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ABSTRACT
Poultry farming is an indispensable part of global agriculture, playing a crucial role in
food safety and economic development. Managing and preventing diseases is a vital
task in the poultry industry, where semantic segmentation technology can
significantly enhance the efficiency of traditional manual monitoring methods.
Furthermore, traditional semantic segmentation has achieved excellent results on
extensively manually annotated datasets, facilitating real-time monitoring of poultry.
Nonetheless, the model encounters limitations when exposed to new environments,
diverse breeding varieties, or varying growth stages within the same species,
necessitating extensive data retraining. Overreliance on large datasets results in
higher costs for manual annotations and deployment delays, thus hindering practical
applicability. To address this issue, our study introduces HSDNet, an innovative
semantic segmentation model based on few-shot learning, for monitoring poultry
farms. The HSDNet model adeptly adjusts to new settings or species with a single
image input while maintaining substantial accuracy. In the specific context of poultry
breeding, characterized by small congregating animals and the inherent complexities
of agricultural environments, issues of non-smooth losses arise, potentially
compromising accuracy. HSDNet incorporates a Sharpness-Aware Minimization
(SAM) strategy to counteract these challenges. Furthermore, by considering the
effects of imbalanced loss on convergence, HSDNet mitigates the overfitting issue
induced by few-shot learning. Empirical findings underscore HSDNet’s proficiency
in poultry breeding settings, exhibiting a significant 72.89% semantic segmentation
accuracy on single images, which is higher than SOTA’s 68.85%.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
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INTRODUCTION
In recent years, the rapid advancement of computer science technologies, coupled with the
growing demand for food due to population increase, has propelled smart agriculture into
a focal point of research and practice. The application of embedded devices and Internet of
Things (IoT) technology has not only facilitated the digitization and visualization of
agricultural production processes but has also significantly enhanced the level of
automation in agriculture. This technological transformation has markedly improved
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agricultural productivity and provided farmers with an abundance of useful information
and tools, optimizing their management and decision-making processes (Kassim, 2020;
Prathibha, Hongal & Jyothi, 2017; Gondchawar & Kawitkar, 2016; Lipper et al., 2014).
However, to further advance the automation in intelligent farming, the capabilities of
artificial intelligence (AI) must be leveraged (Shaikh et al., 2021). Poultry farming, a crucial
component of agricultural production and a major source of meat and egg products is
integral to the evolution of smart agriculture. Particularly in the realms of real-time
monitoring and production management, the application of AI can significantly enhance
efficiency and yield.

Moreover, due to the advancements in hardware technology and substantial increases in
computational power, artificial intelligence has embarked on a pivotal phase of
development. Specifically, the introduction of Deep Residual Networks (ResNet), which
adeptly mitigated the degradation issue of deep learning models, has catalyzed rapid
advancements in the field of computer vision. Subsequent progress in various visual tasks,
such as object detection, pose estimation, and semantic segmentation, has not only
facilitated the widespread application of technologies like autonomous driving and facial
recognition but has also enabled the application of advanced techniques like remote
sensing segmentation in diverse fields such as agriculture, urban planning, and
environmental monitoring, thereby leading to numerous technological breakthroughs and
industrial upgrades (He et al., 2016; Padilla, Netto & Da Silva, 2020; Zou et al., 2023;Wang
et al., 2018). Recent advancements in technologies such as Neural Radiance Fields (NeRF)
and Stable Diffusion have notably propelled progress in 3D modeling and image
generation. NeRF provides a methodology for modeling 3D scenes from 2D image sets,
while Stable Diffusion opens new pathways for image generation (Mildenhall et al., 2021;
Rombach et al., 2022). Additionally, the advent of the Transformer architecture has
significantly accelerated developments in natural language processing (NLP), spawning
large language models like ChatGPT, which assist individuals in their daily tasks (Vaswani
et al., 2017; Ouyang et al., 2022).

Despite the rapid development of artificial intelligence, its application in smart
agriculture predominantly remains within the realm of research. For instance, Li et al.
(2022a) have utilized target detection technology for carp identification, significantly
reducing costs compared to traditional embedded chip methods. Similarly, Li et al. (2022b)
employed instance segmentation for intelligent monitoring of geese, testing in real-time on
embedded devices to ensure feasibility for large-scale deployment. Jiang et al. (2022) used
target detection technology to identify the sex of ducks and improve returns. Moreover,
Zhang et al. (2019) have successfully implemented automatic detection and tracking of
individual pigs in piggeries. Traditional poultry farming grapples with challenges such as
early disease detection, optimization of stocking density, and behavioral monitoring, often
hindered by the lack of precise and real-time monitoring mechanisms. The application of
semantic segmentation technology enables the accurate identification and tracking of
individual animals within a poultry flock (Okinda et al., 2020). This approach facilitates the
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automatic differentiation of each poultry, monitoring their range of activity and behavioral
patterns.

While substantial progress has been made in integrating intelligent processes into
poultry farming, the practical application of these technologies in complex agricultural
environments presents ongoing challenges. Current studies often focus on a single animal
species in specific settings, limiting the broader applicability of these technologies. Taking
China’s chicken breeding industry as an example, there are over twenty breeds in
commercial farming alone, not to mention various small-scale breeds and hybrids,
necessitating higher adaptability of the models. Present AI techniques, particularly in
computer vision, predominantly rely on supervised learning, requiring extensive labeled
data to train efficient models, which is both time-consuming and costly in practice (Jaiswal
et al., 2020; Yang et al., 2022b). More crucially, due to inherent differences in breeding
environments, models may yield varying recognition results in different contexts, a
phenomenon known in machine learning as ‘domain shift’ or ‘domain adaptation’.
Specifically, many real-world factors such as weather conditions, agricultural breeds, and
minor variations in breeding environments can affect the actual performance of models,
even if they are trained on specific datasets (Ganin & Lempitsky, 2015; Kang et al., 2019; Ye
et al., 2022).

To tackle the challenges encountered in practical applications, this article integrates
few-shot learning into the fusion of AI and poultry farming. This strategy effectively
mitigates issues related to performance degradation due to variations in breeds and
environments. Traditional deep learning methods typically require extensive data for
model training, which is not always feasible in diverse agricultural settings. Few-shot
learning, capable of performing effective detection or segmentation tasks with just 1–5
images, reduces the workload of data collection and annotation, avoids accuracy loss due
to limited data, and enhances the model’s generalizability and practicality (Sung et al.,
2018).

In this article, our focus is on three primary poultry species: chickens, ducks, and geese.
To demonstrate the robustness of the HSDNet model, we have also included the golden
crucian carp, a species from a completely different environment, as part of the HSDNet
model’s robustness testing. Compared to other application domains, poultry environments
possess unique characteristics (Lin et al., 2014; Cordts et al., 2016). In most general few-shot
segmentation scenarios, dataset backgrounds are typically urban or other simplified settings.
However, poultry farming’s complex background, comprising factors like soil, vegetation,
and weather, coupled with high-density livestock clustering, poses substantial challenges to
segmentation tasks. The intricate and dense nature of the poultry environment often results
in non-smooth losses, complicating model convergence during training. To address this
issue, we introduce the Sharpness-Aware Minimization strategy specifically optimized for
the non-smoothness of losses, helping the model converge more stably in complex
agricultural backgrounds, thereby enhancing the overall performance and accuracy of the
model.
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In free-range environments, poultry typically exhibit a sparse distribution, with partial
clustering around feeding areas. This leads to a strong imbalance between positive and
negative samples, affecting model convergence. In few-shot learning, limited training data
can easily lead to overfitting, exacerbating the imbalance caused by the distribution of
poultry farming. To mitigate this problem, we introduce Dice loss, which alleviates the
imbalance loss caused by insufficient samples in few-shot learning.

Summarizing, the contributions of this article are as follows:

. We pioneered the integration of few-shot learning into artificial intelligence applications
for poultry farming with the introduction of HSDNet, a semantic segmentation model
customized for poultry. This innovation advances the practical applicability of models in
the livestock industry.

. To address the issue of non-smooth losses in agricultural scenarios affecting model
accuracy, we introduce the Sharpness-Aware Minimization strategy.

. By employing Dice loss, we successfully reduce the overfitting problem caused by the
strong imbalance between positive and negative samples during model training.

The structure of this article is as follows: “Introduction” provides the introduction,
“Related Work” discusses related work, “Methods” elaborates on the model, “Dataset”
describes dataset generation, “Experiments” presents the experiments, “Discussion” offers
a discussion of the results, and “Conclusion” concludes the article.

RELATED WORK
Artificial intelligence and smart agriculture
The amalgamation of artificial intelligence (AI) within the agricultural sector, particularly
in the domain of smart farming, is revolutionizing the way we approach agricultural
productivity and sustainability. AI technologies, including machine learning, computer
vision, and semantic segmentation, are increasingly being applied to enhance various
aspects of farming practices.

In the sphere of smart agriculture, the fusion of advanced technologies has led to
significant advancements in farm management and crop health monitoring. Notably, The
amalgamation of remote sensing technology with deep learning has heralded new frontiers
in the monitoring of farmland health (Shafi et al., 2020). Machine learning algorithms are
being utilized to foresee crop diseases and pest infestations, empowering farmers to enact
timely preventative strategies (Ouhami et al., 2021). Furthermore, Razfar et al. (2022) have
developed a computer vision-based weed detection system capable of efficiently identifying
weeds within soybean plantations, thus enhancing crop yields.

Artificial intelligence has proven to be a game-changer in the field of poultry farming.
Hossain et al. (2023) developed an AI-assisted automated system for the early detection of
chicken diseases from fecal images captured by smartphones, thus enabling prompt disease
identification and mitigating poultry losses. Yao et al. (2023) applied object detection
technology to determine the age of pigeons, allowing for the rapid and accurate recognition
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of each pigeon’s growth stage in a cage, enabling on-demand feeding strategies that reduce
costs. Additionally, Qiao, Truman & Sukkarieh (2019) utilized the Mask R-CNN deep
learning framework for automatic segmentation and contour extraction of cattle,
facilitating the acquisition of real-time information on individual cattle. However, this
approach requires extensive training with high-quality images of key cattle, which presents
a scalability challenge for the model.

Few-shot semantic segmentation
Few-shot learning, particularly in the realm of semantic segmentation tasks, has been a
focal point of research in the computer vision field due to its substantial potential.
Traditional deep-learning methods often require a large volume of labeled data to train
models. However, obtaining extensive annotated data is often impractical in real-world
applications. Consequently, few-shot learning methods, especially those requiring only a
minimal amount of labeled data, have emerged as a research hotspot.

Wang et al. (2024b) unveiled an innovative approach that harnesses language cues
through a vision-language-driven mask distillation scheme, combining a vision-language
pretraining model and a mask refiner to generate high-quality pseudo-semantic masks
from textual prompts. This method is further refined by integrating distributed prototype
supervision and a complementary correlation matching module for enhanced semantic
clarity. Li, Chen & Xiong (2024) introduced a nuanced dual prototype learning framework,
employing a second-order prototype (SOP) to grasp higher-order statistical insights
alongside a self-support first-order prototype with a constraint mechanism (SSFPC),
significantly boosting the model’s adaptability.Wang et al. (2024a) crafted an Adaptive FSS
framework featuring the Prototype Adaptive Module (PAM), specifically designed to
amplify class-specific details by leveraging precise category information from the support
set. Chang et al. (2024) devised a feature disentanglement and recombination network
(DRNet), utilizing self-attention and cross-attention for meticulous foreground feature
alignment, with prototypes derived from these features guiding the segmentation process.
This is augmented by a strategic joint learning approach to ensure accurate segmentation
of both familiar and novel objects. Peng et al. (2023) delve into pixel-based support
associations using transformer architecture, enhancing the segmentation precision from
coarse to fine granularity through a dedicated matching module and relationship
distillation. These pioneering efforts significantly propel the field of few-shot semantic
segmentation towards greater versatility and precision.

In the agricultural sector, Few-Shot Semantic Segmentation (FSS) is set to transform
traditional farming methods by enabling precise identification of crops and diseases with
minimal labeled data. Tan, Chen & Yan (2023) introduced a novel diffusion model called
DifFSS, tailored for agriculture’s FSS needs. It leverages diffusion models’ generative power
to enhance segmentation accuracy for various crops and conditions without changing the
base network structure. Concurrently, Yang et al. (2022a) tackled plant disease
segmentation by proposing an FSS model that uses a multi-scale and multi-prototype
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matching approach. Additionally,Maranelli (2022) concentrated on effective weed control
in smart farming, applying the FSS framework to address the challenge of scarce annotated
data. Their method, which optimizes image embeddings and investigates the impact of
core model parameters on segmentation results, includes ensemble techniques to
significantly improve weed detection in agricultural datasets.

METHODS
The animal use protocol listed below has been reviewed and approved by the Sichuan
Agricultural University Animal Ethical and Welfare Committee, with approval number
20230179.

HSDNet network architecture
HSDNet is an innovative advancement based on the Hierarchically Decoupling Matching
Network (HDMNet) (Peng et al., 2023), meticulously crafted to better align with the
specific needs of poultry farming. The network architecture of HSDNet is illustrated in
Fig. 1.

HDMNet was chosen as the foundational model for its groundbreaking design, which
effectively overcomes the constraints of conventional approaches in semantic feature and
prototype representation. Built upon the Transformer architecture (Vaswani et al., 2017),
originally applied in natural language processing, the Transformer’s cornerstone is its self-
attention mechanism. This mechanism allows the model to allocate different attention
weights to each element when processing sequences, employing multiple self-attention
layers to process data in parallel. Such parallel processing enables the model to
concurrently capture diverse facets or features of the input data, enhancing its efficiency.
The incorporation of the Transformer architecture in few-shot semantic segmentation
transcends the limitations of semantic-level prototypes and capitalizes on pixel-wise
alignment.

HDMNet introduces a novel hierarchical matching structure, strategically decoupling
the downsampling and matching processes and utilizing independent self-attention layers
to construct hierarchical features meticulously. This design ensures the preservation of
sequence feature purity and maintains consistency in pattern matching.

During the decoupling process, the extracted query and support features from the
backbone are individually channeled into sequential transformer blocks, composed
exclusively of self-attention layers. Notably, the downsampling layer is strategically
positioned between blocks, forming a hierarchical structure that potentially enhances
interscale correlation.

Transitioning to the technical intricacies, let’s delve into the intermediate feature maps
of L stages, denoted as Fq

l

� �L
l¼1 and Fs

l

� �L
l¼1. For simplicity, let’s assume that Fq

l

� �
and

Fs
l

� �
maintain the same spatial size cl � hq=sl � wq=s

l

h i
.

hq=sl ¼ Hq=s

2lþ2
; wq=s

l ¼ Wq=s

2lþ2
;
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l is the stage index, and cl denotes the feature channel number. Finally, Fq
l

� �L
l¼1 and

Fs
l

� �L
l¼1 are used to yield correlations Cl 2 Rhql w

q
l �hslw

s
l

n oL

l¼1
and enriched query features

Al 2 Rcl�hql �wq
l

n oL

l¼1
.

Figure 1 This diagram intricately illustrates the network structure of HSDNet. Within this archi-
tecture, we have incorporated the Sharpness-Aware Minimization strategy and added Dice loss to better
accommodate the experimental requirements and application scenarios in poultry farming. Figure source
credits: https://github.com/DaixianLiu/DaixianLiu.github.io/tree/main/chicken, https://github.com/
DaixianLiu/DaixianLiu.github.io/tree/main/goose. Full-size DOI: 10.7717/peerj-cs.2080/fig-1
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HDMNet integrates a decoder transitioning from coarse to fine granularity. The coarse-
grained feature A0

lþ1 is resized to match the spatial dimensions of the fine-grained
feature A0

l . Subsequently, they are fused using an MLP layer and residual connections,
denoted as

A0
l ¼ ReLU MLP Al þ fl A

0
lþ1

� �� �� �þ fl A
0
lþ1

� �
(1)

Diving deeper into the mathematical representation, let’s consider that l signifies the
hierarchical stage, and fl : RH�W 7! Rhl�wl represents the bilinear-interpolation resize
function, which adjusts the input size to match that of the output. Subsequently, a
convolution layer with a 1� 1 kernel size is applied to A0

1, followed by a bilinear up-
sampling layer, to predict the query mask Mout 2 RH�W .

The HDMNet, within its hierarchical paradigm, strategically decouples the feature
parsing and matching processes and introduces an innovative matching module,
illustrated in Fig. 2. This module operates based on a correlation mechanism, identifying
regions with peak correlation and cosine similarity, and subsequently fusing them with the
generated high-order prior masks. Initially, the input feature is transformed according to

Figure 2 The matching module utilizes correlation mechanisms and distillation techniques to
achieve more precise feature matching and information extraction. Data sourced from the match-
ing module. Full-size DOI: 10.7717/peerj-cs.2080/fig-2
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F̂
q ¼ u Fqð Þ;

F̂
s ¼ u Fs �Msð Þ; (2)

where � is Hadamard product, u: Rc�h�w 7! Rhw�c refers to the reshape function, andMs

denotes the support mask.
Then, by measuring the cosine similarity of the inner product angle, the risk of

overfitting of class-specific information brought by the feature specification is reduced, and
the correlation map is calculated as C 2 Rhqwq�hsws

as

C ¼
Wq bFq;Wk bFs
D E

k Wq bFq kk Wk bFs k t
; (3)

where Wq and Wk 2 Rc�c represent the learnable parameters, k � k signifies the L2 norm,
and t is a hyperparameter utilized to control the distribution range, which is empirically set
to 0.1 across all experiments. HDMNet introduces the inverse softmax layer, which
normalizes the correlation matrix along the query axis, adhering to the principle that

Ĉ i; jð Þ ¼ exp C i; jð Þð ÞPhql w
q
l

k¼1 exp C k; jð Þð Þ
: (4)

This aspect is pivotal, as the objective is to retrieve only the region of interest within the
query set. This ensures that the model concentrates on the relevant features during the
segmentation task, thereby enhancing its precision and effectiveness.

Finally, the prior mask Mpri 2 Rhq�wq
is introduced and concatenated with the

corresponding score along the channel dimension to generate a matching result

A ¼ W� w Ĉ Wv bFs
� �� �

;Mpri
h i� �

; (5)

where Wv 2 Rc�c, W� 2 Rc� cþ1ð Þ denote the learnable parameters, bFs 2 Rhsws�c,

A 2 Rc�hq�wq
are flattened support features and matching output, and

w : Rhqwq�c 7! Rc�hq�q
is the reshape function.This correlation mechanism computes

pixel-level correspondence without directly relying on semantic-specific features, thereby
alleviating the training set overfitting problem.

HDMNet introduces the concept of correlation map distillation, a technique that
nudges the shallow layers to emulate the semantic relevance found in deeper layers,
thereby enabling the former to comprehend the context more effectively and make high-
quality predictions.

In Eq. (4), the correlation maps Cl 2 Rhql w
q
l �hslw

s
l

n oL

l¼1
for the query and support features

are calculated. Subsequently, Cl is reorganized through mean averaging, and irrelevant
information is filtered out using the support mask Ms, as follows:

C0
l ið Þ ¼

Phslw
s
l

j¼1 Cl i; jð Þ � u � fl Msð Þ jð Þ > 0½ �Phslw
s
l

j¼1 u � fl Msð Þ jð Þ > 0½ �
; (6)
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where l indicates the stage, C0
l 2 Rhql w

q
l , and fl is the resize function. Given the flattened

correlation maps, a softmax layer is applied to perform spatial normalization among all
positions, resulting in the normalized maps denoted as:

bC0
l ið Þ ¼

exp C0
l ið Þ=T

� �
Phql w

q
l

j¼1 exp C0
l jð Þ=T� � (7)

In this context, l signifies the stage, and T represents the temperature of distillation
(Hinton, Vinyals & Dean, 2015), which is set to 1.

Subsequently, the KL (Kullback-Leibler) divergence loss is employed to supervise from
the teacher to the student, utilizing their softmax output. The correlation maps of adjacent
stages serve as the teacher and student, respectively, and are formulated as follows:

LKL ¼
X

a2A ft að Þ log ft að Þ
fs að Þ
� 	

¼
Xhql w

q
l

i¼1
fl Ĉlþ1
� �

ið Þ � log fl Ĉlþ1
� �

ið Þ
Ĉl ið Þ

 !
;

(8)

where l indicates the stage, ft is the teacher model while fs is the student model, and

fl : Rhqlþ1w
q
lþ1 7!Rhql w

q
l represents resizing. Specifically, for the final correlation map that lacks

a successor, the ground truth is directly employed as its teacher.

Sharpness-aware minimization
Applying few-shot segmentation to poultry farming poses significant challenges due to the
high variability in poultry appearance and behavior, alongside the complex and dynamic
backgrounds of farm environments. These factors contribute to overfitting in conventional
few-shot learning models, wherein the model becomes excessively tailored to the limited
training data and struggles to generalize effectively to new, unseen data.

To mitigate this issue, we have integrated sharpness-aware minimization (SAM) into
the HSDNet model’s learning process. SAM, an advanced optimization technique, targets
the smoothness of the loss landscape, which is crucial for managing overfitting. By
strategically minimizing the sharp minima within the loss function, SAM ensures that the
model does not overly fit the specificities of the limited training data, thereby enhancing its
generalization capabilities. This approach is particularly advantageous in the context of
poultry farming, where the diversity in visual data—owing to variations in breeds, sizes,
and behaviors of poultry, as well as fluctuating farm conditions—demands robust
modeling techniques.

The introduction of SAM enables the HSDNet model to develop robust, transferable
features, significantly improving its generalization across different environments. As
illustrated in Fig. 3, the comparison of loss landscapes between networks with and without
residual connections demonstrates this effect. In the absence of these connections, the
HSDNet’s loss landscape appears rugged—characterized by steep inclines, sharp peaks,
and profound valleys. Conversely, with the inclusion of residual connections, the landscape
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becomes markedly smoother, leading the HSDNet model to flatter convergence points or
local minima. This smoothness is critical for the model’s performance in accurately
segmenting new, unseen poultry images that substantially deviate from the training set.
Through the incorporation of SAM, the HSDNet model adapts more effectively to novel
environments and variations in poultry, thereby boosting the efficacy of few-shot
segmentation models in agricultural applications.

To enhance the HSDNet model, understanding the complexities of model optimization
in deep learning is crucial. Modern deep learning models, often over-parameterized, face a
challenge: training loss may not reliably indicate generalization capability. Relying solely
on this metric can result in sub-optimal performance. Addressing this, Pierre Foret and
colleagues, inspired by research on the geometric characteristics of loss landscapes and
their impact on generalization, introduced Sharpness-Aware Minimization (SAM) (Foret
et al., 2020). SAM focuses on reducing loss while ensuring the smoothness of the loss curve.
Unlike traditional optimization methods that may converge to sharp minima and cause
instability, SAM aims for a smoother minimum, enhancing the model’s stability and
generalization. This approach is formally presented as follows:

min
h

max
jjejj�q

Lobjðhþ eÞ: (9)

The functionLobj stands as a pivotal entity, representing the objective function in deep
learning optimization. This function plays a crucial role by quantifying the divergence
between the predicted and actual outcomes, with the overarching aim of the HSDNet
model being to minimize this discrepancy throughout the training process.

The term q � 0, a predetermined hyperparameter, delineates the upper boundary for
the magnitude of e, ensuring that its norm does not surpass q � 0.

Navigating through this optimization landscape, a notable challenge emerges when
attempting to pinpoint the exact solution for the inner maximization, attributed to the

Figure 3 (left) A sharp minimum to which a ResNet trained with SGD converged. (right) A wide
minimum to which the same ResNet trained with SAM converged. Data sourced from the SAM.

Full-size DOI: 10.7717/peerj-cs.2080/fig-3
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inherent complexity of the problem. SAM, in response to this, employs a first-order
approximation technique. This approach simplifies the problem by leveraging only the first
derivative of the function, as follows:

êðhÞ 	 argmax
jjejj�q

LobjðhÞ þ eTrhLobjðhÞ

¼qrhLobjðhÞ=jjrhLobjðhÞjj2:
(10)

During the optimization process, the modified term êðhÞ is amalgamated with the
weight parameters h to formulate a new, adjusted weight. This amalgamation ensures a
more efficacious adjustment in the direction where the objective function, Lobj, can be
potentially minimized.

Gradients, in this context, serve as a linchpin in updating the model. Specifically, the
gradient adjustment for the weights h is computed using rhLobjðhÞjhþêðhÞ. This particular
formulation considers the impact of the aforementioned modified term on the gradient,
enabling a more nuanced update strategy. The aforementioned procedure can be perceived
as a generic formulation that enhances smoothness for any Lobj.

This entire mechanism is not merely a serendipitous construct but a meticulously
devised approach aimed at enhancing the smoothness of the HSDNet model’s learning
curve. The objective is to render the optimization landscape smoother and, consequently,
more navigable, which is pivotal for achieving optimal convergence.

To elaborate, HSDNet introduces a concept termed the ‘sharpness-aware source risk.’
This concept is designed to refine the process, focusing on identifying regions in the
optimization landscape that are not only low in value (indicating minima) but also
demonstrate a desirable level of smoothness. Accordingly, HSDNet employs the
sharpness-aware source risk for the identification of a smooth minimum:

max
jjejj�q

Rl
SðhhþeÞ ¼ max

jjejj�q
Ex
PS ½ lðhhþeðxÞ; f ðxÞÞ�; (11)

SAM also now defines the sharpness aware discrepancy estimation objective below:

max
�

min
jjejj�q

d�þe
S : (12)

As the sharpness-aware objective aims to maximize d�S , it employs min
jjejj�q

rather than

max
jjejj�q

to seek smoother maxima. The discrepancy estimation difference between the

smooth version d�
00

S (Eq. 12) and the non-smooth version d�
0

S is then theoretically analyzed.
The theorem states that, assuming D� is an L-smooth function (a common assumption
for non-convex optimization), g is a small constant, and dS� is the optimal discrepancy.
The complete pseudocode for the SAM algorithm, employing SGD as the base optimizer, is
presented as Algorithm 1.
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Dice loss
Within the field of poultry farming, a prevalent issue is the disparity between the quantities
of positive and negative samples. This imbalance arises because target areas in poultry
images, such as specific parts of the chickens, often constitute only a small portion of the
overall image. Traditional pixel-level loss functions, like cross-entropy, may struggle to
effectively manage this imbalance. Consequently, models tend to bias towards larger
background areas, neglecting smaller yet critical target regions, leading to difficulties in
model convergence. The issue is further exacerbated in few-shot segmentation scenarios.
Poultry images can exhibit high variability, such as differing postures, sizes, or
environmental backgrounds, and the limited availability of annotated samples. This
scenario can hinder segmentation models from capturing all essential features during the
learning process, increasing the risk of model overfitting.

HSDNet incorporates Dice loss, a loss function particularly effective for segmentation
tasks. Unlike traditional loss functions, Dice loss quantifies the performance of the
segmentation model by measuring the overlap between the predicted segmentation and
the ground truth, providing a more direct assessment of segmentation quality. This loss
function is inherently designed to handle imbalances between positive and negative
samples by evaluating both correctly and incorrectly predicted areas simultaneously. Such
an approach is beneficial for segmenting poultry from complex backgrounds as it enhances
the model’s ability to discern subtle differences, thereby improving its generalization
capabilities across varied environmental conditions.

The theoretical foundation for choosing Dice loss lies in its derivation from the Dice
coefficient, a statistical tool named after its creator, which is used to gauge the similarity
between two sets. A higher Dice coefficient, indicating greater similarity, translates directly

Algorithm 1 SAM algorithm.

1: Input: Training set S¼D [n
i¼1 fðxi; yiÞg, Loss function l : W�X�Y ! Rþ, Batch size b, Step size g > 0, Neighborhood size q > 0.

2: Output: Model trained with SAM

3: Initialize weights w0, t ¼ 0;

4: while notconverged do

5: Sample batch B ¼ fðx1; y1Þ; . . . ðxb; ybÞg;
6: Compute gradient rwLBðwÞ of the batch's training loss;

7: Compute êðwÞ per Eq. (15);
8: Compute gradient approximation for the SAM objective (Eq. (17)): g ¼ rwLBðwÞ j wþêðwÞ;

9: Update weights: wtþ1 ¼ wt � gg;

10: t ¼ t þ 1;

11: end while

12: return wt
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to improved accuracy in the context of segmentation tasks. This relevance makes Dice loss
an optimal choice for the HSDNet model, enhancing its robustness and performance in
challenging segmentation scenarios. The mathematical representation of the Dice
coefficient is as follows:

Dice ¼ 2jX \ Yj
jXj þ jYj ; (13)

where jX \ Y jindicates the number of intersections between X and Y, and |X| and |Y | do
not indicate the number of elements in X and Y. The Dice loss expression is as follows:

DiceLoss ¼ 1� Dice ¼ 1� 2jX \ Y j
jXj þ jY j ; (14)

When Dice loss is often used in semantic segmentation problems, X represents the pixel
label of the real segmentation image, Y represents the pixel category of the model
prediction segmentation image, jX \ Yj is approximately the dot product between the
pixel of the predicted image and the pixel of the real label image, and the dot product result
is added. |X| and |Y | are approximately added as pixels in their respective images,
respectively.

A pivotal advantage of Dice loss is its capability to counteract imbalances between
foreground and background. In scenarios where the foreground area is minimal and the
background is predominant, this imbalance can skew training outcomes in numerous
models. Specifically, the model may prioritize optimizing the prediction of the expansive
background area due to its substantial contribution to the overall loss, thereby overlooking
the smaller foreground areas. Dice loss enhances foreground recognition, ensuring a
reduced false negative rate (FN). However, it also presents a challenge known as loss
saturation, where it may cease to provide meaningful gradients as the model’s predictions
increasingly align with the actual labels.

Conversely, the original loss function directly computes a loss for each pixel, correlating
with the discrepancy between the predicted and actual label values of that pixel. Thus, the
original loss values every pixel’s prediction equally, irrespective of whether it is part of the
foreground or background. Nonetheless, this egalitarian approach can be problematic as
the model might over-optimize the abundant background pixels, neglecting the
foreground regions.

Given these considerations, exclusive reliance on Dice loss often falls short of yielding
optimal segmentation results. To circumvent the limitations inherent to a singular loss
function, the HSDNet model amalgamated both loss functions. Thus, the HSDNet model
did not entirely forsake the original loss function but integrated Dice loss into it.
Specifically, the final loss function is articulated as:

Lossnew ¼ aLossorig þ bLossDice; (15)

where a and b are weight coefficients that can be determined through cross-validation for
optimal performance.
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DATASET
To rigorously evaluate the effectiveness of few-shot semantic segmentation in poultry
farming, the study concentrated on common poultry species: geese, ducks and chickens. In
addition to the aforementioned aspects, to demonstrate the robustness and generalizability
of the HSDNet model, we have incorporated an aquatic species, specifically the fish (golden
crucian carp), into our study. This inclusion serves to substantiate our assertion that the
HSDNet model is not confined to poultry farming but has the potential for extensive
application across a broad spectrum of agricultural domains. We gathered data from
various rearing practices, including free-range and caged settings. Through our efforts in
collecting and organizing previous studies, we have formulated the first few-shot poultry
farming dataset encompassing multiple species. This dataset not only serves the purposes
of our study but also offers a valuable resource for future research in this domain. Initially,
the duck, goose, and fish datasets were derived from previous studies, all of which were
affiliated with the Big Data Application Laboratory of Sichuan Agricultural University, to
which the present study is also affiliated, and thus have research access rights.

Dataset collection
As for the goose dataset, it was provided by a private goose farm in Zhejiang Province,
China. This goose dataset was meticulously annotated by members of our project team.
Detailed information and resources for the goose dataset can be found at the following
link: goose. This farm employs a free-range rearing method, providing the geese with a
more natural growing environment, resulting in superior meat quality. Data was captured

Figure 4 Goose breeding data set and labeling diagram. (A) The original image represents the original
dataset image. (B) Annotate a schematic representation of data set labels. Figure source credit: https://
github.com/DaixianLiu/DaixianLiu.github.io/tree/main/goose.

Full-size DOI: 10.7717/peerj-cs.2080/fig-4
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using the DJI Pocket 2 device device. After processing, the result was 639 images of
acceptable quality, and the dimensions were set at 1,920 � 1,080 for annotation purposes.
We drew from experience in annotating data using the labelme tool and the PASCAL VOC
dataset format. A subset of the final dataset, including images and annotations, is
illustrated in Fig. 4. The free-range setting presents a diverse and complex environment
with various vegetation, flowing water, and other shading factors. This introduces
significant noise and challenges to the dataset, making the experiments more demanding.
The physical appearances of individual geese are highly similar, making it difficult, even for
the human eye and neural networks, to distinguish specific geese. This poses challenges for
later group analysis, emphasizing the importance of enhancing segmentation accuracy.

The duck dataset originates from the original waterfowl farm in Ya’an, Sichuan
Province, China, focusing on the characteristic Ya’an hemp duck breed. The duck dataset,
annotated by our project members, is available at the link duck. This farm employs a
standardized caged-rearing method. While the caged environment is simpler compared to
free-range, it has a higher breeding density. The data was captured using the DJI Pocket 2
device. After processing, a final dataset of 1,500 images of acceptable quality was obtained,
with image dimensions standardized at 960 � 540 for annotation purposes. Drawing from
prior experience, the data was annotated using the labelme tool and the PASCAL VOC
dataset format. A portion of the finalized dataset, including images and annotations, is
depicted in Fig 5. Given the high density of standardized caged rearing, the HSDNet model
aims to address the accuracy issues associated with densely packed objects, particularly at
the edges.

Figure 5 Duck breeding data set and labeling diagram. (A) The original image represents the original
dataset image. (B) Annotate a schematic representation of data set labels. Figure source credit: https://
github.com/DaixianLiu/DaixianLiu.github.io/tree/main/duck.

Full-size DOI: 10.7717/peerj-cs.2080/fig-5

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2080 16/31

https://github.com/DaixianLiu/DaixianLiu.github.io/tree/main/duck
https://github.com/DaixianLiu/DaixianLiu.github.io/tree/main/duck
http://dx.doi.org/10.7717/peerj-cs.2080/fig-5
http://dx.doi.org/10.7717/peerj-cs.2080
https://peerj.com/computer-science/


The chicken dataset is derived from several rural family farms in Ya’an, Sichuan
Province, China, focusing on the laying hens breed commonly found in the Sichuan
region. Our teammembers obtained this through on-site visits and collections. The dataset
link for chicken is chicken. The recording was done using the smartphone, featuring a pixel
resolution of 1,280 � 720. Subsequently, we conducted random sampling at intervals of
100 frames, ultimately acquiring a dataset comprising 600 images. The data annotation
was performed by our colleagues using the labelme tool and formatted according to the
PASCAL VOC dataset standards. The environment and characteristics of these settings lie
between free-range and large-scale caged rearing. Furthermore, due to the fact that these
are family-owned farms, there may be substantial differences in the rearing environments
across different households, which demands a high level of robustness from the HSDNet
model. A subset of the finalized dataset, inclusive of images and annotations, is depicted in
Fig. 6.

To further substantiate the robustness of the HSDNet model and facilitate its
applicability to other domains, this study has integrated a dataset originating from an
aquatic. The dataset link for fish is fish. The fish, sourced from a transparent ornamental
tank and annotated by our teammembers, had the golden crucian carp as the focal point of
our research. The data was captured using the DJI Pocket 2, boasting a resolution of 1,920
� 1,080. By sampling the video at 30 frames per second, a total of 500 high-quality images
were amassed. A subset of this dataset, alongside annotations, is showcased in Fig. 7. The
underwater environment, with its distinct lighting conditions, buoyancy factors, and
dynamic movements, presents unique challenges to the HSDNet model. Through

Figure 6 Chicken breeding data set and labeling diagram. (A) The original image represents the
original dataset image. (B) Annotate a schematic representation of data set labels. Figure source credit:
https://github.com/DaixianLiu/DaixianLiu.github.io/tree/main/chicken.

Full-size DOI: 10.7717/peerj-cs.2080/fig-6
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juxtaposing terrestrial and aquatic organisms in comparative experiments, the study
demonstrates that the HSDNet model effectively overcomes limitations in model
generalization caused by varying species.

EXPERIMENTS
Experiments setting
The study conducted a comprehensive evaluation of the HSDNet model’s performance on
the poultry farming dataset. Geese were used as the base class, with laying hens, hemp
ducks, and golden crucian carp as new classes, meanwhile, fish were employed to validate
the model’s extensibility. For the geese class, we obtained 1,391 high-quality images
through methods such as data augmentation. For the laying hens, hemp ducks, and golden
crucian carp classes, we each selected 60 images captured from various angles and at
different times to ensure diversity and comprehensiveness in the dataset. The images in the
dataset were resized to 473 � 473 to ensure that the HSDNet model runs efficiently.

We opted for the PyTorch framework to build, optimize, and evaluate the HSDNet
model. All models were trained and tested in an environment equipped with two V100-
32 GB GPUs, an Intel(R) Xeon(R) Gold 6130 CPU clocked at 2.10 GHz, PyTorch version
1.7.0, Python version 3.8, Cuda version 11.0, and running on the Ubuntu 18.04 operating
system. Table 1 details the software and hardware setups used throughout the training and
testing phases of our research.

To quantify the performance of the HSDNet model, the study employed the mean
intersection over union(mIoU) as our primary evaluation metric. mIoU is a commonly

Figure 7 Fish breeding data set and labeling diagram. (A) The original image represents the original
dataset image. (B) Annotate a schematic representation of data set labels. Figure source credit: https://
github.com/DaixianLiu/DaixianLiu.github.io/tree/main/fish.

Full-size DOI: 10.7717/peerj-cs.2080/fig-7
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used metric in semantic segmentation tasks, measuring the overlap between the predicted
segmentation regions and the ground truth annotations. The formula for mIoU is:

mIOU ¼ 1
N

XN

i¼1

j Pi \ Gi j
j Pi [ Gi j ; (16)

where N is the total number of classes, Pi represents the region of the ith class predicted by
the model, Gi represents the region of the ith class in the ground truth, Pi \ Gi denotes the
size of the intersection between the predicted and ground truth regions, Pi [ Gi denotes the
size of the union between the predicted and ground truth regions. Through mIoU, we can
gain a more intuitive understanding of the model’s segmentation performance across
various classes, thus evaluating its overall efficacy.

We utilized ResNet-50 (He et al., 2016) as our encoder to extract features with
frozen parameters. PSPNet (Zhao et al., 2017) served as the foundational learner for all
experiments. The Pyramid Pooling Module (PPM) (Zhao et al., 2017) was employed
after the 4th block of ResNet-50 to provide a multi-resolution context for enriched
features, facilitating the generation of a prior mask. We trained in an ensemble
manner on the poultry farming dataset with a batch size set to 8. During training, we
adopted the AdmW optimizer with a learning rate of 0.0001 and a weight decay of 0.01. At
the same time, due to the fast convergence of AdamW, we set the epoch to 100 to
guarantee effective convergence. Additionally, we adjusted the learning rate using the
“poly” strategy.

Table 2 1-shot few-shot segmentation experiment.

Methods Chicken Duck Fish Avg

Traditional segmentation PSPNet 25.39 25.88 27.99 26.42

UNet 44.80 41.62 40.28 42.23

DeepLabv3+ 46.76 43.42 43.06 44.41

SeaFormer 38.41 38.29 39.35 38.68

Few-shot segmentation BAM 80.15 59.70 65.82 68.56

MIANet 58.25 79.44 67.62 68.44

HDMNet 77.64 61.12 67.80 68.85

HSDNet(Ours) 81.37 67.77 69.54 72.89

Note:
The best results are shown in bold.

Table 1 Software and hardware configurations.

Software Type/version Hardware Type/version

PyTorch 1.7.0 GPUs 2 � NVIDIA V100-32 GB

Python 3.8 CPU Intel(R) Xeon(R) Gold 6130 @ 2.10 GHz

CUDA 11.0 RAM 25 GB

OS Ubuntu 18.04 Hard disk 80 GB
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Comparative experiments
In the quest to select a model suitable for few-shot semantic segmentation of poultry, the
study trained and tested the poultry farming dataset on prevalent few-shot semantic
segmentation models (BAM Lang et al., 2022, MIANet Yang et al., 2023, HDMNet Peng
et al., 2023) and compared their miou performance metrics. Given the superior
performance of HDMNet on the poultry farming dataset compared to the other models,
we opted for HDMNet as our primary model for few-shot semantic segmentation, further
refining and conducting subsequent experiments based on it. The detailed experimental
results are presented in Table 2.

As demonstrated in Table 2, the HSDNet model significantly outperforms other few-
shot semantic segmentation models on the poultry farming dataset across comprehensive
metrics. Specifically, in a 1-shot scenario, the HSDNet model’s miou is 6% higher than that
of BAM and MIANet, and 5.8% higher compared to the baseline model, HDMNet. This
achievement marks HSDNet as the top performer in the miou metric. Notably, in the 1-
shot setting, the iou for chicken images stands at 81.37%, while for duck images it’s 67.77%.
Moreover, when applied to aquatic species, HSDNet demonstrates robust versatility with
an iou of 69.54% for fish images. Similarly, as shown in Table 3, for 5-shot, the HSDNet
model achieves the highest miou, successfully meeting our research objectives. These
findings solidify HSDNet’s leading position in small-scale intensive poultry environments
and highlight its potential for broader agricultural applications.

In addition to the aforementioned results, we have further showcased the superiority of
our model over traditional semantic segmentation models. As illustrated in Tables 2 and 3,
regardless of whether it’s the 1-shot or 5-shot scenario, the HSDNet model’s miou
significantly outperforms that of conventional semantic segmentation models. Given our
choice of PSPNet as the foundational learner for the HSDNet model, a comparison with
recent traditional semantic segmentation models, as presented in Tables 2 and 3,
reveals that their miou scores surpass that of PSPNet. This indicates that by changing
the base learner, there’s potential to further elevate the HSDNet model’s performance.
Nevertheless, this experiment has already substantiated the efficacy of the HSDNet model.

Table 3 5-shot few-shot segmentation experiment.

Methods Chicken Duck Fish Avg

Traditional segmentation PSPNet 61.92 60.19 52.88 58.33

UNet 70.94 63.94 67.95 67.61

DeepLabv3+ 72.87 57.45 55.68 62.00

SeaFormer 68.33 56.28 60.12 61.58

Few-shot segmentation BAM 80.42 63.57 72.40 72.13

MIANet 58.25 79.42 66.22 67.96

HDMNet 79.58 68.65 70.89 73.04

HSDNet(Ours) 80.98 65.96 75.81 74.25

Note:
The best results are shown in bold.
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Figure 8 visually demonstrates HSDNet’s exceptional capabilities using a 1-shot
example. When compared to the BAM model, specifically looking at the chicken in Fig. 8,
it is apparent that the BAM model’s segmentation output fails to adequately cover the
chicken’s tail. In contrast, our HSDNet model demonstrates its exceptional ability to
capture the finest details of the chicken, including the tail, ensuring a comprehensive and
precise mask. Similarly, when compared with HDMNet, particularly with respect to the
duck shown in Fig. 8, it is clear that HDMNet struggles to fully mask the duck. This
shortcoming is most evident on the left side of the image it produces. Meanwhile, our
HSDNet model effectively masks the duck, highlighting HSDNet’s practical superiority in
achieving high-fidelity semantic segmentation.

Additionally, we have illustrated detailed charts for the 1-shot and 5-shot segmentation
experiments in Figs. 9 and 10, respectively, which juxtapose the performance across three
categories, namely Chicken, Duck, and Fish, showcasing a comparative analysis between
our model, HSDNet, and other state-of-the-art approaches. These charts distinctly reveal
that HSDNet boasts competitive IOU scores across different categories in the 1-shot
setting and witnesses further enhancements in the 5-shot experiments, underscoring its
superior adaptability and performance. Notably, in the Fish category, the bar
corresponding to HSDNet is significantly higher, indicating its pronounced superiority

Figure 8 Visualization of 1-shot results. The first column displays the original images, and the second
column presents the corresponding annotated images, expressing the ideal segmentation outcomes we
aspire for the model to learn and predict. The following three columns individually showcase the effect
images from various models in the semantic segmentation task. Figure source credits: https://github.com/
DaixianLiu/DaixianLiu.github.io/tree/main/chicken, https://github.com/DaixianLiu/DaixianLiu.github.
io/tree/main/duck, https://github.com/DaixianLiu/DaixianLiu.github.io/tree/main/fish.

Full-size DOI: 10.7717/peerj-cs.2080/fig-8
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Figure 9 1-shot grouped bar chart. The horizontal axis lists evaluated models, from traditional to few-
shot segmentation methods. The vertical axis shows the IOU scores, measuring segmentation accuracy.
Data sourced from the 1-shot bar. Full-size DOI: 10.7717/peerj-cs.2080/fig-9

Figure 10 5-shot grouped bar chart. The horizontal axis lists evaluated models, from traditional to few-
shot segmentation methods. The vertical axis shows the IOU scores, measuring segmentation accuracy.
Data sourced from the 5-shot bar. Full-size DOI: 10.7717/peerj-cs.2080/fig-10
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over other methods and highlighting its efficiency in tackling more challenging
segmentation tasks. The comparison of average IOU scores demonstrates that HSDNet
consistently outperforms other methodologies across all tested categories, emphasizing its
stability in handling a variety of segmentation tasks and affirming its robustness as a
leading segmentation approach. These experimental outcomes vividly underline HSDNet’s
significant advantages over existing state-of-the-art methods.

Ablation experiment
We conducted a series of ablation studies to investigate the impact of each component on
segmentation performance. It’s worth noting that unless specified otherwise, all ablation
experiments were carried out on the poultry farming dataset under the 1-shot setting,
utilizing the ResNet-50 (He et al., 2016) backbone.

We conducted four sets of ablation experiments: directly using the HDMNet model,
introducing the Sharpness-Aware Model (Foret et al., 2020) based on HDMNet, adding
diceloss to the HDMNet model, and simultaneously incorporating both the Sharpness-
Aware Model and Dice loss to the HDMNet. The results of the ablation studies are
illustrated in Table 4.

From Table 4, it is evident that introducing the Sharpness-Aware Model based on
HDMNet results in a 3% improvement in mIoU compared to using HDMNet alone,
demonstrating the effectiveness of incorporating the Sharpness-Aware Model into
HDMNet. Adding diceloss to HDMNet leads to a 2% increase in mIoU compared to using
HDMNet directly, indicating that the model’s performance is further enhanced with
diceloss. Lastly, when both the Sharpness-Aware Model and diceloss are introduced to
HDMNet, the results, as shown in the fourth row of Table 4, surpass the mIoU of the
previous three sets, suggesting that the combined introduction of both components
significantly boosts the model’s performance, achieving optimal and satisfactory results.

Table 5 Results on the PASCAL�5i dataset.

model Aeroplane Bicycle Bird Boat Bottle Avg

HDMNet (Baseline) 88.64 37.42 84.17 68.66 65.14 68.81

HSDNet (Ours) 87.40 38.86 84.70 65.46 69.70 69.22

Table 4 Model ablation experiment.

model SAM Dice loss Chicken Duck Fish Avg

Baseline × × 77.64 61.12 67.80 68.85

✓ × 79.87 65.00 68.53 71.13

× ✓ 79.04 64.28 67.70 70.34

HSDNet (Ours) ✓ ✓ 81.37 67.77 69.54 72.89
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Robustness analysis
To better demonstrate the robustness and scalability of our model, we conducted
additional robustness experiments using the benchmark few-shot segmentation dataset
PASCAL�5i (Shaban et al., 2017) with a 1-shot setup to test our model, HSDNet,
alongside the baseline model, HDMNet. PASCAL�5i is constructed based on the PASCAL
VOC 2012 dataset (Everingham et al., 2010) and is enhanced with additional annotations
from SDS (Hariharan et al., 2011), encompassing 20 classes. The link to the dataset is
PASCAL�5i dataset. We selected the first five classes—namely aeroplane, bicycle, bird,
boat, and bottle—as new classes for testing, using the remaining 15 classes as the training
set. To ensure the stability and fairness of our experiments, we randomly drew 1,000 query/
support pairs for the PASCAL�5i tests. The results are shown in Table 5.

From Table 5, it is evident that on the PASCAL�5i dataset, our model significantly
outperforms the baseline model, with HSDNet’s mIoU being 0.41% higher than that of
HDMNet. This demonstrates that although our model is specifically tailored for poultry
farming, it also excels on other datasets. While HSDNet competes closely with HDMNet in
categories such as aeroplanes and boats, it demonstrates distinct advantages in more
complex categories like bicycles, birds, and bottles. These results affirm the effectiveness of
HSDNet in handling various challenging segmentation tasks, highlighting its potential for
widespread application in semantic segmentation.

To more effectively showcase our test results, we conducted visualizations, as depicted
in Fig. 11. The first row illustrates the outcomes from the baseline model, HDMNet, while
the second row shows results from our model, HSDNet. From Fig. 11, it is evident that our
model successfully covers three airplanes, compared to the baseline model, which covers
only two, indicating our model’s enhanced performance. Moreover, HDMNet sometimes

Figure 11 The figure illustrates the visual comparison between two models on the PASCAL�5i dataset. The top row features results from the
baseline model HDMNet, and the bottom row displays outcomes from our model, HSDNet. Data sourced from the voc result.

Full-size DOI: 10.7717/peerj-cs.2080/fig-11
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masks regions not pertaining to the actual category, as seen in the second column with the
bicycle’s triangular frame and in the fifth column between two bottles, where the
predictions are less accurate. In contrast, our HSDNet more effectively differentiates
between the background and objects, accurately covering the bicycle’s seat and correctly
identifying non-bicycle parts. Additionally, our model achieves more complete coverage of
targets, as seen with the boat in the fourth column, where HSDNet more effectively masks
the boat, particularly at the boundary between the boat and the water. By testing HSDNet
on various objects in different environments, we first demonstrated better segmentation
performance for dense scenes or small targets, and second, experiments on other datasets
also demonstrated our robustness.

Parameter analysis
In order to gain a deeper understanding of the model’s performance and stability under
different parameter settings, we designed five detailed parameter experiments. Firstly, we
explored the base optimizer of SAM, choosing SGD and Adam for experimentation to
determine which one is better suited for our model. Subsequently, we tested the rho value
in the SAM optimizer, setting it to 0.01, 0.005, and 0.1 respectively. This parameter plays a
crucial role in guiding the direction of model parameter updates. Additionally, we
investigated the adaptive parameter of SAM, setting it to both True and False to explore the
impact of adaptive learning rate adjustments. At the same time, we delved into the role of
Nesterov momentum in the model, especially its potential value in accelerating model
convergence and enhancing performance. Lastly, we conducted tests on the c parameter in
DiceLoss, using three different values: 0.1, 0.5, and 1, aiming to optimize the model’s
segmentation performance in imbalanced categories. The results of the parameter
experiments are shown in Table 6.

As can be seen from Table 6, the best results were achieved when SGD was selected as
the base optimizer for SAM, the rho value in SAM optimizer was set to 0.05, the adaptive

Table 6 Parameter analysis was performed on the poultry farming dataset with ResNet50.

Settings Value Chicken Duck Fish Avg

SAM-base optimizer SGD 81.37 67.77 69.54 72.89

Adam 78.90 64.79 68.30 70.66

SAM-rho 0.01 78.63 65.72 69.28 71.21

0.05 81.37 67.77 69.54 72.89

0.1 78.18 62.86 67.74 69.59

SAM-adaptive False 78.63 65.72 69.28 71.21

True 81.37 67.77 69.54 72.89

SAM-nesterov False 79.30 65.62 68.36 71.09

True 81.37 67.77 69.54 72.89

Loss-c 0.2 78.76 64.20 70.34 71.10

0.3 81.37 67.77 69.54 72.89

0.4 78.57 65.27 67.80 70.55
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parameter was set to True, and Nesterov was set to True. For the c parameter in diceloss, a
setting around 0.3 yielded the best performance. It’s worth noting that c is not a
meticulously chosen value but rather a range. Within this range, good convergence results
are observed. Depending on the dataset, there might be some adjustments to this
parameter.

DISCUSSION
Contribution of the proposed method
Common semantic segmentation techniques rely on large datasets with precise
annotations to train models. In the context of poultry farming, it often requires the
collection and annotation of thousands of images, covering a variety of poultry breeds,
behaviors, and potential breeding environment conditions, to achieve the desired accuracy
and generalization capabilities. This necessitates significant upfront costs and time
investment. Moreover, when faced with new scenes or changes in the environment,
traditional semantic segmentation methods may need to recollect a large amount of data
and retrain models, hindering the model’s rapid deployment and dissemination. In
contrast, as demonstrated in Table 2, HSDNet requires only one image for training and
achieves an mIoU of 72.89%, with the IoU for chickens reaching as high as 81.37%. This
alleviates the traditional semantic segmentation’s heavy dependency on large datasets.
HSDNet can quickly learn from a few examples, this flexibility allows it to swiftly adapt to
new poultry breeds or specific behavioral patterns never encountered before, exhibiting
superior generalization capabilities. This showcases HSDNet’s remarkable ability to push
the boundaries of semantic segmentation in challenging and data-scarce environments,
marking the dawn of a new era for efficient and adaptable machine learning applications in
agriculture and beyond.

Limitations and future work
While HSDNet has shown promising results in poultry farming, its generalization
capabilities to other agricultural areas or significantly different environments are not yet
fully explored. The performance in more complex or less structured environments may
vary. Furthermore, HSDNet’s effectiveness is greatly influenced by the quality of
annotations; inaccurate or inconsistent annotations could impact its learning ability and
accuracy. The complexity of the method also leads to considerable computational
expenses.

In our future work, we will further explore few-shot semantic segmentation models,
attempting to incorporate incremental learning into HSDNet. This will allow the model to
adapt to new information over time without the need for complete retraining, making it
more adaptable to the dynamic environments found in poultry farming with diseases. We
will also work on optimizing the model’s structure to improve accuracy while making the
model lighter, thus easing its deployment in the field.
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CONCLUSIONS
In summary, this study addresses the significant challenges associated with traditional
semantic segmentation, including the high demand for annotated datasets and the
difficulty in adapting to the complex and diverse environments found in poultry farming.
The integration of few-shot learning into poultry farming via the HSDNet model
significantly enhances the efficiency and effectiveness of AI applications in agriculture.
HSDNet is capable of rapidly adapting to new environments or species with minimal data
input, achieving a notable semantic segmentation accuracy of 72.89% on single images.
The innovative combination of a sharpness-aware model with Dice loss is crucial for
addressing typical issues in agricultural settings, such as non-smooth losses and sample
imbalances, thereby improving the model’s stability and accuracy.

Crucially, the HSDNet model’s robustness and versatility are further evidenced by its
successful application not only in poultry but also in monitoring aquatic species such as the
golden crucian carp. This broadens the HSDNet model’s applicability across different
agricultural sectors. Our approach effectively diminishes the reliance on extensive data
collection and manual annotation, positioning it as a feasible solution for addressing real-
world agricultural challenges.

Overall, our findings validate our hypothesis and fulfill the study’s goals by
demonstrating that few-shot learning can be effectively adapted for AI-driven agricultural
applications. This research paves the way for further exploration and continuous
enhancement of AI technology in agriculture, aiming to improve adaptability and
operational efficiency across diverse farming environments.
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