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ABSTRACT
User authentication is a fundamental aspect of information security, requiring robust
measures against identity fraud and data breaches. In the domain of keystroke dynamics
research, a significant challenge lies in the reliance on imposter datasets, particularly
evident in real-world scenarios where obtaining authentic imposter data is exceed-
ingly difficult. This article presents a novel approach to keystroke dynamics-based
authentication, utilizing unsupervised outlier detection techniques, notably exemplified
by the histogram-based outlier score (HBOS), eliminating the necessity for imposter
samples. A comprehensive evaluation, comparing HBOS with 15 alternative outlier
detectionmethods, highlights its superior performance. This departure from traditional
dependence on imposter datasets signifies a substantial advancement in keystroke
dynamics research. Key innovations include the introduction of an alternative outlier
detection paradigm with HBOS, increased practical applicability by reducing reliance
on extensive imposter data, resolution of real-world challenges in simulating fraudulent
keystrokes, and addressing critical gaps in existing authentication methodologies.
Rigorous testing on Carnegie Mellon University’s (CMU) keystroke biometrics dataset
validates the effectiveness of the proposed approach, yielding an impressive equal
error rate (EER) of 5.97%, a notable area under the ROC curve of 97.79%, and a
robust accuracy (ACC) of 89.23%. This article represents a significant advancement
in keystroke dynamics-based authentication, offering a reliable and efficient solution
characterized by substantial improvements in accuracy and practical applicability.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Security and Privacy
Keywords Keystroke biometrics, Machine learning, Outlier detection, User authentication,
Histogram-based outlier score, Carnegie Mellon University’s (CMU) keystroke biometric dataset

INTRODUCTION
User authentication stands as a cornerstone in safeguarding information security, offering
critical defense against unauthorized access to protected systems. In today’s evolving
landscape marked by identity fraud, data breaches, and the increasing adoption of remote
work, the necessity for secure and validated remote access becomes ever more pronounced.
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Within the realm of user authentication, three conventional modes emerge: possession,
knowledge, and biometrics.

Possession authentication relies on tangible items such as keys, passports, or smart
cards, historically serving as robust authentication mechanisms. However, these items
are susceptible to vulnerabilities like sharing, duplication, loss, or theft. Knowledge
authentication relies on confidential information, typically manifesting as passwords, yet
faces issues such as predictability and susceptibility to sharing. Biometrics, encompassing
physiological and behavioral traits, plays a pivotal role in security. It spans modalities such
as facial recognition, fingerprint analysis, iris scans, and keystroke dynamics.

Keystroke dynamics, a subset of behavioral biometric authentication, focuses on
the unique timing patterns generated during individuals’ interactions with computer
keyboards. It leverages the distinct rhythm and cadence exhibited during key presses and
releases, creating a personalized signature of typing behavior. Originating from Morse
code operators, where individuals displayed unique typing rhythms, keystroke dynamics
has evolved into a sophisticated authentication method capturing individual differences in
anatomy, typing habits, emotions, and context.

Motivation
Keystroke dynamics offer a promising avenue for user authentication due to their inherent
individuality, providing an additional layer of security beyond traditional password-based
methods. However, the efficacy of keystroke biometrics relies heavily on the quality and
authenticity of the data used for training and testing these systems.

This research is motivated by the critical need to overcome the significant challenges
associated with obtaining authentic imposter data for keystroke biometric research. Ethical
concerns and privacy limitations pose formidable obstacles to collecting real, diverse
imposter data, as highlighted in recent studies (Sadikan, Ramli & Fudzee, 2019; Monrose
& Rubin, 2000). The reliance on simulated fraudulent keystrokes in existing datasets often
fails to accurately capture genuine imposter behavior, leading to unreliable outcomes.

Moreover, the inherent variability in typing patterns (González et al., 2022) and the
potential for social engineering attacks underscore the necessity to enhance the robustness
and generalizability of current keystroke biometric systems. Instead of addressing these
challenges individually, it is more efficient to find solutions that do not require imposter
data for training.

This research aims to develop an alternative approach, bypassing the need for imposter
data and improving the resilience of keystroke biometrics against typing variability and
social engineering threats. Through these advancements, we aim to unlock the full potential
of keystroke dynamics as a secure and user-friendly authentication tool in real-world
security applications.

Contributions of the work
The main contributions of this work are:
1. Alternative approach to keystroke authentication: Introducing unsupervised outlier

detection techniques, notably histogram-based outlier score (HBOS), as an alternative
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to traditional imposter dataset reliance, establishing a new paradigm in keystroke
dynamics research.

2. Enhanced practical applicability: Improving practical applicability by bypassing the
need for extensive imposter datasets, addressing scenarios where data collection is
impractical or privacy concerns prevail.

3. Addressing real-world challenges andmethodological gaps: Tackling challenges in
simulating fraudulent keystrokes and limitations of existing approaches, filling a
crucial gap in authentication methodologies with a more robust solution aligned with
real-world constraints.

RELATED WORK
Keystroke dynamics research has witnessed a surge in the application of diverse machine
learning methodologies, including nearest neighbor classifiers, K-means, Bayesian
classifiers, bagging, and boosting. Noteworthy studies include the utilization of the K-
nearest neighbor (KNN) algorithm with dependence clustering, achieving a 7.7% equal
error rate (EER) (Ivannikova, David & Hämäläinen, 2017). The generalized fuzzy model
(GFM), incorporating Gaussian mixture models, demonstrated a 7.86% EER (Bhatia et
al., 2018). A modified differential evolution (MDE)-based subspace anomaly detection
mechanism exhibited an impressive 3.48% EER (Krishna & Ravi, 2019). In another
study, the utilization of the KNN algorithm with dimensionality reduction achieved an
accuracy of 87.5% (Sahu, Banavar & Schuckers, 2020). Support vector machines, random
forests, and neural networks were explored, with neural networks emerging as the top
performer, boasting an accuracy of 91.8% (Thakare et al., 2021). Additionally, a novel
barcoding system employing one-class support vector machines (SVM) yielded promising
outcomes, achieving a minimum EER of 9.88% (Alpar, 2021). The application of X-means
clustering resulted in an impressive area under the ROC curve (AUC) of 94.2% and an
EER of 11.2% (Hazan, Margalit & Rokach, 2021). Extreme Gradient Boosting (XGBoost)
and multi-layer perceptrons (MLP) showcased robust performance, with an augmented
XGBoost model achieving a noteworthy accuracy of 96.39% (Chang et al., 2022). A hybrid
POHMM/SVM technique, averaging an EER of 8.6%, was also reported in Ali & Tappert
(2018). Notably, the utilization of quantile transformation for normalizing keystroke
timing, combined with histogram gradient boosting, delivered compelling results, boasting
an impressive 97.96% accuracy and a 1.4% EER (Ibrahim et al., 2023).

In the realm of deep neural networks, strategies such as Adam optimization and
LeakyReLU activation, as highlighted by Maheshwary, Ganguly & Pudi (2017), are
employed to expedite learning. This typically involves three hidden layers with 100,
400, and 100 units, LeakyReLU in the hidden layers, and Softmax activation in the
output layer, resulting in an impressive 3% EER and 93.59% accuracy. Independent
learning strategies, incorporating multiple layers and the Nadam optimizer, achieve a
notable accuracy of 92.60%, as demonstrated by Muliono, Ham & Darmawan (2018). For
keystroke authentication enhancement, Patel et al. (2019) employs an autoencoder with
two phases, yielding a 6.51% EER. Another approach presented by Andrean, Jayabalan
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Table 1 Recent works using Carnegie Mellon University’s (CMU) keystroke benchmark dataset sorted by publication year.

Author Approach EER Accuracy

Ibrahim et al. (2023) Histogram Gradient Boosting 1.4% 97.96%
Chang et al. (2022) XGBoost-augment _ 96.39%
Ali & Tappert (2018) POHMM+SVM 8.6% _
Thakare et al. (2021) ANN _ 91.8%
Alpar (2021) Scalogram Barcoding and One-class SVM 9.88% _
Hazan, Margalit & Rokach (2021) X-means with QT 11.2% _
Sahu, Banavar & Schuckers (2020) Kernel PCA with KNN _ 87.5%
Andrean, Jayabalan & Thiruchelvam (2020) MLP 4.45% _
Gedikli & Efe (2020) Feed Forward Neural Network _ 94.7%
Patel et al. (2019) Autoencoder model 6.51% _
Krishna & Ravi (2019) Modified Differential Evolution 34.8% _
Muliono, Ham & Darmawan (2018) Deep Learning Nadam optimizer _ 92.60%
Bhatia et al. (2018) Generalized Fuzzy Model (GFM) 7.86% _
Ivannikova, David & Hämäläinen (2017) Dependence Clustering + KNN 7.7% _
Maheshwary, Ganguly & Pudi (2017) Deep Secure 3% 93.59%

& Thiruchelvam (2020) utilizes a MLP with an input layer (31 neurons) and two hidden
layers (23 neurons), achieving an EER of 4.45%. Additionally, in a study by Gedikli & Efe
(2020), three feed-forward neural network models were explored, with the first model’s
configuration (three hidden layers: 20, 30, 20 neurons) and Rprop mechanism achieving a
4.9% EER and an average identification accuracy of 94.7%.

To summarize the findings of previous works, Table 1 presents recent advances using
Carnegie Mellon University’s (CMU) keystroke dataset, sorted by publication date.

The reliance on imposter datasets for training poses a significant limitation in keystroke
dynamics research, especially in real-world scenarios where obtaining authentic imposter
data is challenging and may not accurately represent actual imposter behavior. Existing
approaches often rely on simulated fraudulent keystrokes for evaluation, highlighting a gap
in practical applicability (see Table 1). In response, this research addresses this challenge
by exploring unsupervised outlier detection techniques, such as the HBOS. This alternative
approach bypasses the need for extensive imposter datasets, offering a promising solution
to enhance the practical application of keystroke dynamics-based authentication. The
goal is to provide a more robust and applicable solution for real-world security scenarios,
overcoming the limitations associated with imposter data collection.

METHODOLOGY
In this research, the primary focus was on exploring unsupervised approaches for keystroke
dynamics authentication, primarily due to their effectiveness without the need for an
imposter dataset, a common limitation in real-world applications. For instance, in scenarios
where new employees receive unique usernames and passwords to access a company’s
database, the absence of a dataset containing multiple imposters with their distinctive
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keystrokes recorded makes it challenging to employ supervised learning approaches. In
contrast, unsupervised methods only necessitate genuine user data for effective training.

The approach rested on the premise that attackers or individuals attempting
unauthorized access exhibit typing biometrics distinct from authorized users.
Consequently, the typing patterns of potential attackers are considered outliers in
comparison to the typical data patterns of legitimate users. Outliers represent extreme
data points that significantly deviate from the expected norms within their respective
categories. In the context of the research, data points marked as outliers effectively denoted
potential attackers.

Utilizing the concept of outlier detection is a crucial process for identifying andmanaging
data points that fall far from the data’s average or are inconsistent with the norm. The
removal or resolution of outliers is essential to prevent any potential skewing in the analysis.
In this context, the identification of outliers corresponded to the detection of potential
attackers within the keystroke dynamics dataset.

Expanding on the effectiveness demonstrated by histogram gradient boosting (HGB)
in keystroke user authentication (Ibrahim et al., 2023), there is a compelling case for
advocating the adoption of the HBOS. To assess the suitability of outlier detection
techniques in the context of keystroke dynamics, a comprehensive study was conducted,
evaluating the performance of various machine learning outlier detection models. Through
rigorous testing involving 15 models, the HBOS emerged as the top-performing model.

The workflow of the keystroke user authentication system is depicted in Fig. 1. This
process initiates with the registration of a password and involves user authentication based
on their keystroke biometrics. The algorithm extracts distinctive features from the user’s
typing patterns, including Hold Time (H.Time) showing the duration a key is pressed,
keyDown-keyDown time (DD.Time) which is the duration between two successive key
presses, and keyUp-keyDown time (UD.Time) representing the period from key release to
the press of another key.While additional features could potentially enhance authentication,
their implementation often necessitates specialized hardware, such as measuring the force
applied during a key press. This could significantly escalate the system’s cost and limit its
practicality for widespread use.

Outlier detection models
Several outlier detection algorithms have been developed over the past decade,categorized
into four groups: Linear outlier detection models, proximity-based outlier detection
models, probabilistic outlier detection models, and ensembles and combination
frameworks. This subsection details the 15 algorithms employed for user identification.

Linear models for outlier detection
In the category of Linear models for outlier detection, three distinct methodologies
were employed. Principal component analysis (PCA) utilizes a lower-dimensional space
to generate principal components, assigning outlier scores based on distances from these
components (Shyu et al., 2003).Mathematically, PCA involves the computation of principal
components (PCi) using the covariance matrix (Cov):
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Figure 1 Keystroke user authentication flowchart.
Full-size DOI: 10.7717/peerjcs.2086/fig-1

PCi=Cov(X).
One-Class support vector machines (OCSVM) map data into a high-dimensional space,

constructing a hyperplane for maximal separation between normal instances and the
origin, serving as a boundary to distinguish normal from abnormal instances (Tax & Duin,
2004). The optimization problem for OCSVM involves finding the hyperplane parameters
(w and b) that maximize the margin and minimize the classification error:

min 1
2‖w‖

2
+

1
νn
∑n

i=1ξi−ρ.
Linear model deviation-based outlier detection (LMDD) takes a unique approach, not

relying on statistical analysis or distance-based metrics. It identifies outliers by assessing
the primary properties of objects in a group, flagging those that ‘deviate’ from the group’s
description, with the term ‘deviation’ characterizing outliers (Arning, Agrawal & Raghavan,
1996). While the specific mathematical formulation for LMDD is not provided here, it
involves deviation-based scoring for outlier identification.

Proximity-based outlier detection models
Various approaches offer unique outlier detection methodologies within this category.
Local Outlier Factor (LOF) assesses an object’s local density deviation from its neighbors
(Breunig et al., 2000). It utilizes K-nearest neighbors to estimate local density and identify
outliers with significantly lower density, calculated as:

LOF(p)=
∑

o∈Nk (p)
lrdk (o)
lrdk (p)

k
where lrdk(o) denotes the local reachability density of object o.
Optimizing computational costs, clustering-based local outlier factor (CBLOF)

partitions data into clusters and applies LOF based on cluster size and distance to the
nearest cluster (He, Xu & Deng, 2003).

KNN calculates the maximum distance of the kth neighbor as the outlier score (Angiulli
& Pizzuti, 2002), given by:

Outlier Score(p)=maxki=1distance(p,neighbori)
Mean KNN derives the score from the mean distance to the K-nearest neighbors as:

Outlier Score(p)=
∑k

i=1distance(p,neighbori)
k
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Assuming feature independence, the HBOS normalizes histograms, calculates the score
for each feature, and flips values for outlier prioritization (Goldstein & Dengel, 2012),
formulated as:

HBOS(p)=
∏d

i=1
1

histi(b(pi))
where histi is the normalized histogram for feature i and (pi) is the bin index of feature
pi. Choosing the most appropriate method depends on specific needs, considering the
strengths and weaknesses of each approach.

Probabilistic models for outlier detection
This section explores three distinct probabilistic models employed for outlier detection:
Angle-based outlier detection (ABOD), kernel density estimation (KDE), and Gaussian
mixture model (GMM). Each model offers unique advantages and drawbacks, and their
mathematical equations are presented below.

ABOD leverages the angle spectrum of data points to quantify their deviation from the
majority (Kriegel, Schubert & Zimek, 2008), calculating the variance of weighted directional
vectors. The angle between two points is given by 6 (pi,pj)= arccos( pi·pj

||pi||·||pj ||
), where pi

and pj are data points and · represents the dot product. The ABOD score for a point i is
calculated using the following formula:

ABOD score for pi=

∑
j 6=iwij(6 (pi,pj)− 6 (pi))2∑

j 6=iwij
.

In this equation, wij represents the weight assigned to the angle between data points pi
and pj , and 6 (pi) is the mean angle for point pi.

KDE constructs a density profile by summing smooth kernels around each data point,
estimating the probability density function (Latecki, Lazarevic & Pokrajac, 2007). The
kernel density estimate at point x is given by:

f̂h(x)=
1
nh

n∑
i=1

K
(
x−xi
h

)
.

Here, n is the number of data points, h is the bandwidth parameter, K is the kernel
function, and xi represents the data points.

GMM assumes the data originates from a mixture of k Gaussian distributions, using the
expectation–maximization algorithm to estimate their parameters (Aggarwal, 2016). The
mixture density model is given by:

p(x)=
K∑
k=1

πkN (x|µk,6k).

In this equation, K is the number of Gaussian distributions, πk represents the mixing
coefficients, µk is the mean vector, and 6k is the covariance matrix for the kth Gaussian
component.

Outlier ensembles and combination frameworks
This section explores diverse strategies employedwithin outlier ensembles and combination
frameworks to improve outlier detection performance.
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Isolation forest: This method leverages an ensemble of isolation trees, identifying outliers
as data points with shorter path lengths within the trees. While effective, it can struggle
with local outliers due to multiple normal instance clusters, impacting isolation efficiency
(Liu, Ting & Zhou, 2008).

Feature bagging: This approach consolidates outputs from multiple outlier detection
algorithms, where each detector randomly selects a subset of features. An example includes
an ensemble of 10 LOF classifiers with varying n_neighbors parameters (Lazarevic &
Kumar, 2005).

Locally selective combination of parallel outlier ensembles (LSCP): This method defines
local regions around data points based on nearest neighbors in randomly chosen feature
sub-spaces. It then selects top-performing base detectors within these regions and combines
them into the final model (Zhao et al., 2019).

Isolation-based anomaly detection using nearest-neighbor ensembles (INNE): This
technique partitions the data space into regions using a subsample. It then assigns
isolation scores based on local distributions for both global and local anomaly detection
(Bandaragoda et al., 2018).

By understanding these diverse methods and their underlying mechanisms, researchers
and practitioners can select the most suitable approach for their specific outlier detection
needs, achieving more robust and accurate results.

Hyper-parameter tuning
Hyper-parameter tuning is a crucial step in optimizing the performance ofmachine learning
models. The goal of hyper-parameter tuning is to find the set of hyper-parameters that
maximize the model’s performance on a given dataset. Hyper-parameters are configuration
settings that are external to the model and cannot be learned from the data. They control
aspects such as the complexity of the model, the regularization strength, or the learning
rate.

In our study, hyper-parameter tuning was conducted to enhance the effectiveness of
various outlier detection models for keystroke biometric authentication. We selected a set
of outlier detection models, including HBOS, isolation forest, PCA, LOF, and OCSVM,
based on their suitability and widespread use in the field.

The tuning process involved systematically searching through a predefined hyper-
parameter space to identify the combination that yields the best performance. For each
model, we specified a range of values for its hyper-parameters, such as the number of bins
for HBOS or the number of neighbors for LOF. We then used grid search technique to
explore this parameter space efficiently.

During the tuning process, we evaluated the models using appropriate performance
metrics, such as accuracy, precision, recall, F1-score, and area under the ROC curve
(AUC). This evaluation helped us assess the models’ performance under different hyper-
parameter configurations and identify the optimal set of hyper-parameters that maximized
performance.

By systematically tuning the hyper-parameters of the outlier detection models, we aimed
to improve their accuracy in identifying outliers within keystroke biometric data. This
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optimization process ensures that the models are well-suited for the specific task of user
authentication, leading to more reliable and effective outlier detection.

Carnegie Mellon University’s keystroke biometric dataset
The evaluation of outlier detection approaches for user authentication utilized the CMU
keystroke benchmark dataset (Killourhy & Maxion, 2009). This dataset, chosen for its
comprehensive features and established performance metrics, contains keystroke-timing
information from51 subjects across eight sessions, with a one-day interval between sessions.
Each session recorded keystroke data for 50 instances of typing the password ‘.tie5Roanl,’
representing a strong password. The dataset encompasses three categories of features for
each password character: hold time, down-down time, and up-down time.

Figure 2 provides an overview of the average timing data for three keystroke features
across six randomly selected users from the CMU dataset. Figures 2A, 2B, and 2C represent
average down-down timings, average up-down timings, and average hold keystroke timings,
respectively.

Figure 2A illustrates significant variations in average down-down keystroke timings
across different features and users, with noticeable inter-user variability within the same
feature. Similarly, Fig. 2B showcases substantial diversity in up-down keystroke timings
across features and users. In contrast, Fig. 2C explores average hold durations, revealing
variations that are comparatively less pronounced than those observed in down-down and
up-down timings.

These visualizations offer valuable insights into the intricate connection between
individual writing habits and keystroke timing patterns, underscoring the pivotal role of
individual writing habits in shaping keystroke dynamics. Furthermore, they highlight the
potential significance of up-down keystroke sequences and hold duration as promising
indicators for distinguishing user-specific characteristics within the selected user sample.

RESULTS
Experiment setting
The choice of input device significantly impacts keystroke dynamics and user
authentication. Different devices introduce variability in typing behavior, affecting features
extracted for authentication models. Familiarity with a device influences typing patterns
and consistency. Users develop unique typing habits on familiar devices, but unfamiliar
devicesmay lead to altered behavior, impactingmodel accuracy. Thus, to ensure consistency
and comparability, the experiment focused on a controlled environment provided by the
CMU dataset. This controlled setting limited participant variability to the same device
(i.e., keyboard) and the same password, enabling a more standardized evaluation. The
experiment simulated a scenario where a long-term password had been compromised
by an impostor. The primary objective was to measure how effectively each anomaly
detector distinguished between the impostor’s typing behavior and the genuine user’s. The
experiment followed these steps:
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Figure 2 Average keystroke timing data across selected users.
Full-size DOI: 10.7717/peerjcs.2086/fig-2

1. During the training phase, the detector analyzed the timing vectors from the first 200
password repetitions typed by the genuine user, constructing a model of the user’s
typing behavior.

2. In the test phase, the detector was run on the timing vectors from the subsequent 200
repetitions typed by the genuine user. Anomaly scores were recorded for each timing
vector, constituting the user scores.

3. The test phase was repeated for the first five repetitions typed by each of the 50
impostors. Anomaly scoreswere recorded for their timing vectors, forming the impostor
scores.
This process was iterated, designating each of the other subjects as the genuine user in

turn. After training and testing each of the 15 detectors, a total of 765 sets of user and
impostor scores were gathered (51 subjects × 15 detectors).

Hardware specifications
The experiment was conducted on a computing platform equipped with the following
hardware specifications:

• Processor: Intel (R) Core (TM) i7 -8750H CPU @ 2.20 GHz.
• Installed RAM: 16 GB.
• Operating System: Windows 10 64-bit.

Evaluation metrics
While prior studies predominantly employed either accuracy or EER to assess model
performance, as shown in the Related Works section and smmarized in Table 1. We
adopted a more comprehensive approach by using AUC, precision, recall, F1-score,
accuracy, and EER to ensure the robustness of the model’s performance. These metrics
provide a holistic evaluation of the system’s effectiveness in keystroke biometric user
authentication.

Accuracy, as shown in Eq. (1) provides an overarching view of the system’s overall
correctness.

Accuracy =
TP+TN

TP+TN +FP+FN
. (1)
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Equal error rate (EER) is pivotal in measuring the balance between false acceptance
rate (FAR) shown in Eq. (2) and false rejection rate (FRR) shown in Eq. (3). A lower EER
indicates superior performance as the system maintains a precise equilibrium between
authorizing genuine users and rejecting impostors.

False Acceptance Rate=
FP

FP+TN
(2)

False Rejection Rate=
FN

FP+TN
. (3)

Area under the ROC Curve (AUC) quantifies the model’s ability to distinguish between
genuine and impostor users. A higher AUC value signifies superior discrimination, with
values closer to 1 indicating exceptional performance.

These equations express the calculation of false acceptance rate and false rejection rate,
which are integral in determining the EER. The EER corresponds to the point on the
ROC curve where the false acceptance and false rejection rates are equal. A smaller EER
corresponds to higher accuracy in biometric systems.

Precision measures the proportion of true positives out of all positive predictions:

Precision=
TP

TP+FP
. (4)

Recall measures the proportion of true positives out of all actual positives:

Recall =
TP

TP+FN
. (5)

F1-score is the harmonic mean of precision and recall:

F1-score=
2×Precision×Recall
Precision+Recall

. (6)

The performance of the outlier detection models was evaluated using three key metrics:
EER, AUC, accuracy (ACC), precision, recall, and F1-score. EER measures the point
at which the FAR equals the FRR, providing a balanced assessment of the system’s
performance. AUC quantifies the model’s ability to distinguish between genuine users
and impostors, with higher values indicating better discrimination. ACC represents the
overall accuracy of the system.

Outlier detection model results
In the comprehensive evaluation, a total of 15 different outlier detection models were
rigorously tested using theCMYkeystroke biometric benchmark dataset.Widely recognized
in the field of keystroke dynamics, this dataset provided a robust foundation for assessing
the effectiveness of various models. The results of the evaluation are synthesized and
presented in Table 2, enabling a quick comparison of the models’ performance metrics.
These models encompass a range of techniques and algorithms, each with its unique
approach to identifying anomalies in keystroke dynamics data.

Table 2 provides a comprehensive comparison of the performance of 15 outlier detection
models in the context of keystroke biometric authentication using the CMU dataset. The
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Table 2 Comparison of 15 outlier detection models in keystroke biometric authentication using the
CMU dataset.

Model name EER ACC AUC

Histogram-base Outlier Detection (HBOS) 6.42% 90.55% 97.68%
Isolation Forest 8.59% 87.60% 96.55%
Principal Component Analysis (PCA) 10.45% 79.39% 94.74%
Gaussian Mixture Model 11.00% 81.90% 94.44%
Average KNN 12.60% 66.24% 93.86%
Angle-based Outlier Detector (ABOD) 12.67% 56.24% 93.84%
K Nearest Neighbors (KNN) 13.30% 65.30% 93.30%
Cluster-based Local Outlier Factor (CBLOF) 14.42% 64.26% 91.94%
Kernel Density Estimation 15.62% 61.36% 90.11%
Feature Bagging 17.03% 57.98% 89.64%
INNE 17.26% 70.65% 90.02%
Local Outlier Factor (LOF) 17.60% 56.93% 89.09%
Locally Selective Combination (LSCP) 17.86% 58.60% 89.03%
One-class SVM (OCSVM) 19.29% 60.35% 84.97%
LMDD 44.95% 54.57% 60.96%

Notes:
EER, Equal error rate; ACC, Accuracy; AUC, Area under the ROC curve.

results highlight the effectiveness of various models in distinguishing genuine users from
impostors based on their keystroke patterns. Notably, HBOS emerges as the top-performing
model with the lowest EER of 6.42%, indicating its robust capability to achieve a balance
between false positives and false negatives. Following closely are isolation forest and PCA
with EERs of 8.59% and 10.45%, respectively, showcasing their competence in the keystroke
authentication domain.

Gaussian mixture model and average KNN also exhibit commendable performance
with EERs below 12%, suggesting their effectiveness in discerning legitimate users from
potential impostors. However, it is worth noting that some models, such as LMDD, show
significantly higher EERs, indicating potential challenges in accurately identifying outliers
within the keystroke dataset.

Furthermore, to gain deeper insights into the models’ performance across various
categories and scenarios, receiver operating characteristic (ROC) curves were generated, as
visually depicted in Fig. 3. These curves vividly illustrate eachmodel’s ability to discriminate
between genuine users and potential impostors, offering insights into variations in their
effectiveness and characteristics.

The ROC curves in Fig. 3 provide a comprehensive overview of the true positive rates
(TPR) and false positive rates (FPR) for each tested outlier detection technique, categorized
into linear models, proximity-based models, probabilistic models, and ensembles and
combination frameworks. Notably, the ROC curves highlight that the HBOS, isolation
forest, and PCA models exhibit the highest TPR and the lowest FPR, indicating their
superior effectiveness in distinguishing genuine users from impostors. Conversely, other
models display lowerTPR andhigher FPR, suggesting reduced efficacy in this authentication
task. This nuanced analysis using ROC curves enables a more granular understanding of

G. Ismail et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2086 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2086


Figure 3 Receiver operating characteristic (ROC) curves for tested outlier detection techniques.
Full-size DOI: 10.7717/peerjcs.2086/fig-3

each model’s discriminatory power and guides the selection of the most suitable techniques
based on specific security requirements.

Hyper-parameter tuning results
Hyper-parameter tuning aimed to optimize the performance of various outlier detection
models, selected based on their effectiveness and widespread use in outlier detection tasks.
These models include HBOS, isolation forest, PCA, LOF, and OCSVM. Each model offers
unique strengths: HBOS for efficient high-dimensional outlier detection, Isolation Forest
for handling large datasets, PCA for simple dimensionality reduction, LOF for local outlier
detection, and OCSVM for detecting outliers in high-dimensional spaces.

For HBOS, parameters such as the number of bins and alpha were tuned. Isolation
forest’s tuning involved adjusting the number of estimators andmaximum samples, among
others. PCA’s parameters included the number of components and whitening parameter.
LOF’s tuning focused on the number of neighbors and leaf size, while OCSVM’s tuning
involved parameters like kernel type, gamma, and nu. This tuning process aimed to
enhance the models’ accuracy in identifying outliers within keystroke biometric data. The
best parameters for the tuned outlier detection models are available in Table 3.
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Table 3 Best parameters for tuned outlier detection models.

Model name Parameters

HBOS [n_bins=15, alpha=0.4, tol=0.3, contamination=0.01]
IForest [n_estimators=400, max_samples=0.5, max_features=0.5,

bootstrap=True, contamination=0.01, n_jobs=-1,
random_state=42]

Local outlier factor [n_neighbors=15, leaf_size=10, metric=manhattan, p= 1,
contamination=0.01]

OCSVM [kernel=rbf, gamma=scale, nu=0.9, coef0=0.0,
contamination=0.01]

Principal component analysis [n_components=5, whiten=True, svd_solver=auto,
contamination=0.01, random_state=42]

Table 4 Comparison of five tuned outlier detection models in keystroke biometric authentication us-
ing the CMU dataset.

Model name EER ACC AUC Precision Recall F1-score

HBOS 5.97% 89.23% 97.79% 75.77% 98.8% 85.76%
IForest 7.81% 89.37% 97.05% 92.91% 94.4% 93.65%
Principal component analysis 10.43% 79.50% 94.69% 98.84% 68.0% 80.57%
Local outlier factor 14.71% 67.75% 92.03% 100.00% 38.4% 55.49%
OCSVM 15.52% 76.30% 90.40% 93.89% 86.0% 89.77%

Notes:
EER, Equal error rate; ACC, Accuracy; AUC, Area under the ROC curve.

Additionally, Table 4 presents a comparison of the performance of these models in
keystroke biometric authentication using the CMU dataset. The evaluation metrics include
EER, ACC, AUC, precision, recall, and F1-score.

In summary, HBOS achieved the lowest EER of 5.97%, indicating its effectiveness in
balancing false acceptance and false rejection rates. Isolation forest demonstrated a slightly
higher EER of 7.81% but excelled in terms of ACC and AUC, achieving 89.37% and 97.05%,
respectively. LOF struggled with a higher EER of 14.71% and relatively lower ACC and
AUC.OCSVMand PCA fell in between, withOCSVM showing better performance in terms
of ACC and PCA in terms of AUC. Overall, the choice of outlier detection model should
consider the trade-offs between different evaluation metrics based on specific application
requirements.

Figure 4 presents a comparison of ROC curves for the tuned outlier detection models.
Figure 4A displays the collective ROC curves of the tuned outlier detection models,
while Fig. 4B showcases individual ROC curves for the 51 users using tuned histogram-
based outlier detection. This comprehensive evaluation offers valuable insights into the
strengths and limitations of various outlier detection approaches for keystroke biometric
authentication.

To highlight the robustness of the histogram-based outlier detection technique, we
visualized individual ROC curves for each of the 51 users, depicted in Fig. 4B. This
detailed visualization allows for a user-specific assessment, showcasing the technique’s
consistency across a diverse user base. The impressive average AUC of 97.8% across all
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users confirms the effectiveness and practicality of this approach for keystroke biometric
user authentication.

This comparison aids security practitioners and researchers in making well-informed
decisions by providing a detailed performance overview for each model. Moreover, it
delves into the consistency of each model across diverse user behaviors, a crucial aspect for
real-world applicability.

The results not only validate the efficacy of unsupervised outlier detection techniques,
particularly HBOS, but also address challenges in acquiring representative imposter
datasets. These methods offer robust, accurate solutions for real-world applications,
underscoring their significance in enhancing security measures amidst the growing reliance
on keystroke dynamics for authentication.

Discussion
This section critically evaluates the study’s findings and methodology. Comparing
our proposed HBOS with recent keystroke dynamics-based authentication methods,
emphasizing its practical advantages. We also highlight limitations, including dataset
constraints and the focus on traditional machine learning approaches. Future research
directions, particularly exploring deep learning outlier detection methods, are proposed to
enhance keystroke biometric authentication systems.

Comparison with previous works
Table 5 provides a comprehensive overview of recent keystroke dynamics-based
authentication methods, focusing on their EER using the CMU keystroke dataset.
Remarkably, the proposed HBOS not only exhibits competitive performance with an EER
of 5.97% and an accuracy of 89.23%, but it also stands out for its distinctive characteristic
of not requiring imposter data during training (× in the ‘Requires Imposter Data’ column).
This sets HBOS apart from various existing methods, such as histogram gradient boosting
(Ibrahim et al., 2023), deep secure (Maheshwary, Ganguly & Pudi, 2017), MLP (Andrean,
Jayabalan & Thiruchelvam, 2020), autoencoder model (Patel et al., 2019), dependence
clustering +KNN (Ivannikova, David & Hämäläinen, 2017), andX-meanswithQT (Hazan,
Margalit & Rokach, 2021), all of which necessitate imposter data for training (indicated
by X in the same column). The results further emphasize the practical applicability and
efficiency of HBOS, achieving comparable performance to methods requiring imposter
data, while concurrently mitigating the challenges associated with imposter data collection.
This underlines the significance of HBOS as a robust and viable solution in keystroke
dynamics-based authentication.

In summary, the HBOS not only demonstrates competitive performance but also
introduces a significant practical advantage by operating independently of an imposter
dataset. This positions HBOS as a promising and efficient solution for real-world security
applications, addressing critical challenges associated with imposter data collection. The
findings underscore the potential of HBOS to enhance the reliability and applicability of
keystroke dynamics authentication in diverse and challenging environments.
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Figure 4 Comparison of ROC curves for tuned outlier detection models.
Full-size DOI: 10.7717/peerjcs.2086/fig-4

Table 5 Comparison with recent works using the CMU keystroke dataset sorted by EER score.

Author Approach Performance Requires
imposter data

EER Accuracy

Ibrahim et al. (2023) Histogram Gradient Boosting 1.4% 97.96% X

Maheshwary, Ganguly & Pudi (2017) Deep Secure 3% 93.59% X

Andrean, Jayabalan & Thiruchelvam (2020) MLP 4.45% _ X

Proposed Histogram-Based Outlier Score 5.97% 89.23% ×

Patel et al. (2019) Autoencoder model 6.51% _ X

Ivannikova, David & Hämäläinen (2017) Dependence Clustering + KNN 7.7% _ X

Bhatia et al. (2018) Generalized Fuzzy Model (GFM) 7.86% _ ×

Ali & Tappert (2018) POHMM+SVM 8.6% _ ×

Alpar (2021) Scalogram Barcoding and One-class SVM 9.88% _ ×

Hazan, Margalit & Rokach (2021) X-means with QT 11.2% _ ×

Krishna & Ravi (2019) Modified Differential Evolution 34.8% _ ×

Limitations
The first limitation pertains to the dependency of user keystroke biometrics on the
keyboard/device used and the user’s familiarity with it. In this study, we constrained the
environment to a single device and password across all recorded iterations using the CMU
dataset. An enhancement in this regard could involve enriching the dataset with multi-
device andmulti-password cases, either by collecting new data or by amalgamatingmultiple
open-source datasets. This broader dataset would better reflect real-world scenarios, thereby
improving the generalizability of the findings.

Another limitation lies in the focus solely on machine learning outlier detection
approaches. While these approaches are well-established, recent studies, as evidenced
in Table 1, have increasingly delved into deep learning outlier detection methods.
Consequently, some of the models utilized in this study may be considered outdated in
comparison. To address this limitation, future research should explore deep learning outlier
detection approaches and compare their performance with the traditionalmachine learning
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models documented here. Such an investigation would entail evaluating these deep learning
models using the same evaluationmetrics applied in this study and considering factors such
as training and inference time, which are crucial in authentication systems. By embracing
the advancements in deep learning techniques, researchers can potentially uncover
novel insights and improve the efficacy of keystroke biometric authentication systems.

CONCLUSION
User authentication stands as a pivotal safeguard against unauthorized access, forming
the bedrock of secure systems. Leveraging keystroke biometrics, which capitalizes on
the nuances of typing behavior, offers a promising avenue for user identification and
authentication.

This article has made significant strides in this domain by investigating the application
of unsupervised outlier detection techniques to keystroke biometric authentication, with
a specific focus on the histogram-based outlier score (HBOS) algorithm. Through a
comprehensive evaluation comparing HBOS to 15 other outlier detection methods, our
study has demonstrated its exceptional performance, boasting an equal error rate (EER) of
5.97%, an AUC of 97.79%, and an accuracy (ACC) of 89.23%. Notably, HBOS’s ability to
operate without an imposter dataset addresses a critical limitation in keystroke dynamics
research, enhancing its practical applicability in real-world scenarios.

Looking forward, the research landscape should prioritize addressing the challenge of
multi-user authentication, where multiple individuals may share a single account. This
necessitates the development of more sophisticated authentication methods capable of
reliably distinguishing between authorized and unauthorized users. Additionally, the
transition from traditional one-time password checks to a continuous authentication
paradigm holds immense promise. By continuously evaluating a user’s authenticity
throughout their active session, keystroke dynamics can significantly enhance security
and user experience. This evolutionary step solidifies the role of keystroke dynamics as a
cornerstone of future user authentication systems.

Moreover, future studies should explore the integration of deep learning outlier
detection approaches alongside traditional machine learning models. By comparing their
performance using established evaluation metrics and considering factors such as training
and inference time, researchers can gain insights into the suitability of deep learning
techniques for keystroke biometric authentication.

In conclusion, this study not only advances our understanding of keystroke biometric
authentication but also paves the way for future research endeavors aimed at fortifying
user authentication mechanisms in an increasingly digital landscape.
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