EGCG

Ti
m

e
(s

)

3500

3000

2500

2000

1500

1000

500

Figure 12 Box plot of the total time spent by the participants, in the execution of the tasks.
Full-size DOI: 10.7717/peerj-cs.2090/fig-12

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 25/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-12
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

fewer times, when compared with those with just access to external documentation (i.e.,
the CG).

During the experimental sessions, the spectator collected data regarding the
consumption of internal documentation (provided by the plugin). This was done by

Figure 13 Box plot of the tasks duration variable in both treatments.
Full-size DOI: 10.7717/peerj-cs.2090/fig-13

Table 4 Summary of the statistical tests’ results for the tasks duration variable. The values of ρ are
underlined when they represent statistically significant probabilities.

CG EG MW-U t-test

�x r �x r H1 u q r t q d

T11 585.8 104.66 117.3 26.80 > 6 <0.001 0.57 – – –

T12 325.5 52.10 55.55 8.44 > 0 <0.001 0.71 – – –

T21 211.8 18.70 114.9 17.24 > – – – 3.816 <0.001 1.67

T22 475.3 80.41 483.9 70.57 > – – – −0.081 0.468 −0.04

T31 468.5 51.43 243.1 26.64 > – – – 4 <0.001 1.75

T32 462.2 52.41 163.3 12.93 > 0 < 0.001 0.72 – – –

Table 5 Summary of the MW-U statistic results for the context switching variable. The values of ρ are
underlined when they represent statistically significant probabilities.

CG EG MW-U

�x r �x r H1 u q r

T11 4.6 0.792 0.45 0.207 > 1.5 <0.001 0.71

T12 4.9 1.016 0.18 0.122 > 2 <0.001 0.73

T21 3.3 0.367 1.09 0.251 > 6 <0.001 0.6

T22 1.5 0.563 1.91 0.530 > 46.5 0.289 0.02

T31 4.3 0.895 0.91 0.285 > 11 <0.001 0.48

T32 5.5 0.543 0 0 > 0 <0.001 0.84

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 26/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-13
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

counting accesses to (a) the documentation displayed when hovering the name of a class
that participates in a pattern instance, (b) the pattern instance live editor, and (c) the
plugin suggestions. Figure 14 shows the number of accesses to internal (ID) and external
(ED) documentation during the software comprehension tasks (T11, T21, and T31). This
puts into context the result of the statistical tests, given that a likely cause for different
numbers of context switches is the availability of internal documentation within the IDE.

Regarding specifically the documentation creation tasks (T12 and T32), which required
the participants to represent pattern instances as a UML class diagram, we found that the
EG leaned almost exclusively on internal documentation. This is readily apparent in
Fig. 15, and we believe that it can be attributed to the EG finding all the information that
they required, within the IDE, as well as the means to perform this type of task.

Assessment questions
To understand the participants’ perception regarding the difficulty of the tasks, we asked
them to answer three final questions. More specifically, (1) if it was easy to identify design
patterns on the source code (H1: CG > EG), (2) if it was easy to document the code using
pattern instances in UML format (H1: CG > EG), and (3) if the communication
environment (remote computer) had a negative impact in their performance (H1: CG 6¼
EG). We start by plotting the data collected for the first two questions in Fig. 16, which
shows that the EG found the identification and documentation tasks easier than the CG
did.

We also run Mann-Whitney U tests to validate these hypotheses, and the results can be
seen in Table 6. The answers to the first two questions allow us to reject H0 and show the
CG as having significantly greater values when compared with the EG (q < 0:05). This
means that the participants agree that our approach does indeed help to improve software
comprehension (medium effect, r > 0.3) and that it eases the documenting process (large
effect, r > 0.5). Moreover, the answers to the last question do not allow us to reject H0 and
we find no significant difference between the two groups (q > 0:05). Even though nothing
can be concluded from this test, we find that the large majority of participants do not
believe that their performance was negatively affected by the remote environment (cf.
Fig. 17).

Discussion
The empirical study, as reported in the previous section, is designed to evaluate essentially
these metrics: (a) the time spent understanding and (b) documenting a software system,
and (c) the number of context switches, between the IDE and the external
documentation. We rely on these metrics to answer our research questions (cf. “Research
Questions”), with the goal of studying the consequences of increasing the liveness of
software documentation based on pattern instances.

During tasks T11, T21, and T31, the participants are asked which pattern instances exist
in the source code to evaluate the first metric. In “Task Duration” we report that the
participants without access to our tool took significantly longer than those with access to it.
Therefore, our approach seems indeed to reduce the time required to understand a

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 27/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Figure 14 Box plot of the number of accesses to internal (ID) and external (ED) documentation, in
the software comprehension activities. Full-size DOI: 10.7717/peerj-cs.2090/fig-14

Figure 15 Box plot of the number of accesses to internal (ID) and external (ED) documentation, in
the software documentation activities. Full-size DOI: 10.7717/peerj-cs.2090/fig-15

Figure 16 Responses to final questions (1) and (2). Full-size DOI: 10.7717/peerj-cs.2090/fig-16

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 28/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-14
http://dx.doi.org/10.7717/peerj-cs.2090/fig-15
http://dx.doi.org/10.7717/peerj-cs.2090/fig-16
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

software system. This result can be mapped directly to the first research question: to what
extent liveness can make it easier to understand a software system’s design in terms of its
pattern instances?

Before answering this question it is important to reflect on these three tasks and why
they should be evaluated together. It would be legitimate to wonder if the results for CG
and EG would be equivalent in the scenario we would solely consider T11 to measure the
time spent understanding the software, and if the CG used a design pattern detection
(DPD) tool (see “Detecting Pattern Instances in Code”) with support for the second
liveness level. Therefore, we also used tasks T21 and T31 to help evaluate the first metric,
since we expected these tasks to benefit from liveness, especially levels 4 and 5.

Our approach supports liveness levels 4 and 5 in particular through a few of the plugin’s
features. We believe the features Identifying Pattern Instances, Incomplete Documentation
Inspection and Pattern Hints (see “Design and Functionality of the Plugin”) are the main
ones responsible for facilitating the understanding of the documentation. While the CG
used 1266 TU/P8 to perform these three tasks, the EG used 475 TU/P to perform the same
tasks. This data shows that by using our approach EG completed tasks 62% faster
compared to CG, therefore our approach positively influenced the comprehension of the
software’s design.

During tasks T12 and T32 the participants are asked to implement changes in the source
code and document these changes, and we try to evaluate the second metric. In “Task
Duration” we report that participants using our tool were significantly faster in these tasks
than those from the control group. Therefore, we can say that our approach also reduced
the time required to document a software system. This result can be mapped directly to the

Figure 17 Responses to the question if a remote environment had a negative impact in the
experiment. Full-size DOI: 10.7717/peerj-cs.2090/fig-17

Table 6 Summary of the MW-U statistic results for the final questionnaire.

CG EG MW-U

�x r �x r H1 u q r

Q1 3.500 0.373 4.640 0.203 > 19.500 0.003 0.34

Q2 3.400 0.371 4.910 0.091 > 8.500 0.000 0.61

Q3 1.300 0.213 1.820 0.325 6¼ 40.000 0.145 0.08

Note:
Q1. I found it easy to identify design patterns in the source code; Q2. I found it easy to document the code using pattern
instances in UML format; Q3. The communication environment (remote computer) had a negative impact in the
experiment.

8 TU: Time Unit. P: participant.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 29/40

http://dx.doi.org/10.7717/peerj-cs.2090/fig-17
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

second research question: to what extent liveness can make it easier to keep software
documentation updated?

Although the results of tasks T12 and T32 can bring light to this question, it is
important to mention that task T12 is similar to T11, as both can benefit from DPD tools.
Knowing this, we should focus on the result of task T32 because it can benefit from
approaches supporting liveness levels 4 and 5. For this task in particular, while the CG used
468 TU/P, the EG used 243 TU/P. Therefore, the EG completed this task 48% faster
compared to CG. We credit this result in particular to the features: Suggesting Detected
Pattern, Incomplete Documentation Inspection, Pattern Instance Live Editor and Pattern
Hints.

It is also important to reflect that software documentation may easily become outdated
when the act of documenting does not follow the evolution of the software. One of the
reasons why this happens is because programming and development are not always
performed together, making it easy for important information to get forgotten in the
process. Additionally, since these activities are firmly related to each other, and involve
different types of artifacts, transitioning between them implies a constant swap of context.
Our approach addresses this concern by placing these different types of artifacts within the
same environment, embedding documentation artifacts in the same place where the code
is edited (IDE), and simplifying the act of documenting. Since the experiment showed
evidence that, with our approach, developers reduce the time needed to document a
software system, we believe that we provide the means to keep the documentation more
easily updated.

Finally, we evaluated the number of context switches. In “Context Switching” we report
that participants using the documentation provided by our tool within the IDE, have
switched context significantly fewer times than those using only external documentation.
Additionally, we noted that the participants were able to rely exclusively upon our tool to
perform the documenting tasks. During the software comprehension tasks, the
participants also reduced their need to use external documentation by inspecting the
embedded documentation more often. This result can bring light to the third research
question: to what extent liveness can reduce context switching between programming and
documenting?

Our experiment showed that by increasing the level of liveness, by keeping
implementation and documentation artifacts in the same environment and ensuring
instant feedback, it was possible to reduce the number of context-switching by 89%. While
the CG with 10 participants switched context 46 times, the EG with 11 participants
switched context only 5 times.

Threats to validity
During the design of the experiment, we considered any experimental conditions that
could cause deviations in the results and, therefore, compromise the validity of our
approach. Since we want to obtain sound answers to our research questions, we took
precautions to discard these threats.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 30/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Different skills
The design of the experiment assumes that the participants in the CG and the EG have
similar skills and knowledge. Otherwise, we could not be certain that the differences in the
results between the two groups were entirely due to the different treatments used and could
perhaps be attributed to dissimilarities in the groups. Therefore, we selected participants
with similar backgrounds (all MSc students from courses strong on software engineering
topics) who had similar contact with design patterns. Additionally, we asked participants
to answer a background questionnaire to statistically confirm that no significant
differences existed between them.

Internal factors
One of the goals of our experimental design is to ensure that both the CG and the EG are
under the same conditions except specifically in what concerns the treatment—i.e., the use
of our liveness-focused approach to documenting pattern instances embodied by the
DesignPatternDoc plugin.

Notwithstanding, the CG did not have access to any software tool for extracting pattern
instances from source code while the EG did, as part of the plugin. Therefore, we could
argue that the differences between the two groups go beyond being just able to benefit (or
not) from liveness. In other words, we can ask ourselves if access to a pattern-instance
extraction tool is playing a confounding factor in the association between using a live
approach to documenting pattern instances and the duration of the tasks in our
experiment. While we consider this a valid concern regarding the duration of software
comprehension activities (T11, T21, and T31), we also believe that it is not likely that it
influenced documenting activities (T12 and T32), for which a shorter duration in the tasks
was also observed.

In any case, to fully address the concern, we can envision a different experiment: one
where the CG also has access to a pattern-instance extraction tool, even if we expect that
any gain in the duration of the tasks could be easily lost by the increase in context
switching required by using another tool.

Furthermore, more factors could affect the results. To more reliably compare the two
groups we asked the CG to produce manually drawn diagrams, close to those generated by
our plugin. But manually drawing diagrams is qualitatively different from annotating
pattern roles in source code, so the differences between the groups might not be only
because of increased liveness. An alternative design could have the CG use text annotations
instead of diagrams, but this option implies a relevant trade-off: it could allow for a more
reliable assessment of the effects of liveness during documenting activities, at the expense of
reliably assessing it during programming activities, given that CG and EG participants
would be looking at different representations (respectively, text-based and diagrams) when
trying to understand and evolve existing code.

To address this concern, we can envision future experiments with smaller scopes,
focused specifically on documenting or on programming activities. While such experiments
will not allow to evaluate our approach as a whole, they may allow to better isolate the role
of liveness in observable effects.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 31/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Yet another internal factor to consider is whether the use of different terms in the task
descriptions of the CG and EG may have biased the results. The goal of these differences
was to avoid possible doubts of participants when following the instructions. Although we
have no way of fully discarding this possibility, we are convinced they did not influence the
results, as these small differences consist only of referring to different things that played the
same role on each of the groups (draw.io vs. the plugin, and the class diagram drawn by the
participant vs. the plugin-based documentation created by each participant).

External factors

The option to use a remote environment had the benefit of making it logistically easier for
students to participate in the study but opens a few threats to validity since the results
could be affected by the communication environment, such as latency or network
breakdowns. Moreover, it could make it harder for the researchers to observe the
participants, which could be crucial for understanding the entire process toward a solution.
The first issue was mitigated by submitting the participants to a final questionnaire, where
they were asked if the communication environment affected their performance. For the
latter, we had a spectator to watch the entire experiment by having access (via a remotely
shared screen) to the computer where the experiment was taking place and by asking the
participants to think aloud.

Generalizability to professionals
Given that recruiting students is easier than recruiting professional software developers, we
chose them as the subjects for evaluating our approach. This had other benefits, such as
ensuring that every participant had a similar set of skills. However, we cannot help to
wonder if the conclusions we take can be generalized to professionals due to differences in
experience that will naturally exist. To tackle this concern, we will replicate this experiment
with professionals in the future.

Generalizability to different cultures
The participants in our study share the fact that they had all been recently exposed to the
importance of design patterns and actively practiced using them in implementations and
for communicating. However, we accept that not all teams will have design patterns
ingrained in their culture and can see the value of creating documentation based on pattern
instances. In such contexts, we do not expect our approach to bring benefits or even to be
welcome.

CONCLUSIONS
This work was conducted with the purpose of streamlining the process that comprises the
creation and the documentation of software, making it easier to switch between the activity
of programming and documenting, in particular, describing its design pattern instances.
This objective lead us to three research questions presented in “Research Strategy”.

Our hypothesis is that by increasing the level of liveness of documenting pattern
instances, we will streamline the process of switching between programming and
documenting, making it easier to understand a system’s design and document it. Software

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 32/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

development and the creation of its documentation are often treated as different phases in
the overall software development process. Developers have to constantly switch contexts,
which most of the time, leads to loss of important knowledge, and inconsistencies among
artifacts and, subsequently, has a critical impact on the learning process and reuse of
software systems.

In order to evaluate this research hypothesis and answer the research questions we
defined an approach based on the fundamental ideas of good documentation practices and
live programming, implemented a prototype named DesignPatternDoc as a plugin for
IntelliJ IDEA, and conducted a controlled experiment with MSc students of two courses
lectured at the Faculty of Engineering of the University of Porto. As a result of the
experiment, we found that the tool reduces the mutual feedback loop between the
programming and documenting phases, helping the overall understanding of the
software’s design. This was achieved by adding live feedback to the documentation based
on pattern instances. Our prototype provides feedback to the developer, while the system is
being implemented, regarding which pattern instances should be documented.
Furthermore, it generates the required documentation for a specific pattern instance,
allows live editing of the persisted pattern instances, and alerts the developer when a
pattern instance is incomplete (i.e., when one of the pattern roles isn’t being played by an
object).

The answers to our research questions are discussed in “Discussion” based on the data
collected in the experiment. We found clues that, with our proposed approach, (1)
developers spend less time understanding a software system, (2) developers spend less time
documenting a software system, which has the potential to make it easier to keep software
documentation updated, and (3) the context switching between the IDE and the external
documentation is reduced when embedding the latter in the IDE.

FUTURE WORK
Our next steps in this research can be organized along three different aspects—(a) the
approach, (b) the prototype, and (c) the empirical evaluation.

Approach
Increase the liveness level

This work was able to push liveness to level 4 according to Tanimoto (2013)’s six levels to
define liveness, but we could consider increasing it further. While achieving level 6 seems
still a considerable challenge, we can envision concrete use cases to realistically achieve
level 5. For example, after defining that a class plays a role in a design pattern, the
environment could suggest scaffolds for the classes that would play the rest of the roles for
that design pattern. Further work will explore this and other level-5 features of the plugin.

Prototype
Expand the set of detected patterns
The set of supported design patterns that the plugin can detect in the source code would be
interesting to expand. With DP-CORE this is easy to achieve for design patterns detectable

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 33/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

just by static analysis. We could also achieve this by replacing DP-CORE with an
alternative detection tool that would cover a wider set of patterns.

Pattern detection based on dynamic analysis
A way to widen the set of supported patterns would be through dynamic analysis of the
source code. We want to explore if our approach can cope with such scenarios. With
detection based on static analysis, we have managed to achieve level 4 of liveness; still, if the
system needs to be run to detect the pattern instances effectively, it may reveal itself a
challenge to maintain the quasi-real-time feedback that level 4 of liveness requires.

Pattern instance view
In the same way that IntelliJ IDEA provides a class view and a package view for Java files,
which allow browsing the sets of classes and packages in a project, the existence of a pattern
instance view could provide easy access to all the pattern instances in a project. This view
would allow navigating to a particular source code element from a specific pattern
participant.

Empirical evaluation
Controlled experiment using more baselines
Our empirical study seeks to provide insights into how liveness can play a role in
documentation based on pattern instances, and we chose external diagram-based
documentation as a baseline for our comparison. However, comparing our approach with
the most promising approaches and tools that we review in “Related Work” may lead to
further insights. Unfortunately, most of the authors do not seem to provide a freely
available tool that we can compare against, so doing such a study may prove unfeasible,
depending on the specific approaches and tools we may want to compare with.

Controlled experiment with professionals
Performing a controlled experiment with professional software developers could help us
gain confidence in the generalizability of our study’s results. To this end, the included
experimental package can be, possibly with minor adjustments, applied to professional
developers.

Case study with professionals
Providing the prototype to a team developing a software product in an industrial setting
could help to understand in-context the trade-offs that underlie the approach. It would
support investigating how the approach behaves in a real-world scenario with a large
number of classes and lines of code (e.g., if the developers get overwhelmed by the number
of pattern instance suggestions).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by FEUP and INESC TEC, and is co-financed by Component 5 -
Capitalization and Business Innovation, integrated in the Resilience Dimension of the

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 34/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Recovery and Resilience Plan within the scope of the Recovery and Resilience Mechanism
(MRR) of the European Union (EU), framed in the Next Generation EU, for the period
2021–2026, within project HfPT, with reference 41. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
FEUP.
INESC TEC.
Resilience Dimension of the Recovery and Resilience Plan within the scope of the Recovery
and Resilience Mechanism (MRR) of the European Union (EU).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Filipe Lemos conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Filipe F. Correia conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

. Ademar Aguiar conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

. Paulo G. G. Queiroz analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and materials used and produced in the context of our study are available at
Zenodo: Lemos, F., & Correia, F. (2024). Experimental package for “Live Software
Documentation of Design Pattern Instances” (v1.0) (Data set). Zenodo. https://doi.org/10.
5281/zenodo.10849702.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2090#supplemental-information.

REFERENCES
Aguiar A. 2003. Framework documentation—a minimalist approach. PhD thesis, University of

Porto, Faculty of Engineering, Portro, Portugal.

Aguiar A, Restivo A, Correia FF, Ferreira HS, Dias JP. 2019. Live software development:
tightening the feedback loops. In: ACM International Conference Proceeding Series. New York:
ACM.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 35/40

https://doi.org/10.5281/zenodo.10849702
https://doi.org/10.5281/zenodo.10849702
http://dx.doi.org/10.7717/peerj-cs.2090#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2090#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Arcelli Fontana F, Zanoni M. 2011. A tool for design pattern detection and software architecture
reconstruction. Information Sciences 181(7):1306–1324 DOI 10.1016/j.ins.2010.12.002.

Barbudo R, Ramírez A, Servant F, Romero JR. 2021. Geml: a grammar-based evolutionary
machine learning approach for design-pattern detection. Journal of Systems and Software
175(3):110919 DOI 10.1016/j.jss.2021.110919.

Bayer J, Muthig D. 2006. A view-based approach for improving software documentation practices.
In: Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering
of Computer Based Systems, ECBS ’06. Piscataway: IEEE Computer Society, 269–278.

Bernardi ML, Cimitile M, Di Lucca GA. 2013. A model-driven graph-matching approach for
design pattern detection. In: Proceedings–Working Conference on Reverse Engineering, WCRE.
172–181.

Beyer D, Lewerentz C. 2003. CrocoPat: a tool for efficient pattern recognition in large object-
oriented programs. Technical Report I-04/2003, Software Systems Engineering Research Group,
Technical University Cottbus, Cottbus, Germany.

Blewitt A, Bundy A, Stark I. 2001. Automatic verification of java design patterns. In: Proceedings
16th Annual International Conference on Automated Software Engineering (ASE 2001).
Piscataway: IEEE, 324–327.

Chihada A, Jalili S, Hasheminejad SMH, Zangooei MH. 2015. Source code and design
conformance, design pattern detection from source code by classification approach. Applied Soft
Computing Journal 26(April):357–367 DOI 10.1016/j.asoc.2014.10.027.

Cohen J. 1988. Statistical power analysis for the behavioral sciences. Second Edition. Hillsdale, NJ:
Erlbaum.

Cornils A, Hedin G. 2000. Statically checked documentation with design patterns. In: Proceedings
of the Conference on Technology of Object-Oriented Languages and Systems, TOOLS. Piscataway:
IEEE, 419–430.

Correia F. 2015. Documenting software with adaptive software artifacts. PhD thesis, University of
Porto, Faculty of Engineering, Portro, Portugal.

Correia FF. 2010. Supporting the evolution of software knowledge with adaptive software artifacts.
In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. 231–232.

Correia FF, Aguiar A, Ferreira HS, Flores N. 2009. Patterns for consistent software
documentation. In: Proceedings of the 16th Conference on Pattern Languages of Programs,
PLoP ’09. New York, NY, USA: Association for Computing Machinery.

Cunningham W. 1995. The original wiki front page. Available at http://c2.com/cgi/wiki (accessed
18 October 2023).

D’Hondt T, De Volder K, Mens K, Wuyts R. 2002. Co-evolution of object-oriented software design
and implementation. Cham: Springer, 207–224.

Dabain H, Manzer A, Tzerpos V. 2015. Design pattern detection using finder. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, SAC ’15. New York, NY, USA:
Association for Computing Machinery, 1586–1593.

De Lucia A, Deufemia V, Gravino C, Risi M. 2007. A two phase approach to design pattern
recovery. In: Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR. 297–306.

De Lucia A, Deufemia V, Gravino C, Risi M. 2009. Behavioral pattern identification through
visual language parsing and code instrumentation. In: Proceedings of the European Conference
on Software Maintenance and Reengineering, CSMR. Piscataway: IEEE, 99–108.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 36/40

http://dx.doi.org/10.1016/j.ins.2010.12.002
http://dx.doi.org/10.1016/j.jss.2021.110919
http://dx.doi.org/10.1016/j.asoc.2014.10.027
http://c2.com/cgi/wiki
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

De Lucia A, Deufemia V, Gravino C, Risi M. 2010a. An Eclipse plug-in for the detection of design
pattern instances through static and dynamic analysis. In: IEEE International Conference on
Software Maintenance, ICSM. Piscataway: IEEE, 1–6.

De Lucia A, Deufemia V, Gravino C, Risi M. 2010b. Improving behavioral design pattern
detection through model checking. In: 2010 14th European Conference on Software Maintenance
and Reengineering. Piscataway: IEEE, 176–185.

De Lucia A, Deufemia V, Gravino C, Risi M, Pirolli C. 2015. EPadEvo: a tool for the detection of
behavioral design patterns. In: 2015 IEEE 31st International Conference on Software
Maintenance and Evolution, ICSME, 2015–Proceedings. Piscataway: IEEE, 327–329.

Diamantopoulos T, Noutsos A, Symeonidis A. 2016. DP-CORE: a design pattern detection tool
for code reuse. In: BMSD, 2016–Proceedings of the 6th International Symposium on Business
Modeling and Software Design. 160–169.

Dietrich J, Elgar C. 2007. Towards a web of patterns. Web Semantics 5(2):108–116
DOI 10.1016/j.websem.2006.11.007.

Dong J, Yang S, Zhang K. 2007. Visualizing design patterns in their applications and
compositions. IEEE Transactions on Software Engineering 33(7):433–453
DOI 10.1109/TSE.2007.1012.

Farshidi S, Jansen S, van der Werf JM. 2020. Capturing software architecture knowledge for
pattern-driven design. Journal of Systems and Software 169(2):110714
DOI 10.1016/j.jss.2020.110714.

Ferenc R, Beszédes Á, Fülöp L, Lele J. 2005. Design pattern mining enhanced by machine
learning. In: 21st IEEE International Conference on Software Maintenance (ICSM’05).
Piscataway: IEEE, 295–304.

Ferenc R, Gustafsson J, Müller L, Paakki J. 2002. Recognizing design patterns in c++ programs
with integration of columbus and maisa. Acta Cybernetica 15(4):669–682.

Florijn G, Meijers M, van Winsen P. 1997. Tool support for object-oriented patterns. In: Akşit M,
Matsuoka S, eds. ECOOP’97 — Object-Oriented Programming. ECOOP 1997. Lecture Notes in
Computer Science. Vol. 1241. Berlin, Heidelberg: Springer, 472–495 DOI 10.1007/BFb0053391.

Friendly L. 1996. The design of distributed hyperlinked programming documentation. In:
Fraïssé S, Garzotto F, Isakowitz T, Nanard J, Nanard M, eds. Hypermedia Design. London:
Springer London, 151–173.

Gamma E, Helm R, Johnson R, Vlissides J. 1995. Design patterns: elements of reusable object-
oriented software. Boston: Addison-Wesley Professional.

Guéhéneuc Y-G. 2005. Ptidej: promoting patterns with patterns. In: Proceedings of the 1st ECOOP
workshop on Building a System using Patterns. Cham: Springer-Verlag, 1–9.

Guéhéneuc YG, Antoniol G. 2008. DeMIMA: a multilayered approach for design pattern
identification. IEEE Transactions on Software Engineering 34(5):667–684
DOI 10.1109/TSE.2008.48.

Hallum AM. 2002. Documenting patterns. PhD thesis, Norges Teknisk-Naturvitenskapelige
Universitet Fakultet for Matematikk, Informasjonsteknologi og Elektroteknikk, Trondheim,
Norway.

Hedin G. 1998. Language support for design patterns using attribute extension. In: Lecture Notes in
Computer Science. Vol. 1357. Boston: Springer Verlag, 137–140.

Heuzeroth D, Holl T, Högström G, Löwe W. 2003. Automatic design pattern detection. In:
Proceedings−IEEE Workshop on Program Comprehension, volume 2003-May. 94–103
DOI 10.1109/WPC.2003.1199193.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 37/40

http://dx.doi.org/10.1016/j.websem.2006.11.007
http://dx.doi.org/10.1109/TSE.2007.1012
http://dx.doi.org/10.1016/j.jss.2020.110714
http://dx.doi.org/10.1007/BFb0053391
http://dx.doi.org/10.1109/TSE.2008.48
http://dx.doi.org/10.1109/WPC.2003.1199193
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Johnson R, Woolf B. 1996. The type object pattern. In: Pattern Languages of Program Design.
Vol. 3, 47–66.

Keller RK, Schauer R, Robitaille S, Page P. 1999. Pattern-based reverse-engineering of design
components. In: Proceedings–International Conference on Software Engineering. 226–235.

Kitchenham B. 2004. Procedures for performing systematic reviews. Keele University. Technical
Report TR/SE-0401, Department of Computer Science, Keele University, UK.

Lee H, Youn H, Lee E. 2008. A design pattern detection technique that aids reverse engineering.
International Journal of Security and its Applications 2(1):1–12.

Lemos F, Correia F. 2024. Experimental package for “live software documentation of design
pattern instances”. Zenodo DOI 10.5281/zenodo.10849702.

Li F, Li Q-S, Yang SU, Chen P. 2007. Detection of design patterns by combining static and
dynamic analyses. Digital Object Identifier 11(2):156–162 DOI 10.1007/s11741-007-0213-z.

Likert R. 1932. A technique for the measurement of attitudes. Archives of Psychology 140:55.

Lovatt HC, Sloane AM, Verity DR. 2005. A pattern enforcing compiler (PEC) for Java: using the
compiler. In: Conferences in Research and Practice in Information Technology Series. Vol. 43,
69–78.

Mayvan B, Rasoolzadegan A. 2017. Design pattern detection based on the graph theory.
Knowledge-Based Systems 120(6):211–225 DOI 10.1016/j.knosys.2017.01.007.

Nazar N, Aleti A, Zheng Y. 2022. Feature-based software design pattern detection. Journal of
Systems and Software 185(89):111179 DOI 10.1016/j.jss.2021.111179.

Nenonen L, Gustafsson J. 2000. Pattern recognition in the MAISA tool. Science 1–12.

Niere J, Schäfer W, Wadsack JP, Wendenhals L, Welsh J. 2002. Towards pattern-based design
recovery. In: Proceedings-International Conference on Software Engineering. 338–348.

Oberhauser R. 2020. A machine learning approach towards automatic software design pattern
recognition across multiple programming languages. In: Proceedings of the Fifteenth
International Conference on Software Engineering Advances. IARIA, 27–32.

Odenthal G, Quibeldey-Cirkel K. 1997. Using patterns for design and documentation. In: Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 1241. Berlin, Germany: Springer Verlag, 511–529.

OpenAPI. 2018. Openapi initiative. Available at https://www.openapis.org/ (accessed 18 October
2023).

Oruc M, Akal F, Sever H. 2016. Detecting design patterns in object-oriented design models by
using a graph mining approach. In: 2016 4th International Conference in Software Engineering
Research and Innovation (CONISOFT). 115–121.

Parnas DL. 1972.On the criteria to be used in decomposing systems into modules. In: Pioneers and
Their Contributions to Software Engineering. Cham: Springer, 479–498.

Power K, Conboy K. 2014. Impediments to flow: rethinking the lean concept of ‘waste’ in modern
software development. In: International Conference on Agile Software Development. Cham:
Springer, 203–217.

Prechelt L, Krämer C. 1998. Functionality versus practicality: employing existing tools for
recovering structural design patterns. Journal of Universal Computer Science 4(12):866–882.

Radev DR, Zhang R, Rau A, Sivaprasad A, Hsieh C, Rajani NF, Tang X, Vyas A, Verma N,
Krishna P, Liu Y, Irwanto N, Pan J, Rahman F, Zaidi A, MutumaM, Tarabar Y, Gupta A, Yu
T, Tan YC, Lin XV, Xiong C, Socher R. 2020. DART: open-domain structured data record to
text generation. CoRR DOI 10.48550/arXiv.2007.02871.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 38/40

http://dx.doi.org/10.5281/zenodo.10849702
http://dx.doi.org/10.1007/s11741-007-0213-z
http://dx.doi.org/10.1016/j.knosys.2017.01.007
http://dx.doi.org/10.1016/j.jss.2021.111179
https://www.openapis.org/
http://dx.doi.org/10.48550/arXiv.2007.02871
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Rasool G, Mäder P. 2011. Flexible design pattern detection based on feature types. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2011,
Proceedings. Piscataway: IEEE, 243–252.

Rasool G, Philippow I, Mäder P. 2010.Design pattern recovery based on annotations. Advances in
Engineering Software 41(4):519–526 DOI 10.1016/j.advengsoft.2009.10.014.

Riehle D, Harutyunyan N, Barcomb A. 2021. Pattern discovery and validation using scientific
research methods. ArXiv preprint DOI 10.48550/arXiv.2107.06065.

Rimawi D, Zein S. 2019. A model based approach for android design patterns detection. In: 2019
3rd International Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT). 1–10.

Sametinger J, Riebisch M. 2002. Evolution support by homogeneously documenting patterns,
aspects and traces. In: Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR. 134–140.

Schauer R, Keller RK. 1998. Pattern visualization for software comprehension. In: Program
Comprehension, Workshop Proceedings. 4–12.

Shi N, Olsson RA. 2006. Reverse engineering of design patterns from Java source code. In:
Proceedings–21st IEEE/ACM International Conference on Automated Software Engineering, ASE
2006. Piscataway: IEEE, 123–132.

Smith JM, Stotts D. 2003. Spqr: flexible automated design pattern extraction from source code. In:
18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.
Piscataway: IEEE, 215–224.

Sousa T, Ferreira HS, Correia FF. 2021. A survey on the adoption of patterns for engineering
software for the cloud. IEEE Transactions on Software Engineering 48(6):2128–2140
DOI 10.1109/TSE.2021.3052177.

Spinellis D. 2010. Code documentation. IEEE Software 27(4):18–19 DOI 10.1109/MS.2010.95.

Stencel K, Wegrzynowicz P. 2008. Detection of diverse design pattern variants. In: Neonatal,
Paediatric and Child Health Nursin. 25–32.

Tang A, Aleti A, Burge J, van Vliet H. 2010.What makes software design effective? Design Studies
31(6):614–640 DOI 10.1016/j.destud.2010.09.004.

Tanimoto SL. 2013. A perspective on the evolution of live programming. In: 2013 1st International
Workshop on Live Programming, LIVE, 2013–Proceedings. 31–34.

Tøese T, Tilley S. 2007. Documenting software systems with views V: towards visual
documentation of design patterns as an aid to program understanding. In: SIGDOC’07:
Proceedings of the 25th ACM International Conference on Design of Communication. 103–111.

Torchiano M. 2002. Documenting pattern use in Java programs. In: Conference on Software
Maintenance. 230–233.

Tsantalis N, Chatzigeorgiou A, Stephanides G, Halkidis ST. 2006.Design pattern detection using
similarity scoring. IEEE Transactions on Software Engineering 32(11):896–909
DOI 10.1109/TSE.2006.112.

Vermeer B. 2020. JVM ecosystem report 2020. Technical report, Snyk. Available at https://snyk.io/
blog/jvm-ecosystem-report-2020/.

Wang L, Song T, Song H-N, Zhang S. 2022. Research on design pattern detection method based
on uml model with extended image information and deep learning. Applied Sciences 12(17):8718
DOI 10.3390/app12178718.

Wang W, Tzerpos V. 2005. Design pattern detection in Eiffel systems. In: Proceedings–Working
Conference on Reverse Engineering, WCRE. Vol. 2005, 165–174.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 39/40

http://dx.doi.org/10.1016/j.advengsoft.2009.10.014
http://dx.doi.org/10.48550/arXiv.2107.06065
http://dx.doi.org/10.1109/TSE.2021.3052177
http://dx.doi.org/10.1109/MS.2010.95
http://dx.doi.org/10.1016/j.destud.2010.09.004
http://dx.doi.org/10.1109/TSE.2006.112
https://snyk.io/blog/jvm-ecosystem-report-2020/
https://snyk.io/blog/jvm-ecosystem-report-2020/
http://dx.doi.org/10.3390/app12178718
http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

Wendehals L. 2004. Specifying patterns for dynamic pattern instance recognition with uml 2.0
sequence diagrams. Proceedings of the 6th Workshop Software Reenginering (WSR) 24(2):63–64.

Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A. 2012. Experimentation in
software engineering. Cham: Springer Publishing Company, Incorporated.

Zhang H, Liu S. 2013. Java source code static check eclipse plug-in based on common design
pattern. In: Proceedings–2013 4th World Congress on Software Engineering, WCSE 2013.
Piscataway: IEEE, 165–170.

Lemos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2090 40/40

http://dx.doi.org/10.7717/peerj-cs.2090
https://peerj.com/computer-science/

	Live software documentation of design pattern instances
	Introduction
	Research strategy
	Related work
	The designpatterndoc plugin
	Empirical study
	Conclusions
	Future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

