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ABSTRACT
Background. Dyslexia is a neurological disorder that affects an individual’s language
processing abilities. Early care and intervention can help dyslexic individuals succeed
academically and socially. Recent developments in deep learning (DL) approaches
motivate researchers to build dyslexia detection models (DDMs). DL approaches
facilitate the integration of multi-modality data. However, there are few multi-
modality-based DDMs.
Methods. In this study, the authors built aDL-basedDDMusingmulti-modality data. A
squeeze and excitation (SE) integratedMobileNet V3model, self-attentionmechanisms
(SA) based EfficientNet B7 model, and early stopping and SA-based Bi-directional
long short-term memory (Bi-LSTM) models were developed to extract features from
magnetic resonance imaging (MRI), functional MRI, and electroencephalography
(EEG) data. In addition, the authors fine-tuned the LightGBM model using the
Hyperbandoptimization technique to detect dyslexia using the extracted features. Three
datasets containing FMRI, MRI, and EEG data were used to evaluate the performance
of the proposed DDM.
Results. The findings supported the significance of the proposed DDM in detecting
dyslexia with limited computational resources. The proposed model outperformed the
existing DDMs by producing an optimal accuracy of 98.9%, 98.6%, and 98.8% for
the FMRI, MRI, and EEG datasets, respectively. Healthcare centers and educational
institutions can benefit from the proposed model to identify dyslexia in the initial
stages. The interpretability of the proposedmodel can be improved by integrating vision
transformers-based feature extraction.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Neural
Networks
Keywords Dyslexia, Deep learning, Wearable EEG device, Feature extraction, Multi-modality
data, Functional MRI, Convolutional neural network

INTRODUCTION
Dyslexia is a neurological disorder that affects wider age groups across the globe (Ahire et
al., 2023). Typically, dyslexia disrupts phonological processing, which impacts letter-to-
sound mapping and word recognition (Perera, Shiratuddin & Wong, 2018). Dyslexia may
have a substantial influence on academic achievement, especially in the areas of reading,
spelling, and writing. Dyslexic children have challenges comprehending the alphabet and
other fundamental reading skills (Perera, Shiratuddin & Wong, 2018). Dyslexic adults may
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struggle in higher education or professional contexts that demand excellent reading and
writing skills (Perera, Shiratuddin & Wong, 2018). Dyslexic individuals (DIs) may struggle
to believe in their unique abilities and feel less motivated to learn than their normal
classmates. To overcome the challenges, the DI employs assistive technologies. Despite
their potential efficacy, these technologies may be tedious and time-consuming, leaving the
DIs exhausted and frustrated (Kaisar & Chowdhury, 2022). Dyslexia detection (DD) offers
valuable insights into the neurobiological mechanisms of dyslexia. It can lead to customized
educational interventions that provide the learning demands of DIs. Educators can support
DIs in achieving their goals. Moreover, DD can prevent secondary consequences and
empowers DIs and their families.

Functional MRI (FMRI), and electroencephalography (EEG) are widely used to detect
and comprehend dyslexia (Kaisar & Chowdhury, 2022). With FMRI, researchers can track
the brain’s blood flow in real time, revealing actively engaged regions in completing
various tasks (Usman et al., 2021). Researchers discovered dyslexia-related brain regions
by comparing dyslexic and non-dyslexic neural activity during reading tests (Jan & Khan,
2023). These discoveries may lead to a deeper understanding of the neurological processes
behind dyslexia. Physicians can monitor the brain’s electrical activity using the EEG’s
high temporal resolution (Zingoni, Taborri & Calabrò, 2024). They can detect sensory,
cognitive, or motor events by measuring EEG signals. The existing studies show that the DI
has different event-related potentials in auditory perception and phonological processing
(Alqahtani, Alzahrani & Ramzan, 2023; Asvestopoulou et al., 2019; Zingoni, Taborri &
Calabrò, 2024). Neural processing abnormalities in preliterate children or newborns at
risk for dyslexia may be assessed using EEG. By detecting brain indicators of dyslexia in the
initial stages, therapies may be administered earlier, increasing the likelihood of long-term
benefits (Ahire et al., 2022). Additionally, EEG can measure neural oscillations and cyclical
patterns of electrical activity in the brain linked to various mental operations (Elnakib et
al., 2014). These variations may play a role in issues with phonological processing and
reading fluency.

Traditional dyslexia diagnosis techniques may be insensitive and less specific
(Kheyrkhah Shali & Setarehdan, 2020; Parmar & Paunwala, 2023; Yan, Zhou & Wong,
2022). Standardized testing can ignore specific dyslexia symptoms, resulting in false-
negative or positive findings. Due to the lack of early diagnosis, adults may face
academic and psychological challenges (Lou et al., 2017). The majority of the current
approaches to diagnosing dyslexia are based on subjective evaluations made by
healthcare providers or educators, including the observation of reading problems
or the administration of standardized tests. These subjective assessments may not
correctly reflect dyslexia symptoms due to biases (Deans et al., 2010; Tomaz Da Silva
et al., 2021). Typical methods for diagnosing dyslexia tend to focus on the more
apparent symptoms, including challenges with reading or spelling. However, these
significant symptoms may not reveal the full scope of dyslexia-related cognitive and
neurological abnormalities (Zingoni, Taborri & Calabrò, 2024). Traditional techniques
frequently employ static images of an individual for DD (Banfi et al., 2021; Zainuddin et
al., 2019). As a developmental condition, dyslexia requires dynamic and longitudinal
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examinations to track its course and responsiveness to treatments. Traditional
dyslexia screening procedures may overlook cultural and language symptom variances
(Bernabini, Bonifacci & de Jong, 2021; Spoon, Crandall & Siek, 2019). In different cultural
and linguistic backgrounds, dyslexia may be misdiagnosed or underdiagnosed. Existing
dyslexia screening techniques include reading or behavioral testing (Ileri, Latifoğlu
& Demirci, 2022; Psyridou et al., 2023). The restricted emphasis may neglect critical
information from brain imaging or cognitive testing, which helps better comprehend
dyslexia (Kariyawasam et al., 2019; Marimuthu, Shivappriya & Saroja, 2021; Vajs et al.,
2022).

DL models can extract complicated characteristics from EEG and fMRI data
(Asvestopoulou et al., 2019; Zingoni, Taborri & Calabrò, 2024). These characteristics may
include neural activity, brain region interaction, and neurological temporal dynamics. DL
models can be trained to distinguish between dyslexic and non-dyslexic conditions using
EEG and fMRI data (Lr & Sudha Sadasivam, 2022; Parmar, Ramwala & Paunwala, 2021;
Perera, Shiratuddin & Wong, 2018). These models include convolutional neural networks
(CNNs) for image-based FMRI data and recurrent neural networks (RNNs) for sequential
EEG data (Banfi et al., 2021; Frid & Manevitz, 2018). By combining brain imaging data,
these models may improve dyslexia diagnosis. DL models can reveal the brain mechanics
of dyslexia, visualizing learned characteristics or constructing attention maps (Jothi Prabha
& Bhargavi, 2022; Zainuddin et al., 2016). Researchers may use these visualizations to
understand the role of unique brain regions in dyslexia and identify potential biomarkers.
By integrating longitudinal EEG and FMRI data accumulated over time, DL models
may be customized to individual patients (Parmar, Ramwala & Paunwala, 2021; Perera,
Shiratuddin & Wong, 2018; Tomaz Da Silva et al., 2021). The existing techniques are not
effective in detecting dyslexia in the early stages. There are few multi-modality-based DL
models to identify dyslexia. In addition, the DL models demand extensive training and
substantial computational resources to deliver optimal outcomes. The generalization of
these models on real-time datasets is challenging andmay produce false negative or positive
results. Therefore, this study aimed to develop an automated model to detect dyslexia using
multi-modality data. The study’s contributions are listed below:
1. Enhanced MobileNet V3-model-based feature extraction using the SE block.
2. A self-attention mechanism-based EfficientNet B7 feature extraction model.
3. A self-attention mechanism and early stopping strategies based on the bi-directional

long short term memory (Bi-LSTM) feature extraction model.
4. A hyper-parameter-tuned LightGBM-based DD detection model.
5. Generalization of the proposed DD detection model on diverse datasets.
The organization of this study is divided as follows: ‘Literature Review’ covers the

existing literature on recent DL and artificial intelligence (AI) techniques for identifying
dyslexia. The proposed methodology for extracting the crucial features and detecting
dyslexia using multi-modal data is presented in ‘Materials & Methods’. ‘Results’ provides
the experimental setting and outcomes. The study contributions for DD are described in
‘Discussion’. Lastly, ‘Conclusions’ concludes the proposed study.
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LITERATURE REVIEW
Research studies (Ahire et al., 2022; Jan & Khan, 2023; Marimuthu, Shivappriya &
Saroja, 2021; Perera, Shiratuddin & Wong, 2018; Usman et al., 2021; Velmurugan, 2023)
systematically reviewed DD techniques based on DL approaches. Spoon, Crandall & Siek
(2019) used children’s handwritten images to predict dyslexia. They employed a feature
extraction technique to extract the crucial patterns to differentiate between normal and
abnormal individuals. In order to identify cognitive processing variations associated
with dyslexia, deep learning models may use behavioral data gathered during reading
activities, including response times, accuracy rates, or eye-tracking patterns (Deans et al.,
2010; Nerušil et al., 2021). These models may employ long short-term memory (LSTM)
and transformer architectures for sequence modeling. To better understand dyslexia,
deep learning methods, including multi-modal fusion networks and attention processes,
can integrate data from multiple sources (Lr & Sudha Sadasivam, 2022). Transfer learning
adapts pre-trained deep learningmodels to extract critical features for dyslexia diagnosis. By
fine-tuning these models, researchers can increase detection accuracy with limited labeled
data. To supplement limited DD datasets, generative adversarial networks may provide
synthetic data samples replicating genuine FMRI and EEG data (Lr & Sudha Sadasivam,
2022; Tomaz Da Silva et al., 2021; Yan, Zhou & Wong, 2022). The generalizability and
resilience of deep learning models for dyslexia detection may be enhanced using GANs by
augmenting the variety and volume of the training data. Zainuddin et al. (2018) proposed
a model using a K-nearest neighbor algorithm based on DDM. Similarly, studies (Guhan
Seshadri et al., 2023; Parmar & Paunwala, 2023; Yan, Zhou & Wong, 2022) employed EEG
signals for predicting dyslexia.

Frid & Manevitz (2018) discussed the importance of feature extraction techniques inDD.
Zaree, Mohebbi & Rostami (2023) proposed an ensemble learning approach integrating
multiple models’ outcomes to predict dyslexia. Raatikainen et al. (2021) built a model
to detect developmental dyslexia using the individual’s eye movements. Nerušil et al.
(2021) developed a model using eye movements. Tomaz Da Silva et al. (2021) proposed
a visualization technique to identify DD using FMRI images. A CNN model was trained
with high-level features of dyslexia. The studies (Alqahtani, Alzahrani & Ramzan, 2023;
Guhan Seshadri et al., 2023; Kariyawasam et al., 2019) classified multiple medical imaging
techniques for DD using CNNmodels. These studies extracted intricate patterns from EEG
signals.

Handwritten and eye movement data are valuable in DD development (Deans et al.,
2010; Jothi Prabha & Bhargavi, 2022; Lou et al., 2017; Marimuthu, Shivappriya & Saroja,
2021). However, the unique writing styles, character formation, and spatial structure
of handwriting can cause complexities in identifying dyslexia. The interpretation of
handwriting features is based on the evaluator’s expertise. Thus, the ground truth
information may vary from the annotated handwritten images. Similarly, extracting
patterns from the eye movement data demands high computational resources. Reading,
linguistic, cognitive, and visual processing speeds influence eye movement patterns. Eye
movement patterns of dyslexic individuals may overlap with the patterns of normal
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Figure 1 The proposed framework.
Full-size DOI: 10.7717/peerjcs.2077/fig-1

individuals. Individuals with dyslexia may exhibit compensating mechanisms or adaptive
techniques during reading, altering or concealing their usual eye movement patterns,
making dyslexia diagnosis more challenging. The interpretability of CNN and RNN-based
DDMprediction is challenging for physicians in decision-making. The complex architecture
of the existing models causes difficulties in deploying them in healthcare settings. Extensive
data augmentation and transfer learning techniques are required to improve the efficiency
of the existing models. In addition, the current models are susceptible to overfitting
due to limited datasets. Developing a DL-based DDM from scratch may demand high-
performance computing resources. The effective performance of the feature extraction
plays a crucial role in lowering false negative/positive results. The recent developments in
CNN and RNN architectures offer an opportunity to apply them in developing DDMs.
These knowledge gaps have motivated the authors to focus on multi-modality-based DD
detection models.

MATERIALS & METHODS
The authors built a framework to identify dyslexia using multi-modality data. Initially,
an image slicer generated images of size 224 × 224 from the FMRI images. The proposed
framework included techniques for feature extraction using FMRI, MRI, and EEG data. In
addition, a fine-tuned LightGBM model was used to predict dyslexia. Figure 1 shows the
proposed framework for DD.

Data acquisition
The authors acquired FMRI, MRI, and EEG data from three public repositories. Dataset 1
contained the raw 3 T MRI data and FMRI images of 58 children. The FMRI images were
captured during the reading-related functional activities. Stimuli encompassing 60 words
and 60 matched pseudo homophones were used to evaluate the individual’s activity. The
activities were repeated three times with a short break of 3–5 min. The dataset could be
accessible using the repository (https://openneuro.org/datasets/ds003126/versions/1.1.0).

Dataset 2 included the synthetic grayscale MRI images. These images were generated
using the T1-weighted MRI images of 204 children. The dataset owners followed the FMRI
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study (Kuchinsky et al., 2012) to develop the neuroimaging data. The adaptive non-local
mean algorithm was used to denoise and correct the image biases. The Gaussian Kernel
method was used to minimize the false positive results. The dataset could be downloaded
from the repository (Vaden et al., 2020) (https://data.mendeley.com/datasets/3w9662wjpr/
1).

Dataset 3 contained the EEG data of ten college students watching videos of introductory
algebra and quantum mechanics. A total of 20 videos were used to collect data
from the participants. A headband, MindSet was used to measure the participants’
brain activity. The dataset covered 12,811 rows ×15 columns of EEG data, including
subject ID, mediation, attention, delta, etc. The dataset was available in the Kaggle
repository (https://www.kaggle.com/code/alrohit/eeg-analysis-of-confusion-for-dyslexia-
diagnosis/notebook).

The datasets were available in the public repository. Researchers can use these data
without any restrictions. The dataset owners obtained the participants’ consent to share
the data for research purposes.

In order to generate multiple images from the FMRI images, the authors developed a
3D CNN model. The model contained five convolution layers with filter sizes of 32, 64,
128, 256, and 512, and maxpooling layers. The features were flattened. Subsequently, dense
and dropout layers with rectified linear unit (ReLu) and Sigmoid activation functions were
employed to generate the images. A channel dimension integration and resize functions
were applied to resize the images into 224 × 224 pixels. Moreover, data augmentation
techniques were employed to train the feature extraction models.

MobileNet V3-based feature extraction
The inverted residuals and architectural optimization improve the performance of
the MobileNet V3 model in medical image classification and semantic segmentation.
The utilization of the SE block, hard-swish activation function, and efficient last-
stage convolution layers lead to better feature representation compared to the existing
pre-trained models. The flexibility and adaptability of the MobileNet V3 model have
motivated the authors to apply it in this study. In addition, the MobileNet V3 model was
lightweight and supported the proposed DDM to detect dyslexia in a resource-constrained
environment. The depthwise separable, convolutions, linear bottlenecks, and inverted
residuals minimized the computational complexities. Channel-wise feature calibration was
used to enhance the feature representation. However, integrating standard squeeze and
excitation blocks could improve the model’s efficacy.

The authors developed a shallow CNN model with a MobileNet V3 backbone in this
study. They froze the initial layers of the MobileNet V3 model to prevent overfitting and
reduce the computational cost. The lightweight nature of the MobileNet V3 model may
reduce the ability to extract intricate features of dyslexia. Integrating the SE mechanism
can improve the MobileNet model’s performance by enhancing feature representation
and discrimination power. In addition, the SE mechanism facilitates the MobileNet model
in learning informative dyslexia features. Thus, the authors integrated the SE block with
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Figure 2 MobileNet V3-based feature extraction.
Full-size DOI: 10.7717/peerjcs.2077/fig-2

the backbone model. Figure 2 highlights the architecture of the recommended feature
extraction using the MobileNet V3-model.

Equation 1 shows the computational form of SE integration. Introducing the SE block
into the model improved the adaptive recalibration of the channel-wise features. The SE
block contained a global average pooling layer, reshape function, and dense layers.

T =MobileNetV 3_SE(X ,F ,K ,E,S,R) (1)

where T is the output tensor, X is the input tensor, F is the number of filters, K is the kernel
size, E is the expansion ratio, S is the stride, and R is the squeeze ratio.

EfficientNet B7-based feature extraction
The EfficientNet B7 model was the highly effective variant of the EfficientNet models. It
offered complex patterns and features by maintaining computational efficiency. Medical
imaging analysis models use the EfficientNet B7 models to generate a better outcome.
EfficientNet model uses bottleneck layer and depthwise separable convolutions for feature
extraction. The compound scaling functionality can balance model depth, width, and
resolution. The EfficientNet model can enable high-quality, efficient, and scalable solutions
for real-world challenges. These features of the EfficientNet B7modelmotivated the authors
to employ it for extracting key features from the FMRI images. The authors built a CNN
model using six convolution layers, batch normalization, and dropout layers. They used the
EfficientNet B7 model’s weights to generate features. The compound scaling method was
employed to maintain a trade-off between model depth and resolution. The self-attention
mechanism was introduced using the global average pooling layer, reshape, and permute
functions for the critical feature selection. The self-attention mechanism captures global
dependencies in the multi-modality data, focusing on dyslexia-related patterns while
neglecting irrelevant features. It assigns unique attention weights to different parts of the
input sequences. It facilitates adaptive feature fusion across modalities. It identifies the
structural differences in the brains of DIs compared to the normal individuals. These
differences may encompass modifications in the size and asymmetry of brain regions
related to language processing. The patterns associated with fractional anisotropy were
extracted to assist the proposed model in producing optimal accuracy. Equation 2 shows
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Figure 3 Bi-LSTM-based feature extraction.
Full-size DOI: 10.7717/peerjcs.2077/fig-3

the computation of the attention weights using a scaled dot-product attention approach.

attention weights= Softmax
(
Mat_Mul

(
query,key,transpose

))
(2)

where the Mat_Mul function performs matrix multiplication of query and key tensors for
the critical feature identification, transpose indicates the transposition of crucial tensor,
and the Softmax function computes the exponential of each element of the matrix and
normalizes it using the sum of all elements.

Bi-LSTM-based feature extraction
The motivation to apply the Bi-LSTM model to extract features from EEG data stemmed
from the bi-directional architecture. Bi-LSTM can capture temporal dependencies in
sequential data. It can learn from past performance and tune itself for future direction.
EEG data are susceptible to artifacts from eye movements, muscle activity, and external
interference. Bi-LSTM canmitigate the effect of noise on feature extraction. To enhance the
performance of the Bi-LSTM, the authors introduced a self-attention mechanism and early
stopping strategies. In the context of EEG feature extraction, the self attention mechanism
focuses on the mismatched negativity response, reflecting the brain’s ability to identify
and process auditory stimuli. The connectivity patterns among auditory, language, and
reading-related brain regions were detected in order to predict dyslexia using EEG. The
structure of Bi-LSTM-based feature extraction is highlighted in Fig. 3. Equation 3 shows
the mathematical form of the Bi-LSTM layer.

P =Model.add
(
Bi−LSTM

(
Units= 64,returnsequence =True

)
,inputshape =T ,C

)
(3)

where P is the prediction, Units specify the number of neurons, returnsequence represents
the sequence of outputs for each timestep, inputshape shows the shape of input with time
step for each sequence, and channels show the number of features.

The self-attention mechanism assists the Bi-LSTM model in extracting the key features
of dyslexia. In addition, rectified linear unit (ReLu) and Softmax layers were integrated for
DD prediction. The early stopping strategies were used to monitor the validation loss and
improve the model’s performance using the callback function to restore the best weights.

Fine-tuned LightGBM-based DDM
LightGBM is a gradient-boosting technique widely applied for classification and regression.
A histogram-based algorithm was used to compute gradients. Compared to the existing
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gradient boosting technique, LightGBM produces a better result. It uses histogram-based
algorithm for tree building, reducing the memory footprint. It supports out-of-core
learning and distributed training that suits the proposed study to make predictions with
minimum hardware configurations. In the context of DD, the class imbalance may cause
challenges in identifying the optimal outcome. However, the inherent features, including
weighted sampling and class-specific objectives, overcome the class imbalances. In addition,
it can locate non-linear relationships between the features and the target variables. These
advantages motivate the authors to employ the LightGBM model in this study.

Hyperband optimization was used to improve the performance of the LightGBMmodel.
Using hyperparameter optimization, the authors fine-tuned the key parameters, including
mm_leaves, max_depth, learning rate, n_estimator, reg_alpha, and reg_lambda. To control
the step size during the boosting process, the authors set the ranges for learning rated from
0.01 to 0.1. An integer ranging from 3 to 10 was used for the maximum depth of each
decision tree. The maximum number of trees per tree, ranging from 20 to 100, was used
to optimize the LightGBM model. Feature fraction ranges from 0.5 to 1.0 were utilized for
each split. The Hyperband algorithm evaluated the model using the randomly sampled
hyper-parameter configuration. It iteratively evaluateed the performance and focused on
resources associated with promising outcomes. The best-performing hyper-parameters
configurations were selected based on the validation performance. Equation 4 shows the
mathematical form of the fine-tuned LightGBM model.

Prediction= hyperband
(
LightGBM (n,m,l,n,l1,l2)

)
(4)

where n is the maximum number of leaves, m is the maximum depth of each tree, l is the
learning rate, n is the number of boosting rounds, l1 is the L1 regularization, and l2 is the
L2 regularization.

Evaluation metrics
To ensure the proposed model’s ability to capture the crucial features of dyslexia, the
authors applied multiple evaluation metrics. Accuracy (Accy) was used to measure the
percentage of similarity between predicted and actual values. Precision (Prec) refers to the
accuracy of the model’s optimistic predictions. The higher value of precision indicates the
absence of false positives. Recall (Recl) showed the percentage of true positives predicted
by the proposed DD detection model. The existence of false negatives could be identified
using the recall metric. F1-score integrated the outcomes of precision and recall. Cohen’s
Kappa (K) was used to evaluate the model’s prediction in imbalanced datasets. In addition,
the statistical significance of the model’s outcomes was computed using standard deviation
(SD) and confidence interval (CI).

RESULTS
The authors implemented the proposed DDM using Windows 10 Professional, i7 14700K
Processor, 16 GB RAM, and GeForce RTX 4060 Ti Eagle 8G environment. Table 1 presents
the configuration settings of the MoblieNet V3, EfficientNet B7, Bi-LSTM, and LightGBM
models. The datasets were divided into a train set (60%), a validation set (20%), and
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Table 1 Computational configurations.

Model Parameters Values

Optimizer type RMSProp
Image Size 224× 224
Learning rate 1×10−4

Weight decay 1×10−5

MobileNet V3
Backbone

Maximum epoch 120
Optimizer type RMSProp
Image Size 224× 224
Learning rate 1×10−5

Efficient B7
Backbone

Maximum epoch 120
Boosting type Random forest
Learning rate 1×10−4

Sub sample 0.777
Regularization L1 and L2

LightGBM

Optimization Hyperband

a test set (20%). The batch-wise training approach was followed to prevent overfitting.
Based on the validation set, the authors fine-tuned the model’s performance. PyTorch,
Keras, TensorFlow, and Theano libraries were utilized for the model development. They
employed pre-trained MobileNet V3 and DenseNet 201 models for the comparative
analysis. The source codes of MobileNet V3, DenseNet 201, and SqueezeNet V1.1 models
were extracted from the GitHub repositories. Figure 4 shows the proposed DD detection
model performance in different batches. The model achieved an average accuracy of 97.2%,
98.1%, and 96.8% for datasets 1–3, respectively.

To overcome the model overfitting, the authors employed a validation set and Epoch-
wise training approach. Figure 4 shows the performance of the proposed DDM in different
Epochs. The model achieved an average accuracy of 98.1%, 98.2%, and 97.1% for datasets
1, 2, and 3.

Figure 5 highlights the training and validation loss at each epoch. Compared to the
training loss, the validation loss was low. The recommended early-stopping strategy
minimized the validation loss and achieved considerable accuracy. In addition, the self-
attention mechanism and Hyperband optimization played a significant role in improving
the efficiency of the proposed model.

Table 2 presents the performance of the proposed DDM. It reveals the significant
improvement in the model performance. The proposed model identified the intricate
patterns of dyslexia from the multiple modalities. The suggested feature extraction
techniques yielded an exceptional outcome. The validation test fine-tuned the process
of dyslexia identification. Figure 6 illustrates the findings of the proposed model.

The outcomes of the comparative analysis of models based on dataset 1 are presented in
Table 3. The recommended MobileNet V3-based feature extraction supported the model
in detecting dyslexia from the FMRI images. The image generation process produced
high-quality images to train the MobileNet V3 model. In addition, introducing the SE
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Figure 4 Epoch-wise performance analysis.
Full-size DOI: 10.7717/peerjcs.2077/fig-4

Figure 5 Findings of performance analysis.
Full-size DOI: 10.7717/peerjcs.2077/fig-5

block assisted the proposed model in achieving optimal accuracy. The performance of the
models is illustrated in Fig. 7.

The performance of the individual models based on dataset 2 is outlined in Table 4.
It is evident that the suggested model outperformed the existing models. The feature
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Table 2 Performance evaluation outcomes.

Classes Accy Prec Recl F1-Score K

Normal 98.7 97.6 96.8 97.2 96.7
Abnormal 98.9 97.4 97.1 97.2 95.8
Mediation 97.8 96.5 96.2 96.3 96.5
Attention 98.5 97.1 96.8 96.9 96.3
Average 98.5 97.2 96.7 96.9 96.3

Figure 6 Accuracy, precision, recall, F1-score, and Kappa represents the performance of the proposed
model in detecting normal, abnormal, mediation, and attention classes.

Full-size DOI: 10.7717/peerjcs.2077/fig-6

Table 3 Comparative analysis –dataset 1.

Models Accy Prec Recl F1-Score K

Lr & Sudha Sadasivam (2022) 97.2 96.1 96.7 96.4 95.7
Tomaz Da Silva et al. (2021) 94.7 94.5 94.4 94.4 93.2
SqueezeNet V1.1 93.8 93.6 93.8 93.7 92.8
MobileNet V3 96.5 95.1 95.3 95.2 94.3
DenseNet 201 95.7 95.2 95.2 96.4 93.6
EfficientNet B7 96.8 95.3 95.7 94.4 95.1
Proposed model 98.9 96.6 97.1 96.8 96.7
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Figure 7 Accuracy, precision, recall, F1-score, Kappa indicates the performance of the dyslexia detec-
tion models on dataset 1.

Full-size DOI: 10.7717/peerjcs.2077/fig-7

Table 4 Comparative analysis –dataset 2.

Models Accy Prec Recl F1-Score K

Lr & Sudha Sadasivam (2022) 95.8 95.1 95.3 95.2 94.1
SqueezeNet V1.1 96.1 96.4 96.6 96.5 93.8
MobileNet V3 96.7 95.9 95.7 95.8 93.9
DenseNet 201 95.5 95.1 94.9 95.0 94.7
EfficientNet B7 96.6 96.2 95.8 96.0 95.5
Proposed model 98.6 96.5 96.8 96.6 95.8

extraction and self-attention mechanisms improved the performance of the proposed
model. Compared with the standard EfficientNet B7, the fine-tuned Efficient B7 with a
self-attention mechanism yielded a better result. Figure 8 represents the findings of the
comparative analysis.

The capability of the proposedmodel in identifying dyslexia using EEG data is presented
in Table 5. There is a significant improvement in the proposed model’s performance
compared with the baseline models. The outcomes of the comparative analysis are outlined
in Fig. 9.

The statistical significance of the outcomes is presented in Table 6. The findings
revealed the reliability of the proposed model. It suggested that the model could be
implemented in healthcare settings.

The computational strategies highlighted the computational resource demands for the
models to detect dyslexia. The findings indicated that the proposed model required less
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Figure 8 Accuracy, precision, recall, F1-score, Kappa indicates the performance of the dyslexia detec-
tion models on dataset 2.

Full-size DOI: 10.7717/peerjcs.2077/fig-8

Table 5 Comparative analysis –dataset 3.

Models Accy Prec Recl F1-Score K

Christodoulides et al. (2022) 94.1 93.1 93.3 93.2 91.2
Bi-LSTMmodel 97.1 96.6 96.8 96.7 93.6
Parmar & Paunwala, (2023) 96.7 95.8 94.7 95.2 93.7
Guhan Seshadri et al. (2023) 97.5 97.1 97.3 97.2 96.5
Proposed model 98.8 98.6 98.3 98.4 96.3

computational power to generate an exceptional outcome. It is evident that the proposed
model could be implemented in a resource-constrained environment. Table 7 presents the
computational complexities of the models.

DISCUSSION
Amulti-modal-based DL model was introduced to detect dyslexia. The authors trained the
model using FMRI, MRI, and EEG data. They constructed an image slicer using 3D CNN
to extract images from the FMRI images. A CNN model was developed using the weights
of the MobileNet V3 model. In addition, the SE block was integrated with the model to
extract the crucial features of dyslexia. Likewise, using the EfficientNet B7 as a backbone,
a feature extraction model was developed to extract features from the MRI images. The
model was fine-tuned using a self-attention mechanism. To extract the feature from EEG
data, the authors used the Bi-LSTM model. Self-attention mechanisms and early stopping
strategies were used to fine-tune the model. Finally, the LightGBM model was used to
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Figure 9 Accuracy, precision, recall, F1-score, Kappa indicates the performance of the dyslexia detec-
tion models on dataset 3.

Full-size DOI: 10.7717/peerjcs.2077/fig-9

Table 6 Statistical analysis.

Dataset Models SD CI Loss

Lr & Sudha Sadasivam (2022) 0.0005 95.6 0.54
Tomaz Da Silva et al., (2021) 0.0004 96.2 0.75
SqueezeNet V1.1 0.0005 95.3 0.36
MobileNet V3 0.0004 96.4 0.89
DenseNet 201 0.0004 95.2 1.12
EfficientNet B7 0.0004 95.5 0.79

Dataset 1

Proposed model 0.0003 96.1 0.41
Lr & Sudha Sadasivam (2022) 0.0005 95.3 0.48
SqueezeNet V1.1 0.0003 95.6 0.74
MobileNet V3 0.0004 96.1 0.77
DenseNet 201 0.0005 95.1 1.14
EfficientNet B7 0.0004 95.3 0.54

Dataset 2

Proposed model 0.0004 95.8 0.39
Christodoulides et al. (2022) 0.0005 95.5 0.56
Bi-LSTMmodel 0.0004 95.3 0.71
Parmar & Paunwala, (2023) 0.0003 95.1 0.48
Guhan Seshadri et al. (2023) 0.0004 95.8 0.89

Dataset 3

Proposed model 0.0004 96.1 0.44
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Table 7 Computational complexities.

Dataset Models Parameters
(in Millions)

Flops
(in Giga)

Testing time
(in Seconds)

Learning rate

Lr & Sudha Sadasivam (2022) 36 39 0.357 1×10−4

Tomaz Da Silva et al. (2021) 42 29 0.453 1×10−3

SqueezeNet V1.1 45 33 0.324 1×10−3

MobileNet V3 37 31 0.335 1×10−4

DenseNet 201 53 43 0.463 1×10−3

EfficientNet B7 41 33 0.518 1×10−4

Dataset 1

Proposed model 31 29 0.277 1×10−5

Lr & Sudha Sadasivam (2022) 39 36 0.413 1×10−4

SqueezeNet V1.1 48 34 0.313 1×10−3

MobileNet V3 39 33 0.327 1×10−4

DenseNet 201 55 44 0.469 1×10−2

EfficientNet B7 43 34 0.504 1×10−4

Dataset 2

Proposed model 30 27 0.316 1×10−5

Christodoulides et al. (2022) 53 42 0.714 1×10−2

Bi-LSTMmodel 43 54 0.426 1×10−3

Parmar & Paunwala, (2023) 54 44 0.589 1×10−2

Guhan Seshadri et al. (2023) 47 51 0.631 1×10−2
Dataset 3

Proposed model 39 42 0.323 1×10−4

detect dyslexia using the extracted features. The model was generalized on three datasets.
The exceptional performance of the proposed model is highlighted in Tables 3–4. The
suggested feature extraction techniques supported the fine-tuned LightGBM models to
identify dyslexia with limited computational power.

By implementing the proposed model in educational centers, teachers can identify
dyslexia using wearable EEG devices. Each modality illuminates dyslexia biomarkers and
characteristics differently. By integrating data from multiple modalities, the proposed
model improves prediction accuracy, generalization, interpretability, and individualized
intervention techniques for dyslexia detection and diagnosis. It detects intricate patterns and
correlations in data using several modalities, boosting prediction accuracy and diagnostic
performance. It can be used to personalize therapies and support services for dyslexic
individuals by considering their unique genetic profiles, brain structure and function,
cognitive ability, and environmental circumstances.

In line with Tomaz Da Silva et al.’s (2021) findings, the proposed model employed
FMRI images and generated a remarkable outcome. They used 3D CNN to extract dyslexia
patterns from the FMRI data. The 3D CNN required a substantial set of parameters
and operators, leading to longer training time. It demands a larger memory footprint
compared to the proposed DDM. In addition, real-time processing of 3D volumes may
demand specialized hardware accelerators. The suggested feature extraction techniques
supported the proposed model to overcome the challenges in DD. Compared with the
Lr & Sudha Sadasivam (2022), the proposed model achieved a better result. Moreover,
it requires less computational power. Lr & Sudha Sadasivam (2022) employed time
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distribution convolutional LSTM for feature extraction. The recurrent layers of this
model can reduce parallelism during training and inference. The proposed model followed
a similar approach to the Christodoulides et al. (2022) model for extracting features from
FMRI and MRI data. In addition, the proposed model utilized the EEG data to identify
dyslexic individuals. Parmar & Paunwala (2023) used a predictor extraction and selection
methodology to predict dyslexia using EEG data. The shortcomings of their feature
extraction reduced the performance of dyslexia identification. In contrast, the fine-tuned
Bi-LSTM-based feature extraction assisted the proposed model in classifying the EEG data.
Guhan Seshadri et al. (2023) applied a shallow CNNmodel for DD. Likewise, the proposed
model employed shallow CNN models for extracting features from multi-modality data.
The Bi-GRU model is complex compared to the suggested DDM. The model’s complexity
can lead to substantial training time and higher computational power. The existing models
require additional dependencies between forward and backward passes, causing difficulties
in propagating gradients effectively. The proposed model outperformed the pre-trained
models, including MobileNet V3, SqueezeNet V1.1, DenseNet 201, and EfficientNet B7.
These models demand high computational resources to classify the images.

The authors utilized public repositories to train and test the proposed DDM. EEG
and MRI data cover sensitive information related to the individual’s brain activities.
The authors conducted rigorous validation to assess the diagnostic accuracy, sensitivity,
specificity, and reliability of the proposed model. The proposed model generated the
outcome without revealing the individual’s sensitive data. The dataset owners obtained
consent from the participants before collecting EEG and MRI data. In addition, they
protected the individual’s personal information by revealing EEG and MRI data without
the individual’s personal information. In the clinical setting, healthcare centers should
follow robust data protection measures, including access controls and anonymization
techniques to ensure individual data privacy and confidentiality.

The authors faced challenges in extracting features frommultiple sources. The variability
in the image quality caused challenges to the feature extraction. The authors developed
the image slicer to extract images from various angles and normalize the image qualities.
In addition, the data augmentation technique was required to increase the dataset size
and overcome the class imbalance. The MobileNet V3 backbone demanded additional
resources to extract the crucial features. The authors reduced the computation time by
integrating the SE block with the MobileNet V3 model. Similarly, the performance of
the EfficientNet B7-based feature extraction model was improved by introducing the
self-attention mechanism. Addressing the proposed model’s limitations can improve its
interpretability and generalization in a real-time environment. The proposed model was
trained using synthetic MRI images. It demanded substantial training to generate effective
outcomes with novel MRI images. An effective wearable EEG device is required to track
the behaviors of individuals in healthcare settings.

In the future, the proposed model can be trained with additional modalities in order
to cover wide age groups. The authors will employ vision transformers to integrate the
interpretability of the proposed model’s outcomes. Vision transformers have an inherent
attention mechanism, capturing the relationship between the multiple regions of FMRI
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images. By utilizing class activation maps, healthcare professionals can visualize the key
features and understand the decision logic. The layerwise analysis features can offer a
deeper understanding of the proposed model’s internal process.

CONCLUSIONS
In this study, a DL-based model for detecting dyslexia using multi-modality data was
proposed. The authors employed feature engineering techniques to identify the crucial
patterns of dyslexia. The feature engineering comprised fine-tuned MobileNet V3,
EfficientNet B7, and Bi-LSTM models. The authors integrated the SE block with the
MobileNet V3 model to generate key features from FMRI images. They introduced a
self-attention mechanism in EfficientNet B7 and Bi-LSTM to reduce the training time. The
hyper-parameters of the LightGBM model were optimized using hyperband optimization.
The proposed model was generalized on three datasets. The findings supported the
exceptional performance of the proposed DD detection model. The recommended model
outperformed the state-of-the-art DDMs with limited computational power. Healthcare
centers can benefit from the suggestedmodel. Themulti-modality feature allows healthcare
centers to detect dyslexia using FMRI images and EEG data. However, the proposed
model faced challenges in integrating features from the CNN models and fine-tuning the
performance of the LightGBM model. The proposed model demands substantial training
in order to enhance its performance. The performance of the proposed model can be
improved with vision transformers and graph neural networks.
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