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ABSTRACT

Breast arterial calcifications (BAC) are a type of calcification commonly observed on
mammograms and are generally considered benign and not associated with breast
cancer. However, there is accumulating observational evidence of an association
between BAC and cardiovascular disease, the leading cause of death in women. We
present a deep learning method that could assist radiologists in detecting and
quantifying BAC in synthesized 2D mammograms. We present a recurrent attention
U-Net model consisting of encoder and decoder modules that include multiple
blocks that each use a recurrent mechanism, a recurrent mechanism, and an
attention module between them. The model also includes a skip connection between
the encoder and the decoder, similar to a U-shaped network. The attention module
was used to enhance the capture of long-range dependencies and enable the network
to effectively classify BAC from the background, whereas the recurrent blocks
ensured better feature representation. The model was evaluated using a dataset
containing 2,000 synthesized 2D mammogram images. We obtained 99.8861%
overall accuracy, 69.6107% sensitivity, 66.5758% F-1 score, and 59.5498% Jaccard
coefficient, respectively. The presented model achieved promising performance
compared with related models.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Neural Networks
Keywords Cardiovascular, Deep-learning, Mammogram, Quantification, Segmentation, U-Net

INTRODUCTION

Screening mammography is a low-dose X-ray examination of a woman’s breasts
performed to detect breast cancer. However, the main drawback of standard full-field
digital mammography is that overlaying dense fibroglandular tissue within the breast can
reduce the visibility of masses and lead to ineffective screening results for breast cancer.
Therefore, digital breast tomosynthesis (DBT) is becoming the new standard for x-ray
imaging of the breast for breast cancer screening. Multiple studies have shown that when
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DBT is combined with conventional digital mammography (DM), both sensitivity and
specificity are improved, with a reduction in false positive recalls and an increase in breast
cancer detection (Friedewald et al., 2014; Durand et al., 2015; Conant et al., 2016).
However, because the combination of DM and DBT incurs a higher radiation dose (still
within the acceptable range) than DM alone, the Food and Drug Administration has
approved using a reconstructed “synthetic” 2D-like image instead of the DM dose portion,
which reduces the overall radiation dose by up to 45% (Skaane et al., 2013). Given the
increase in the clinical use of DBT, there is a growing research interest in the use of deep
learning (DL) to develop detection and segmentation methods for DBT (Samala et al.,
2016; Yousefi, KrzyZak ¢ Suen, 2018). Calcifications of the breast are small calcium
deposits that occur in a woman’s breast tissue and are visible on mammography (Aljabri ¢
AlGhamdi, 2022). Breast arterial calcifications (BAC), are among the different typically
benign calcifications noted on mammograms. BAC are not associated with breast cancer;
as such, they are not routinely reported by radiologists. On mammographic images, BAC
appear as densities in a linear distribution, some straight and some winding, and
commonly occur as parallel tracks associated with blood vessels. BAC can range in density,
from faint low density to very high density, and may be present from only a few to many in
numbers. Several studies have provided evidence that BAC constitutes a risk marker for
coronary artery disease, and appear to be associated with an increased risk of
cardiovascular disease (CVD) events (Iribarren et al., 2004; Ferreira, Szejnfeld ¢ Faintuch,
2007; Maas et al., 2007; Iribarren ¢ Molloi, 2013; Chadashvili et al., 2016; Yoon et al., 2019;
Newallo et al., 2015; Margolies et al., 2016). BAC identified by mammography in women is
a new method for diagnosing CVD and coronary artery disease, adding incremental
prognostic value beyond the existing CVD risk classification schemes without further
radiation doses or costs.

Automatic segmentation methods enhance clinical workflows by accurately handling
tedious tasks, such as outlining large, clear lesions, allowing physicians to focus on
diagnosis and patient care. There have been efforts for the automatic segmentation of BAC.
Ge et al. (2008) developed a method using an image filtering technique to detect BAC,
followed by k-segment clustering to discover a group of potential candidates of BAC lines,
and a classifier to reduce false positives. The remaining line segments were connected to
generate BAC. Their method failed to detect highly winding BAC, which are common.
Cheng et al. (2009), Cheng, Chen ¢ Shen (2012) and Cheng et al. (2012) developed a system
that included calcification and vessel cues. The vessel cues reduced the search from
background breast tissue to solely tubular structures, making it easier to find line segments
corresponding to probable BAC. The system then connects the segments to extract BAC
from mammograms. This method’s main weakness is that it can not handle diverse breast
compositions with different fat and fibroglandular tissue distributions. Mordang et al.
(2016) developed a multi-stage method to detect BAC. In the first stage, a cascade classifier
detects calcifications. Then the calcifications are segmented by connected elements and
classified as possible BAC regions or not. The system then groups the mammograms with
potential BAC in the second stage. To examine the detection of BAC, the system extracts a
collection of features that have been designed manually, such as topology, shape, and
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texture, from the regions. In the final stage, the system removes the segmented BAC from
mammograms and then uses a computer-aided diagnosis (CAD) system to diagnose breast
cancer. They indicate that a CAD system detects 14% more cancer lesions after removing
BAC from mammograms. In spite of all the progress made, BAC segmentation in
mammograms remains a challenging task because of BAC’s characteristics, such as their
narrow structure that runs, along with vessels and their fragmented and varied length and
width.

DL has performed remarkably well in medical image segmentation. Convolutional
neural networks (CNN) have been applied to medical image segmentation in recent years.
They have succeeded in the medical field and have aided in auxiliary diagnoses, such as
segmenting vessels from fundus images (Yan, Yang ¢ Cheng, 2018), brain tumor
segmentation from MRI (Chen et al., 2020), and diagnosis of lung infections (Ouyang et al.,
2020). These models have outstanding feature extraction and feature expression
capabilities. In addition, they do not require manual feature extraction or excessive image
pre-processing.

Fully convolutional networks (FCN) (Ronneberger, Fischer ¢ Brox, 2015) and U-Net
(Long, Shelhamer & Darrell, 2015) are encoder-decoder architectures used in image
segmentation. U-Net was proposed after FCN. Both network architectures are relatively
similar, except that the U-Net uses skip connections to connect the encoder and decoder,
which improves the U-Net model’s performance to obtain more feature information. U-
Net-based networks are commonly used in different medical image segmentation
techniques, such as optic disc and cup segmentation (Fu et al., 2018), brain tumor
segmentation (Chen et al., 2018), and liver and tumor segmentation from CT images (Jin
et al., 2020). Several authors have proposed various mechanisms to improve the
performance of U-Net, such as the residual mechanism and the attention mechanism.
Residual convolutions enhance feature utilization, leading to enhanced performance of the
network. Furthermore, it adds depth to the network while ensuring better performance.
Researchers have introduced it into the field of medical image segmentation by integrating
residual blocks and U-Net architecture for skin image segmentation (Alom et al., 2018) and
white matter hyperintensity segmentation from MRI (Jin et al., 2018). Using the attention
mechanism in medical image segmentation has become a hot research topic (Liu et al.,
2021) and has been used in pancreas segmentation (Oktay et al., 2018) and brain structure
segmentation (Li, Zhygallo & Menze, 2018).

In spite of the advancements in DL networks for medical image segmentation, BAC
segmentation remains a formidable challenge due to the intricate nature of mammogram
images and the lack of publicly available datasets. Early attempts, such as the CNN
architecture proposed by Wang et al. (2017), for BAC segmentation with a patch-based
approach, faced limitations in capturing the global context of the images. Subsequent
studies have explored various DL models, including YOLO, U-Net, and DeepLabv3+, to
improve segmentation accuracy (Wang, Khan & Highnam, 2019). Innovations like the
DU-Net model introduced by AlGhamdi, Abdel-Mottaleb ¢» Collado-Mesa (2020), which
integrates dense blocks into the U-Net architecture, and the use of dilated convolutional
layers in the Simple Context U-Net by Guo ef al. (2021), have pushed the boundaries
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further by enhancing the model’s ability to aggregate contextual information. These efforts
highlight the ongoing quest to refine segmentation techniques, underscoring the
complexity of BAC segmentation and the critical need for more comprehensive solutions.

Contributions

In this article, we present the results of a novel recurrent attention U-Net to extract BAC
structures from mammographic images. Our work was inspired by the success of using
attention mechanisms to segment curvilinear structures from different imaging modalities
(Fu et al., 2019; Mou et al., 2021). Moreover, the success of combining a recurrent neural
network within the U-Net architecture for vessel segmentation by Alom et al. (2018). The
contributions of this work are as follows:

1) We developed a new model for BAC segmentation and quantification, which first
generates BAC masks used later to calculate five metrics that indicate the severity level
of BAC in the segmentation mask.

2) The new model extended U-Net using recurrent blocks and an attention module to
ensure better feature representation and improve the abilities of the U-Net to effectively
capture long-range dependencies.

3) We published a new dataset with the ground-truth of BAC, which was annotated by
radiologists. This dataset with the annotations will be made available to foster future
research in this area.

The article is structured as follows: “Introduction” introduces the method. “Related
Work” reviews related work, highlighting significant contributions and identifying gaps in
the current literature on DL networks for BAC segmentation. The DL networks for our
BAC segmentation model are presented in “Approach”. The datasets, quantification
metrics, and experimental setup are presented in “Experiments”. The experimental results
are presented in “Results”. The results are discussed in “Discussion”. The conclusions are
in “Conclusions”, and the promising future works are in “Promising Future Works”.

RELATED WORK

DL has performed remarkably well in medical image segmentation. CNN have been used
in medical image segmentation in recent years. It has succeeded in the medical field and
aided in auxiliary diagnoses. However, despite DL networks excellent results in different
medical image segmentation tasks, BAC segmentation remains a challenging task. Wang
et al. (2017) popularized the use of CNN architecture to build an automated system for

BAC segmentation to use it as a sign of coronary artery disease. They developed a model
that consists of twelve CNN layers for a binary classification task. They applied a pixel-

wise, patch-based procedure for BAC segmentation and used that model to differentiate
BAC from non-BAC pixels in mammograms. Therefore, they used an image patch around
it to classify the central pixel for any pixel present. In other words, the repetition of the

whole image’s pixels results in image segmentation. The FROC analysis showed that the
model achieved a level of detection similar to that of human radiology experts. The calcium
mass quantification analysis showed that the presumed calcium mass is almost equal to the
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ground truth. For a linear regression between them, the coefficient of determination (R2) is
equal to 0.9624. Wang, Khan & Highnam (2019) evaluated the performance of several
already known DL models, i.e., YOLO, U-Net, and DeepLabv3+, on segmenting BACs in
digital mammography. AlGhamdi, Abdel-Mottaleb ¢ Collado-Mesa (2020) presented the
DU-Net model to segment BAC automatically. They improved the U-Net model by
extending it with dense blocks. The DU-Net contains both long-skip connections as the U-
Net and short-skip connections as the DenseNet. They prepared a dataset for the BAC
segmentation task from a publicly available dataset. Recently, Guo et al. (2021) proposed a
segmentation method called simple context U-Net (SCU-Net). They used patches to train
the model and obtain the final whole image results by joining patchwise outputs. They used
five calcifications quantitative metrics to evaluate the results. Instead of using just standard
convolution, they used dilated convolutional layers to aggregate multi-scale contextual
information. Dilated convolutional layers are a type of convolution that expands the kernel
by including gaps between the kernel elements.

The methodology for segmentation in medical images is highly diverse and includes the
development of novel CNN-based segmentation structures. U-net networks have played a
crucial role in medical image segmentation via DL. The combination of U-shaped
networks with dense blocks and other mechanisms has led to a variety of deep network
architectures, improving medical image segmentation performance significantly. In recent
years, end-to-end CNN networks with U-shaped architectures have emerged as the
primary method for medical image segmentation. Increasing the depth of network
architectures has been shown to enhance network performance. A key factor is the
incorporation of doctors’ prior understanding of medical imaging, allowing developers to
use this knowledge to enhance the performance of segmentation networks by creating
accurate ground-truth datasets. Moreover, improving image quality through pre-
processing methods can further increase the performance of segmentation networks.
Custom architectures developed specifically for segmentation have yielded promising
results, often rivaling or even outperforming U-net-based outcomes.

APPROACH

Recurrent attention U-Net

This article identifies the BAC segmentation problem as a binary semantic segmentation
task, wherein each pixel is categorized into one of two classes. The segmentation task for
BAC involved the classification of two different classes: BAC pixels and non-BAC pixels.
To address this, we propose an end-to-end approach that is illustrated in Fig. 1. This
approach systematically encompasses the entire process, from raw data preparation to the
final quantification of BAC. Based on the U-Net (Ronneberger, Fischer ¢» Brox, 2015),
R2U-Net (Alom et al., 2018), and attention module (Fu et al., 2019; Mou et al., 2021), we
propose a recurrent attention U-Net (RAU-Net) for BAC segmentation. The encoder and
decoder modules included multiple blocks, each employing a recurrent residual block. An
attention module was added between the encoder and the decoder. In order to address the
issue of information loss resulting from the use of max-pooling operations, we used a skip
connection between every block of the encoder and decoder, similar to the U-Net network.
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Figure 1 Overview of the end-to-end proposed approach for BAC segmentation. This diagram illustrates the workflow, starting from the raw
dataset to the final BAC quantification. Mammogram images and binary mask images from our dataset.

Full-size K&] DOT: 10.7717/peerj-cs.2076/fig-1

To obtain the final segmentation map, we applied a 1 x 1 convolutional layer to the
decoder output at the end of the model. In the case of using a different loss function than
BCEWithLogitsLoss, we added the sigmoid layer to the output. A detailed structure of our
network is shown in Fig. 2 and Table 1.

U-Net

The U-Net encoder contracting path was comprised of multiple convolution operations,
and downsampling layers were utilized to reduce the image size and capture context
information (Aljabri & AlGhamdi, 2022). The expanding path of the decoder was created
using convolution operations, and upsampling layers were used to precisely locate pixels
and restore images. The architecture of U-Net included convolution, downsampling,
upsampling, and concatenation operations. To integrate more contextual information,
concatenation operations were used at the same depth between the contracting path and
the expanding path.

Recurrent block
The operations of the recurrent convolutional layers were executed in the manner defined
by Alom et al. (2018). Suppose the x input sample in the I'th layer and the center pixel of a
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Figure 2 Architecture of the proposed model RAU-Net with encoder and decoder units using
recurrent blocks and an attention module, which is built based on a U-shaped architecture. Mam-
mogram image and binary mask image from our dataset. Full-size k&) DOI: 10.7717/peerj-cs.2076/fig-2

Table 1 Recurrent attention U-Net architecture, note each convolutional in the recurrent
convolutional block in the table performs BatchNormalization + ReLU activation + convolutional.

Layers Output shape
Input 640 x 640
Recurrent Conv. block 640 x 640
Max-pooling 320 x 320
Recurrent Conv. block 320 x 320
Max-pooling 160 x 160
Recurrent Conv. block 160 x 160
Max-pooling 80 x 80
Recurrent Conv. block 80 x 80
Max-pooling 40 x 40
Recurrent Conv. block 40 x 40
Spatial attention block 40 x 40
Channel attention block 40 x 40
Affinity attention 40 x 40
Upsampling 80 x 80
Recurrent Up-Conv. block 80 x 80
Upsampling 160 x 160
Recurrent Up-Conv. block 160 x 160
Upsampling 320 x 320
Recurrent Up-Conv. block 320 x 320
Upsampling 640 x 640
Recurrent Up-Conv. block 640 x 640
Conv. 1 x 1 640 x 640
AlJabri et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2076 7/26
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Figure 3 Different types of recurrent convolutional units (RCUs), which include (A) the recurrent
convolutional block and (B) the recurrent residual convolutional unit.
Full-size k] DOT: 10.7717/peerj-cs.2076/fig-3

patch placed at (i, j) in input on sample the k’th feature map in the layers, the output of the

network Ogjk(t) is at the time step t. The output of the recurrent block is expressed as

Eq. (1). xlf (i )(t) and xlr(i’j )(t — 1) are the inputs for the standard convolutional layers and
the I'th recurrent convolutional layer. The (WJ,: ) and (W) values are the weights for the
standard convolutional layer and the recurrent convolutional layer of the k’th feature map,
and the by is the bias. The ReLU activation function f received the outputs of the recurrent
convolutional layer and are expressed as in Eq. (2). F(x;, w;) defines the outputs from I'th
recurrent layer, which was used for down-sampling and up-sampling layers in the
convolutional encoding and decoding model. In the case of the recurrent residual block,
the output is passed to the residual of the unit, as illustrated in Fig. 3. The block’s output
can be computed as in Eq. (1). x;7 is the block’s input samples. The x;;; in the R2U-Net
model’s encoder and decoder units represent the input for the immediately following sub-
sampling or up-sampling layers, and it can be calculated as Eq. (3).

0L (t) = (M/;)T x D (1) 4 (W) x (8~ 1) + by (1)
F (x1, wp) :f[Of.jk(t)} = max [O, Oﬁjk(t)} (2)
X1 =X+ .7:(xl, Wl). (3)

Collecting features across various time steps enhances the quality and robustness of
feature representation. This helps extract very low-level features crucial for segmentation
tasks, such as the tubular structure of the vessels.

Attention block

Expressive features that are attentive to channel and spatial information were generated by
combining a channel attention block and a spatial attention block. The spatial attention
block uses a selective aggregation mechanism to combine features at each spatial location
by giving weights to the features across all spatial locations. This lets the model accurately
capture how the data and features are related over long distances, even when they are far
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Figure 4 A detailed structure of the attention module. Note that each convolutional followed
BatchNormalization + ReLU. Full-size K&] DOT: 10.7717/peerj-cs.2076/fig-4

apart. In contrast, the channel attention block ensures that the entire space is used for
representing and normalizing; hence, enhancing the incorporation of contrasting features
across separate channels enhances the model’s ability to discriminate. Figure 4 shows the
detailed structure of an attention module where, in spatial attention, after the input
features F, two types of layers, 3 x 1 and 1 x 3 convolutional layers, are utilized to build
two new feature maps Q, and K,. Applying a softmax layer to the matrix multiplication of
the transpose of the features captured in the vertical and horizontal directions yielded an
intra-class spatial association as Eq. (4), where S, ,) denotes the y position’s effect on the x
position. The feature correlation matrix between any two points was computed and
outputted by matrix multiplication; two similar spatial points increased one another, while
two dissimilar spatial points decreased one another. This operation enables the network to
optimally use and learn about the structure of various spatial locations. Subsequently, the
softmax function was used on the correlation matrix in order to produce an attention map
that represents the degree of similarity between each spatial position and the rest. Stronger
similarity increases the response between two points. A channel attention map was created
by adding a softmax layer between the input feature and transposing it on the channel-wise
similarity map as Eq. (5). As a result, by conducting matrix multiplication, we obtained the
channel dependence matrix. The channel dependency matrix is then applied to a softmax
to improve the discrimination between the BAC structure and its background. These
operations improved the expressiveness of class-dependent features by enhancing the
contrast between them.

_en(ex)
Stxy) = Zi{:l exp (Q}T . Kx'> (4)
exp (Fx . F;)

C Y
> w1 €Xp (Fxl : F;)

(5)

Clay) =

Loss function
One of the most difficult problems encountered was the high-class imbalance between
BAC foreground pixels and background pixels. The loss in the BAC segmentation task was
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computed from both the background and the BAC. Overall, the BAC pixels represented
approximately 0.2% of the total pixels. To mitigate this issue, we experimented with
various loss functions and optimizers. We tested several loss functions (MSE loss, cross
entropy loss, dice loss), which showed good performance in other DL scenarios, but did
not yield good results. Equation (6) shows the formula for the binary cross entropy (BCE)
loss function. According to the equation, T represents labels of a single image used as
ground-truth, while T, represents a single element of T. The network’s output prediction
mask is shown by P,. When using the BCE loss, the model tends to classify pixels into the
unchanged type, which affects the result. To solve the data imbalance problem, we used
BCEWithLogitsLoss, which worked well with imbalanced data because it gives each class
the same amount of weight as if it had an equal portion of the dataset by the (pos weight)
parameter (Xiong ef al., 2021) Eq. (7). BCEWithLogitsLoss combines a sigmoid layer and
the BCE loss. This approach was more numerically stable than using a plain sigmoid,
followed by a BCE loss because it uses the log-sum-exp method for numerical stability by
merging the operations into one layer. Adam was found to be the best optimizer for
BCEWithLogitsLoss.

Lpce = Zx —(Txlog (Px) + (1 — Tx)log (1 — Px)) (6)
() =L={l,...,In}", (7)
Ly = —wylt, -loga (x,) + (1 — t,,) -log (1 — a(xy))]

EXPERIMENTS

Dataset

The University of Miami Institutional Review Board (IRB) approved this research study
under ID number 20191227. The IRB also approved a waiver of consent and a HIPAA full
waiver of authorization. Institutional guidelines were followed for the de-identification,
extraction, and storage of 2,000 craniocaudal (CC) and mediolateral oblique (MLO)
synthetic views of DBT exams performed in women aged 35 years and older, specifically
over the time period from January 1, 2016, to December 31, 2018. The DBT exams were
performed on six hologic dimensions mammography units located at three different breast
imaging centers within the University of Miami Health System (UHealth), Miami, Florida.
The DICOM data from UHealth were converted into 8-bit portable network graphics
(PNG) format images. Following this, an expert radiologist specialized in breast imaging,
who received fellowship training and had 10 years of experience, reviewed all the images
and discarded images with poor quality due to artifact and those that were not CC or MLO
synthetics views. The final dataset consisted of a total of 1,436 images. Most images were
large-size with 2,457 pixels in height and 1,996 pixels in width. Each one was processed as a
separate image. Figure 5 shows a flowchart of the dataset pre-processing steps.

The polygon tool of Supervisely (https://supervisely.com/) was used to manually draw
BAC boundaries, as shown in Fig. 6. Following dedicated training, a medical student in
their third year, a resident specializing in radiology in their second year, a breast imaging
fellow, and an expert fellowship-trained breast imaging radiologist with 10 years of
experience, each separately performed the BAC segmentation. After completing the
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A total of 2000 CC and MLO synthetic 2D views (C-view) selectively enriched
for BAC digital breast tomosynthesis (DBT) exams were de-identified,
extracted, and stored for women 35 years of age and older from 01/01/2016 to
12/31/2018.

Cleaned the dataset by deleting poor resolution images n = 1436.

Uploading the dataset to supervisely tool.

Annotating the images by the radiologists from Miami University.

Reference stander.

Figure 5 Data pre-processing flowchart. Full-size K&l DOT: 10.7717/peerj-cs.2076/fig-5

Magnified part
BAC ground-truth

A B

Figure 6 Example of BAC ground-truth contoured by lines from a mammogram prepared by human experts. The magnified part for the
annotation is defined by the polygon. Mammogram and annotated image from our dataset. Full-size Kal DOI: 10.7717/peerj-cs.2076/fig-6

segmentations, the expert breast imaging radiologist evaluated each one and made any
necessary modifications, to achieve gold-standard annotation. At this step, these BAC
tracings were considered the ground-truth. After dividing the images into three separate
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Table 2 Summary of dataset statistics.

Dataset  Total number of Number of images  Number of images Average BAC area to Overall average BAC area per
images with BAC without BAC background area ratio image (%)

Train 1,149 999 150 0.002406 0.209%

Validation 143 122 21 0.002413 0.205%

Test 144 135 9 0.002548 0.238%

non-overlapping groups for our study 1,149 (80%) images for model training, 143 (10%)
for validation, and 144 (10%) for testing, we meticulously analyzed various aspects of these
datasets to gain deeper insights into the BAC class distribution and area. The findings from
our analysis, including the total number of images, the distribution of images with and
without the BAC, as well as the average BAC area to background area ratio, and the overall
average BAC area per image, are comprehensively detailed in Table 2. The dataset and
ground-truth have been made publicly available on GitHub (https://github.com/Manar-
ibr/BacSeg/releases/tag/0.1.0).

Evaluation criteria
The segmentation results were reported and evaluated through various widely used
metrics, defined as follows:

A TP+ TN 8)
ccuracy =
Y= TP+ FP + TN + FEN
Precisi T 9
recision = ———
TP + FP
2 - precision - recall
Fl-score = — (10)
precision + recall
TP
Recall = ——— 11
eca TP + TN (11)
TP
]accard index :m (12)

the terms TP, TN, FP, and FN represent the true positive, true negative, false positive, and
false negative, respectively. The values were computed based on the pixel number.
Nonetheless, when analyzing imbalanced datasets, accuracy can be deceiving, as it can be
impacted by the classification results obtained for data that belongs to the majority class,
which makes it more difficult for a classifier to perform well with data belonging to another
class. For this reason, we used several metrics to deal with imbalanced datasets, including
F1-score and Jaccard. Utilizing these metrics allows for a more comprehensive evaluation
of a classifier’s performance on imbalanced datasets. They can help identify models that
not only perform well on the majority class but also maintain reasonable performance
levels on the minority BAC class. The F1-score and Jaccard index are metrics used to
calculate the ratio of TP pixels to the total number of detected pixels and were used to
evaluate the overlapping between the predicted mask and ground-truth.
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Quantification metrics

To quantify BAC we used the metrics proposed by Guo et al. (2021). The sum of the
probability metric, known as PM, the sum of the mask area metric, known as AM, the sum
of the mask intensity metric, known as SIM, the sum of the mask area with the intensity
threshold X metric, known as T AMX, and the sum of the mask with the intensity
threshold X metric, known as T SIMX. In the equations, m and n refer to the width and
height of the mammogram, respectively, P;; is the probability value at <i, j> returned by
the trained model, I;; means the intensity value of the pixel at <i, j>, and x is the intensity

threshold.
m,n
AM = i=0,j=0 Lpijs0.5 (13)
PM = Z Pij (14)
i=0,j=0
SIM = Z Iij (15)
0<i<m,0<j<n|pijs05
0<i<m,0<j<n|p; ;05
T SIMX = > L. (17)

0<i<m,0<j<n| Pijso.slij>x

Receiver operating characteristic curve

The ROC curve is a standard measure for comparing the ground-truth image and the
output image of a segmentation method utilizing the confusion matrix. The variables
involved in the generation of the confusion matrix are TP, FP, TN, and FN. To plot the
ROC curve, sensitivity and 1_specificity are necessary measurements. The percentage of
true positive pixels is the sensitivity, or true positive rate or recall. The 1_specificity or false
positive rate, represents the ratio of false positive pixels. A higher percentage of sensitivity
and 1_specificity ensures that the segmentation method is of high quality and performs
well. The ROC plots the TP rate (sensitivity) with respect to the false positive rate. Only
subregions that overlapped with the BAC ground-truth were considered TPs. All
remaining subregions that did not overlap with the ground-truth BAC were classified as
FP. The ROC curves were computed using sklearn.metrics.roc_curve().

Experiment set-up

To demonstrate the performance of the RAU-Net model, we tested it on the mammogram
dataset. For this implementation, Pytorch v1.12.1 frameworks were used. Because of the
imbalance between the foreground and background, the binary cross entropy loss
converges slowly. Based on the experiment results, we used BCEWithLogitsLoss. The
models were developed using Google colab pro+, Python 3 Google Compute Engine
backend (GPU) RAM: 51.01 GB Disk: 156.99 GB. The training and testing dataset images
were reshaped into 640 x 640 to meet the requirements of the models. We enhance image
contrast to emphasize the difference between the breast background tissue and the calcified
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vessel. We normalize the input image to reduce the impact of variability in contrast
between classified vessels and background, which improves model performance and makes
it converge much faster. The dataset was normalized by subtracting the mean u = 0.3 and
dividing by the standard deviation ¢ = 0.2. Our model was trained from scratch using the
Adam optimization method, with B1 = 0.5 and B2 = 0.999. The batch size was set to 1, and
the learning rate (Ir) was initialized at 0.0001 and decayed after 20 epochs. Each model was
trained with 70 epochs. At each epoch in the validation, we calculated the model score,
which was the sum of the Jaccard index and dice coefficient; if the score was better than the
previous score, then the weights were updated. Consequently, the best model based on the
validation set was saved. The code of RAU-Net model has been made publicly available on
GitHub (https://github.com/Manar-ibr/BacSeg.git).

Ablation study
Because all previous methods’ datasets were private, comparing them to an existing
method is not feasible. Therefore, we defined three different comparisons to evaluate the
performance of RAU-Net: the original U-Net, the U-Net with recurrent and residual to
evaluate the effectiveness of the recurrent residual block, and the U-Net with Attention to
evaluate the effectiveness of the attention module.

These models were utilized in the comparative process:

o U-Net (Ronneberger, Fischer ¢» Brox, 2015): the original model, which includes long-
skip connections.

e R2U-Net (Alom et al., 2018): the U-Net with recurrent residual blocks.

o U-Net (Ronneberger, Fischer ¢ Brox, 2015) + Attention block (AttU-Net): the U-Net
with attention block between the encoder and the decoder.

The same set-up as in our model was used for U-Net, R2U-Net, and AttU-Net.

RESULTS

Other analysis

The results derived from the 1,436 mammography images, as described in “Dataset”, in
terms of accuracy, sensitivity, F1-score, precision, and Jaccard values are presented as
percentages in Table 3. As shown, the RAU-Net substantially outperformed the other
models (as described in “Ablation Study”), with an overall accuracy of 99.8861%, a
sensitivity of 69.6107%, a precision of 68.3948%, an F-1 score of 66.5758%, and Jaccard
index of 59.5498%. The model achieved high overall accuracy, reflecting its effectiveness in
correctly classifying the majority of pixels within mammograms. When compared to
relevant models in the field, our model demonstrated promising results in terms of
sensitivity, F-1 score, and Jaccard coefficient. These metrics, indicative of the model’s
ability to accurately identify true positives BAC and the precision and overlap between the
predicted segmentation and ground truth, highlight the model’s competitive performance
despite the inherent challenges of the dataset. These challenges include imbalanced class
distribution and the complex presentation of BAC. While the result achieved across these
metrics emphasizes the model’s good capabilities in BAC segmentation, there are areas for
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Table 3 The performance of the proposed RAU-Net is compared with relevant models on our annotated dataset.

Method Accuracy Sensitivity Precision F1-score Jaccard index
U-Net (Ronneberger, Fischer ¢» Brox, 2015) 87.6021 21.0424 72.3476 30.8042 19.9893
U-Net + Attention module (AttU-Net) 90.4886 35.8634 40.6747 36.0990 24.1726
R2U-Net (Alom et al., 2018) 93.3955 40.0211 57.6745 39.8833 27.7960
Our RAU-Net 99.8861 69.6107 68.3948 66.5758 59.5498

Note:

The results are based on the test set.

Table 4 Comparison of using various loss functions for RAU-Net.

Loss function F1-score Jaccard index Sensitivity Precision
Cross Entropy loss 40.1226 29.4727 34.7386 61.1497
MSE loss 9.1688 5.1298 55.4237 5.3424
Dice loss 53.1895 40.3639 52.6647 62.2879
BCEWithLogitsLoss 66.5758 59.5498 69.6107 68.3948

improvement. Enhancing the sensitivity, for example, could be achieved by increasing the
dataset size or employing more advanced data augmentation techniques. We compared the
performance of the proposed RAU-Net using different loss functions (cross entropy loss,
MSE loss, Dice loss, and BCEWithLogitsLoss). Table 4 shows that BCEWithLogitsLoss
improved the segmentation results for F1-score, Jaccard index, precision, and sensitivity.

Figure 7 shows examples of BAC segmentation outputs using the RAU-Net model on
mammography images. Examples are shown in Fig. 7 first column (A) and (D) where the
RAU-Net correctly detects BAC comparable to human specialists. Figure 7 second column
(B) and (E) displays a few mis-detected BAC results that the model incorrectly detects as
BAC. Small clusters of non-continuous BAC can cause this. Figure 7 third column (C) and
(F) illustrates how BAC was incorrectly detected as background in a few mammogram
images. There is a possibility that this kind of error was made in the mammograms of
individuals who had dense breast tissue. Dense breast tissue and the presence of clustered
calcifications pose significant challenges for automated models like RAU-Net in
distinguishing between normal anatomy and BAC. Dense breasts, characterized by a high
proportion of fibrous and glandular tissue, can obscure mammographic details, making it
difficult for automated systems to interpret the images accurately. If there are a sufficient
number of situations like this for training, it is possible to prevent making this mistake.
Figure 8 includes samples from the RAU-Net, U-Net, AttU-Net, and R2U-Net models
results on our test dataset.

Quantification metrics

The general evaluation metrics used in segmentation help evaluate the performance of the
segmentation model by performing a pixel-to-pixel evaluation. This article aimed to
quantify the amount of BAC within a mammogram into a single number that can be used
to define BAC severity. To do this, we used the metrics by Guo et al. (2021), and we
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Ground-truth BAC

Automatically detected BAC
Incorrectly detected as BAC
Incorrectly detected as background

Figure 7 Examples of synthesized 2D mammograms show RAU-Net’s segmentation results. Mammogram images from our dataset.
Full-size 4] DOT: 10.7717/peerj-cs.2076/fig-7

computed the correlation for five metrics using RAU-Net predicted mask compared to the
same metrics that were produced based on the ground-truth mask. Table 5 presents a
summary of the R2-correlation value for the five metrics. On the 144 test images, RAU-Net
had the largest R2-correlation value of 0.83 between the predicted mask and ground-truth
achieved when using the T AMX metric with threshold = 100, as in the scatterplot shown
in Fig. 9. These findings coincide with the article’s results (Guo et al., 2021). The evaluation
of BAC quantification for the different stages of BAC is depicted in Table 6, in which the
first stage includes no BAC, the second stage denotes minimal BAC, the third stage
represents moderate BAC and the fourth stage for severe BAC. A higher quantification
value is indicative of a more severe stage of BAC, indicating a greater risk of CVD.
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A B C D E

Figure 8 Samples from the model results on our dataset. (A) Shows the ground-truth image, (B) shows the mask generated using the RAU-Net
model, (C) shows the mask generated using the U-Net model, (D) shows the mask generated using the AttU-Net model, and (E) shows the mask
generated using the R2U-Net model. We generated these binary masks from mammogram images from our dataset.

Full-size 4] DOT: 10.7717/peerj-cs.2076/fig-8

ROC analysis

Figure 10 shows the ROC curves of our proposed RAU-Net, U-Net, R2U-Net, and AttU-
Net over our datasets for the segmentation of BAC. It can be comparatively illustrated via
the local enlarged view that the suggested model outperformed all methods for the BAC
segmentation task. The area under the curve (AUC) is a popular measure of classification
accuracy. In general, higher AUC values indicate better performance. AUC can be
interpreted as the average true positive rate over possible false positive rates. As shown, U-
Net achieved AUC = 0.59. AttU-Net presented better BAC extraction ability compared to
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Table 5 Comparison of R2 correlation of the whole test set quantification metrics results for
predicted masks and ground-truth.

Quantification method R2-correlation
Sum of probability (PM) 0.72
Sum of mask area (AM) 0.77
Sum of mask intensity (SIM) 0.82
Sum of mask area with intensity threshold X (T AMX) 0.83
Sum of mask with intensity threshold X (T SIMX) 0.71
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2500 A
2000 -
1500
1000 -

500 -

0-

T T T T T
0 1000 2000 3000 4000 5000

Figure 9 Scatterplot of BAC area in pixels for all the data set, in which each point represents the BAC
area for the image. The x-axis represents the predicted values, while the y-axis represents the ground-
truth values. Full-size K&] DOT: 10.7717/peerj-cs.2076/fig-9

Table 6 BAC with the five metrics in four patients.

PM 11.756863 1,469.3569 2,823.2825 6,861.7925

AM 0 1,038 2,502 6,290

SIM 0 274,752 527,946 1,401,433.0

TAM 0 1,347 2,502 6,290

TSIM 0 274,752 527,946 1,401,433.0
Note:

From left: 0; no arterial calcification, 1; few arterial calcification, 2; moderate BAC, and 3; severe calcification affecting
three or more vessels. The ground-truth BAC are contoured by lines, and the binary masks represent the predicted BAC
masks. The severity scoring of BAC is based on Hendriks et al. (2015), McLenachan et al. (2019). We generated these
binary masks from mammogram images from our dataset.

U-Net, particularly for small BAC, and achieved AUC = 0.75. The use of the attention
mechanism on high-level features in both the channel and spatial dimensions has resulted
in enhanced inter-class discrimination and intra-class aggregation. R2U-Net achieved
AUC = 0.87 because of better feature representation for BAC segmentation tasks. When
the values were compared, the best result, 0.96 AUC, was achieved by RAU-Net, which
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Figure 10 ROC curves for segmentation BAC task (A) U-Net, (B) AttU-Net, (C) R2U-Net, and our proposed RAU-Net in (D).
Full-size &l DOI: 10.7717/peerj-cs.2076/fig-10

A B

Figure 11 Examples of learned features by the RAU-Net model from (A) non-BAC subset and (B) BAC subset.
Full-size k&l DOL: 10.7717/peerj-cs.2076/fig-11

combined the advantages of recurrent blocks to enhance feature extraction and attention
module to capture the features’ long-range dependencies. This extension enhanced the
result of detecting BAC, and it is a promising result in applying such a model clinically and
using it for the estimation of CVD risk factors.

Feature learning

The RAU-Net model is able to recognize features and make distinctions with high
accuracy. Figure 11 illustrates some examples of feature maps that were created after the
recurrent block’s max-pooling layer in the contracting path. These layers were sufficiently
deep to generate BAC classification features. Figure 11A demonstrates samples of learned
features from non-BAC subset, whereas Fig. 11B shows samples of learned features from
BAC subset. A comparison of both feature maps shows that the RAU-Net model learned
the BAC samples at multiple scales and viewpoints. Moreover, the model recognized the
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Table 7 Comparison of segmentation time for the RAU-Net against other methods.

Method Training time per epoch (S) Testing time (S)
U-Net (Ronneberger, Fischer ¢ Brox, 2015) 313 132
U-Net + Attention 319 125
R2U-Net (Alom et al., 2018) 572 194
Our RAU-Net 589 191

absence of BAC in the non-BAC features and discriminated them from the other forms of
calcifications seen in mammograms.

Training and testing time

Table 7 shows a comparison between RAU-Net and the three related models (as described
in “Ablation Study”) in terms of training time per epoch and testing time for the test set.
The fastest model was the U-Net, which was created as a segmentation model for medical
images, but it does not capture the BAC after training for many epochs. AttU-Net required
more time because of the computation of the attention module, which included matrix
operations; in contrast, it enhanced the performance, as shown in Table 3. Adding
recurrent blocks increased the computation time in the R2U-Net and RAU-Net, which was
expected, given that it performed more computations in different time steps. Our
RAU-Net model achieved better BAC segmentation results in a reasonable amount of time
regarding both training and testing, 589 s to train one epoch and 191 s during the testing
phase.

DISCUSSION

Given the growing body of evidence regarding BAC as a risk marker for coronary artery
disease, and its association with an increased risk of CVD events (Iribarren et al., 2004;
Ferreira, Szejnfeld ¢ Faintuch, 2007; Maas et al., 2007; Iribarren & Molloi, 2013;
Chadashvili et al., 2016; Yoon et al., 2019; Newallo et al., 2015; Margolies et al., 2016), there
is an interest in BAC segmentation and quantification to assist radiologists in reporting
these calcifications in a standardized manner. However, BAC segmentation remains a
technically arduous task. The literature is scarce regarding BAC segmentation using DL.
The first published study for BAC segmentation in mammograms using DL was published
by Wang et al. (2017). A 12-layer CNN model was developed in a batch-based and pixel-
wise manner. In another study, AlGhamdi, Abdel-Mottaleb & Collado-Mesa (2020) found
that using U-Net shaped network improves model performance. They introduced DU-Net,
which combines the short-dense and long-summation connections techniques.

In our study, we developed a new recurrent attention U-Net model, which embedded
the recurrent block in the encoder and the decoder of the U-Net and used an attention
module between the encoder and the decoder as mentioned in the previous sections. A
major advantage of the recurrent block inside the model was that the accumulation of
features over multiple time steps offered a more accurate and effective representation of
features. Thus, it helped in detecting extremely low-level features that were required for the
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BAC segmentation task. Furthermore, the attention module enhanced the network’s ability
to detect long-range dependency of breast arterial curvilinear structure and effectively used
the multi-channel space for feature representation. The channel attention block enhanced
the ability to distinguish between various features across different channels, thereby
improving the model’s discriminatory capabilities. The spatial attention mechanism allows
the model to identify connections between features that are spatially distant but
contextually related, ensuring that important patterns and relationships within the data are
considered, regardless of their position. This ability for holistic data perception and
identifying long-range dependencies enhances the model’s efficacy, particularly in
complex tasks like image segmentation, where understanding the overall structure and
relation of parts within an image is essential.

Currently, there is no publicly available dataset for BAC, which necessitated our own
generation of one consisting of de-identified mammograms known to have BAC. The
ground-truth was created by experienced radiologists.

We compared our results with the classic U-Net model, the R2U-Net model, and the
Attention+U-Net model. This comparison enabled us to assess the efficacy of each
extension implemented on U-Net.

The RAU-Net performed better than the other models, according to the results reported
in “Results”. U-Net did not achieve good results because of BAC structures that were thin,
long, and, occasionally, arborescent shaped. R2U-Net obtained better results than U-Net
because of a better representation of low-level features. Adding attention to classic U-Net
improved the performance, especially in terms of sensitivity. The best performance after
our RAU-Net was R2U-Net, which learned good features. Our model used the recurrent
block, which required the same number of network parameters as U-Net.

Another important task presented was the quantification of BAC. We used
quantification measures to determine the level of calcification and found a strong
correlation between the quantification values derived from the predicted mask and the
ground-truth. Several different stages of the BAC were shown by calculating their
quantification values. Further work is required to develop a good dataset divided into the
different stages of BAC by a radiologist for further use to make a global BAC scoring.

Patients could be more adherent to treatment and health advice and make lifestyle
changes if BAC on mammography is reported as evidence of coronary artery disease risk.
That will prevent CVD at an earlier stage. A limitation of this work is that the model
was trained on single mammogram views from synthesized 2D mammograms, which, as
an imaging modality, is still not as widespread in use as DM. To address this
limitation, we plan to evaluate our model on multiple mammogram views for each
subject, with the intent to improve the accuracy of BAC quantification. We also plan to use
the quantification values to generate a BAC score as minimal to mild, moderate, and

severe.

CONCLUSIONS

We developed a fully automated system for the segmentation and quantification of BAC in
synthesized 2D mammograms to assist radiologists with reporting these calcifications in a
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standardized manner. The model was evaluated using a set of images specifically collected
for this task and annotated by medical students and radiology trainees trained and
supervised by an expert breast imaging radiologist. The developed model was called RAU-
Net. Our experiment confirmed that the recurrent and attention mechanism improved the
BAC segmentation task by capturing long-range dependencies of the calcifications and
using a multichannel space for effective feature representation. The proposed RAU-Net
performed better for the BAC segmentation task when compared with the existing models,
including the U-Net, R2U-Net, and attention-U-Net models. The quantitative metric
demonstrated a strong correlation between predicted mask quantification values and the
ground-truth values. Including the presence and quantification of BAC in mammography
reports could add significant value to this type of imaging beyond breast cancer detection,
and potentially help with CVD risk assessment and prevention in women, at no additional
cost and no additional radiation exposure.

PROMISING FUTURE WORKS

For future research, addressing the current limitations and advancing the study of BAC
quantification using mammograms requires a multi-faceted approach. Incorporating 3D
imaging technologies like DBT could significantly improve the depth and accuracy of BAC
analysis. A longitudinal approach to tracking BAC progression over time would provide
invaluable insights into the studies of cardiovascular risks. Developing an Al-driven tool
that leverages quantified BAC scores for personalized cardiovascular disease risk
prediction could transform patient care by enabling early and tailored interventions.
Implementing advanced machine learning strategies, including multi-view learning, is
crucial for enhancing the model’s accuracy and generalizability. The integration of BAC
scoring systems into clinical decision support frameworks could support healthcare
professionals in making more informed decisions, potentially leading to improved
management of cardiovascular risks. Through these comprehensive research directions,
future studies aim to refine diagnostic capabilities, personalize risk assessments, and
ultimately improve outcomes for individuals at risk of cardiovascular diseases associated
with BAC.
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