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ABSTRACT
Metabolomics data has high-dimensional features and a small sample size, which is
typical of high-dimensional small sample (HDSS) data. Too high a dimensionality
leads to the curse of dimensionality, and too small a sample size tends to trigger
overfitting, which poses a challenge to deeper mining in metabolomics. Feature
selection is a valuable technique for effectively handling the challenges HDSS data
poses. For the feature selection problem of HDSS data in metabolomics, a hybrid
Max-Relevance and Min-Redundancy (mRMR) and multi-objective particle swarm
feature selection method (MCMOPSO) is proposed. Experimental results using
metabolomics data and various University of California, Irvine (UCI) public datasets
demonstrate the effectiveness of MCMOPSO in selecting feature subsets with a
limited number of high-quality features. MCMOPSO achieves this by efficiently
eliminating irrelevant and redundant features, showcasing its efficacy. Therefore,
MCMOPSO is a powerful approach for selecting features from high-dimensional
metabolomics data with limited sample sizes.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Optimization Theory and Computation
Keywords High dimensional small samples, Feature selection, Multi-objective particle swarm,
Metabolomics

INTRODUCTION
Metabolomics is a relatively new area of study, and the tools for best practices and data
analysis are still evolving, making metabolomics data analysis a critical task in biomedical
research (Cambiaghi, Ferrario & Masseroli, 2017). Metabolomics data is often
characterized by high feature dimensionality but with limited samples, making it a typical
high-dimensional small sample (HDSS) problem. Achieving specific tasks in
metabolomics, such as predicting biomarkers (Grissa et al., 2016) or identifying effective
compounds overfitting, can be quite challenging. At this point, it is necessary to propose
advanced solutions with the help of data mining methods. Indeed, feature selection is not
only a valid method for addressing HDSS problems but also serves as an essential
dimensionality reduction technique. However, some feature methods cannot eliminate
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redundant features, lack stability, lead to unstable variations in the selected feature subsets,
and are unsuitable for HDSS data.

HDSS learning has been essential in statistical machine learning research for many
years. HDSS learning has been crucial in statistical machine learning research. Feature
selection is a stand-alone approach for processing high-dimensional data and has been
broadly utilized in multiple fields, like genomics (Afshar & Usefi, 2020), biological data
(Mafarja et al., 2023), and credit risk assessment (Yu, Yu & Yu, 2021). Building upon the
various approaches of combining feature selection with learning algorithms, feature
selection methods can be classified into four categories: filtered, wrapped, embedded, and
integrated. Filtered feature selection does not rely on a learning algorithm; some evaluation
criteria rank all features, and all features are ranked by some evaluation criterion rank all
features and a portion of the features are output after the ranking. The evaluation methods
based on feature ranking are the maximal information coefficient (MIC) (Sun et al., 2018),
Pearson correlation coefficient, Spearman correlation coefficient, mutual information, and
Max-Relevance and Min-Redundancy (mRMR) (Gu et al., 2022) etc. Wrapper-based
feature selection methods involve integrating with a learning algorithm by encapsulating it
as a black box. The quality of selected features is evaluated based on the prediction
accuracy of the learning algorithm on the feature subset. Learning algorithms include
support vector machines in classification problems (Benítez-Peña et al., 2019), partial least
squares regression (PLS), Lasso (Li, Lai & Cui, 2021), and heuristic search algorithms in
regression problems. Embedded feature selection is integrated within the learning
algorithm and compromises the first two approaches, including ID3 (Zhu & Zhong, 2010),
CART (Dong et al., 2021), etc. The integrated feature selection method incorporates
multiple feature selection methods, drawing on the concept of integrated learning. This
approach can combine the strengths of each algorithm, making it applicable not only to
HDSS data but also to improving algorithm stability. However, it may come with a trade-
off in terms of time performance. For example, Li et al. (2022) integrated the use of MIC
and approximate Markov blankets and L1 regular terms (DA2MBL1), which can
effectively solve the HDSS problem.

Feature selection contains two objectives: minimizing the size of the feature subset and
maximizing the model accuracy. Many methods focus on pursuing the precision of the
model while ignoring the size of feature subsets. To balance the two objectives, researchers
treat it as a MOOP. Currently, multi-objective feature selection has received much
attention. For example, an enhanced multi-objective immune algorithm (MOIA) is
proposed in the literature (Wei et al., 2020) for feature selection in intrusion detection. The
literature uses the multi-objective evolutionary Evolutionary Non-Dominated radial-based
algorithm (ENORA) as a wrapper approach for the search strategy to solve the online sales
forecasting problem (Jiménez et al., 2017). A discrete sine cosine algorithm (SCA)-based
multi-target feature selection (MOSCA_FS) method for hyperspectral images was
proposed in the literature (Wan et al., 2020) etc.

In HDSS problems, using filtered feature selection or multi-objective feature selection
methods alone cannot effectively remove irrelevant and redundant features. Researchers
have done much research to find a solution to the HDSS feature selection problem. Zhang
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et al. (2022) proposed a data augmentation and hybrid feature selection method based on
Wasserstein generative adversarial networks (WGAN) for credit risk assessment in HDSS
scenarios. In their study, You, Yang & Ji (2014) were concerned with feature selection in
HDSS scenarios. They proposed a comprehensive analytical framework designed for
feature selection in such domains. The framework encompasses selection strategies,
including single-feature and multi-feature ranking, and evaluation criteria, such as feature
subset uniformity and compact size. Additionally, they introduced a feature selection
method based on partial least squares tailored specifically for HDSS data. Notably, they
derived and presented two theorems to enhance the understanding and effectiveness of
their proposed methodology. Zhang & Cao (2019) adopted a filter feature selection
algorithm established on redundancy removal (FSBRR) to classify high-dimensional
biomedical data. These methods suit the HDSS problems and effectively remove irrelevant
features to improve the model’s accuracy. However, some redundant features remain, and
the resulting feature subset is not streamlined enough. Therefore, it is necessary to study
new HDSS feature selection methods to effectively eliminate irrelevant and redundant
features and filter a set of streamlined and stable feature subsets. This will ultimately
enhance model precision and stability.

This study presents a hybrid feature selection method called multi-objective particle
swarm feature selection method (MCMOPSO) to maximize the removal of irrelevant and
redundant features. By combining the strengths of mRMR and MOPSO, this approach
strives to identify an optimal subset of features. MCMOPSO is segmented into two stages.
The first phase uses a filtered feature selection method—mRMR, to rank feature subsets
and a wrapper approach to adaptively remove irrelevant and partially redundant features,
greatly reducing the size of feature subsets. In the second stage, a MOPSO feature selection
method building on dynamic acceleration factors and nonlinear decreasing inertia weights
is used to filter the feature subset, which not only removes the redundant features based on
the first stage but also enhances the precision of the model. The experiments show that the
MCMOPSO method can effectively solve the feature selection problem of HDSS and
provide a powerful help for metabolomics work. The specific contributions of this article
are outlined as follows:

(1) For the problem of HDSS in feature selection, a new hybrid feature selection method,
MCMOPSO, is proposed. The process can effectively remove redundant and irrelevant
features and can be taken as a fundamental framework for feature selection of HDSS data.

(2) To solve the problem of local optima in the multi-objective particle swarm
optimization algorithm in the second stage of MCMOPSO, a MOPSO algorithm based on
dynamic linear adjustment of acceleration factors and nonlinear decreasing weight
coefficients (CMOPSO) is proposed to obtain better diversity at the early stage to let the
particles get rid of local optima, and to enhance the performance of MOPSO, the
convergence speed of particles can be accelerated in the later stages.

(3) To verify that MCMOPSO can validly remove irrelevant and redundant features and
enhance the model’s accuracy, two metabolomics datasets and 10 HDSS datasets were used
for experiments. The validity of CMOPSO was verified using three conventional data sets.
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In this article, the work related to this study will be introduced in “Materials and
Methods”, the new model proposed in this article will be specified in “Experiment Design
and Analysis”, and three conventional datasets, two metabolomics data, and 10 individual
conventional HDSS datasets will be used in “Discussion”. The new model is subjected to
experimental analysis from various perspectives. Three algorithms are compared in the
first stage, while two in the second stage are compared. Furthermore, MCMOPSO is
compared to two other two-stage feature selection methods to validate the feasibility and
effectiveness of the new model further. The fifth section provides a comprehensive
summary of the entire article.

MATERIALS AND METHODS
Basic concepts
mRMR
mRMR (Peng, Long & Ding, 2005) is to find the set of features in the original set of features
that have the highest relevance to the final output result (Max-Relevance) and the set of
features with the minor correlation between features (Min-Redundancy). Assuming that x
and y are two random variables, the mutual information is defined as:

Iðx; yÞ ¼
ZZ

pðx; yÞ log pðx; yÞ
pðxÞpðyÞdxdy: (1)

The maximum class correlation max D S;Cð Þð Þ for the target class C and a subset of
features with S features is defined by the average of the correlations between the selected
features xi i ¼ 1; 2; . . . ; Sð Þ and the target class C:

maxðDðS;CÞÞ D ¼ 1
s

X
xi2S

Iðxi;CÞ: (2)

The following equation can evaluate the redundancy of S:

minRðsÞ ¼ 1
S2j j

X
ðxi;xjÞ2S2

Iðxi; xjÞ: (3)

The mRMR ranks features by simultaneously maximizing relevance and minimizing
redundancy and is expressed in the form of the following equation:

mRMR ¼ max D ¼ 1
s

X
xi2S

Iðxi;CÞ � R ¼ 1
S2j j

X
ðxi;xjÞ2S2

Iðxi; xjÞ
2
4

3
5: (4)

Multi-objective optimization
Various complicated tasks need to optimize two or more objectives simultaneously, and
the objective functions conflict with each other and cannot explicitly balance them; that is,
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the optimization of one objective may cause the decay of another objective and cannot
make each objective function optimal. The challenge of simultaneously optimizing
conflicting objectives within a defined range is called a multi-objective optimization
problem (MOOP) (Lücken Von, Brizuela & Barán, 2019). The goal is to find solutions to
achieve the best possible trade-off among the competing objectives. When solving practical
problems with multi-objectives, feature selection will be considered a maximization or
minimization problem. If the number of objectives is n, a standard multi-objective
optimization mathematical model should be denoted as shown in Eq. (1). Multi-objective
optimization methods aim to obtain a set of non-dominated optimal solutions or a subset
of characteristics.

minðmaxÞFðxÞ ¼ ff1ðxÞ; f2ðxÞ…fnðxÞg
s:t:x 2 �

: (5)

The Pareto dominance method (Newman, 2005) is a standard method for solving
MOOP. It is defined by examining two decision vectors a; b 2 X, a Pareto dominance b,
noted as a > b, when and only when the following equation, which can also be called a
dominates b. If no other decision variable can dominate it, then the decision variable is
termed a non-dominated solution.

8i 2 1; 2;…; ngff fiðaÞ � fiðbÞg ^ 9j 2 1; 2;…; nf g fjðaÞ < fjðbÞ
� �

: (6)

Particle swarm optimization
Particle swarm optimization (PSO), as described in the work previously published by
Figueiredo, Ludermir & Bastos-Filho (2016), is a type of swarm intelligence algorithm
inspired by the foraging behavior of bird flocks. A weightless particle simulates birds
within a flock, possessing two properties: velocity (V) and position (X). The velocity
attribute of the particle corresponds to the magnitude or speed at which it moves, while the
position attribute indicates the direction or orientation of its movement. Each particle
conducts an individual search within the search space to find its personal best solution,
which is known as the Pbest . This Pbest is then shared among all particles in the swarm.
Together, they determine the current global best (Gbest) solution, representing the overall
best solution found by the entire swarm. Each particle adjusts its velocity and position
based on its Pbest and the current Gbest solution shared among the particles. The position of
the particle is Xi ¼ ðxi1; xi2;…; xiDÞ, the velocity is vi ¼ ðvi1; vi2;…; viDÞ, the individual
extremum is Pi ¼ ðpi1; pi2;…; piDÞ and the global optimal solution is
Pg ¼ ðpg1; pg2;…; pgDÞ. Equations give the updated velocity and position formulas:

Vidðt þ 1Þ ¼ w � VidðtÞ þ c1 � r1 � ðpidðtÞ � xidðtÞÞ þ c2 � r2 � ðpgdðtÞ � xidðtÞÞ (7)

xidðt þ 1Þ ¼ xidðtÞ þ Vidðt þ 1Þ i ¼ 1; 2;…;N; d ¼ 1; 2;…;D (8)

where t denotes the number of iterations and N is the size of the population.
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The proposed method
MCMOPSO encapsulates Filter andWrapper feature selection methods and is divided into
two main phases. In the first phase, a combination of Filter and Wrapper removes
irrelevant and partially eliminates redundant features. This adaptive approach aims to
identify the best-performing candidate feature subset; the second phase uses a heuristic
search algorithm approach to remove redundant features and find a refined dataset using a
MOPSO algorithm. The construction flow of the algorithm is shown in Fig. 1.

In the first phase of MCMOPSO, mRMR calculates the correlation between each feature
fi and the target feature Yand the redundancy between fi and fj. These correlations and

redundancies are then sorted based on a combined measure of maximum relevance and
minimum redundancy. Subsequently, the forward search strategy (SFS) is employed,
gradually adding a predetermined number of features. After adding each set of features,
PLS regression is employed to model the feature subset, and 10-fold cross-validation is
used to evaluate the performance of PLS and avoid overfitting or under-fitting issues.
Finally, the candidate feature subset is selected based on the minimum RMSE value
RMSEbest corresponding to the PLS regression.

In the second phase of MCMOPSO, a heuristic search strategy is employed to remove
redundancy using a MOPSO algorithm. This strategy aims to balance the size of the feature
subset and the RMSE of PLS. As a result, a set of non-dominant solutions (Paretopops) is
obtained, achieving the objective of eliminating redundant features and obtaining the
optimal feature subset. The same 10-fold cross-validation is used, where the dataset is
divided into 10 parts, and each time nine parts of data are used for training and one part of
data is used for testing. This process is executed 10 times repeatedly, each time choosing a
different test set and training set, and ultimately obtaining the average of the RMSEs,
which is used to measure the performance of the model.

Fitness function
Currently, the PSO algorithm is mainly applied to continuous optimization problems, and
the MOOP has been studied less. Feature selection has two conflicting objectives, feature
subset minimization, and performance maximization (Zhang et al., 2023), and is a typical
MOOP.

In this study, the number of feature subsets and the root mean square error (RMSE) of
the evaluation index of the regression task are chosen as the objective functions of the
MOPSO, where the number of feature subsets is denoted as f1. The RMSE is denoted as f2,
as shown in Eqs. (9) and (10).

f1 ¼ num (9)

f2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Y � Ŷ
� �2r

(10)

where, num denotes the number of selected features, Y is the predicted value, and Ŷ is the
actual value.
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Multi-objective particle swarm optimization based on dynamic acceleration
factor and nonlinear decreasing inertia weights (CMOPSO)
To address the problem of the MOPSO algorithm quickly falling into the local optimum,
this article improves the convergence of MOPSO by using the dynamic acceleration factor
and nonlinear decreasing inertia weights to make the locally optimal particles jump out.
The specific flow of the algorithm is outlined in Algorithm 1.

The equations for the nonlinear decreasing inertia factor (w) value and the dynamic
acceleration factor are shown in Eqs. (11) and (12), where r1 and r2 refer to two random
values within [0, 1], t denotes the number of iterations, and T denotes the total number of
iterations. The change in the magnitude of the nonlinearly decreasing inertia factor value
(w) with an increasing number of iterations is shown in Fig. 2. In the literature (Feng, Chen
& Guo, 2006), the range of the acceleration factor is obtained: when c1 ¼ 2:75 � 1:25 and
c2 ¼ 0:5 � 2:25, the effect is better, so the parameters c1f ¼ 2:75, c1i ¼ 1:25, c2f ¼ 0:5 and

c2i ¼ 2:25 are set. Then, the size changes with the number of iterations, as shown in Fig. 3,
with the number of iterations increasing linearly and decreasing, with the number of
iterations increasing and growing linearly.

w ¼ ðwmax � wminÞ � ðt=T � 1Þ2 þ wmin (11)

c1 ¼ c1f þ ðc1i � c1f Þ � ðt=TÞ
c2 ¼ c2f þ ðc2f � c2iÞ � ðt=TÞ

(12)

Figure 1 Algorithm flowchart for the two-stage algorithm MCMOPSO. This chart depicts the flow-
chart of the MCMOPSO two-stage algorithm. Full-size DOI: 10.7717/peerj-cs.2073/fig-1
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Hybrid mRMR and multi-objective particle swarm feature selection methods
To address the feature selection problem in HDSS settings, this article introduces a two-
stage method called MCMOPSO. During the first phase of MCMOPSO, the mRMR
algorithm measures the correlation between features and the target feature and the
redundancy among features. By prioritizing maximum relevance and minimum
redundancy, the features are sorted. The Wrapper strategy is then employed to eliminate

Algorithm 1 Multi-objective particle swarm based on dynamic acceleration factor and nonlinear decreasing inertia weights, CMOPSO.

Input: Iteration number(T), population size(nPop), Maximum size of archive set(nAr), Size of particles(nChr)

Output: Pareto solution setParetopops

Step 1: Initialize the population, including initializing the speed and position of Gbest ,Pbest and particles in the population. Set the correlation
coefficient

Step 2: Get an Archive based on the Pareto dominance principle

Step 3: The velocity and position of particles in the population are updated by Formulas (7) and (8)

Step 4: Update Pbest and Gbest according to fitness function

Step 5: Calculate the particle crowding distance and sort the particles according to the crowding distance

Step 6: Update Archive

Step 7: While the termination criterion is not fulfilled, do Step3

return Paretopops in Archive

Figure 2 Graph of nonlinear decreasing inertia weight (w) values with increasing number of
iterations. The graph shows how w varies with the number of iterations in each iteration, based on
the given maximum and minimum values, calculated using the quadratic function. In the graph, the x-
axis represents the number of iterations, ranging from 0 to nIter. the y-axis represents the value of w.

Full-size DOI: 10.7717/peerj-cs.2073/fig-2
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irrelevant and partially redundant features, enabling the adaptive discovery of the best-
performing candidate feature subset. In Phase 2, the remaining redundant features are
removed from the MOPSO based on dynamic acceleration factors and nonlinear
decreasing inertia weights, and a subset of features with a small number and high accuracy
is selected.

Assuming that there are m features, n samples, a subset of features after data pre-
processing F ¼ ðf1; f2;…; fmÞ, and sample features after pre-processing

Y ¼ ðy1; y2;…; ynÞT , the specific construction process of the MCMOPSO model is as
follows:

Phase 1: Filter coupled with Wrapper to eliminate irrelevant and partially redundant
features

Step1. mRMR calculates correlation and redundancy: the mRMR scores between each
feature fi and the target features Y and fi are calculated to obtain the score sequence
mRMRlist ¼ ðf1 : mRMRðf1;YÞ; f2 : mRMRðf2;YÞ;…; fm : mRMRðfm;YÞÞ, and the score
sequence mRMRlist is sorted in descending order.

Step2. Determine the subset of candidate features: To address the challenge of
determining the number of features and threshold values in the Filter method; this article
incorporates the Wrapper approach to determine the optimal number of features to retain
adaptively. In this method, a certain number of features are added by a forward search
strategy. Then, PLS is used to model the regression of feature subsets, and finally the one
with the smallest RMSE value is the candidate feature subset Fcan.

Figure 3 The size of the acceleration factors c1 and c2 varies dynamically with the number of iterations. Initial values (c1i, c1f, c2i, and c2f) as
well as the total number of iterations (nIter) are used to compute the values of c1 and c2 in each iteration, which are derived by means of linear
interpolation. In the graph, the x-axis represents the number of iterations ranging from 0 to 100. y-axis represents the magnitude of c1 and c2. As the
number of iterations increases, the size of c1 gradually approaches the final value, while the size of c2 gradually approaches the initial value.

Full-size DOI: 10.7717/peerj-cs.2073/fig-3
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Phase 2: Use a heuristic search algorithm to remove redundancy again
Step3. Eliminate redundant features: The proposed MOPSO optimization algorithm,

which incorporates dynamic acceleration factors and non-linearly decreasing inertia
weights, is employed to remove redundant features from the candidate feature subset
(Fcan). This process results in the identification of the optimal feature subset (Fbest).

Step4. Model evaluation: The effectiveness and timeliness of the model are evaluated by
assessing the performance of the optimal feature subset.

The complete MCMOPSO algorithm is shown in Algorithm 2:

EXPERIMENT DESIGN AND ANALYSIS
All experiments were run on the same personal computer, and the specific configuration
information of the computer is shown in Table 1.

Metabolomics data and UCI data description
To test the validity of CMOPSO, this article first uses three conventional data sets,
Residential Building Data Set (abbreviated as RBuild) and Student Performance Data Sets
(with math scores and Portuguese scores, abbreviated as SPMath and SPPortuguese,
respectively) from the UCI data set. The data information is shown in Table 2 after the
missing value processing. Conventional datasets have been widely validated and applied in
different domains, and their data characteristics differ significantly from those of
metabolomics data. Therefore, the performance of CMOPSO on these datasets can provide
a more comprehensive evaluation of the algorithm rather than being limited to domain-
specific data. In addition, the selection of traditional datasets facilitates comparisons with
pre-existing algorithms to assess the strengths and weaknesses of the CMOPSO algorithm
relative to existing methods. It ensures that the algorithms perform as expected on
standard datasets and are general and generalizable.

Second, metabolomics data from HDSS were used to test the proposed MCMOPSO
algorithm. This article used experimental data on the material basis of ginseng injection for
the treatment of cardiogenic shock from the Center for the Development of Differentiation
of Basic Theories of Traditional Chinese Medicine at the Jiangxi University of Chinese
Medicine. The metabolomics data information for the HDSS is described in Table 3.
Experimental data were obtained by waters Hclass high-performance liquid
chromatography and synapt G2-si mass spectrometer. LC-MS-QTOF in negative ion
mode was used for experimental data acquisition. The aqueous phase A in the
chromatographic conditions was ultrapure water (containing 0.1% formic acid), and the
organic phase B was acetonitrile. The column temperature was 40 °C, the sample chamber
temperature was 10 °C, the flow rate was 0.4 ml/min, and the injection volume was 1 ul. In
the mass spectrometry conditions, the ionization source temperature was set at 100 °C, the
cone well gas was nitrogen with a flow rate of 50 L/h, and the desolventizing gas was
nitrogen with a temperature of 400 °C and a flow rate of 800 L/h. In the positive ionization
mode, the capillary voltage was 3.0 kV, the cone well voltage was 40 V, and the extracting
cone well voltage was 80 V. The chromatographic data were collected by LC-MS-QTOF.
The extraction cone pore voltage was 80 V, the collection time range was 0–25 min, and
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the mass number range was 50–1,200 Da. In the negative ion mode, the capillary voltage
was 2.5 kV, the cone pore voltage was 40 V, and the compensation voltage was 80 V.

The model group, the blank group, and the dosing group were set up respectively, in
which seven doses of ginseng injection were given to the shock model rats at 0.1, 0.33, 1.0,

Algorithm 2 Feature Selection of hybrid mRMR and MOPSO, MCMOPSO.

Input: Feature set F ¼ ðf1; f2;…; fmÞ, target feature Y ¼ ðy1; y2;…; ynÞT

Output: optimal feature subset Fbest

Phase 1: filtering irrelevant and partial redundancy features and selecting feature subset Fcan

Step 1: Initialize mRMRlist ¼ fg, Fcan ¼ fg
Step 2: for fi in F:

Step 3: Calculate the relevance and redundancy mRMRðfi;YÞ of fi and Y

Step 4. mRMRlist ¼ mRMRlist þ ffi : mRMRðfi;YÞg
Step 5: end for

Step 6: Fsorted ¼ SortByDescðmRMRlistÞ
Step 7: Fcan adds the features of Fsorted

Step 8: PLS was used to conduct regression modeling for Fcan and to save the predicted performance of the corresponding number of feature subsets

Step 9: Combine the forward search strategy to add one feature count at a time and perform step 7

Phase 2: removing redundant features to get the optimal feature subset Fbest

Step 10: Initialize Fbest ¼ fg
Step 11: Use Algorithm 1 to get Paretopops

Step 12: Fbest ¼ Paretopops

Step 13. return Fbest

Table 1 The computer configuration information.

Computer configuration Information

CPU Inter(R)-Core(TM)-i7-8700

Frequency 3.2 GHz-CPU

RAM 16.0 GB

Operating system Windows-10 (64 Bit)

Language Python 3.10.9

Table 2 Description of the general dataset information used in the study.

Dataset Sample (n) Feature (n) Target feature (n)

RBuild 372 103 2

SPMath 395 30 3

SPPortuguese 649 30 3

Note:
Sample column represents the number of samples in the dataset, feature column is the number of features in the dataset,
and target feature is the number of target features.
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3.3, 10, 15, and 20 (unit: ml-kg-1), with six samples of each dose. After 60 min of drug
administration, drug efficacy indexes were collected: hemoglobin flow rate (lm=s),
vascular tube diameter (lm), leukocyte adhesion number (pcs), and vascular permeability,
which were used as four dependent variables, namely the four target features. Information
on detected substances is characterized by a general division into two parts: a part for
substances contained in the experimental rats themselves, called endogenous substance
(Endo), which requires the use of blank and model groups for comparison. The other part
is information about the substances contained in the ginseng injection, called exogenous
substance (Exo), and only seven different doses of samples are needed for comparison.

Finally, to confirm the generalizability of the MCMOPSO algorithm, data from 10 small
high-dimensional samples are used to verify the effectiveness of MCMOPSO, which come
from the BlogTeFeedback Data Set on the UCI dataset (abbreviated as BlogTe, the
BlogTeFeedback Data Set has 50 test sets named by date, and the first 10 are selected here).
Table 4 presents the information description of each dataset after undergoing data
preprocessing.

Comparison of mRMR with other filtering algorithms
When a feature is selected, two problems may be faced: how relevant the features are to the
category prediction and how redundant the features are to each other. Applying heuristic
algorithms directly to HDSS data can pose challenges, like the risk of overfitting and high
computational complexity, which may hinder the effective elimination of irrelevant and
redundant features. Therefore, we adopt combined filter and wrapper feature selection
methods to eliminate irrelevant and partially redundant features. This section uses four
filtering methods, MIC, Pearson, spearman, and mRMR, to rank the features and combine
them with the Wrapper strategy to eliminate irrelevant and partially redundant features
and find the best-performing candidate feature subset adaptively.

The results are shown in Table 5, with black bolded values representing the best results.
The endogenous substances in the experimental data were selected from less than 300 ions
out of the original 10,283 ions, and the exogenous substances were selected from less than
200 ions out of the original 798 ions, except for y3. Among them, the mRMR algorithm has
the lowest RMSE in all seven datasets, but the RMSE in Exo-y2 is higher than that of the
MIC and Spearman algorithms. Therefore, from the above experimental results, it can be
seen that the mRMR algorithm performs better in dealing with HDSS data by selecting
fewer ions with high quality, i.e., small RMSE. In addition, this article also compares the R-
squared and mean absolute error (MAE) results in File S1 (Table S3), and the results, six

Table 3 Description of the metabolomics HDSS dataset information used in the study.

Dataset Sample (n) Feature (n) Target feature (n)

Endo 54 10,283 4

Exo 42 798 4
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data in the metabolomics dataset, have better R-squared and MAE than the other
algorithms. Therefore, the mRMR algorithm outperforms the other compared algorithms
on the metabolomics dataset.

Since mRMR can rank features based on their relevance to the sample and redundancy
between features, the feature subset size is much reduced compared to the complete set.
From Table 6, it can be seen that on the BlogTe dataset, mRMR has the least features on
BlogTe1-2 and BlogTe6 and the second-best performance on BlogTe5 and BlogTe8-10.
The results (Table S4 in File S1) in R-squared and MAE are also not as good as those of
other algorithms. Although mRMR does not perform optimally on the BlogTe dataset, on
the whole, it faces higher-dimensional and more complex metabolomics data, the size of
the filtered feature subset is smaller, and the performance of the filtered feature subset is
better. mRMR is, therefore, more suitable for high-dimensional data compared than the
other three feature ranking methods, i.e., a streamlined feature set can be selected using the
mRMR feature selection method.

Table 4 Description of the information used in the study regarding the HDSS dataset on UCI.

Dataset Sample (n) Feature (n) Target feature (n)

BlogTe1 115 280 1

BlogTe2 133 280 1

BlogTe3 116 280 1

BlogTe4 103 280 1

BlogTe5 92 280 1

BlogTe6 83 280 1

BlogTe7 135 280 1

BlogTe8 155 280 1

BlogTe9 181 280 1

BlogTe10 141 280 1

Table 5 Comparison of mRMR with other filtering algorithms results obtained at one stage in metabolomics data.

Feature number (n) RMSE

Dataset Full set MIC Pearson Spearman mRMR Full set MIC Pearson Spearman mRMR

Endo-y1 10,283 6,170 1,234 2,982 102 741.7310 698.2950 660.3764 664.6072 454.1142

Endo-y2 10,283 4,216 1,028 1,440 102 29.4566 25.9930 27.1033 24.0859 14.4735

Endo-y3 10,283 4,216 2,262 2,674 102 5.1288 4.9224 4.8017 5.0549 3.4551

Endo-y4 10,283 1,028 1,028 1,542 205 10.9573 9.5462 9.0001 9.3926 8.0797

Exo-y1 798 471 80 551 79 352.0239 253.2525 226.6377 271.5681 242.6975

Exo-y2 798 327 782 96 791 19.0489 17.2848 20.2707 15.3986 19.0935

Exo-y3 798 782 766 782 191 3.5128 3.5575 3.5317 3.5989 2.7900

Exo-y4 798 112 782 782 79 3.6348 3.3443 3.9640 3.6721 3.0507

Note:
Values in bold means best results.
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CMOPSO validity verification
Validation of CMOPSO’s validity on regular datasets
CMOPSO changes the acceleration factor and inertia weights basis on MOPSO, using
dynamic acceleration factor and nonlinear decreasing inertia weights to make better
diversity for particles to jump out of the local optimum in the early stage and speed up the
particles in the later stage to improve the performance of MOPSO and make it have a
better optimization finding accuracy. The regular dataset on UCI in Table 2 was used to
verify the validity of CMOPSO and compared with two feature selection methods,
approximate Markov blanket (AMB) and DA2MBL1, in the literature (Li et al., 2022). The
DA2MBL1 method obtains similar feature groups by approximate Markov blanket
clustering of features, imposes L1 regular term constraints on each similar feature group,
and combines the coordinate descent method of solving to make the regression coefficients
of the redundant features compressed to 0 to achieve the purpose of deleting redundant
features. To avoid the chance of CMOPSO, each data is run ten times, and group’s solution
with the smallest f1 or f2 is taken each time. The average of ten times is finally taken, and
the result after 10-fold cross-validation is shown in Table 7. Bolded text is the optimal
value of the result.

Table 7, shows that the CMOSPO algorithm has better results on the SPmath, SPPort,
and Rbuild datasets. Especially on the Rbuild dataset, y1 and y2 are left with only three
features from 103 features after the CMOPSO algorithm removes irrelevant and redundant
features, and the RMSE of y1 decreases from the original 589.1403 to 207.4673, and the
RMSE of y2 decreases from the original 55.0247 to 34.8772. From the three datasets in
Table 7, it can be seen that the CMOPSO algorithm has the lowest number of features and
the lowest RMSE among the three algorithms, so CMOPSO may have better results in
removing irrelevant and redundant features on regular datasets compared to AMB and
DA2MBL1 algorithms.

Table 6 Comparison of mRMR with other filtering algorithms Results obtained at one stage in UCI conventional HDSS data.

Feature number (n) RMSE

Dataset Full set MIC Pearson Spearman mRMR Full set MIC Pearson Spearman mRMR

BlogTe1 280 31 28 28 28 36.3218 26.6553 29.2033 30.4769 32.6921

BlogTe2 280 28 28 34 28 28.0234 22.3423 25.7373 22.0124 23.5863

BlogTe3 280 39 50 28 55 93.7205 35.5453 34.6225 33.4716 35.1093

BlogTe4 280 42 28 112 109 21.4296 10.3714 10.0159 11.2066 11.0762

BlogTe5 280 28 28 78 40 22.1625 14.2714 15.2853 12.1534 13.5933

BlogTe6 280 62 59 143 28 19.5266 16.9126 15.3457 19.2637 18.1872

BlogTe7 280 53 28 39 151 11.9441 10.5470 10.3512 10.6481 11.9441

BlogTe8 280 28 31 207 136 51.4217 36.9203 40.6439 51.42167 40.4043

BlogTe9 280 28 50 31 61 35.0042 33.2960 32.5312 32.4372 33.1735

BlogTe10 280 39 28 154 34 23.6604 21.9641 19.8671 23.3150 20.0649

Note:
Values in bold means best results.
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Parameter setting
This article will involve two multi-objective optimization algorithms: MOPSO and Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002). NSGA-II is one of
the popular multi-objective methods that uses a fast, non-dominated sorting algorithm
and introduces an elitist strategy. To demonstrate the effectiveness of the MCMOPSO
proposed in this article, the unmodified MOPSO and NSGA-II were used for experimental
comparison. The number of iterations set for fairness is 300, the particle swarm size is 100,
and the remaining parameters are set as shown in Table 8. The conventional parameters of
MOPSO and CMOPSO are the same.

Validation of MCMOPSO effectiveness on high dimensional small sample

datasets
To address the feature selection problem for metabolomics high-dimensional small-
sample data, this article proposes the MCMOPSO method using a two-stage feature
selection framework, tested on two metabolomics data and 10 conventional high-
dimensional small-sample data. In this section, two multi-objective methods, NSGA-II and
MOPSO, are used to compare with the second-stage MCMOPSO. To better compare the
three algorithms, all use mRMR to adaptively select the candidate feature set as input
features and the number of feature subsets and RMSE as two optimization objectives. To
avoid the chance of the algorithm results, each comparison algorithm is run independently
ten times on each dataset. The best Pareto solution with the same number of features in the
results of the ten runs is averaged, and the smaller the RMSE is, the better it is for the same
number of features. The final results are presented in a bar chart, and the error line is
added to indicate the difference between the results of the ten runs and the average. This
time, the error metric in the graph is standard deviation, and the shorter length of the error
line indicates that the results of each run are very close to the mean and the algorithm has
good stability.

Figure 4 shows four endogenous substance data to verify the validity of MCMOPSO.
The horizontal coordinate of this bar graph indicates the number of feature subsets, and

Table 7 Comparison of CMOPSO with other algorithms results obtained in regular datasets.

Feature number (n) RMSE

Dataset Full set AMB DA2MBL1 CMOPSO Full set AMB DA2MBL1 CMOPSO

SPmath-y1 30 18 18 10.5 3.1067 3.0444 2.9892 2.9604

SPmath-y2 30 16 16 10.6 3.5856 3.5351 3.4435 3.4201

SPmath-y3 30 13 13 10.2 4.4275 4.2591 4.2599 3.4214

SPPort-y1 30 16 16 10.6 2.3530 2.3408 2.3033 2.2925

SPPort-y2 30 16 16 10.7 2.5378 2.5197 2.4978 2.4797

SPPort-y3 30 15 15 13.8 2.7920 2.7601 2.7533 2.7307

Rbuild-y1 103 7 7 3 589.1403 243.2698 238.1848 207.4673

Rbuild-y2 103 8 8 3 55.0247 45.3516 37.6467 34.8772

Note:
Values in bold means best results.
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the vertical coordinate indicates the RMSE size. As the three algorithms perform better
when the number of features in the Endo-y1 data is taken as 9 and 12, the average RMSE of
NSGA-II is 331.53 and 380.02, the average RMSE of MCMOPSO is 302.51 and 314.65,

Table 8 Information on the parameterization of the two algorithms.

Algorithm Parameters

CMOPSO T = 300, nPop = 100, Wmax = 0.9, Wmin = 0.4, Mesh = 20, nAr = 50

NSGA-II T = 300, nPop = 100, crossover probability = 0.6, mutation probability = 0.1

Figure 4 Comparison of experimental results of MCMOPSO, NSGA-II and MOPSO algorithms on endogenous substances. Where the
horizontal coordinate number of features is the number of output features, the vertical coordinate is the root mean square error (RMSE) of the
regression's evaluation metrics, and the p1 in the upper right corner is the p-value obtained from hypothesis testing of the algorithms MCMOPSO
and NSGA-II is denoted as p1, and the p-value obtained from hypothesis testing of the MCMOPSO algorithm and the MOPSO algorithm is denoted
as p2. Full-size DOI: 10.7717/peerj-cs.2073/fig-4
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respectively, and the average RMSE of MOPSO is 306.85 and 330.95, respectively. For
NSGA-II, MCMOPSO and MOPSO have error values of 23.085, 11.78, and 0 for 9 features
and 0, 0, and 10.34 for 12 features, respectively. To compare of the mean RMSE, the
MCMOPSO algorithm performs the best, and the NSGA-II algorithm performs the worst
for both features. As for the error line, each algorithm’s performance varies for different
features. CMOPSO algorithm has a low error line for nine features, and the MOPSO
algorithm has a low error line for 12 features. However, the NSGA-II algorithm has a
higher error line for both features.

As can be observed from the results in Fig. 4, the average RMSE of MCMOPSO on the
four endogenous substances data is smaller. Still, when Endo-y1 retains eight ions, the
RMSE is higher than that of NSGA-II but slightly lower than that of MOPSO with a similar
magnitude of error. In the Endo-y1 data, MCMOPSO's average RMSE is better than the
two comparison algorithms, but the error is more significant when 11 ions are selected.
MCMOPSO in the Endo-y3 data outperforms the comparison algorithms in the average
RMSE and the error value. The average RMSE is lower than NSGA-II on the Endo-y4 data
except for selecting 13 ions, which is lower than the average RMSE of NSGA-II and
MOPSO.

In addition, in this article, we conducted independent t-test for the MCMOPSO
algorithm against the NSGA-II algorithm and the MOPSO algorithm, respectively, and
obtained the corresponding p-values, denoted as p1 and p2, respectively, which are shown
in the upper right corner of each figure in Fig. 4. In addition to performing hypothesis tests,
we obtained two other evaluation metrics through regression analysis: the R-square and
the MAE. We averaged the solutions obtained from one run and ten runs for each dataset
and computed the final average of their R-squared and MAE. The results for R-squared
and MAE are tabulated for comparison in File S1 (Table S5). From the p-value results for
datasets y1, y2, and y3, our algorithm shows a significant advantage (p-value < 0.05) under
certain comparison conditions. While the R-square for all four datasets is larger than the
two comparison algorithms, the MAE for y1, y3, and y4 is smaller than the two.

In summary, the MCMOPSO algorithm outperforms the two comparison algorithms
on endogenous substances overall, but the significance difference is less pronounced and
only significant on some of the datasets.

Figure 5 shows the results of the runs on the four pharmacodynamic indicators in
exogenous substances; from the figure MCMOPSO algorithm on Exo-y1, Exo-y3, and Exo-
y4, it can be seen that the average RMSE is lower than the two comparative algorithms and
better performance. Still, on Exo-y2, the performance is not as good as the NSGA-II
algorithm but better than the MOPSO algorithm. From the error line, it can be seen that
MCMOPSO has fewer errors on Exo-y2-y4 but more on Exo-y1, especially when 10 ions
are selected. The MCMOPSO algorithm outperforms NSGA-II and MOPSO algorithms
on exogenous substance data.

From the p-values obtained during the hypothesis testing, all p-values are less than 0.1
except for p2 on y1, which is greater than 0.1. and p1 on the four datasets of exogenous
substances are less than 0.05. From the results of R-squared and MAE, the R-squared of y2,
y3, and y4 are more significant than the two comparative algorithms, and the MAE of y2
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and y3 are less than the two comparative algorithms. There is a substantial difference
between MCMOPSO and NSGA-II in the exogenous substance dataset, but the critical
difference with MOPSO on this dataset is not so noticeable. From the results of multiple
regression evaluation metrics, it can be seen that MCMOPSO outperforms the two
comparative algorithms in most of the datasets and, therefore, outperforms them in overall
performance.

Figure 6 shows the experimental results on ten regular HDSS datasets. The MCMOPSO
algorithm significantly outperforms the NSGA-II and MOPSO algorithms regarding
average RMSE and error on data BlogTe1-3, BlogTe6, and BlogTe10. The BloTe5
algorithm does not perform as well as the two comparative algorithms when taking three

Figure 5 Comparison of experimental results of MCMOPSO, NSGA-II and MOPSO algorithms on exogenous substances. The p1 in the upper
right corner is the p-value obtained from hypothesis testing of the algorithms MCMOPSO and NSGA-II is denoted as p1, and the p-value obtained
from hypothesis testing of the MCMOPSO algorithm and the MOPSO algorithm is denoted as p2. Full-size DOI: 10.7717/peerj-cs.2073/fig-5
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Figure 6 Comparison of experimental results of MCMOPSO, NSGA-II and MOPSO algorithms on
UCI substances. The figure depicts a comparison of the results of MCMOPSO and the two comparison
algorithms on regular high-dimensional small-sample data in UCI. The p1 in the upper right corner is the
p-value obtained from hypothesis testing of the algorithms MCMOPSO and NSGA-II is denoted as p1,
and the p-value obtained from hypothesis testing of the MCMOPSO algorithm and the MOPSO algo-
rithm is denoted as p2. Full-size DOI: 10.7717/peerj-cs.2073/fig-6
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ions but outperforms them when taking 4–6 ions. Similarly, on BlogTe9 data the
MCMOPSO algorithm has a lower average RMSE than NSGA-II and MOPSO algorithms
when the number of ions taken is three, four, and 11. On BlogTe4, BlogTe7, and BlogTe8,
the MCMOPSO algorithm does not perform as well as the two comparison algorithms, but
the errors are similar.

The p1 value is less than 0.05 for six data on the public dataset, i.e., more than half of the
datasets have a significant difference between MCMOPSO and NSGA-II, and the p2 value
is less than 0.05 for four datasets. From the results of the R-square and the MAE, it can be
seen that the R-square of the MCMOPSO algorithm outperforms the two comparative
algorithms for five datasets, and the MAE outperforms the two comparative algorithms for
six datasets (Table S6 in File S1). Therefore, the MCMOPSO algorithm is slightly better
than the NSGA-II algorithm and MOPSO algorithm in overall performance.

In summary, the MCMOPSO algorithm proposed in this article is slightly better than
the NSGA-II and MOPSO algorithms in dealing with HDSS data, and the error is more
minor in most cases. However, there is a significant error in some data or when choosing a
specific number of features, so the algorithm’s stability needs to be improved. The
experimental comparison shows that the difference between NSGA-II, MCMOPSO, and
MOPSO is more evident in the Exo dataset, especially the BlogTe dataset. This is because
the Endo dataset has higher dimensionality than the Exo and BlogTe datasets, and NSGA-
II maintains the diversity of the population by using non-dominated ordering and
crowding degree distance. More dimensions provide more possibilities and diversity in
higher dimensional space due to larger solution space. So, NSGAII works slightly better
with higher dimensional endo datasets. Different algorithms may show different
advantages and disadvantages for a MOOP like feature selection. This leads to more
apparent differences between NSGA-II, CMOPSP, and MOPSO on Exo datasets, especially
BlogTe datasets.

Comparison of algorithm performance

Time efficiency is also an essential element of feature selection research, and this article will
compare and analyze the algorithm’s running time and time complexity. Table 9 lists the
running times of the proposed algorithm and the two comparison algorithms. The table
shows that CMOPSO has much less running time than NSGA-II on regular high-
dimensional data and higher-dimensional data in metabolomics, with 13 of them having
less running time than MOPSO. Because CMOPSO changes the acceleration factor based
on the original MOPSO, it is a little faster and takes less time to run. In terms of time
complexity, assuming that the size of the particles in the particle swarm and the size of the
population in NSGA-II are both n, and the particle size and initial population size are m,
the time complexity of MOPSO and CMOPSO is max½OðmnÞ;OðnÞ;Oðn2Þ�, and the time
complexity of NSGA-II is max½OðmnÞ;Oðn2Þ;Oðn3Þ�. Comparing the time complexity, the
time complexity of MOPSO is lower than that of NSGA-II. The experimental results show
that CMOPSO has better calculation efficiency in the feature selection algorithm based on
multi-objective optimization.
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To present a more intuitive comparison of the running time of the three algorithms, the
time comparison in Table 9 is visualized in the form of a bar chart, and the results are
shown in Fig. 7. The horizontal coordinates represent different datasets, the vertical
coordinates represent the running time, and the three colors represent the three
algorithms. From the figure, it can be seen that the running time of the NSGA-II algorithm
is greater than that of CMOPSO and MOPSO algorithms, whereas, on the datasets Endo-
y1-y4, Exo-y2-y3, BlogTe1, and BlogTe5-10, the running time of CMOPSO algorithm is
less than that of MOPSO algorithm. Therefore, the CMOPSO algorithm is slightly better
than the two compared algorithms in terms of time performance.

Comparison of MCMOPSO and other two-stage algorithms
MCMOPSO is a two-stage hybrid feature selection algorithm that integrates the Filter and
Wrapper techniques. The core functionality of MCMOPSO is implemented in the second
stage, Wrapper. Therefore, for experimental completeness, MCMOPSO was compared
with two other two-stage feature selection algorithms, FCBF (Li, Yu-Yu & Cong, 2018) and
CI_AMB (Huang et al., 2020). FCBF is an exemplary algorithm that operates in two
distinct stages. In the first stage, this method utilizes symmetric uncertainty to compute the
correlation between features and the target feature. Remove irrelevant features from the
feature subset by setting a threshold value. During the second phase, FCBF employs the
approximate Markov blanket technique to eliminate redundant features. CI_AMB is a

Table 9 Running time of the three algorithms in the second stage.

DataSet Algorithm

MCMOPSO (s) MOPSO (s) NSGA-II (s)

Endo-y1 311.9949 348.8238 441.95

Endo-y2 315.7805 380.2408 421.7625

Endo-y3 301.7312 364.3446 421.4107

Endo-y4 336.0243 354.5867 550.6532

Exo-y1 359.8688 331.4467 452.0622

Exo-y2 396.169 412.7382 607.35

Exo-y3 334.2242 357.2573 437.8177

Exo-y4 357.6967 337.1848 428.6405

BlogTe1 228.7358 262.2551 409.0935

BlogTe2 273.6847 241.3397 726.1251

BlogTe3 300.2104 262.8484 726.9779

BlogTe4 302.9208 280.6899 478.1777

BlogTe5 267.2119 317.7942 456.3005

BlogTe6 263.7787 312.7636 443.9855

BlogTe7 325.7074 414.6876 546.4352

BlogTe8 354.4535 407.3553 559.4451

BlogTe9 374.816 378.5011 544.0629

BlogTe10 284.06 342.6711 457.52

Note:
Values in bold means best results.
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hybrid feature selection method based on an iterative approximation of the Markov
blanket. This method begins by measuring the correlation between features and the target
variable using the MIC. It then removes irrelevant features based on evaluation criteria
before employing the iterative approximation of the Markov blanket strategy to eliminate
redundant features. Next, the Markov blanket strategy utilizes an iterative approach to
gradually remove redundant features.

To better compare with the two-stage algorithms, the number of ions with low average
RMSE is selected in Figs. 4 and 5 to compare the number of ions screened and the RMSE
obtained by the CI_AMB and FCBF algorithms. In BlogTeFeedback data, MCMOPSO
chooses the group of solutions with fewer features to compare with the two comparison
algorithms, and the results are shown in Table 10; the bolded values are the optimal values.

Table 10, shows that among the eight metabolomics data, MCMOPSO chooses fewer
ions than CI_AMB and FCBF, and the model accuracy is higher than theirs. For example,
on the Endo-y1 data, MCMOPSO finally selects nine ions with an RMSE of 302.5077,
while CI_AMB selects 64 ions with an RMSE of 705.3395. It is better than FCBF but not as
good as MCMOPSO. In the BlogTeFeedback data of the UCI dataset, BlogTe1, BlogTe3,
and BlogTe3, and BlogTe3, and BlogTe3 and BlogTe3, respectively, have a higher accuracy
than FCBF, BlogTe3 and BlogTe6 on both objectives outperform the two compared
algorithms, and on BlogTe2, BlogTe4-5 and BlogTe7-10, the model accuracy of
MCMOPSO is higher under the condition of the same number of filtered features. In
summary, MCMOPSO outperforms both two-stage algorithms with better dimensionality
reduction and improved model accuracy.

Figure 7 Runtime comparison of MCMOPSO with MOPSO and NSGA-II algorithms. The chart
depicts the running times of the three compared algorithms.

Full-size DOI: 10.7717/peerj-cs.2073/fig-7
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In addition, this article was compared with the regression metabolomics data from the
literature (Acharjee et al., 2020), which compared several methods, and in the end, Boruta’s
method gave the best results. Boruta’s method selected 46 features from metabolomics and
reduced them to seven after power tools. The MCMOPSO algorithm uses the same dataset.
In the initial stage, the mRMR algorithm selects 19 features, while in the second stage, the
CMOPSO algorithm obtains a set of solutions where the minimum number of features is 3.
To compare the performance of the two models, MCMOPSO adopts the same way of
evaluating the model performance as in the comparison article, and the regressor uses
random forests and keeps the same parameters. The final R-square of the three features
selected by MCMOPSO was 0.8624, while Boruta’s method yielded an R-square of 0.842.
In other words, we have chosen fewer features than mentioned in the literature with higher
R-squared values.

DISCUSSION
A series of valuable conclusions are drawn by comparing the performance of three multi-
objective feature selection methods, MCMOPSO, MOPSO, and NSGAII, on HDSS data for
metabolomics. Firstly, it can be observed that the MCMOPSO method effectively filters a
condensed subset of features on most datasets, demonstrating its superiority in the feature
selection task. The MCMOPSO method also offers significant advantages regarding the

Table 10 Comparison of results between MCMOPSO and other two-stage algorithms on high-dimensional small sample datasets. Comparison
results of the two-stage algorithm MCMOPSO with more other algorithms.

Feature number (n) RMSE

Dataset Full set CI_AMB FCBF MCMOPSO Full set CI_AMB FCBF MCMOPSO

Endo-y1 10,283 64 71 9 741.7310 705.3395 753.7210 302.5077

Endo-y2 10,283 47 55 13 29.4566 24.3540 24.7824 9.9684

Endo-y3 10,283 44 51 11 5.1288 5.1372 5.3590 2.4480

Endo-y4 10,283 42 49 21 10.9573 10.9771 11.7237 4.9154

Exo-y1 798 78 78 15 352.0239 288.3768 288.3768 146.3726

Exo-y2 798 8 15 17 19.0489 15.7140 17.0696 11.1565

Exo-y3 798 5 18 14 3.5128 3.4236 4.5020 1.9396

Exo-y4 798 13 16 10 3.6348 3.7231 3.6980 2.1526

BlogTe1 280 5 5 4 36.3218 28.1551 37.7140 9.7105

BlogTe2 280 4 4 4 28.0234 19.4269 33.2647 11.6698

BlogTe3 280 4 5 3 93.7205 30.6052 42.0285 12.7244

BlogTe4 280 3 5 3 21.4296 9.9083 11.2857 8.6421

BlogTe5 280 4 4 4 22.1625 11.4452 11.4451 8.7269

BlogTe6 280 7 7 6 19.5266 18.8514 18.8514 7.3704

BlogTe7 280 7 7 7 11.9441 10.1605 12.1941 10.1536

BlogTe8 280 4 4 4 51.4217 41.5088 41.9495 35.1875

BlogTe9 280 4 4 4 35.0042 28.2894 33.5649 20.2559

BlogTe10 280 5 5 5 23.6604 18.8846 19.2383 12.1774

Note:
Values in bold means best results.
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quality of feature subsets compared to traditional MOPSO and NSGAII. By evaluating the
selected feature subset in the regression task using two regression evaluation metrics, R-
squared and MAE, it is found that MCMOPSO performs better on most datasets. This
further validates the effectiveness of the MCMOPSOmethod. A high-quality feature subset
not only helps improve the regressor’s performance but also reduces the risk of model
overfitting, which improves the model’s generalization ability. In addition, the study
reveals the time-efficiency advantage of the MCMOPSO method. By adopting a series of
optimization strategies and heuristic algorithms, MCMOPSO can significantly reduce the
computation time during the feature selection process, making it more feasible and
practical in practical applications. This efficient feature selection method support for
metabolomics research and other HDSS analysis.

Many similar studies have applied feature selection to the field of metabolomics. For
example, Prete et al. (2016) used a feature selection approach to analyze protein features to
determine their relationships and specificity within protein families. Chardin et al. (2021)
proposed a new feature selection classification method (PD-CR) to analyze two
metabolomics data: urine and samples of mutant isocitrate dehydrogenase (IDH) or wild-
type IDH from lung cancer patients and healthy controls. It was also compared with PLS-
DA, Random Forest, and SVM algorithms. The results show that the advantage of PD-CR
is that it provides a confidence score for each prediction that can be used for culling
classification. This significantly reduces the false discovery rate. Grissa et al. (2016) utilized
knowledge discovery and data mining methods to propose advanced solutions for
predictive biomarker discovery. The strategy evaluates combined numerical and symbolic
feature selection methods to obtain the optimal combination of metabolites that produce
effective and accurate predictive models. Fu et al. (2020) performed feature selection and
classification for class-imbalanced data in metabolomics by minimizing the degree of
overlap. The results show that the proposed algorithm effectively identifies key features
and controls false discovery for class balance learning.

Despite the strengths of our study, we are aware of its limitations. For example, our
experiments may be limited by the size and quality of the dataset, which may cause our
results to be somewhat biased. Future research directions will focus on further improving
our method. For example, more complex optimization algorithms or combining multiple
algorithms could be explored to enhance the performance of feature selection. In addition,
we plan to incorporate other data information in metabolomics, such as mz values and
retention times, to confirm biomarkers more comprehensively. By combining different
types of data information, the accuracy and reliability of biomarkers can be improved for
better application in metabolomics research.

Our study provides an effective method for solving the feature selection problem in
analyzing HDSS data in metabolomics. Although there are still some limitations, through
future improvements and extensions, we believe this method will show a broader
development prospect in future applications and make a more significant contribution to
the progress of metabolomics research and the biomedical field.
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CONCLUSION
To address the issue of the MOPSO algorithm being prone to get trapped in local optima,
this article proposes the utilization of dynamic acceleration factors and nonlinearly
decreasing inertia weights. These measures aim to help the algorithm escape local optima
and enhance its convergence capabilities. Facing the problems caused by high dimensional
small sample data containing more noisy data and too high dimensionality, a hybrid
mRMR and multi-objective particle swarm feature selection algorithm (MCMOPSO) is
proposed. In the initial phase, a Filter-Wrapper hybrid approach is employed to remove
irrelevant and partially redundant features dynamically. The second phase, the CMOPSO
algorithm developed in this study, is utilized to eradicate the remaining redundant features
further. It has been established through comprehensive experimental design and
comparative analysis that MCMOPSO operates with remarkably efficiently. It effectively
eliminates irrelevant features and minimizing redundant ones, resulting in identifying a
highly refined subset of features. MCMOPSO has been well used in both UCI datasets and
metabolomics data. Moreover, it performs even better when MCMOPSO faces
metabolomics data with higher feature dimensions and smaller sample sizes. It can
effectively screen out a small number of ions with high quality, providing technical support
for data processing in metabolomics. Moving forward, our focus will be on further
improving the algorithm to enhance the stability of the model while reducing the time
consumption and continuing to search for better multi-objective feature selection
methods.

ABBREVIATIONS
mRMR Max-Relevance and Min-Redundancy

MCMOPSO hybrid Max-Relevance and Min-Redundancy (mRMR) and multi-objective
particle swarm feature selection method

CMOPSO multi-objective particle swarm algorithm based on dynamic linear adjust-
ment of acceleration factors and nonlinear decreasing weight coefficients

PLS partial least squares

MOPSO multi-objective particle swarm

NSGA-II Non-dominated Sorting Genetic Algorithm-II

RMSE root mean square error

HDSS high-dimensional small samples

MOOP multi-objective optimization problem

MAE mean absolute error.
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