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ABSTRACT
Background. Automatic extraction of roads from remote sensing images can facilitate
many practical applications. However, thus far, thousands of kilometers or more
of roads worldwide have not been recorded, especially low-grade roads in rural
areas. Moreover, rural roads have different shapes and are influenced by complex
environments and other interference factors, which has led to a scarcity of dedicated
low level category road datasets.
Methods. To address these issues, based on convolutional neural networks (CNNs) and
tranformers, this article proposes the Dual Path Information Fusion Network (DPIF-
Net). In addition, given the severe lack of low-grade road datasets, we constructed
the GaoFen-2 (GF-2) rural road dataset to address this challenge, which spans three
regions in China and covers an area of over 2,300 km, almost entirely composed of
low-grade roads. To comprehensively test the low-grade road extraction performance
and generalization ability of the model, comparative experiments are carried out on the
DeepGlobe, and Massachusetts regular road datasets.
Results. The results show that DPIF-Net achieves the highest IoU and F1 score on
three datasets compared with methods such as U-Net, SegNet, DeepLabv3+, and D-
LinkNet, with notable performance on the GF-2 dataset, reaching 0.6104 and 0.7608,
respectively. Furthermore, multiple validation experiments demonstrate that DPIF-Net
effectively preserves improved connectivity in low-grade road extraction with a modest
parameter count of 63.9 MB. The constructed low-grade road dataset and proposed
methods will facilitate further research on rural roads, which holds promise for assisting
governmental authorities in making informed decisions and strategies to enhance rural
road infrastructure.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Spatial and Geographic
Information Systems
Keywords Rural road extraction, Remote sensing images, Convolutional neural networks,
Transformer

INTRODUCTION
Roads are typical landscape features with complex topological relationships, and millions
of kilometers of roads in the world are still unrecorded, particularly low-grade roads in
rural areas. In China, low-grade roads are defined as those with an annual average daily
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traffic volume of fewer than 6,000 cars (China, 2003). These roads are vital for promoting
urban–rural economic exchange and narrowing the gap between urban and rural areas.
Therefore, it is imperative to design an intelligent and automatic method for rural road
extraction.

Although high-resolution remote sensing images have been studied for many years for
road extraction, accurately identifying rural roads in these images may face additional
challenges in reality (Li et al., 2021). High-resolution images provide rich discriminative
features for road identification but also contain many interference factors. For instance,
shadows on roads are produced due to occlusions from various vehicles, trees, and tall
buildings under different illumination conditions. Rural roads are often characterized by
an absence of distinct geometric features, and their connectivity can be impacted by nearby
rivers, which in turn affects the effectiveness of road extraction. In addition, rural roads
made of dirt are more difficult to extract than roads made of asphalt or cement.

To solve these problems, this article proposes an end-to-end network called theDual Path
Information Fusion Network (DPIF-Net), which combines the strengths of convolutional
neural networks (CNNs) and transformers to further improve the accuracy of rural road
extraction. Furthermore, since there are few datasets related to rural roads, a dataset of
rural roads is specifically constructed. Finally, we present extensive experiments conducted
on the DeepGlobe and Massachusetts datasets as well as our dataset to test the model’s
generalization ability and robustness.

The contributions of this article are summarized as follows:
(1) The proposed DPIF-Net, which has a small number of network parameters and

a simple structure. It effectively combines the advantages of CNNs in spatial induction
with the adaptive weighting of input information in transformers to establish global
dependencies. Moreover, DPIF-Net can effectively extract both the local detailed features
and global context features of roads and fully integrate this information to produce more
accurate road segmentation results.

(2) The constructed dataset of rural roads. Our dataset includes roads of different regions
in China, but most of them are various types of rural roads. This dataset is specifically
constructed for studying rural road extraction and our model’s performance on rural
roads.

The rest of this article is organized as follows. Section ‘Related Works’ describes some
related work on deep learning for road extraction. Section ‘Materials & Methods’ explains
the road dataset used in the experiments and describes the details of the method proposed
in this article. Section ‘Results’ presents the experimental results and analysis. Sections
‘Discussion’ and ‘Conclusions’ provide a discussion and conclusions.

RELATED WORKS
At present, road extraction and monitoring operations are still performed manually or
semimanually, making them ineffective and costly (Abdollahi et al., 2020). Therefore,
new robust techniques, such as deep learning methods, are needed to accurately extract
road networks of various scales from remote sensing imagery (Panboonyuen et al., 2017),
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which has gradually become a prominent direction of research. With the development of
artificial intelligence, deep convolutional neural networks (DCNNs) are gradually gaining
dominance in the field of image processing. In recent years, there has been an explosion
of various papers on road segmentation with DCNNs, and many excellent CNN models
have emerged, such as U-Net (Ronneberger, Fischer & Brox, 2015), LinkNet (Chaurasia &
Culurciello, 2017), SegNet (Badrinarayanan, Kendall & Cipolla, 2017), D-LinkNet (Zhou,
Zhang & Wu, 2018), DeepLabv3+ (Chen et al., 2018b), and generative adversarial networks
(GANs) (Goodfellow et al., 2020). These models integrate features from multiple layers of
a CNN to exploit the multiscale information at different semantic levels (Zhu et al., 2021).
Many road segmentation methods are based on the above models.

Zhang, Liu & Wang (2018) integrated residual units into a U-Net-like network for road
extraction. Residual units can make it easier for a network to learn features and achieve
better results. Moradi et al. (2019) proposed a modified U-Net architecture combined
with a feature pyramid network and concatenated the feature maps from all levels of the
U-Net decoder path as input. Their method achieved good performance in medical image
segmentation. Chen et al. (2021) proposed a reconstruction bias U-Net for road extraction
from remote sensing images. This method obtains multiple levels of semantic information
from different upsampling scales by adding decoding branches. However, the extraction
effect of the modified method is not good for low-grade roads, such as rural roads. Yang
et al. (2019) constructed a U-Net network consisting entirely of Region CNN (RCNN)
blocks, which preserve rich low-level spatial features. Inspired by U-Net and atrous spatial
pyramid pooling (ASPP) Chen et al., 2018a, He et al. (2019) integrated an ASPP module
into U-Net to obtainmultiscale road information. Lu et al. (2019) proposed a deep learning
framework based on U-Net, which can extract roads and road centerlines, and integrate
feature information from different scales to improve the robustness of the model. He et
al. (2019) added ASPP between the encoder and decoder in U-Net. At the same time, a
loss function that considered the digital number (DN) value, contrast, structure and other
factors of the image was proposed. Lu et al. (2019) replaced the first convolutional layer of
each group in U-Net with a multiscale module and constructed a pyramid-like structure
to complete the extraction of roads and road centerlines. To capture more information, a
weighted loss for roads and centerlines was built. Each loss component was weighted in
accordance with the relative proportions of background and target to solve the problem of
target class imbalance.

Based on LinkNet, Wang, Seo & Jeon (2021) proposed an efficient nonlocal LinkNet
with nonlocal blocks (NLBs) that can grasp relations between global features. This enables
each spatial feature point to refer to all other contextual information and results in more
accurate road segmentation. Zhu et al. (2021) added an attentive GCA block between the
encoder and decoder to make the extracted road information more complete. They used
FRN normalization to improve the robustness of the model. Xie et al. (2019) replaced
the D-LinkNet intermediate structure with a global perception block for higher-order
information. The design of the high-order information global perception block was
inspired by bilinear pooling. Experiments showed that it achieved better performance than
atrous convolution and could reduce the number of parameters by 1/4. Zhu et al. (2020)
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proposed a model based on D-LinkNet and conditional random fields (CRFs) to solve the
edge smoothing problem in the process of building extraction.

Tao et al. (2019) proposed a network composed of a spatial information inference
structure (SIIS) for road extraction, and the overall framework was based on DeepLabv3+.
The SIIS consisted of two groups of RCNN units. A weighted loss function combining the
mean squared error (MSE) and intersection over union (IoU) was adopted. To solve the
problem of imbalanced samples, images with excessively small target proportions relative
to the background were removed. Lourenco et al. (2023) proposed combining DeepLabv3+
with an optimization strategy to extract rural roads.

Many road extraction methods based on generative adversarial network (GAN) have
achieved impressive results. Zhang et al. (2019b) proposed a GAN for road extraction that
had multiple discriminators. In the experiments, it was found that a combination of four
discriminators and one generator was best. At the same time, a road label generation
method that needed less manual intervention was proposed. Shamsolmoali et al. (2021)
integrated feature pyramids into GANs for road detection. Zhang et al. (2019a) explored
different types of GANs. An end-to-end model for road extraction based on GANs was
proposed. The influence of convolution kernels of different sizes was discussed, and it was
concluded that large convolution kernels were not needed to improve the receptive field
for road extraction.

In addition to the above models, some scholars have used other road extraction methods
and have also achieved promising results. Bastani et al. (2018) presented a method to
extract road networks based on iterative graph construction. The final road map was
generated by iteratively adding new candidate road regions. A decision function was used
to determine whether a candidate area is a road by training a CNN. However, this method
requires knowledge of the initial points of the roads. Shao et al. (2021) proposed a two-task
end-to-end CNN named the Multitask Road-related Extraction Network (MRENet) for
road surface extraction and road centerline extraction. The network design ofMRENet uses
atrous convolutions and a pyramid scene parsing pooling (PSP pooling) module to expand
the network’s receptive field, integrate multilevel features, and obtain more abundant
information. In addition, the authors used a weighted binary cross-entropy function to
alleviate the background imbalance problem. Zhang & Wang (2019) introduced a network
consisting of dense cavity convolution modules for road and building extraction. Batra et
al. (2019) proposed joint learning based on orientation and segmentation maps to enhance
the connectivity rate in road extraction. The CNN-based structure achieved good road
extraction results, but the accuracy was not high for complex road networks, and the
method was not effective for low-grade roads.

The transformer model has made a vital difference in the natural language processing
(NLP) field because of its attention mechanism (Vaswani et al., 2017). Inspired by
the powerful representation capabilities of transformers, researchers have extended
transformers to computer vision tasks (Han et al., 2020). Compared with other networks,
transformer-based networks can achieve comparable performance with less computation.
Dosovitskiy et al. (2020) built a framework consisting of a pure transformer for image
classification tasks. The architecture was trained using large-scale data to obtain pretrained

Sun et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2079 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2079


models. When transferred to vision tasks, it achieved a performance comparable to that
of CNNs. Xie et al. (2021) combined a fully convolutional network with an attention
mechanism to learn information from long-range contexts and achieved good results in
image segmentation tasks. In addition, Xie et al. (2021) built a semantic segmentation
framework combining transformer and multi-layer perceptron (MLP). The framework
was simple, efficient and powerful and consisted of a hierarchical transformer encoder and
a decoder composed of MLPs. It could output multiscale features and did not require
positional encoding, resulting in significantly improved performance and efficiency
compared with similar algorithms. Therefore, a structure based on the transformer
demonstrates a clear advantage in global feature extraction. In summary, current research
is predominantly based on CNN, which has shown good performance in typical road.
However, the accuracy of this approach tends to diminish in complex road networks.
Given the complexity of low-level road details, this article aims to explore the potential of
combining CNN and transformer architectures specifically for low-level road contexts.

MATERIALS & METHODS
Dataset
Although the currently available public road datasets cover a wide range of road categoriesin
cities, suburbs and rural areas in many countries worldwide, they contain many normal
roads and few rural roads. Therefore, they are not suitable for analysis with a special focus
on rural roads, but they can be used as test data for model generalization performance.

In this study, a rural road dataset was constructed based on theGaoFen-2 (GF-2) satellite.
The GF-2 satellite carries a range of sensors, including a Panchromatic and Multispectral
sensor (PMS), a wide-field-of-view sensor (WFV), and a hyperspectral sensor (HSI), which
provide high-resolution imagery with spatial resolutions ranging from 0.8 m to 16 m.
The images for the PMS sensor (450 to 900 nm) at 0.8 m were utilized in this article.
The images include three regions covering an area of over 2,300 square kilometers: the
junction between Jiancaoping District and Gujiao City in Shanxi characterized by imagery
measuring 36,500× 34,258 pixels, covering an approximate area of 752 square kilometers,
the junction between Anyang and Shijiazhuang cities in Hebei characterized by imagery
measuring 39,695× 31,311 pixels, covering an approximate area of 795 square kilometers,
and the junction area of Guangzhou and Foshan in Guangdong characterized by imagery
measuring 36,020× 32,431 pixels, covering an approximate area of 747 square kilometers.
For example, the study area at the junction between Taiyuan and Jiancaoping District and
mask samples, as illustrated in Fig. 1. All GF-2 data in our study is sourced from the China
Centre for Resources Satellite Data and Application.

Nevertheless, the considerable size of the satellite images poses challenges in terms of
efficient data loading, potentially leading to a substantial increase in training duration.
Moreover, the absence of masks within the original dataset introduces complexities
in conducting effective supervised training. To overcome these challenges, the images
underwent cropping to achieve dimensions of 512 × 512 pixels initially. Subsequently,
manual annotation based on image texture was executed to generate corresponding masks.
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Figure 1 Partial study area schematic diagram andmasks. The ASTER GDEM data is open source and
available at https://search.earthdata.nasa.gov.

Full-size DOI: 10.7717/peerjcs.2079/fig-1

In the end, we generated a dataset similar to the examples shown in Fig. 2. To address the
potential sample imbalance, our dataset excluded the images containing abundant higher
levelroads, consequently encompassing intricate details of rural road attributes, such
as tree coverage, agricultural field irrigation channels, and road incompleteness. These
adjustments were intended to enhance the model’s performance in extracting low-grade
rural roads. After preprocessing the data, 5,501 samples remained, with 5,421 as training
samples, 40 as validation samples, and 40 as test samples.

In addition, experiments were carried out on two public datasets, DeepGlobe (Demir
et al., 2018) and Massachusetts (Mnih, 2013). However, it is imperative to emphasize
that these two datasets contain a limited quantity of low-grade roads in comparison to a
substantial volume of regular highways. They are specifically employed to enhance our
model’s extraction performance and validate findings. The images in the DeepGlobe road
dataset come from three countries, namely, India, Thailand, and Indonesia, and include
multiple imaged scenes covering an area of over 2,220 square kilometers, such as cities,
villages, wilderness, suburbs, seashores, and tropical rainforests. The ground resolution of
the images is 0.5 m per pixel, and the image size is 1,024 × 1,024 pixels. There are a total
of 6,226 images, of which 4,976 are designated for training and 1,250 are designated for
testing. In this study, following Zhu et al. (2021), the original images were cropped to a
resolution of 512× 512 pixels with an overlap of 256 pixels. Finally, a total of 5,000 images
for training, 40 images for validation and 4,500 images for testing were obtained.

The Massachusetts road dataset consists of 1,171 aerial images of the Massachusetts
region, which cover a wide variety of urban, suburban, and rural regions and an area of
over 2,600 square kilometers. With a spatial resolution of 1 m per pixel, the images in
this dataset have a size of 1,500 × 1,500 pixels and are composed of red, green, and blue
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Figure 2 Overview of the data. All images and masks from the Massachusetts dataset.
Full-size DOI: 10.7717/peerjcs.2079/fig-2

channels. Similarly, the original data were cropped into nonoverlapping images with a
resolution of 512× 512 pixels. Finally, 3,744 images were used for training, 30 images were
used for validation, and 196 images were used for testing. Moreover, all images with large
white blank areas were removed manually.

Details of the model structure
We propose Dual Path Information Fusion Network (DPIF-Net) to improve the
performance of rural road extraction by exploring the potential of combining the
capabilities of transformers and CNNs for road segmentation. The schematic structure
of DPIF-Net is displayed in Fig. 3. First, the top encoder branch uses a transformer to
model global road information in the input remote sensing image, while the other encoder
branch uses convolution operations to extract local details of roads and process spatial and
channel information. Second, the feature information of the two branches is effectively
fused. Finally, each layer of the decoder fuses high-level features from the previous layer
with low-level features from the convolutional branch and gradually upsamples the image
to the original resolution to obtain a binary image containing only roads.

Local detail information encoder based on a CNN
In DPIF-Net, we propose a convolution module called the local detail feature extraction
(LDFE) block as shown in Fig. 4. This block is composed of three parts to efficiently extract
road features while keeping the number of network parameters low.

In part A, a traditional 3 × 3 convolution is applied to the input feature map to extract
preliminary feature information without altering its resolution, resulting in a feature map
that is four times larger than the input in the channel dimension. Then, the obtained
features are spliced and fused using a skip connection.

In part B, each channel of the feature map is processed separately using a 3 × 3
convolution to extract semantic feature information, and a leaky-ReLU (Maas, Hannun &
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Figure 3 Overview of the proposed model for rural road extraction. All satellite images and masks from
the Massachusetts dataset.
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Ng, 2013) activation layer is used to obtain nonlinear features, as expressed in Eq. (1).

Leak−ReLU (x)=

{
x (x > 0)
αx (x <= 0)

(1)

α is a small gradient value, which is set to 0.2 in this article.
In part C, the feature information from part B is combined, cross-channel interaction

is achieved using a 1 × 1 convolution, and then another leaky-ReLU activation layer is
applied.

Global information encoder based on a Transformer module
The ASPP module was originally introduced to increase the receptive field without
sacrificing too much resolution, allowing for the preservation of image details as much as
possible (Chen et al., 2018a). To process multiscale road feature information extraction,
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we propose improvements to the ASPP module. Specifically, there are three different
dilated convolution modules and a global adaptive pooling module, which can extract
more feature information, as shown in Fig. 5. Moreover, different dilation ratios are
used to obtain abstract feature information at different scales, which provides a basis for
the subsequent integration of features and accurate road segmentation. In this way, the
modified ASPP module obtains more abstract semantic information and road topology
information and achieves better robustness; it can accept input feature images of any size
and finally produce output of a fixed size.

In addition to the improvements to the CNN module proposed above, a Trans block is
proposed to employ the Transformer architecture at the beginning of the model to capture
global context information while avoiding interference with the CNN branch. Specifically,
the Trans block can compensate for the shortcomings of the CNN in capturing global
context information.

To process image blocks with a transformer, we convert them into one-dimensional
data by using a fully connected (FC) layer. Due to the expansion into one-dimensional
data, the position information is lost; therefore, the input feature data are converted from
index numbers into a one-hot encoding matrix to maintain the position relationships
of the sequence. Moreover, a random weight matrix is right-multiplied to complete the
input position embedding. This method ensures that each token in the sequence has a
unique position representation, which is crucial for the transformer to capture long-range
dependencies.

The schematic structure of an individual transformer block is shown in Fig. 6 (Dosovitskiy
et al., 2020). The Transformer encoder mainly consists of alternating multihead self-
attention (MSA) layers andmultilayer perceptron (MLP) blocks. Before these twomodules,
layer normalization (LN) is applied for normalization, and a residual connection structure
is used. The MLP block consists of two FC layers, in which the Gaussian error linear unit
(GeLU) function is applied for nonlinear activation to obtain nonlinear features. The
definition of the GeLU (Hendrycks & Gimpel, 2016) activation function is shown in Eq. (2).
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GeLU (x)= xP(X ≤ x)= x×φ(x)X ∼N (0,1) (2)

x is the input, and X is a random variable that follows a Gaussian distribution with mean
0 and variance 1. P (X ≤ x)φ(x) is the cumulative distribution of the Gaussian normal
distribution of x, for which there is no analytical expression; instead, its approximate
calculation method is shown in Eq. (3).

GeLU (x)=
1
2
x

(
1+ tanh

(√
2
π
(x+0.044715x3)

))
. (3)

In our work, the number of attention heads is set to 16, assuming that the input image
is x (x ∈ iH×W×C), where H, W and C are the height, width and channels, respectively,
of x. The original image block feature xp (xp ∈ iN×P

2
×C) is obtained by expansion into

one-dimensional data, xp ∈ iN×P
2
×C , where N is the number of small P ×P patches into
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which the original input image is cropped. N and P satisfy the relationship shown in Eq. (4).

N =
H×W
P2 . (4)

Then, after dimension embedding and nonlinear mapping of the GeLU function, the
i-th image block feature z i can be expressed as shown in Eq. (5).

z i=GeLU (x ipE) (5)

E ∈ iP
2
×C×D. After the corresponding position encoding, the vector z input into the

transformer (TF) can be expressed as shown in Eq. (6).

z =
[
GeLU (x1pE),GeLU (x2pE),...,GeLU (xNp E)

]
+Epos (6)

Epos ∈ iN×D. Finally, the input vector z is subjected to the calculations shown in Eq. (7) and
Eq. (8).

z ′=MSA(LN (z))+z (7)

z1=MLP(LN (z ′))+z ′. (8)

Multiple TF blocks are used to build the Trans block, as shown in Fig. 7, and the
generated output of global road information from the original remote sensing image, z out,
is expressed as shown in Eq. (9).

zout = z1+z2+z3 (9)

Decoder based on context information fusion
After the two different kinds of information discussed above are obtained, the final branch
combines the two different kinds of road semantic information to fuse the global and local
road features, as shown in part A of Fig. 8. The high-level feature information is extracted
using two 3 × 3 convolutional layers without changing the feature map resolution. Group
normalization (GN) is used to normalize the features, and Leaky-ReLU is used as the
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nonlinear activation function to capture the nonlinear characteristics of the roads. This
process fully integrates the semantic information from the two different sources, resulting in
more comprehensive road semantic feature information that covers the feature information
of various road categories.

To solve the problem that the spatial location information of the roads is not obvious
due to multiple convolutions, this article adopts the design concept of the U-Net network
structure and employs skip connections in the decoder to transfer the low-level feature
information from the output of the LDFE module to the corresponding decoder port for
splicing, as depicted in part B of Fig. 8. Subsequently, the features are fused layer by layer
via 3 × 3 convolutional layers, and the feature map’s resolution is incrementally restored
via bilinear interpolation until it finally reaches the original image resolution.

Finally,Wu & He (2018) proposed group normalization (GN) to improve the efficiency
of training rather than batch normalization (BN) BN works effectively for a relatively
large batch size. However, a small batch size leads to inaccurate estimation of the batch
statistics, and reducing the batch size for BN dramatically increases the model error. GN
can achieve approximately the same accuracy performance as BN for a moderate batch size
and outperforms other normalization variants because it can still achieve a small error rate
even when the batch size undergoes large fluctuations. The GN calculation is expressed as
shown in Eq. (10): (Wu & He, 2018).

yi=
γ

σi
(xi−µi)+β (10)

γ and β are trainable scale and shift parameters, respectively, and µi and σi in Eq. (10) are
the mean and standard deviation computed as shown in Eq. (11): (Wu & He, 2018)

µi=
1
m

∑
k∈Si

xk,σi=

√√√√ 1
m

∑
k∈Si

(xk−µi)
2
+ε (11)

ε is a small nonzero constant. Si is the set of pixels, and m is the size of Si.
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(a) (b) (c)
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Figure 9 Data augmentation strategy. (A) Original image, (B) HSV color jitter, (C) translation, (D) flip,
(E) random rotation, (F) translation and rotation. (All satellite images and masks from the Massachusetts
dataset).

Full-size DOI: 10.7717/peerjcs.2079/fig-9

Experimental design description
DPIF-Net was trained on an RTX 3090 GPU. At the beginning of training, we utilized
common data augmentation techniques, including translation, rotation, flipping, scaling,
and random color jitter as shown in Fig. 9, which contributed to improving the model’s
robustness and performance. The model implementation was based on PyTorch, the
optimizer for all structures was Adam, the initial learning rate was set to 0.0002, and the
batch size during training was set to 2. The MSELoss was used to calculate the loss.

To assess the performance of DPIF-Net in rural road extraction, we conducted three
primary comparative experiments across distinct datasets. Each of these comparative
experiments entailed a juxtaposition between mainstream models and ours. In addition,
the performance of DPIF-Net was compared with that of the U-Net, SegNet, D-LinkNet,
and DeepLabv3+ models on the above three road datasets. In these experiments, our
goal was to observe its capabilities for extracting roads in complex scenarios through
evaluation metrics, assessing both the completeness and accuracy of road extraction. In the
discussion, we assessed the parameter sizes among the models and the visual assessments
of both completeness and accuracy. Furthermore, the ablation experiments are conducted
to observe the contributions of its two branches, which are designed to identify which
modules are most crucial for DPIF-Net’s performance.

Experimental evaluation metrics
To evaluate the effectiveness of our model, four common metrics are selected: intersection
over union (IoU), precision, recall, and F1 score (F1). High IoU indicates the model’s
accuracy in predicting the location and shape of roads, which is particularly crucial for
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assessing the model’s ability to recognize roads (Lian et al., 2020). The IoU is calculated as
shown in Eq. (12).

IoU =
TP

TP+FP+FN
(12)

TP, FP, TN, and FN denote true positives, false positives, true negatives, and false negatives,
respectively.

In the context of rural roads, where non-road areas often constitute a significant
proportion, leading to an imbalance between positive and negative samples in the dataset,
F1 score becomes particularly crucial for assessing performance under such conditions,
which are calculated as shown in Eq. (13).

F1=
2×precision× recall
precision+ recall

(13)

The precision and recall are employed to evaluate the model’s capability to correctly
identify roads, which are calculated as shown in Eq. (14) and Eq. (15), respectively.

precision=
TP

TP+FP
(14)

recall =
TP

TP+FN
. (15)

RESULTS
Road extraction experiment based on our road dataset
The results on our dataset are shown in Fig. 10. Through detailed comparisons, we find
that in Examples 1–2 and Examples 4–7, DPIF-Net generates fewer broken road segments
(misidentified connected vectors) than the other four models. At the same time, the
occluded parts caused by trees can be completely extracted to ensure the connectivity of the
roads. In Example 3, DPIF-Net extracts the least erroneous information, yielding results
almost consistent with the ground truth, whereas the other four models incorrectly extract
road information in this example.

More detailed comparison results are presented in Table 1. DPIF-Net achieves the best
performance in two metrics, namely, IoU and F1 score, reaching 61.40% and 76.08%,
respectively. In addition, DPIF-Net reaches 77.27% precision, which is 1.05% lower than
the highest score and 0.6% lower than U-Net’s score. DPIF-Net also reaches 74.94% recall,
which is 0.08% lower than D-LinkNet’s highest recall score of 75.02%, representing a small,
almost negligible fluctuation.

Compared with U-Net, the IoU, recall and F1 values of DPIF-Net are increased by 3.34%,
5.41%, and 2.61%, respectively. Compared with DeepLabv3+, the IoU, recall and F1 values
are increased by 4.8%, 7.83% and 3.8%, respectively. Compared with D-LinkNet, the IoU,
precision and F1 values increased by 0.35%, 0.64%, and 0.26%, respectively. Compared
with SegNet, the IoU, precision, recall and F1 values are increased by 7.52%, 1.52%, 9.83%,
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Figure 10 Road extraction results for our dataset. (A) Satellite images. (B) Real masks. (C) U-Net. (D)
SegNet. (E) DeepLabv3+. (F) D-LinkNet. (G) Ours.

Full-size DOI: 10.7717/peerjcs.2079/fig-10

Table 1 Comparison of different road extraction methods on the GF2 road dataset.

IoU Precision Recall F1
U-net 0.5806 0.7788 0.6953 0.7347
Deeplabv3+ 0.5660 0.7832 0.6711 0.7228
D-Linknet 0.6105 0.7663 0.7502 0.7582
Segnet 0.5388 0.7575 0.6511 0.7003
Ours 0.6140 0.7727 0.7494 0.7608

Notes.
The best results are highlighted in boldface.

and 6.05%, respectively. The largest increases in IoU, precision, recall, and F1 score reach
7.52%, 1.52%, 9.83%, and 6.05%, respectively. In the extraction of rural roads, the crucial
aspects lie in correctly identifying roads and preserving their completeness, both reflected in
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Table 2 Comparison of different road extraction methods on DeepGlobe Roads Dataset.

IoU Precision Recall F1
U-net 0.5233 0.7468 0.6362 0.6870
D-Linknet 0.5407 0.5767 0.8962 0.7018
Deeplabv3+ 0.3692 0.5428 0.5359 0.5393
Segnet 0.5640 0.6559 0.8009 0.7212
Ours 0.5700 0.7476 0.7058 0.7261

Notes.
The best results are highlighted in boldface.

the IoU and F1 metrics. DPIF-Net achieves the highest IoU and F1 on the lower level roads,
highlighting its superiority in extracting rural roads, which underscores its proficiency in
correctly extracting rural roads and recognizing road shapes.

Road extraction experiment based on the DeepGlobe road dataset
A second experiment was conducted on the DeepGlobe road dataset, and the results of the
visual assessment comparison are presented in Fig. 11. Figure 11 shows the detailed effects
of rural road segment extraction for 8 examples. In the first example, compared with U-Net
and SegNet, DPIF-Net extracts more complete road information. In contrast, D-LinkNet
produces more mistakenly extracted road segments and more fractures than DPIF-Net. In
the 2nd to 6th examples, the extraction results of U-Net and SegNet show more broken
segments, while DPIF-Net achieves almost the same road integrity as D-LinkNet, whereas
D-LinkNet misextracts more road segments than DPIF-Net. In the 7th and 8th examples,
the integrity of the roads extracted by DPIF-Net is higher than that of the other three
methods.

The detailed evaluation index comparisons are shown in Table 2. From the indicator
data in Table 2, it can be seen that the model with the worst comprehensive performance is
DeepLabv3+, which has the lowest score in all metrics. Its recall is lower by more than 30%,
and the other three metrics are lower by nearly 20%. DPIF-Net achieves the best results
in terms of IoU, precision and F1 score, reaching values of 57%, 74.76% and 72.61%,
respectively. However, its recall is lower than those of D-LinkNet and SegNet at only
70.58%. D-LinkNet has the highest recall score of 89.62%.

In summary, DPIF-Net improves the IoU by 0.6–20.08%, the precision by 0.08–20.48%,
and the F1 score by 0.49–18.68% on the DeepGlobe road dataset. Its recall is weaker than
those of SegNet and D-LinkNet but 6.96% higher than that of U-Net and 16.99% higher
than that of DeepLabv3+.

Road extraction experiment based on the Massachusetts road dataset
To further test the generalization ability of the proposed DPIF-Net, a similar experiment
was carried out on the Massachusetts road dataset. The visual assessment of the compared
methods on this dataset is shown in Fig. 12. All the models almost completely extract the
road information, but from Fig. 12, it can be seen that the other models do not extract some
road details completely enough, resulting in various fractures. Comprehensive comparisons
show that the proposed model is better than the others in extracting many details.
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Figure 11 Road extraction results for the DeepGlobe road dataset. (A) Ground truth. (B) U-Net. (C)
SegNet. (D) DeepLabv3+. (E) D-LinkNet. (F) Ours.

Full-size DOI: 10.7717/peerjcs.2079/fig-11

Table 3 displays the detailed road extraction results on the Massachusetts road dataset,
revealing that DPIF-Net surpasses the othermodels in terms of IoU, precision, and F1 score,
with values of 53.82%, 82.48%, and 70%, respectively. Although DeepLabv3+ achieves
the highest recall score of 63.92%, the IoU, F1 score and precision of DeepLabv3+ are
significantly lower than those of all other models, with differences of 10–40%.

Compared to other models, DPIF-Net integrates global and local information more
extensively, enabling it to capture more features and thereby enhance its recognition
capabilities. DPIF-Net achieves superior performance in predicting road accuracy and
completeness, demonstrated by attaining maximum values in IoU, precision, and F1 on
the DeepGlobe and Massachusetts datasets, showcasing its advantages in overall road
extraction.
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Figure 12 Road extraction results on theMassachusetts road dataset. (A) Ground truth. (B) U-Net. (C)
SegNet. (D) DeepLabv3+. (E) D-LinkNet. (F) Ours.

Full-size DOI: 10.7717/peerjcs.2079/fig-12

Table 3 Comparison of different road extraction methods onMassachusetts Roads Dataset.

IoU Precision Recall F1
U-net 0.4265 0.5698 0.6290 0.5980
Deeplabv3+ 0.3115 0.3779 0.6392 0.4750
D-Linknet 0.4260 0.5668 0.6316 0.5975
Segnet 0.4197 0.5632 0.6223 0.5913
Ours 0.5382 0.8248 0.6077 0.7000

Notes.
The best results are highlighted in boldface.

DISCUSSION
In this section, we provide a detailed discussion on several important aspects of DPIF-Net.
First, we elaborate on the input and output mechanisms within the network, highlighting
the various components and their respective roles. Second, we discuss the significance of
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the network architecture for road extraction and how DPIF-Net utilizes the capabilities of
both CNNs and transformers for effective feature representation and information fusion.
Moreover, we present a comprehensive parameter comparison of DPIF-Net with other
state-of-the-art models for road extraction, demonstrating the effectiveness and efficiency
of our proposed model. Finally, we report an ablation study conducted to analyze the
role of each branch of DPIF-Net, which provides insights into the contribution of each
component toward the final performance of the model.

Evaluation of the generalization performance and road representation
ability of the proposed model
First, we evaluate the generalization performance and road representation ability of the
proposed model. To gain deeper insight into the inner workings of DPIF-Net, feature
heatmaps for five different stages in the decoder are displayed in Fig. 13 to illustrate
how the model extracts roads. The results from the three different datasets indicate that
DPIF-Net effectively learns road features with clear boundaries. The feature maps show
that the encoder learns various levels of feature representations of the input image, and
the decoder combines these representations to generate accurate road masks. As the
decoder performs upsampling four times, the semantic information of the extracted
roads becomes increasingly abstract, which highlights the ability of DPIF-Net to learn
high-level features. These results demonstrate that DPIF-Net not only has excellent road
extraction performance but also possesses good robustness and feature representation
capabilities; thus, it shows promising potential for various applications in remote sensing
image analysis.

Discussion on the quantity of model parameters
Furthermore, a comparison of the parameters used in the experiments for each model
provides insight into their respective strengths and weaknesses. Table 4 presents a
comprehensive overview of the parameters for each model, indicating that DPIF-Net has
the fewest parameters, with a data volume of only 63.9MB, which is similar to that of U-Net.
While D-LinkNet achieves better feature extraction in some cases, it also has a significantly
larger number of parameters due to its use of ResNet101 as the encoder and deeper
network layers. On the other hand, DeepLabv3+ also has a high number of parameters due
to the use of Xception as the encoding network, but it performs poorly in road extraction
experiments. SegNet, with approximately twice as many parameters as DPIF-Net, also
yields inferior experimental results for road segmentation. These comparisons highlight
the trade-off between the number of parameters and the effectiveness of a model for road
extraction tasks. While having more parameters may improve feature extraction, it also
increases a model’s complexity and computational cost. DPIF-Net, with its simple yet
effective structure and relatively few parameters, proves to be a promising model for road
extraction from remote sensing images.

Ablation study
To better understand the contribution of each branch in the encoder part ofDPIF-Net to the
road extraction results, an ablation study was conducted using our dataset. A comparison
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Figure 13 Visualization of features at different levels. (A) Ground truth. (B) First decoder output. (C)
Second decoder output. (D) Third decoder output. (E) Fourth decoder output. (F) Last convolution out-
put. (G) Final extraction result. The data sources are (1)–(2) our dataset, (3)–(4) the Massachusetts road
dataset, and (5)–(6) the DeepGlobe road dataset.

Full-size DOI: 10.7717/peerjcs.2079/fig-13

Table 4 Comparison of parameters of each model.

Model name Parameter
quantity

U-net 69.2MB
D-Linknet(resnet101) 947.3MB
Segnet 117.9MB
Deeplabv3+(xception) 219.0MB
Ours 63.9MB

Notes.
The best results are highlighted in boldface.

of the results reveals that the two branches make different levels of contributions to the
road extraction results, as presented in Table 5. Specifically, the branch that incorporates
the CNN-based feature extractor makes a stronger contribution to the final road extraction
results than the branch that employs the transformer-based feature extractor.
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Table 5 Comparison of contribution of encoder branches to road extraction.

CNN branch Transformerbranch IoU precision recall F1
X × 0.5693 0.7871 0.6730 0.7256
× X 0.4411 0.6764 0.5591 0.6122
X X 0.6140 0.7727 0.7494 0.7608

Notes.
The best results are highlighted in boldface.

Notably, due to the strict parameter limitations of the finalmodel presented in this article,
only three transformer blocks were used in the transformer-based feature extractor. This
resulted in suboptimal performance in comparison to the CNN-based feature extractor.
However, the performance of the transformer-based feature extractor could be improved
by stacking more transformer blocks, albeit at the cost of dramatically increasing the
number of parameters.

While DPIF-Net has demonstrated impressive performance by effectively combining a
CNNand a transformer, there are several potential areas for improvement in future research
on road extraction using DPIF-Net. First, more advanced architectures for the transformer
block could be explored to further enhance the model’s performance without significantly
increasing the number of parameters. Second, modified attention mechanisms or other
forms of spatial information modeling might improve the model’s ability to capture fine
details and connectivity information in the road network. Third, methods to improve the
accuracy of road boundary delineation and reduce false positive rates could further increase
the model’s utility in practical applications. Overall, these potential areas for improvement
could help advance the state of the art in road extraction using deep learning models.

CONCLUSIONS
In this study, we successfully constructed a dedicated lower level category roads and
developed DPIF-Net. By effectively harnessing the strengths of both transformers and
CNNs, our model has demonstrated excellent performance in road extraction tasks with
in comparison with advanced models of the same period. It not only enhances extraction
accuracy but also achieves higher levels of road connectivity. This achievement holds
significant implications not only for the field of road extraction but also for increasing
attention to rural road issues in research and government decision-making. Despite
constraints on research time and workload, DPIF-Net can leverage the rapid advancements
in deep learning to enhance its two branches by incorporating state-of-the-art transformer
or CNN modules, thus further improving the model’s performance. Additionally,
examining the model’s generalization capabilities across different geographical regions
and complex weather conditions to validate its practicality is crucial. These efforts will
contribute to the advancement of road extraction technology in remote sensing images,
providing strong support for rural development and infrastructure construction.
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