
DPIF-Net: A Dual Path Network for Rural Road Extraction 1 

Based on the Fusion of Global and Local Information 2 
 3 
 4 
Yuan Sun1, Xingfa Gu1, Xiang Zhou1, Jian Yang1, Wangyao Shen2, Yuanlei Cheng2, Jinming 5 
Zhang2, Yunping Chen2 6 
 7 
1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China 8 
2 School of Automation Engineering, University of Electronic Science and Technology of China, 9 
Chengdu, Sichuan, China 10 
  11 
Corresponding Author: 12 
Xingfa Gu1 13 
No.9 Dengzhuang South Road, Haidian District, Beijing, 100094, China 14 
Email address: xfgu@aircas.ac.cn 15 
Yunping Chen2 16 
No.2006, Xiyuan Ave., West High-tech Zone, Chengdu, 611731, China 17 
Email address: chenyp@uestc.edu.cn 18 
 19 
Abstract 20 
Background: Automatic extraction of roads from remote sensing images can facilitate many 21 
practical applications. However, thus far, thousands of kilometers or more of roads worldwide 22 
have not been recorded, especially low-grade roads in rural areas. Moreover, rural roads have 23 
different shapes and are influenced by complex environments and other interference factors, 24 
which has led to a scarcity of dedicated low level category road datasets. 25 
Methods: To address these issues, based on convolutional neural networks (CNNs) and 26 
tranformers, this paper proposes the Dual Path Information Fusion Network (DPIF-Net). In 27 
addition, given the severe lack of low-grade road datasets, we constructed the GaoFen-2 (GF-2) 28 
rural road dataset to address this challenge, which spans three regions in China and covers an 29 
area of over 2300 kilometers, almost entirely composed of low-grade roads. To comprehensively 30 
test the low-grade road extraction performance and generalization ability of the model, 31 
comparative experiments are carried out on the DeepGlobe, and Massachusetts regular road 32 
datasets. 33 
Results: The results show that DPIF-Net achieves the highest IoU and F1 score on three datasets 34 
compared with methods such as U-Net, SegNet, DeepLabv3+, and D-LinkNet, with notable 35 
performance on the GF-2 dataset, reaching 0.6104 and 0.7608, respectively. Furthermore, 36 
multiple validation experiments demonstrate that DPIF-Net effectively preserves improved 37 
connectivity in low-grade road extraction with a modest parameter count of 63.9 MB. The 38 
constructed low-grade road dataset and proposed methods will facilitate further research on rural 39 



roads, which holds promise for assisting governmental authorities in making informed decisions 40 
and strategies to enhance rural road infrastructure. 41 
Keywords: rural road extraction, remote sensing images, convolutional neural networks, 42 
transformer 43 
 44 
Introduction 45 
Roads are typical landscape features with complex topological relationships, and millions of 46 
kilometers of roads in the world are still unrecorded, particularly low-grade roads in rural areas. 47 
In China (2003), low-grade roads are defined as those with an annual average daily traffic 48 
volume of fewer than 6,000 cars. These roads are vital for promoting urban‒rural economic 49 
exchange and narrowing the gap between urban and rural areas. Therefore, it is imperative to 50 
design an intelligent and automatic method for rural road extraction. 51 

Although high-resolution remote sensing images have been studied for many years for road 52 
extraction, accurately identifying rural roads in these images may face additional challenges in 53 
reality (Li et al. 2021). High-resolution images provide rich discriminative features for road 54 
identification but also contain many interference factors. For instance, shadows on roads are 55 
produced due to occlusions from various vehicles, trees, and tall buildings under different 56 
illumination conditions. Rural roads are often characterized by an absence of distinct geometric 57 
features, and their connectivity can be impacted by nearby rivers, which in turn affects the 58 
effectiveness of road extraction. In addition, rural roads made of dirt are more difficult to extract 59 
than roads made of asphalt or cement. 60 

To solve these problems, this paper proposes an end-to-end network called the Dual Path 61 
Information Fusion Network (DPIF-Net), which combines the strengths of convolutional neural 62 
networks (CNNs) and transformers to further improve the accuracy of rural road extraction. 63 
Furthermore, since there are few datasets related to rural roads, a dataset of rural roads is 64 
specifically constructed. Finally, we present extensive experiments conducted on the DeepGlobe 65 
and Massachusetts datasets as well as our dataset to test the model's generalization ability and 66 
robustness. 67 

The contributions of this paper are summarized as follows: 68 
(1) The proposed DPIF-Net, which has a small number of network parameters and a simple 69 

structure. It effectively combines the advantages of CNNs in spatial induction with the adaptive 70 
weighting of input information in transformers to establish global dependencies. Moreover, 71 
DPIF-Net can effectively extract both the local detailed features and global context features of 72 
roads and fully integrate this information to produce more accurate road segmentation results. 73 

(2) The constructed dataset of rural roads. Our dataset includes roads of different regions in 74 
China, but most of them are various types of rural roads. This dataset is specifically constructed 75 
for studying rural road extraction and our model’s performance on rural roads. 76 

The rest of this paper is organized as follows. Section 2 describes some related work on 77 
deep learning for road extraction. Section 3 explains the road dataset used in the experiments and 78 



describes the details of the method proposed in this paper. Section 4 presents the experimental 79 
results and analysis. Sections 5 and 6 provide a discussion and conclusions. 80 
 81 
Related works 82 
At present, road extraction and monitoring operations are still performed manually or 83 
semimanually, making them ineffective and costly (Abdollahi et al. 2020). Therefore, new robust 84 
techniques, such as deep learning methods, are needed to accurately extract road networks of 85 
various scales from remote sensing imagery (Panboonyuen et al. 2017), which has gradually 86 
become a prominent direction of research. With the development of artificial intelligence, deep 87 
convolutional neural networks (DCNNs) are gradually gaining dominance in the field of image 88 
processing. In recent years, there has been an explosion of various papers on road segmentation 89 
with DCNNs, and many excellent CNN models have emerged, such as U-Net (Ronneberger, 90 
Fischer & Brox 2015), LinkNet (Chaurasia & Culurciello 2017), SegNet (Badrinarayanan, 91 
Kendall & Cipolla 2017), D-LinkNet (Zhou, Zhang & Wu 2018), DeepLabv3+ (Chen et al. 92 
2018b), and generative adversarial networks (GANs) (Goodfellow et al. 2020). These models 93 
integrate features from multiple layers of a CNN to exploit the multiscale information at different 94 
semantic levels (Zhu et al. 2021). Many road segmentation methods are based on the above 95 
models. 96 

Zhang, Liu & Wang (2018) integrated residual units into a U-Net-like network for road 97 
extraction. Residual units can make it easier for a network to learn features and achieve better 98 
results. Moradi et al. (2019) proposed a modified U-Net architecture combined with a feature 99 
pyramid network and concatenated the feature maps from all levels of the U-Net decoder path as 100 
input. Their method achieved good performance in medical image segmentation. Chen et al. 101 
(2021) proposed a reconstruction bias U-Net for road extraction from remote sensing images. 102 
This method obtains multiple levels of semantic information from different upsampling scales by 103 
adding decoding branches. However, the extraction effect of the modified method is not good for 104 
low-grade roads, such as rural roads. Yang et al. (2019) constructed a U-Net network consisting 105 
entirely of Region CNN (RCNN) blocks, which preserve rich low-level spatial features. Inspired 106 
by U-Net and atrous spatial pyramid pooling (ASPP) (Chen et al. 2018a), He et al. (2019) 107 
integrated an ASPP module into U-Net to obtain multiscale road information. Lu et al. (2019) 108 
proposed a deep learning framework based on U-Net, which can extract roads and road 109 
centerlines, and integrate feature information from different scales to improve the robustness of 110 
the model. He et al. (2019) added ASPP between the encoder and decoder in U-Net. At the same 111 
time, a loss function that considered the digital number (DN) value, contrast, structure and other 112 
factors of the image was proposed. Lu et al. (2019) replaced the first convolutional layer of each 113 
group in U-Net with a multiscale module and constructed a pyramid-like structure to complete 114 
the extraction of roads and road centerlines. To capture more information, a weighted loss for 115 
roads and centerlines was built. Each loss component was weighted in accordance with the 116 
relative proportions of background and target to solve the problem of target class imbalance. 117 



Based on LinkNet, Wang, Seo & Jeon (2022) proposed an efficient nonlocal LinkNet with 118 
nonlocal blocks (NLBs) that can grasp relations between global features. This enables each 119 
spatial feature point to refer to all other contextual information and results in more accurate road 120 
segmentation. Zhu et al. (2021) added an attentive GCA block between the encoder and decoder 121 
to make the extracted road information more complete. They used FRN normalization to 122 
improve the robustness of the model. Xie et al. (2019) replaced the D-LinkNet intermediate 123 
structure with a global perception block for higher-order information. The design of the high-124 
order information global perception block was inspired by bilinear pooling. Experiments showed 125 
that it achieved better performance than atrous convolution and could reduce the number of 126 
parameters by 1/4. Zhu et al. (2020) proposed a model based on D-LinkNet and conditional 127 
random fields (CRFs) to solve the edge smoothing problem in the process of building extraction. 128 

Tao et al. (2019) proposed a network composed of a spatial information inference structure 129 
(SIIS) for road extraction, and the overall framework was based on DeepLabv3+. The SIIS 130 
consisted of two groups of RCNN units. A weighted loss function combining the mean squared 131 
error (MSE) and intersection over union (IoU) was adopted. To solve the problem of imbalanced 132 
samples, images with excessively small target proportions relative to the background were 133 
removed. Lourenco et al. (2023) proposed combining DeepLabv3+ with an optimization strategy 134 
to extract rural roads. 135 

Many road extraction methods based on Generative Adversarial Network (GAN) have 136 
achieved impressive results. Zhang et al. (2019b) proposed a GAN for road extraction that had 137 
multiple discriminators. In the experiments, it was found that a combination of 4 discriminators 138 
and 1 generator was best. At the same time, a road label generation method that needed less 139 
manual intervention was proposed. Shamsolmoali et al. (2021) integrated feature pyramids into 140 
GANs for road detection. Zhang et al. (2019a) explored different types of GANs. An end-to-end 141 
model for road extraction based on GANs was proposed. The influence of convolution kernels of 142 
different sizes was discussed, and it was concluded that large convolution kernels were not 143 
needed to improve the receptive field for road extraction. 144 

In addition to the above models, some scholars have used other road extraction methods and 145 
have also achieved promising results. Bastani et al. (2018) presented a method to extract road 146 
networks based on iterative graph construction. The final road map was generated by iteratively 147 
adding new candidate road regions. A decision function was used to determine whether a 148 
candidate area is a road by training a CNN. However, this method requires knowledge of the 149 
initial points of the roads. Shao et al. (2021) proposed a two-task end-to-end CNN named the 150 
Multitask Road-related Extraction Network (MRENet) for road surface extraction and road 151 
centerline extraction. The network design of MRENet uses atrous convolutions and a pyramid 152 
scene parsing pooling (PSP pooling) module to expand the network’s receptive field, integrate 153 
multilevel features, and obtain more abundant information. In addition, the authors used a 154 
weighted binary cross-entropy function to alleviate the background imbalance problem. Zhang & 155 
Wang (2019) introduced a network consisting of dense cavity convolution modules for road and 156 
building extraction. Batra et al. (2019) proposed joint learning based on orientation and 157 



segmentation maps to enhance the connectivity rate in road extraction. The CNN-based structure 158 
achieved good road extraction results, but the accuracy was not high for complex road networks, 159 
and the method was not effective for low-grade roads. 160 

The transformer model has made a vital difference in the natural language processing (NLP) 161 
field because of its attention mechanism (Vaswani et al. 2017). Inspired by the powerful 162 
representation capabilities of transformers, researchers have extended transformers to computer 163 
vision tasks (Han et al. 2020). Compared with other networks, transformer-based networks can 164 
achieve comparable performance with less computation. Dosovitskiy et al. (2020) built a 165 
framework consisting of a pure transformer for image classification tasks. The architecture was 166 
trained using large-scale data to obtain pretrained models. When transferred to vision tasks, it 167 
achieved a performance comparable to that of CNNs. Xie et al. (2021) combined a fully 168 
convolutional network with an attention mechanism to learn information from long-range 169 
contexts and achieved good results in image segmentation tasks. In addition, Xie et al. (2021) 170 
built a semantic segmentation framework combining transformer and Multi-Layer Perceptron 171 
(MLP). The framework was simple, efficient and powerful and consisted of a hierarchical 172 
transformer encoder and a decoder composed of MLPs. It could output multiscale features and 173 
did not require positional encoding, resulting in significantly improved performance and 174 
efficiency compared with similar algorithms. Therefore, a structure based on the transformer 175 
demonstrates a clear advantage in global feature extraction. In summary, current research is 176 
predominantly based on CNN, which has shown good performance in typical road extraction. 177 
However, the accuracy of this approach tends to diminish in complex road networks. Given the 178 
complexity of shape for low-level roads, this paper aims to explore the potential of combining 179 
CNN and transformer architectures specifically for low-level road contexts. 180 

 181 
Materials & Methods 182 
Dataset 183 
Although the currently available public road datasets cover a wide range of road categories in 184 
cities, suburbs and rural areas in many countries worldwide, they contain many normal roads and 185 
few rural roads. Therefore, they are not suitable for analysis with a special focus on rural roads, 186 
but they can be used as test data for model generalization performance. 187 

In this study, a rural road dataset was constructed based on the GaoFen-2 (GF-2) satellite. 188 
The GF-2 satellite carries a range of sensors, including a Panchromatic and Multispectral sensor 189 
(PMS), a wide-field-of-view sensor (WFV), and a hyperspectral sensor (HSI), which provide 190 
high-resolution imagery with spatial resolutions ranging from 0.8 m to 16 m. The images for the 191 
PMS sensor (450 to 900 nm) at 0.8 m were utilized in this paper. The images include three 192 
regions covering an area of over 2300 square kilometers : the junction between Jiancaoping 193 
District and Gujiao City in Shanxi characterized by imagery measuring 36500 × 34258 pixels, 194 
covering an approximate area of 752 square kilometers,  the junction between Anyang and 195 
Shijiazhuang cities in Hebei characterized by imagery measuring 39695 × 31311 pixels, covering 196 
an approximate area of 795 square kilometers, and the junction area of Guangzhou and Foshan in 197 
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Guangdong characterized by imagery measuring 36020 × 32431 pixels, covering an approximate 199 
area of 747 square kilometers. As an example, the study area at the junction between Taiyuan 200 
and Jiancaoping District and its mask samples, are illustrated in Figure 1. All GF-2 data in our 201 
study is sourced from the China Centre for Resources Satellite Data and Application.  202 

 203 
Figure.1 Partial study area schematic diagram and masks.  204 
 205 

Nevertheless, the considerable size of the satellite images poses challenges in terms of 206 
efficient data loading, potentially leading to a substantial increase in training duration. Moreover, 207 
the absence of masks within the original dataset introduces complexities in conducting effective 208 
supervised training. To overcome these challenges, the images underwent cropping to achieve 209 
dimensions of 512x512 pixels initially. Subsequently, manual annotation based on image texture 210 
was executed to generate corresponding masks. In the end, we generated a dataset similar to the 211 
examples shown in Figure 2. To address the potential sample imbalance, our dataset excluded the 212 
images containing abundant higher level roads, consequently encompassing intricate details of 213 
rural road attributes, such as tree coverage, agricultural field irrigation channels, and road 214 
incompleteness. These adjustments were intended to enhance the model's performance in 215 
extracting low-grade rural roads. After preprocessing the data, 5501 samples remained, with 216 
5421 as training samples, 40 as validation samples, and 40 as test samples. 217 
 218 
Figure. 2. Overview of the data. (All images and masks from the Massachusetts dataset) 219 
 220 

In addition, experiments were carried out on two public datasets, DeepGlobe (Demir et al. 221 
2018) and Massachusetts (Mnih 2013). However, it is imperative to emphasize that these two 222 
datasets contain a limited quantity of low-grade roads in comparison to a substantial volume of 223 
regular highways. They are specifically employed to enhance our model's extraction performance 224 
and validate findings. The images in the DeepGlobe road dataset come from three countries, 225 
namely, India, Thailand, and Indonesia, and include multiple imaged scenes covering an area of 226 
over 2220 square kilometers, such as cities, villages, wilderness, suburbs, seashores, and tropical 227 
rainforests. The ground resolution of the images is 0.5 m per pixel, and the image size is 1024 × 228 
1024 pixels. There are a total of 6226 images, of which 4976 are designated for training and 229 
1250 are designated for testing. In this study, following Zhu et al. (2021), the original images 230 
were cropped to a resolution of 512 × 512 pixels with an overlap of 256 pixels. Finally, a total of 231 
5000 images for training, 40 images for validation and 4500 images for testing were obtained. 232 

The Massachusetts road dataset consists of 1171 aerial images of the Massachusetts region, 233 
which cover a wide variety of urban, suburban, and rural regions and an area of over 2600 square 234 
kilometers. With a spatial resolution of 1 m per pixel, the images in this dataset have a size of 235 
1500 × 1500 pixels and are composed of red, green, and blue channels. Similarly, the original 236 
data were cropped into nonoverlapping images with a resolution of 512 × 512 pixels. Finally, 237 
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3744 images were used for training, 30 images were used for validation, and 196 images were 241 
used for testing. Moreover, all images with large white blank areas were removed manually. 242 
 243 
Details of the model structure 244 

We propose Dual Path Information Fusion Network (DPIF-Net) to improve the 245 
performance of rural road extraction by exploring the potential of combining the capabilities of 246 
transformers and CNNs for road segmentation. The schematic structure of DPIF-Net is displayed 247 
in Figure 3. First, the top encoder branch uses a transformer to model global road information in 248 
the input remote sensing image, while the other encoder branch uses convolution operations to 249 
extract local details of roads and process spatial and channel information. Second, the feature 250 
information of the two branches is effectively fused. Finally, each layer of the decoder fuses 251 
high-level features from the previous layer with low-level features from the convolutional branch 252 
and gradually upsamples the image to the original resolution to obtain a binary image containing 253 
only roads. 254 
 255 
Figure. 3. Overview of the proposed model for rural road extraction. (All satellite images 256 
and masks from the Massachusetts dataset) 257 
 258 
Local detail information encoder based on a CNN 259 
In DPIF-Net, we propose a convolution module called the local detail feature extraction (LDFE) 260 
block as shown in Figure 4. This block is composed of three parts to efficiently extract road 261 
features while keeping the number of network parameters low. 262 

In part A, a traditional 3x3 convolution is applied to the input feature map to extract 263 
preliminary feature information without altering its resolution, resulting in a feature map that is 264 
four times larger than the input in the channel dimension. Then, the obtained features are spliced 265 
and fused using a skip connection. 266 

In part B, each channel of the feature map is processed separately using a 3x3 convolution 267 
to extract semantic feature information, and a leaky-ReLU (Maas, Hannun & Ng 2013)activation 268 
layer is used to obtain nonlinear features, as expressed in formula (1). 269 

  (1) 270 

𝛼 is a small gradient value, which is set to 0.2 in this paper. 271 
In part C, the feature information from part B is combined, cross-channel interaction is 272 

achieved using a 1x1 convolution, and then another leaky-ReLU activation layer is applied. 273 
 274 
Figure. 4. Local detail feature extraction block. 275 
 276 
Global information encoder based on a Transformer module 277 
The ASPP module was originally introduced to increase the receptive field without sacrificing 278 
too much resolution, allowing for the preservation of image details as much as possible(Chen et 279 
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al. 2018a). To process multiscale road feature information extraction, we propose improvements 283 
to the ASPP module. Specifically, there are three different dilated convolution modules and a 284 
global adaptive pooling module, which can extract more feature information, as shown in Figure 285 
5. Moreover, different dilation ratios are used to obtain abstract feature information at different 286 
scales, which provides a basis for the subsequent integration of features and accurate road 287 
segmentation. In this way, the modified ASPP module obtains more abstract semantic 288 
information and road topology information and achieves better robustness; it can accept input 289 
feature images of any size and finally produce output of a fixed size. 290 
 291 
Figure. 5. Modified ASPP module. 292 
 293 

In addition to the improvements to the CNN module proposed above, a Trans block is 294 
proposed to employ the Transformer architecture at the beginning of the model to capture global 295 
context information while avoiding interference with the CNN branch. Specifically, the Trans 296 
block can compensate for the shortcomings of the CNN in capturing global context information. 297 

To process image blocks with a transformer, we convert them into one-dimensional data by 298 
using a fully connected (FC) layer. Due to the expansion into one-dimensional data, the position 299 
information is lost; therefore, the input feature data are converted from index numbers into a one-300 
hot encoding matrix to maintain the position relationships of the sequence. Moreover, a random 301 
weight matrix is right-multiplied to complete the input position embedding. This method ensures 302 
that each token in the sequence has a unique position representation, which is crucial for the 303 
transformer to capture long-range dependencies. 304 
 305 
Figure. 6. The structure of the transformer block. 306 
 307 

The schematic structure of an individual transformer block is shown in Figure 6 308 
(Dosovitskiy et al. 2020). The Transformer encoder mainly consists of alternating multihead self-309 
attention (MSA) layers and multilayer perceptron (MLP) blocks. Before these two modules, 310 
layer normalization (LN) is applied for normalization, and a residual connection structure is 311 
used. The MLP block consists of two FC layers, in which the Gaussian error linear unit (GeLU) 312 
function is applied for nonlinear activation to obtain nonlinear features. The definition of the 313 
GeLU (Hendrycks & Gimpel 2016) activation function is shown in formula (2). 314 

  (2) 315 
x is the input, and X is a random variable that follows a Gaussian distribution with mean 0 316 

and variance 1. 𝑃(𝑋 ≤ 𝑥)ϕ(𝑥) is the cumulative distribution of the Gaussian normal distribution 317 
of x, for which there is no analytical expression; instead, its approximate calculation method is 318 
shown in formula (3). 319 

  (3) 320 
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In our work, the number of attention heads is set to 16, assuming that the input image is x 325 
(𝑥 ∈ 𝑖+×-×.), where H , W and C are the height, width and channels, respectively, of x. The 326 
original image block feature xp (𝑥/ ∈ 𝑖0×1

2×.) is obtained by expansion into one-dimensional 327 

data, 𝑥/ ∈ 𝑖0×1
2×. , where N is the number of small P×P patches into which the original input 328 

image is cropped. N and P satisfy the relationship shown in formula (4). 329 

  (4) 330 

Then, after dimension embedding and nonlinear mapping of the GeLU function, the i-th 331 
image block feature zi can be expressed as shown in formula (5). 332 

  (5) 333 

𝐸 ∈ 𝑖12×.×4. After the corresponding position encoding, the vector z input into the 334 
transformer (TF) can be expressed as shown in formula (6). 335 

  (6) 336 

𝐸/56 ∈ 𝑖0×4. Finally, the input vector z is subjected to the calculations shown in formula (7) 337 
and formula (8). 338 

  (7) 339 

  (8) 340 

Multiple TF blocks are used to build the Trans block, as shown in Figure 7, and the 341 
generated output of global road information from the original remote sensing image, zout, is 342 
expressed as shown in formula (9). 343 

  (9) 344 

 345 
Figure. 7. Trans block structure. 346 
 347 
Decoder based on context information fusion 348 
After the two different kinds of information discussed above are obtained, the final branch 349 
combines the two different kinds of road semantic information to fuse the global and local road 350 
features, as shown in part A of Figure 8. The high-level feature information is extracted using 351 
two 3×3 convolutional layers without changing the feature map resolution. Group normalization 352 
(GN) is used to normalize the features, and Leaky-ReLU is used as the nonlinear activation 353 
function to capture the nonlinear characteristics of the roads. This process fully integrates the 354 
semantic information from the two different sources, resulting in more comprehensive road 355 
semantic feature information that covers the feature information of various road categories. 356 
 357 
Figure. 8. Information fusion strategy. 358 
 359 
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To solve the problem that the spatial location information of the roads is not obvious due to 368 
multiple convolutions, this paper adopts the design concept of the U-Net network structure and 369 
employs skip connections in the decoder to transfer the low-level feature information from the 370 
output of the LDFE module to the corresponding decoder port for splicing, as depicted in part B 371 
of Figure 8. Subsequently, the features are fused layer by layer via 3 × 3 convolutional layers, 372 
and the feature map's resolution is incrementally restored via bilinear interpolation until it finally 373 
reaches the original image resolution. 374 

Finally, Wu & He (2018) proposed group normalization (GN) to improve the efficiency of 375 
training rather than batch normalization (BN) BN works effectively for a relatively large batch 376 
size. However, a small batch size leads to inaccurate estimation of the batch statistics, and 377 
reducing the batch size for BN dramatically increases the model error. GN can achieve 378 
approximately the same accuracy performance as BN for a moderate batch size and outperforms 379 
other normalization variants because it can still achieve a small error rate even when the batch 380 
size undergoes large fluctuations. The GN calculation is expressed as shown in formula (10): 381 
(Wu & He 2018) 382 

  (10) 383 

γ and β are trainable scale and shift parameters, respectively, and µ: and σ: in formula (10) 384 
are the mean and standard deviation computed as shown in formula (11): (Wu & He 2018) 385 

  (11) 386 

ε is a small nonzero constant. 𝑆: is the set of pixels, and m is the size of 𝑆:. 387 
 388 

Experimental design description 389 
DPIF-Net was trained on an RTX 3090 GPU. At the beginning of training, we utilized common 390 
data augmentation techniques, including translation, rotation, flipping, scaling, and random color 391 
jitter as shown in Figure. 9, which contributed to improving the model's robustness and 392 
performance. The model implementation was based on PyTorch, the optimizer for all structures 393 
was Adam, the initial learning rate was set to 0.0002, and the batch size during training was set 394 
to 2. The MSELoss was used to calculate the loss. 395 
 396 
Figure. 9. Data Augmentation Strategy. (a) Original image, (b) HSV color jitter, (c) 397 
translation, (d) flip, (e) random rotation, (f) translation and rotation. (All satellite images and 398 
masks from the Massachusetts dataset)  399 
 400 

To assess the performance of DPIF-Net in rural road extraction, we conducted three 401 
primary comparative experiments across distinct datasets. Each of these comparative 402 
experiments entailed a juxtaposition between mainstream models and ours. In addition, the 403 
performance of DPIF-Net was compared with that of the U-Net, SegNet, D-LinkNet, and 404 
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DeepLabv3+ models on the above three road datasets. In these experiments, our goal was to 409 
observe its capabilities for extracting roads in complex scenarios through evaluation metrics, 410 
assessing both the completeness and accuracy of road extraction. In the discussion, we assessed 411 
the parameter sizes among the models and the visual assessments of both completeness and 412 
accuracy. Furthermore, the ablation experiments are conducted to observe the contributions of its 413 
two branches, which are designed to identify which modules are most crucial for DPIF-Net's 414 
performance. 415 
 416 
Experimental Evaluation Metrics 417 
To evaluate the effectiveness of our model, four common metrics are selected: intersection over 418 
union (IoU), precision, recall, and F1 score (F1). High IoU indicates the model's accuracy in 419 
predicting the location and shape of roads, which is particularly crucial for assessing the model's 420 
ability to recognize roads (Lian et al. 2020). The IoU is calculated as shown in formula (12). 421 

  (12) 422 

TP, FP, TN, and FN denote true positives, false positives, true negatives, and false 423 
negatives, respectively. 424 

In the context of rural roads, where non-road areas often constitute a significant proportion, 425 
leading to an imbalance between positive and negative samples in the dataset, F1 score becomes 426 
particularly crucial for assessing performance under such conditions, which are calculated as 427 
shown in formula (13). 428 

  (13) 429 

The precision and recall are employed to evaluate the model's capability to correctly 430 
identify roads, which are calculated as shown in formula (14) and formula (15), respectively. 431 

  (14) 432 

  (15) 433 

 434 
Figure. 10. Road extraction results for our dataset.  435 
 436 
Results 437 
 438 
Road extraction experiment based on our road dataset 439 
The results on our dataset are shown in Figure 10. Through detailed comparisons, we find that in 440 
Examples 1–2 and Examples 4–7, DPIF-Net generates fewer broken road segments 441 
(misidentified connected vectors) than the other four models. At the same time, the occluded 442 
parts caused by trees can be completely extracted to ensure the connectivity of the roads. In 443 
Example 3, DPIF-Net extracts the least erroneous information, yielding results almost consistent 444 
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with the ground truth, whereas the other four models incorrectly extract road information in this 450 
example. 451 
 452 
Table 1. Comparison of different road extraction methods on the GF2 road dataset. The 453 
best results are highlighted in boldface. 454 
 455 

More detailed comparison results are presented in Table 1. DPIF-Net achieves the best 456 
performance in two metrics, namely, IoU and F1 score, reaching 61.40% and 76.08%, 457 
respectively. In addition, DPIF-Net reaches 77.27% precision, which is 1.05% lower than the 458 
highest score and 0.6% lower than U-Net’s score. DPIF-Net also reaches 74.94% recall, which is 459 
0.08% lower than D-LinkNet's highest recall score of 75.02%, representing a small, almost 460 
negligible fluctuation. 461 

Compared with U-Net, the IoU, recall and F1 values of DPIF-Net are increased by 3.34%, 462 
5.41%, and 2.61%, respectively. Compared with DeepLabv3+, the IoU, recall and F1 values are 463 
increased by 4.8%, 7.83% and 3.8%, respectively. Compared with D-LinkNet, the IoU, precision 464 
and F1 values increased by 0.35%, 0.64%, and 0.26%, respectively. Compared with SegNet, the 465 
IoU, precision, recall and F1 values are increased by 7.52%, 1.52%, 9.83%, and 6.05%, 466 
respectively. The largest increases in IoU, precision, recall, and F1 score reach 7.52%, 1.52%, 467 
9.83%, and 6.05%, respectively. In the extraction of rural roads, the crucial aspects lie in 468 
correctly identifying roads and preserving their completeness, both reflected in the IoU and F1 469 
metrics. DPIF-Net achieves the highest IoU and F1 on the lower level roads, highlighting its 470 
superiority in extracting rural roads, which underscores its proficiency in correctly extracting 471 
rural roads and recognizing road shapes. 472 
Road extraction experiment based on the DeepGlobe road dataset 473 

A second experiment was conducted on the DeepGlobe road dataset, and the results of the 474 
visual assessment comparison are presented in Figure 11. Figure 11 shows the detailed effects of 475 
rural road segment extraction for 8 examples. In the first example, compared with U-Net and 476 
SegNet, DPIF-Net extracts more complete road information. In contrast, D-LinkNet produces 477 
more mistakenly extracted road segments and more fractures than DPIF-Net. In the 2nd to 6th 478 
examples, the extraction results of U-Net and SegNet show more broken segments, while DPIF-479 
Net achieves almost the same road integrity as D-LinkNet, whereas D-LinkNet misextracts more 480 
road segments than DPIF-Net. In the 7th and 8th examples, the integrity of the roads extracted by 481 
DPIF-Net is higher than that of the other three methods. 482 
 483 
Figure. 11. Road extraction results for the DeepGlobe road dataset. (a) Ground truth. (b) U-484 
Net. (c) SegNet. (d) DeepLabv3+. (e) D-LinkNet. (f) Ours. 485 
 486 
Table 2. Comparison of different road extraction methods on the DeepGlobe road dataset. 487 
The best results are highlighted in boldface. 488 
 489 
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The detailed evaluation index comparisons are shown in Table 2. From the indicator data in 491 
Table 2, it can be seen that the model with the worst comprehensive performance is 492 
DeepLabv3+, which has the lowest score in all metrics. Its recall is lower by more than 30%, and 493 
the other three metrics are lower by nearly 20%. DPIF-Net achieves the best results in terms of 494 
IoU, precision and F1 score, reaching values of 57%, 74.76% and 72.61%, respectively. 495 
However, its recall is lower than those of D-LinkNet and SegNet at only 70.58%. D-LinkNet has 496 
the highest recall score of 89.62%. 497 

In summary, DPIF-Net improves the IoU by 0.6–20.08%, the precision by 0.08–20.48%, 498 
and the F1 score by 0.49–18.68% on the DeepGlobe road dataset. Its recall is weaker than those 499 
of SegNet and D-LinkNet but 6.96% higher than that of U-Net and 16.99% higher than that of 500 
DeepLabv3+. 501 
Road extraction experiment based on the Massachusetts road dataset 502 

To further test the generalization ability of the proposed DPIF-Net, a similar experiment 503 
was carried out on the Massachusetts road dataset. The visual assessment of the compared 504 
methods on this dataset is shown in Figure 12. All the models almost completely extract the road 505 
information, but from Figure 12, it can be seen that the other models do not extract some road 506 
details completely enough, resulting in various fractures. Comprehensive comparisons show that 507 
the proposed model is better than the others in extracting many details. 508 
 509 
Figure. 12. Road extraction results on the Massachusetts road dataset. (a) Ground truth. (b) 510 
U-Net. (c) SegNet. (d) DeepLabv3+. (e) D-LinkNet. (f) Ours. 511 
 512 
Table 3. Comparison of different road extraction methods on the Massachusetts road 513 
dataset. The best results are highlighted in boldface. 514 
 515 

Table 3 displays the detailed road extraction results on the Massachusetts road dataset, 516 
revealing that DPIF-Net surpasses the other models in terms of IoU, precision, and F1 score, with 517 
values of 53.82%, 82.48%, and 70%, respectively. Although DeepLabv3+ achieves the highest 518 
recall score of 63.92%, the IoU, F1 score and precision of DeepLabv3+ are significantly lower 519 
than those of all other models, with differences of 10–40%.  520 
Compared to other models, DPIF-Net integrates global and local information more extensively, 521 
enabling it to capture more features and thereby enhance its recognition capabilities. DPIF-Net 522 
achieves superior performance in predicting road accuracy and completeness, demonstrated by 523 
attaining maximum values in IoU, precision, and F1 on the DeepGlobe and Massachusetts 524 
datasets, showcasing its advantages in overall road extraction. 525 
Discussion 526 
In this section, we provide a detailed discussion on several important aspects of DPIF-Net. First, 527 
we elaborate on the input and output mechanisms within the network, highlighting the various 528 
components and their respective roles. Second, we discuss the significance of the network 529 
architecture for road extraction and how DPIF-Net utilizes the capabilities of both CNNs and 530 
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transformers for effective feature representation and information fusion. Moreover, we present a 533 
comprehensive parameter comparison of DPIF-Net with other state-of-the-art models for road 534 
extraction, demonstrating the effectiveness and efficiency of our proposed model. Finally, we 535 
report an ablation study conducted to analyze the role of each branch of DPIF-Net, which 536 
provides insights into the contribution of each component toward the final performance of the 537 
model. 538 
 539 
Evaluation of the generalization performance and road representation ability of the 540 
proposed model 541 

First, we evaluate the generalization performance and road representation ability of the 542 
proposed model. To gain deeper insight into the inner workings of DPIF-Net, feature heatmaps 543 
for five different stages in the decoder are displayed in Figure 13 to illustrate how the model 544 
extracts roads. The results from the three different datasets indicate that DPIF-Net effectively 545 
learns road features with clear boundaries. The feature maps show that the encoder learns various 546 
levels of feature representations of the input image, and the decoder combines these 547 
representations to generate accurate road masks. As the decoder performs upsampling four times, 548 
the semantic information of the extracted roads becomes increasingly abstract, which highlights 549 
the ability of DPIF-Net to learn high-level features. These results demonstrate that DPIF-Net not 550 
only has excellent road extraction performance but also possesses good robustness and feature 551 
representation capabilities; thus, it shows promising potential for various applications in remote 552 
sensing image analysis. 553 
 554 
Figure. 13. Visualization of features at different levels. (a) Ground truth. (b) First decoder 555 
output. (c) Second decoder output. (d) Third decoder output. (e) Fourth decoder output. (f) Last 556 
convolution output. (g) Final extraction result. The data sources are (1) – (2) our dataset, (3) – (4) 557 
the Massachusetts road dataset, and (5) – (6) the DeepGlobe road dataset. 558 
 559 
Discussion on the quantity of model parameters 560 
Furthermore, a comparison of the parameters used in the experiments for each model provides 561 
insight into their respective strengths and weaknesses. Table 4 presents a comprehensive 562 
overview of the parameters for each model, indicating that DPIF-Net has the fewest parameters, 563 
with a data volume of only 63.9 MB, which is similar to that of U-Net. While D-LinkNet 564 
achieves better feature extraction in some cases, it also has a significantly larger number of 565 
parameters due to its use of ResNet101 as the encoder and deeper network layers. On the other 566 
hand, DeepLabv3+ also has a high number of parameters due to the use of Xception as the 567 
encoding network, but it performs poorly in road extraction experiments. SegNet, with 568 
approximately twice as many parameters as DPIF-Net, also yields inferior experimental results 569 
for road segmentation. These comparisons highlight the trade-off between the number of 570 
parameters and the effectiveness of a model for road extraction tasks. While having more 571 
parameters may improve feature extraction, it also increases a model's complexity and 572 
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computational cost. DPIF-Net, with its simple yet effective structure and relatively few 574 
parameters, proves to be a promising model for road extraction from remote sensing images. 575 
 576 
Table 4. Comparison of the parameters of each model. The best results are highlighted in 577 
boldface. 578 
Ablation study 579 

To better understand the contribution of each branch in the encoder part of DPIF-Net to the 580 
road extraction results, an ablation study was conducted using our dataset. A comparison of the 581 
results reveals that the two branches make different levels of contributions to the road extraction 582 
results, as presented in Table 5. Specifically, the branch that incorporates the CNN-based feature 583 
extractor makes a stronger contribution to the final road extraction results than the branch that 584 
employs the transformer-based feature extractor. 585 

Notably, due to the strict parameter limitations of the final model presented in this paper, 586 
only three transformer blocks were used in the transformer-based feature extractor. This resulted 587 
in suboptimal performance in comparison to the CNN-based feature extractor. However, the 588 
performance of the transformer-based feature extractor could be improved by stacking more 589 
transformer blocks, albeit at the cost of dramatically increasing the number of parameters. 590 

While DPIF-Net has demonstrated impressive performance by effectively combining a 591 
CNN and a transformer, there are several potential areas for improvement in future research on 592 
road extraction using DPIF-Net. First, more advanced architectures for the transformer block 593 
could be explored to further enhance the model's performance without significantly increasing 594 
the number of parameters. Second, modified attention mechanisms or other forms of spatial 595 
information modeling might improve the model's ability to capture fine details and connectivity 596 
information in the road network. Third, methods to improve the accuracy of road boundary 597 
delineation and reduce false positive rates could further increase the model's utility in practical 598 
applications. Overall, these potential areas for improvement could help advance the state of the 599 
art in road extraction using deep learning models. 600 
 601 
Table 5. Comparison of the contribution of encoder branches to road extraction. The best 602 
results are highlighted in boldface. 603 
 604 
Conclusions 605 
In this study, we successfully constructed a dedicated lower level category roads and developed 606 
DPIF-Net. By effectively harnessing the strengths of both transformers and CNNs, our model 607 
has demonstrated excellent performance in road extraction tasks with in comparison with 608 
advanced models of the same period. It not only enhances extraction accuracy but also achieves 609 
higher levels of road connectivity. This achievement holds significant implications not only for 610 
the field of road extraction but also for increasing attention to rural road issues in research and 611 
government decision-making. Despite constraints on research time and workload, DPIF-Net can 612 
leverage the rapid advancements in deep learning to enhance its two branches by incorporating 613 



state-of-the-art transformer or CNN modules, thus further improving the model's performance. 614 
Additionally, examining the model's generalization capabilities across different geographical 615 
regions and complex weather conditions to validate its practicality is crucial. These efforts will 616 
contribute to the advancement of road extraction technology in remote sensing images, providing 617 
strong support for rural development and infrastructure construction. 618 
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