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ABSTRACT
Accurate prediction of electricity generation from diverse renewable energy sources
(RES) plays a pivotal role in optimizing power schedules within RES, contributing to
the collective effort to combat climate change. While prior research often focused on
individual energy sources in isolation, neglecting intricate interactions among multiple
sources, this limitation frequently leads to inaccurate estimations of total power
generation. In this study, we introduce a hybrid architecture designed to address these
challenges, incorporating advanced artificial intelligence (AI) techniques. The hybrid
model seamlessly integrates a gated recurrent unit (GRU) and a ResNextmodel, and it is
tuned with the modified jaya algorithm (MJA) to capture localized correlations among
different energy sources. Leveraging its nonlinear time-series properties, the model
integrates meteorological conditions and specific energy source data. Additionally,
principal component analysis (PCA) is employed to extract linear time-series data
characteristics for each energy source. Application of the proposed AI-infused approach
to a renewable energy system demonstrates its effectiveness and feasibility in the
context of climate change mitigation. Results reveal the superior accuracy of the hybrid
framework compared to more complex models such as decision trees and ResNet.
Specifically, our proposed method achieved remarkable performance, boasting the
lowest error rates with a normalized RMSE of 6.51 and a normalized MAPE of 4.34 for
solar photovoltaic (PV), highlighting its exceptional precision in terms ofmean absolute
errors. A detailed sensitivity analysis is carried out to evaluate the influence of every
element in the hybrid framework, emphasizing the importance of energy correlation
patterns. Comparative assessments underscore the increased accuracy and stability of
the suggested AI-infused framework when compared to other methods.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords Renewable energy, Hybrid AI model, Forecasting, Deep learning, Climate change

INTRODUCTION
The need for energy has grown dramatically to meet everyday human needs and activities in
tandemwith the social economy’s fast expansion (Semieniuk et al., 2021). Power generation
has increased significantly as a result of the rising reliance on energy. Traditional fossil fuels
have triggered significant environmental harm, contributing to issues like air pollution
and global warming (Hassan et al., 2021). The release of greenhouse gases from these fuels
intensifies climate change. To counteract these challenges, there is a growing emphasis
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on transitioning to RESs, driven by the advancement of green technologies and the
enactment of stringent ‘‘zero carbon emission’’ regulations (Ebhota & Tabakov, 2021).
This shift towards green development has become integral to people’s lives. Many nations
are actively investing in the development of RESs, utilizing sustainable energy sources to
generate electricity.

As per the International Energy Agency (IEA) (Kober et al., 2020), it is projected that
RESs will represent approximately 70% of all new power production capacity by 2040. This
underscores a global commitment to transitioning away from conventional energy sources
towards more sustainable and environmentally friendly alternatives. The smart microgrid
idea has led to a substantial expansion in the application of RESs due to their numerous
benefits, which include minimum environmental pollution, security of the energy supply,
and the realization of sustainable development. RESs can be utilized to provide all or part
of a region’s power demands; they typically comprise of loads, energy generation, and
energy storage components. For both individual producers and system operators in RESs,
estimating the quantity of electricity produced from renewable sources is essential.

As an illustration, power plants must submit transmission deals to the australian
national electricity market up to forty hours beforehand, with the option to amend
the offers up to five minutes before to the dispatch (Simshauser, 2021). Additionally,
precise forecasting of electricity generation from RESs holds the potential to enhance the
efficiency of power dispatch, optimize the scheduling of power resources, and contribute to
increased economic gains for energy-related enterprises. This, in turn, facilitates improved
operational coordination within power systems, ensuring the security and reliability of
energy supplies.

Biogas, biofuel (Rahman, Farrok & Haque, 2022), geothermal energy, small-scale
hydroelectricity, solar photovoltaic, thermal solar, wind, and solar thermal are examples
of RESs that may be used in RESs. To improve the multi-energy generation prediction’s
accuracy, it is important to investigate how multiple energy sources coordinate (Ang et
al., 2022). The weather has a significant impact on energy generation forecast, particularly
for wind and solar power, which puts the smart microgrid’s electricity scheduling at risk.
Electricity may be produced from solar radiation using PV modules or concentrated
solar thermal power and wind energy from wind farms. Solar thermal power can only be
produced by direct normal irradiance, whereas PV electricity can be produced byworldwide
horizontal irradiance (Law et al., 2014). With several wind sources, an increasing number
of wind farms have been established, particularly in America, China, and Germany (Sahu,
Hiloidhari & Baruah, 2013).

The variability in weather conditions contributes to the unpredictability of both wind
and solar power generation, establishing a spatial–temporal correlation between them.
Accurate solar and wind energy forecasting reduces the risk of blackouts or even outages in
the system and decreases the price of energy balancing, which is the basis for RESs’ capacity
to anticipate the supply of power (Tu et al., 2021). This article studies the power generation
projection in a RES while accounting for the local correlations of numerous sources of
renewable energy in order to reduce uncertainty in the electricity supply.
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Motivation
The essential need to strengthen the stability and dependability of RESs, particularly in the
context of growing environmental concerns and emergency scenarios, is the basis behind
this study. A revolutionary transition to sustainable energy resources is required in order
to address climate change and reduce our dependence on traditional fossil fuels (Kabeyi &
Olanrewaju, 2022). With the ability to decrease the effects of climate change and guarantee
a sustainable energy future, RESs, provide a promising path forward for clean and green
energy (Al-Shetwi, 2022). Robust and adaptableRESs are even more crucial in emergency
scenarios, such as emergencies or disruptions to traditional energy networks. Precise
forecasting of renewable energy output is essential for daily operations as well as for quickly
and efficiently handling unanticipated events (Alkabbani et al., 2021). This study aims to
combine green and nature-inspired approaches into renewable energy forecasting, driven
by the critical need to develop resilient energy systems that can resist disasters and aid in
disaster recovery efforts.

Contribution
By addressing important issues and presenting novel approaches, our study significantly
advances the area of renewable energy forecasting. The following are this work’s primary
technical contributions:
1. Hybrid architecture for projecting renewable energy: We suggest a unique hybrid

design to capture intricate interactions between various RESs, combining ResNext
(Pant, Yadav & Gaur, 2020) and GRU (Wang, Liao & Chang, 2018) models. In contrast
to other methods that frequently concentrate on estimating distinct energy sources
independently, our hybrid model takes into account the localized correlations between
many sources. Because of the complex interrelationships between various energy
components, this design yields more precise estimates of overall power generation.

2. Implementing PCA for feature extraction: We use PCA for feature extraction in order
to increase the dataset’s temporal dimension and interpretability. Effective feature
selection is aided by PCA, which decreases the dimensionality of the data while
keeping important information. Improved model performance is made possible by
this contribution, which makes it possible to express linear time-series features more
effectively.

3. Rigorous performance evaluation standards: Using rigorous measures such as R-
squared, explained variance, mean absolute error (MAPE), root mean squared error
(RMSE), and RMS logarithmic error, we conduct a thorough performance review. This
comprehensive examination guarantees a detailed appraisal of the model’s precision
and accuracy, enabling a trustworthy comparison with the most recent versions. A
more complex understanding of the model’s predicting ability is made possible by the
use of several measures.

4. Superior predictive performance for hourly energy generation: Our proposed ResNeXt-
GRU-MJA model outshines existing state-of-the-art methods by demonstrating
a remarkable 15% improvement in hourly forecasting accuracy. This superior
performance is substantiated through normalized measures of RMSE, MAPE, and
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MAE specifically tailored for hourly predictions. The model’s effectiveness in capturing
short-term energy variations positions it as a valuable tool for applications requiring
precise hourly forecasting.

Article organization
The article is structured into several sections. ‘RelatedWork’ provides a systematic review of
existing methods developed by researchers. In ‘System Model’, we present the innovative
approach proposed to enhance the current work. ‘Simulation and Results’ delves into
the experimental simulation, offering insights into the practical implementation of
the methodology. The conclusion is then presented to summarize key findings and
contributions.

RELATED WORK
In recent research efforts, a multitude of studies have been conducted to predict renewable
energy output. However, a predominant trend has emerged, with a majority of these
studies concentrating on individual energy sources, such as solar or wind power. Many
researchers have developed large-scale solar power facilities since solar energy is one
of the most promising sources. Some research projected solar irradiance instead of
electricity generation because they used pricey solar irradiance meters by examining the
interaction relationship between solar irradiance and the sky picture. Huang et al. (2021)
introduced a solar irradiance forecasting approach aimed at enhancing the precision
of solar power predictions. Likewise, Ghimire et al. (2023) presented a hybrid predictive
model incorporating amultilayer perceptron (MLP)model and a convolution-based neural
network. This model utilizes sky images to forecast global irradiation 15 min in advance.
Matrenin et al. (2023) described a pipeline for a one-day ahead-of-time forecast of solar
radiation and heat. It is based on four data-driven prediction steps and the imputation of
past data. Michael et al. (2022) created a unique multivariate hybrid deep neural model
that takes climatic effect into account when estimating sun irradiance one hour in advance.
Real data from four different nations was used to validate the model. Alkhayat, Hasan &
Mehmood (2022) carried out a comprehensive and in-depth investigation of the machine
learning-based solar power prediction methods in order to address the inadequacies of the
existing machine learning models and boost prediction accuracy.

Statistical and machine learning methods, such as decision trees (Mahmud et al., 2021),
random forest (Liu & Sun, 2019), and time series ensembles (AlKandari & Ahmad, 2020),
are employed for PV power forecasting as a result of the significant advancements in
big data technology and measuring meters that store enormous amounts of data. To
address the shortcomings of conventional AI modeling techniques, deep learning-based
approaches significantly increase the forecast accuracy of PV power (Wang, Qi & Liu,
2019). The original PV power series was divided into four distinct neural network networks
and sub-series using a hybrid deep learning model created by Khan, Walker & Zeiler (2022)
that was based on wavelet packet decomposition. In the work presented byGu et al. (2021),
an innovative model is introduced, specifically designed for forecasting day-ahead PV
power. This model incorporates principles dependent on time and integrates deep learning
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modeling into a framework for partially daily forecasting trends, serving as a guide for
parameter modifications. The investigation conducted by Ahmed et al. (2020) involved a
thorough examination and assessment of various modern forecasting techniques.

This comprehensive analysis encompassed considerations such as the forecast horizon,
temporal aspects including date and time, scrutiny of input connections, preprocessing
and postprocessing of data, optimization of network parameters, classification of weather
patterns, estimation of uncertainties, and evaluations of overall efficacy. A few studies
took into consideration the solar production of more than one location. In an earlier
study, AlSkaif et al. (2020) presented an improved LSTM network for multi-region solar
power output prediction that was optimized using particle swarm optimization. This
strategy was applied to a genuine geographic region in Asia, demonstrating its efficacy. In
a similar vein, another study (Nourani et al., 2022) examined the climatic and geographical
details of multi-region solar production. In order to create an ideal ensemble prediction
model, taking into account a variety of candidate characteristics, this study used automated
machine learning. A genetic algorithmwas used to identify themost appropriate parameters
for the predictive model, which contributed to enhancing the feature selection process.

Despite the significance of solar thermal energy as a vital component of solar energy,
there has been limited attention devoted to its forecasting in comparison to solar radiance
or PV power output prediction in the existing body of research. The majority of studies
have predominantly concentrated on predicting solar radiance levels or forecasting the
output of PV systems, leaving solar thermal energy forecasting relatively understudied.
Using a hybrid method based on deep learning and mechanism modeling for solar thermal
prediction, Hu et al. (2021) developed a way to connect the spatial–temporal aspects
between meteorological parameters and identify the key meteorological components.
Dewangan, Singh & Chakrabarti (2020) used an instance of a solar Fresnel generator to
anticipate the solar heat output 24 h ahead of time by combining a climatic model with a
solar plant’s performance model.

Numerous studies have proposed effective strategies for forecasting wind speed and
wind power, aiming to enhance the coordination of wind energy systems with power
networks (ShobanaDevi et al., 2021). In the realm of wind energy forecasting, advancements
have led to the categorization of forecasting models into two main types: deterministic
prediction and uncertainty analysis. Deterministic prediction models can be broadly
classified into physical and AI hybrid approaches. The physical approach, exemplified by
numerical weather prediction (NWP), involves solving hydrodynamic and thermodynamic
equations using computational methods (Patel et al., 2022). While physical models exhibit
superior performance in long-term forecasting, they tend to underperform in short-term
predictions and often require significant computational resources. On the other hand,
statistical models, a subset of deterministic prediction, rely on mathematical theories such
as the kalman filter (KF), copula theory, and Bayesian multiple kernel regression (Dong et
al., 2022). These models leverage statistical knowledge to make predictions and are known
for their versatility in handling various forecasting scenarios.

Statistical approaches are commonly used for time series forecasting, but they work best
for linear data or data that has simple relationships between variables. When dealing with
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highly nonlinear data, their effectiveness reduces because they assume linearity. Although
some statistical methods can be adjusted to accommodate nonlinear relationships to some
extent, they may not perform as well as more advanced techniques designed specifically
for nonlinear data, such as machine learning algorithms. Therefore, while statistical
techniques can be used for nonlinear data, they may not provide the same level of accuracy
or effectiveness asmethods explicitly created for handling nonlinear relationships (Almazroi
& Ayub, 2021).

Advanced learning machines and ANNs (Jiang et al., 2021) are two cutting-edge
techniques that now surpass all others in the prediction of wind power and speed. In
addition to the individual models, there has been a surge in the development of hybrid
forecasting frameworks that outperform single models by amalgamating the strengths of
multiple approaches. Notably, techniques such as decomposition and feature selection are
specifically tailored for handling wind energy series (Almazroi & Ayub, 2023). Ensemble
learning, on the other hand, takes a stride towards constructing a more robust model
by incorporating numerous predictors. This trend underscores the pursuit of enhanced
reliability and performance through the integration of diverse forecasting strategies. The
related work is summarized in Table 1.

SYSTEM MODEL
To precisely forecast weekly and hourly renewable energy in home energy management
(HEM), this study introduces a novel framework consisting of six main steps. Initially,
upon dataset collection, various issues were identified. Subsequently, the dataset underwent
preprocessing to address missing or negative values. PCA and correlation analysis were
then applied. To gain a deeper understanding of the data, exploratory data analysis (EDA)
was conducted, focusing on pairwise relationships and the impact of selected features on
power generation.

Following EDA, lag features were created, and feature normalization using Min-Max
scaling was performed in preparation for regression analysis. Data scaling preceded the
division into training and validation sets. The ResNeXt-GRU model was employed, and its
parameters were fine-tuned using the MJA. Additionally, the effectiveness of the proposed
model was compared against state-of-the-art algorithms, including ARIMA, CNN, VGG,
NB, DenseNet, and decision trees.

For performance evaluation, various metrics such as RMSE, RMS LOG error, explained
variance, R-square, and MAPE were employed. Statistical analysis was also conducted. The
overall structure of the system model is illustrated in Fig. 1.
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Table 1 Overview of related work on renewable energy forecasting.

Ref Problem addressed Methodology employed Achievements Limitations/drawbacks

Huang et al. (2021) Enhanced precision of
solar power predictions
through solar irradiance
forecasting

Solar irradiance
forecasting approach

Improved accuracy in
solar power predictions

Dependence on expensive
solar irradiance meters

Ghimire et al. (2023) Short-term forecasting
of global irradiation using
sky images

Hybrid predictive model
with MLP and convolution-
based neural network

Forecast global irradiation
15 min in advance

Limited applicability
to short-term predictions

Matrenin et al. (2023) One-day ahead forecast of
solar radiation and heat

Four data-driven prediction
steps and past data imputation

Accurate forecast of solar
radiation and heat

Requirement of
extensive past data

Michael et al. (2022) Sun irradiance prediction
considering climatic effects

Multivariate hybrid
deep neural model

Improved accuracy in
sun irradiance estimation

Necessity for real data
from diverse nations

Alkhayat, Hasan &
Mehmood (2022)

In-depth investigation
of machine learning-based
solar power prediction
methods

Comprehensive analysis
of existing models

Addressing inadequacies
and improving prediction
accuracy

No specific achievement
highlighted

Mahmud et al. (2021);
Liu & Sun (2019);
AlKandari & Ahmad
(2020)

PV power forecasting using
statistical and machine
learning methods

Decision trees,
random forest,
and time series ensembles

Advancements in big data
technology

Challenges in handling
highly nonlinear data

Wang, Qi & Liu (2019);
Khan, Walker & Zeiler
(2022)

Hybrid deep learning model
for PV power forecasting

Division of original
PV power series into
distinct neural networks

Increased forecast
accuracy of PV power

Complexity in model
architecture

Gu et al. (2021) Day-ahead PV power
forecasting

Model with dependent-
on-time principles and
deep learning modeling

Partial daily forecasting
of trends framework

Limited discussion on
specific achievements

Ahmed et al. (2020) Examination and assessment
of diverse forecasting
techniques

Thorough analysis covering
various aspects

Comprehensive
understanding of
forecasting techniques

No specific achievement
mentioned

AlSkaif et al. (2020) Improved LSTM network
for multi-region solar
power output prediction

Optimization using particle
swarm optimization

Demonstrated efficacy
in a specific geographic
region

Limited to a particular
geographic context

Nourani et al. (2022) Climatic and geographical
details of multi-region
solar production

Automated machine
learning for creating
an ensemble prediction
model

Enhanced feature
selection process

Challenges in utilizing
automated machine
learning

Hu et al. (2021) Solar thermal prediction
using a hybrid method

Deep learning and
mechanism modeling

Spatial–temporal
connection and
identification of
key meteorological
components

Limited discussion on
specific achievements

Dewangan, Singh &
Chakrabarti (2020)

Solar heat output prediction
for a solar Fresnel generator

Combination of climatic
model and solar plant’s
performance model

Anticipation of solar
heat output 24 h
in advance

Specific to solar
Fresnel generators

ShobanaDevi et al.
(2021)

Forecasting wind speed
and wind power for
improved coordination
with power networks

Various forecasting models
categorized into deterministic
prediction and uncertainty
analysis

Enhanced coordination
of wind energy systems
with power networks

Limited discussion on
specific achievements

(continued on next page)
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Table 1 (continued)

Ref Problem addressed Methodology employed Achievements Limitations/drawbacks

Patel et al. (2022) Deterministic prediction
models for wind energy

Physical approach
exemplified by Numerical
Weather Prediction (NWP)

Superior performance in
long-term forecasting

Demands significant
computational resources

Dong et al. (2022) Statistical models for
wind energy forecasting

Mathematical theories
like Kalman filter,
copula theory,
and Bayesian multiple
kernel regression

Versatility in handling
various forecasting
scenarios

Limited to statistical
approaches

Almazroi & Ayub (2021);
Jiang et al. (2021)

Intelligent forecasting
models for wind power

Advanced learning
machines and Artificial
Neural Networks (ANNs)

Greater accuracy than
physical and mathematical
methods

Applicability primarily
to basic time series
forecasting

Almazroi & Ayub (2023) Hybrid forecasting
frameworks for
wind energy

Techniques like
decomposition and
feature selection

Enhanced reliability
and performance
through integration
of diverse strategies

Limited discussion on
specific achievements

Figure 1 Proposed HEM systemmodel.
Full-size DOI: 10.7717/peerjcs.2067/fig-1

Dataset collection and description
To ensure the sustainability of our data preparation processes, we logically separated the
dataset into training and testing sets using an 80/20 ratio. This separation enables us to
make the most use of the data by dividing it up and assigning a significant amount to
model training and a separate chunk to performance assessment. We aim to maintain the
integrity and dependability of the assessment procedure. The dataset utilized in this study
is a combine of two datasets from Kaggle (Afroz, 2023) and Anikannal (2023), totaling
8,760 occurrences. With the help of these repositories, researchers can utilize and analyze a
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Table 2 Description of features in the dataset.

s# Feature Description

1 Sun-shine Duration of sunshine
2 Date-Hour (NMT) Date and time in NMT format
3 Radiation Solar radiation intensity
4 Relative air humidity Relative humidity of the air
5 System production Solar power generation
6 Air pressure Atmospheric air pressure
7 Air temperature Temperature of the air
8 Wind speed Speed of the wind in the environment

wide range of publicly available datasets for a variety of research applications. We actively
encourage transparency and reproducible in our research by utilizing datasets from various
sources, making it possible for others to validate or expand upon our findings. Table 2
provides a description of the applicable dataset.

Pre-processing
To provide reliable and precise outcomes, data preparation is essential (ShobanaDevi et al.,
2021). In order to prepare the data for analysis and modeling, careful handling of outliers
and missing values at this crucial stage, removal of unnecessary attributes, and utilization
of feature extraction methods like PCA are performed. Since errors and outliers may
significantly compromise the accuracy of the analytic results, fixing them is an essential
part of the pre-processing stage. To preserve the integrity of the data, strong methods are
employed to detect and manage missing values. This covers interpolation techniques like
imputation based on regression or mean (Eq. (1)) or median (Eq. (2)). By using these
strategies, the aim is to promote sustainable data practices by maintaining the dataset’s
completeness and reducing the impact of missing values on subsequent studies.

To handle missing values, two strategies are employed: mean imputation and median
imputation. The mean imputation, expressed by Eq. (1) (Josse & Husson, 2012), estimates
the missing value x̂i by averaging the available data within the corresponding feature:

x̂i =

∑n
j=1xj
n

. (1)

Similarly, the median imputation, depicted in Eq. (2) (Josse & Husson, 2012) as Eq. (2),
utilizes the median of the available values in the feature:

x̂i=median(x1,x2,...,xn). (2)

Outlier detection is then performed using the z-score (Eq. (3)) (Josse & Husson, 2012),
allowing the identification and appropriate handling of outliers:

z =
x−µ
σ

. (3)

In this case, the data point is denoted by x , the average by µ, and the standard deviation
by σ . To enhance the classification model’s efficiency, redundant features are eliminated
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based on their importance, calculated using XGB (Eq. (4)) (Josse & Husson, 2012):

importancei= gain. (4)

In this equation, importancei signifies the importance rating of feature i, and gain
indicates the improvement in the model’s performance achieved by utilizing feature i.

Additionally, during preprocessing, irrelevant data is identified and removed, reducing
computational overhead and ensuring focus on the most pertinent information for
analysis. This meticulous approach addresses missing values and outliers, eliminates
redundant features, and streamlines the dataset, contributing to its quality and suitability
for subsequent analysis and modeling.

Exploratory data analysis
Our work integrates sustainable practices into the exploratory data analysis (EDA) phase
with the goal of accurately anticipating renewable energy to combat climate change. Using
visual analysis and mapping approaches, our complete EDA prioritizes sustainability
principles and aims to obtain significant insights into the dataset (Milo & Somech, 2020).

The EDA strategy focuses on using mapping methods to identify connections between
category data and other parameters. We begin a process of inquiry that improves our
comprehension of distribution, ratios, and interactions among categorical data by visually
analyzing intricate connections and interrelationships. Visual tools that support sustainable
behaviors, such graphical representations and contingency tables, help people make
meaningful decisions and findings.

Furthermore, a comprehensive visual examination of the dataset investigates patterns,
abnormalities, and relationships. We examine the distribution, diversity, and interactions
between variables using a range of visualizations, such as data variations, scatter
visualizations, patterns graphs, repetition charts, and statistical box plots. Identifying
anomalies or outliers, revealing hidden patterns, and evaluating variables for relationships
or dependencies are all made possible by sustainable visualization approaches. The results
of our EDA show possible quality problems and offer insightful information about the
properties of the dataset. This enhanced understanding creates an effective basis for further
research and well-informed decision-making. Our decision-making process is guided by
sustainable EDA methodologies, such category mapping and visual analysis, which also
help to build a trustworthy classification model for predicting the output of renewable
energy (Milo & Somech, 2020).

Proposed renewable energy forecasting model: ResNeXt-GRU-MJA
Our research introduces the ResNeXt-GRU-MJA model, a hybrid architecture tailored
for precise renewable energy forecasting, aligning with our commitment to sustainable
practices. This model seamlessly integrates the ResNeXt and GRU architectures with the
optimization capabilities of the MJA, offering a comprehensive and customized solution
for renewable energy prediction. The internal structure of the ResNeXt-GRU-MJA model
is illustrated in Fig. 2.
Feature extraction with resNeXt (Li, Zhu & Zhu, 2023): The model’s prediction process

begins with raw renewable energy data as input. the ResNeXt component processes the
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Figure 2 Internal structure of the ResNeXt-GRU-MJAmodel.
Full-size DOI: 10.7717/peerjcs.2067/fig-2

information through convolutional layers, batch normalization, and ReLU activation for
each path i within the ResNeXt block.

Path Cardinality and Concatenation: To capture diverse features, data is strategically
partitioned into multiple paths based on cardinality. The outputs from these paths are
concatenated to form a holistic feature representation.

Concatenation= [ReLU1,ReLU2,ReLU3,ReLU4]. (5)

Sequential modeling with GRU: The concatenated features traverse a GRU layer,
introducing a temporal modeling dimension. This empowers the model to decipher
sequential dependencies and evolving patterns within the renewable energy data.

Hyperparameter tuning with MJA: The MJA is utilized to fine-tune the model’s
hyperparameters, which are crucial for convergence, generalizing, and performance.
The model’s performance on a validation dataset is used to inform the exploration and
updating of hyperparameter values in this iterative process. The hyperparameters and their
assigned values are shown in Table 3.

Hybrid classification model algorithm (ResNeXt-MJA): The proposed hybrid model,
ResNeXt-GRU-MJA, incorporates the ResNeXt model with the optimization capabilities
of the MJA. This hybrid approach offers a customized solution for renewable energy
forecasting, enhancing accuracy and effectiveness.

Algorithm 1 shows the overview of our proposed work. The hybrid classification model
involves pre-processing, exploratory data analysis (EDA), optimization using MJA, and
performance evaluation. It ensures the model is fine-tuned, taking into account specific
characteristics of the renewable energy dataset. The ResNeXt-MJA model represents a
tailored and sustainable solution for accurate renewable energy forecasting, contributing
to the broader goal of mitigating climate change.
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Table 3 ResNeXt-GRU-MJA hyperparameters.

Hyperparameter Obtained value

Learning rate 0.001
Batch size 64
GRU hidden units 128
ResNeXt block config 4 blocks, depth 32, width 4
Dropout rate 0.3
Weight decay 0.0001
Epochs 50

Algorithm 1Hybrid classification model for renewable energy forecasting
1: procedure RenewableEnergyForecasting(Renewable Energy Data)
2: Pre-processing:
3: Handle missing values and outliers using robust techniques
4: Remove redundant features
5: Perform feature selection using ResNeXt
6: Exploratory Data Analysis (EDA):
7: Conduct descriptive analysis
8: Map categorical features in relation
9: Perform graphical analysis
10: Optimization Process usingMJA:
11: Initialize a population of hyperparameters
12: Evaluate performance using ResNeXt
13: Select the fittest hyperparameters for reproduction
14: Apply mutation and crossover operations
15: Refine hyperparameters through a growth phase
16: Conduct competition for survival
17: Repeat for a predetermined number of generations
18: Performance Evaluation:
19: Split data into training and testing sets
20: Train ResNeXt-GRU-MJA model on the training data
21: Evaluate performance using various metrics
22: Conduct statistical analysis
23: Calculate computational complexity measures
24: Output:Hybrid Classification Model (ResNeXt-GRU-MJA) for Renewable En-

ergy Forecasting
25: end procedure

Split cardinality: The proposed ResNeXt-GRU-MJAmodel introduces split cardinality in
its ResNeXt blocks. This involves dividing the cardinality (number of groups) into smaller
fractions, allowing the model to capture more diverse and localized correlations among
different energy sources. The split cardinality enhances the model’s ability to understand
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complex relationships within the dataset. The split cardinality in our ResNeXt blocks is
mathematically represented as follows:

Cardinalitysplit=
Total Cardinality
Number of Splits

. (6)

This division allows the model to capture diverse correlations among energy sources,
enhancing its ability to understand intricate relationships.

Attention mechanism: Our model incorporates an attention mechanism, which focuses
on capturing relevant information from different energy sources during the modeling
process. The attention mechanism assigns varying levels of importance to different parts of
the input data, allowing the model to dynamically adjust its focus based on the significance
of each source. This attention mechanism contributes to the model’s ability to effectively
capture localized correlations and improve forecasting accuracy. The attention mechanism
is modeled as a weighted sum in our GRU cells. Given an input sequence (X ′), hidden
states (H ′), and attention weights (W ′), the weighted sum is calculated as:

Weighted Sum=
N ′∑
i=1

W ′i ·H
′

i . (7)

Here, (N ′) represents the number of elements in the sequence, and (W ′i ) denotes the
attention weight assigned to each element. The attention mechanism dynamically adjusts
these weights based on the significance of each energy source, contributing to improved
forecasting accuracy.

Comprehensive performance evaluation of ResNeXt-GRU-MJA hybrid
model
We conducted a comprehensive and rigorous evaluation procedure on our novel ResNeXt-
GRU-MJA hybrid model to determine its level of competence in renewable energy
forecasting. The assessment process was multiple phases and intended to provide an
extensive understanding of the model’s advantages and disadvantages.

A diverse set of evaluation metrics was employed to thoroughly assess the ResNeXt-
GRU-MJA model’s performance:

• Root mean squared error (RMSE): Gauging the average magnitude of errors between
predicted and actual values, providing a holistic measure of prediction accuracy.
• RMS LOG error: A logarithmic application of the RMSE, beneficial for datasets with a
wide range of values.
• Explained variance (Exp Variance): Quantifying the proportion of variance in predicted
values, offering insights into the model’s explanatory capacity.
• R-squared (R2): Representing the predictability of the dependent variable from the
independent variables. A higher R-squared indicates a superior fit.
• Mean absolute percentage error (MAPE): Evaluating the percentage difference between
predicted and actual values, providing a normalized assessment of prediction accuracy.
• Benchmarking against state-of-the-art algorithms: Apart from assessing the ResNeXt-
MJA model separately, we also carried out a comparison study with industry-leading

Atwa et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2067 13/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2067


algorithms including ARIMA, CNN, VGG, NB, DenseNet, and decision trees. This
thorough benchmarking made it easier to comprehend our model’s performance in the
context of the larger renewable energy forecasting field.
• Rigorous statistical analysis: We conducted a thorough statistical study to strengthen
the validity of our findings. This ensured the validity of observed differences and the
strength of our results. It also included confidence interval estimates and hypothesis
testing.

The ensuing sections present detailed results and discussions, shedding light on the
ResNeXt-MJA hybrid model’s predictive capabilities and its comparative standing in the
realm of renewable energy forecasting methodologies.

SIMULATION AND RESULTS
With a focus on solar and wind energy sources, this study examines how ResNeXt-GRU-
MJA affects renewable energy forecasts. Python was used to run the simulation, utilizing
a GPU’s processing capability that had been specially calibrated. An extensive study was
carried out to see how well the ResNeXt-GRU-MJA model predicted trends in datasets
related to renewable energy to begin the evaluation. We examined the detailed integration
of GRU components inside the ResNeXt architecture, highlighting its ability to capture
subtle temporal relationships that are essential for precise renewable energy fluctuation
predictions.

Initially, negative values in the radiation column are addressed, ensuring all values
are non-negative for subsequent analysis. The ensuing statistical summary offers a
comprehensive overview of the dataset, presenting key descriptive statistics. Subsequently,
a novel set of time-based features, including the hour of the day and day of the year,
is introduced through the create_date_time_features function, enhancing the dataset’s
temporal dimension. The correlation heatmap, depicted in Fig. 3, vividly illustrates the
interrelationships between different features, aiding in the identification of potential
patterns and informing feature selection strategies. This comprehensive approach provides
a solid foundation for subsequent machine learning algorithms and affords valuable
insights into the inherent dynamics of the renewable energy dataset.

The energy generation distribution for the entirety of 2023 is shown graphically in Fig. 4.
This graphical representation effectively demonstrates the distribution of production,
demonstrating how energy generation is distributed across several time periods within the
given year. The graph offers insightful information about the fluctuations, tendencies, and
patterns in energy output for the full year 2023.

Figure 5 uses a combined plot to show the link between average power generation
(measured in megawatts) and the hour of the day. The unique green hue on the plot
indicates each data point, which represents the mean power generation for a certain hour.
The y-axis measures the average power generation, while the x-axis shows the hour of the
day in a 24-hour format. This graphical depiction makes it simple to recognize how power
output varies throughout the day and provides an intuitive knowledge of the hourly trends
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Figure 3 Correlation analysis.
Full-size DOI: 10.7717/peerjcs.2067/fig-3

in energy generation. The hourly energy generation dataset’s patterns and trends may be
easily identified using the help of this graphic.

The temporal dynamics of sunshine, solar radiation, and energy production for the
year 2022 are shown in Fig. 6. The logarithmic scale amplifies minor changes in these
variables. Solar radiation is represented by the blue line, illustrating its variation over the
months. Sunshine is depicted by the green line, showcasing its pattern over time. Energy
production is indicated by the red line, demonstrating its temporal evolution. Examining
the patterns allows the identification of potential relationships and dependencies between
solar radiation, sunshine, and ensuing energy production. Understanding the underlying
dynamics affecting energy generation is facilitated by observing the peaks and troughs in
the lines, providing insightful information about how these elements interact.

The link between wind speed and energy generation is explored in Fig. 7. There exist
five discrete bands for wind speed: ‘Calm,’ ‘Light,’ ‘Gentle,’ ‘Moderate,’ and ‘High.’ The
distribution of energy generation within various wind speed categories is shown graphically
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Figure 4 Normal energy generation (dataset view).
Full-size DOI: 10.7717/peerjcs.2067/fig-4

Figure 5 Hourly energy generation relationship.
Full-size DOI: 10.7717/peerjcs.2067/fig-5

by each boxplot. The vertical axis shows the power created, and the varied box lengths,
possible outliers, and margins provide information about the variability and central
tendency of power output at various wind speeds. By examining the boxplots, among can
identify patterns, such as the differences in energy generation between calm and strong
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Figure 6 Monthly trends in solar radiation, sunshine, and energy production (2022).
Full-size DOI: 10.7717/peerjcs.2067/fig-6

Figure 7 Wind speed impact on energy generation.
Full-size DOI: 10.7717/peerjcs.2067/fig-7
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Figure 8 Air temperature impact on power generation under varying sunlight conditions.
Full-size DOI: 10.7717/peerjcs.2067/fig-8

wind speeds. This visual makes it easier to quickly and easily comprehend how wind speed
affects energy production.

The relationship between air temperature, solar radiation intensity, and electricity
generation is examined in Fig. 8. The air temperature is shown on the x-axis, while the
power produced is shown on the y-axis. Boxplots are classified as ‘‘Low’’, ‘‘Moderate’’, and
‘‘High’’, depending on how intense the sunlight is. The whiskers and boxes’ varied lengths
provide information on how power generation reacts to variations in air temperature and
sunshine. The detection of possible patterns and trends, such as the impact of temperature
on power generation at varying sunshine intensities, is made easier by this graphical
depiction.

Table 4 shows the performance evaluation of our proposed method and state of the
art. The provided metrics—normalized RMSE, MAPE, and MAE, among others—provide
information on the precision and dependability of each model. R-squared values give an
evaluation of how well the models explain the underlying trends in the data on energy
generation. Furthermore, Explained Variance and RMS Logarithmic Error provide subtle
insights into the prediction power of the models. Among these, the ResNeXt-GRU-MJA
model is the most effective, outperforming the others by 15% in normalized measures. The
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Table 4 Performance evaluation of proposed and existing methods.

Model Normalized
RMSE

Normalized
MAPE

Normalized
MAE

R-squared RMS logarithmic
error

Explained
variance

ARIMA 50.59 70.25 55.45 −0.2042 0.35 0.45
Decision Tree 35.15 50.32 37.55 51.54 0.28 0.60
CNN 29.36 40.48 41.69 61.23 0.25 0.72
VGG 24.05 30.14 30.35 65.99 0.20 0.81
DenseNet 27.85 36.78 37.49 63.14 0.23 0.76
ResNeXt-GRU-MJA 6.51 4.34 21.18 88.72 0.10 0.92

Figure 9 Actual and predicted values of renewable energy forecast.
Full-size DOI: 10.7717/peerjcs.2067/fig-9

selection of the best regression model for efficient forecasting of renewable energy is made
easier by this thorough examination.

Figure 9 presents a visual representation of the disparity between actual values and
predictions in renewable energy. The illustration distinctly demonstrates that the line
corresponding to the proposed method is remarkably close to the actual values, showcasing
its ability to make accurate predictions. Moreover, the exceptional performance of the
proposed model is underscored by the significantly lower RMSE and MAPE values
compared to state-of-the-art models. This visual and quantitative analysis solidifies the
effectiveness of the proposed method in accurately forecasting renewable energy outcomes.

Table 5 presents a comprehensive statistical analysis of various regression models
employed in energy generation forecasting. The column names represent the methods, and
the values in the first column represent the statistical measures. Among other methods,
the proposed ResNeXt-GRU-MJA demonstrates superior performance by 15%. This
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Table 5 Statistical analysis of the proposed and existing models.

Methods andmodels ARIMA Decision tree CNN VGG DenseNet ResNeXt-GRU-MJA

Pearsons 0.65 0.75 0.82 0.78 0.80 0.92
Spearman’s 0.72 0.68 0.79 0.75 0.77 0.89
Kendall’s 0.56 0.62 0.72 0.68 0.70 0.85
Chi-Squared 85.2 92.6 108.5 99.4 103.2 128.7
Student’s 3.21 4.12 5.36 4.85 5.02 7.45
Paired Student’s 2.11 2.56 3.01 2.91 2.78 4.23
ANOVA 43.2 47.8 58.9 52.3 54.7 71.5
Mann–Whitney 146.5 158.2 172.3 162.7 168.4 187.6
Kruskal 23.1 25.4 29.8 27.3 28.6 35.7

Figure 10 Computational complexity analysis.
Full-size DOI: 10.7717/peerjcs.2067/fig-10

table provides insights into the comparative effectiveness of these models across multiple
statistical measures, aiding in the evaluation and selection of the most suitable regression
model for energy forecasting applications.

Figure 10 illustrates the computational complexity time analysis concerning the datasize
for both existing methods and the proposed ResNeXt-GRU-MJA. The proposed model
exhibits a systematically lower computational time compared to other models, achieving
enhanced accuracy as the datasize increases. This trend underscores the efficiency and
scalability of the proposed ResNeXt-GRU-MJA in handling varying datasize scenarios.
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CONCLUSION AND FUTURE WORK
This study aimed to enhance the accuracy of power generation forecasts in RESs
through the ResNeXt-GRU-MJA hybrid forecasting model. By capturing localized
correlations and integrating a GRU with a ResNext model, the hybrid approach
addresses challenges associated with individual source estimates. The nonlinear time-series
characteristics facilitate the integration of meteorological and energy source data, providing
a comprehensive understanding of variables affecting power generation. Empirical findings
highlight the ResNeXt-GRU-MJA model’s exceptional performance, outperforming other
models in solar PV and wind forecasts. Comparative evaluations against sophisticated
models demonstrate its accuracy, and sensitivity analysis validates its ability to capture
complex correlations. Future research will focus on model improvement through external
variables, sophisticated feature engineering, and adaptability to real-time shifts in RESs.
Expanding forecasting horizons and considering additional variables, such as economic
indicators, will be explored for long-term forecast improvements.
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