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ABSTRACT
Trajectory clustering and path modelling are two core tasks in intelligent transport
systems with a wide range of applications, from modeling drivers’ behavior to traffic
monitoring of road intersections. Traditional trajectory analysis considers them as
separate tasks, where the system first clusters the trajectories into a known number
of clusters and then the path taken in each cluster is modelled. However, such a
hierarchy does not allow the knowledge of the path model to be used to improve
the performance of trajectory clustering. Based on the distance dependent Chinese
restaurant process (DDCRP), a trajectory analysis system that simultaneously performs
trajectory clustering and path modelling was proposed. Unlike most traditional
approaches where the number of clusters should be known, the proposed method
decides the number of clusters automatically. The proposed algorithm was tested
on two publicly available trajectory datasets, and the experimental results recorded
better performance and considerable improvement in both datasets for the task of
trajectory clustering compared to traditional approaches. The study proved that the
proposed method is an appropriate candidate to be used for trajectory clustering and
path modelling.

Subjects Artificial Intelligence, Computer Vision, Visual Analytics
Keywords Path modelling, Trajectory clustering, Anomaly detection, Chinese restaurant process,
Distance dependent CRP

INTRODUCTION
The trajectory of a moving object obtained by tracking the object’s position from one frame
to the next is a simple yet efficient descriptor of an object’s motion. Trajectory analysis
has long been a research focus in different fields of study (Jonsen, Myers & Flemming,
2003; Pao et al., 2012; Reed et al., 1999; Fox, Sudderth & Willsky, 2007). In the context of
intelligent surveillance systems (ITS) (Tian et al., 2017), trajectory clustering is a critical
core technology in many surveillance applications including activity analysis (Morris &
Trivedi, 2011), path modelling (Zhang, Lu & Li, 2009), anomaly detection (Dee & Velastin,
2008), and road intersection traffic monitoring (Aköz & Karsligil, 2014).

Many trajectory analysis systems consist of two main steps. In the first step, trajectories
are grouped into clusters based on their similarities. Most proposed methods assume the
number of clusters to be known. After the trajectories are clustered, the path taken by agents
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in each cluster will be modelled. There are at least two limitations with these approaches.
First, in real-world problems, the number of clusters is usually unknown or is expensive to
acquire. Furthermore, trajectory clusters and path models are closely related, whereby the
knowledge of one helps in improving the performance of the other.

Most existing trajectory analysismethods can be categorized into similarity-basedmodels
and Probabilistic Topic Models (PTM). The main stages of similarity-based approaches are
calculating a similarity matrix and clustering the trajectories based on the similarity matrix.
At the first stage, pairwise similarities between trajectories are obtained via a similarity
function and stored into a N ×N matrix, where N is the total number of available
trajectories. Defining a suitable similarity measure is a challenging task that directly affects
the overall accuracy of the system (Zhang, Kaiqi & Tieniu, 2006). Well-known similarity
measures used for trajectory analysis include Euclidean distance, dynamic time wrapping
(DTW) (Keogh & Pazzani, 2000), Hausdorff distance (Atev, Miller & Papanikolopoulos,
2010), and Longest Common Sub-Sequences (LCSS) (Vlachos, Kollios & Gunopulos, 2002).
After the similarity matrix is obtained, the second stage uses any standard clustering
algorithm to cluster the trajectories into K clusters based on their similarities. Typical
clustering algorithms include spectral clustering (Ng, Jordan & Weiss, 2002), agglomerative
clustering (Xi, Weiming & Wei, 2006), and fuzzy c-means (Weiming et al., 2006). The main
disadvantage of similarity-based approaches is that it requires the number of clusters, K ,
to be known in advance.

When trajectories are clustered, some studies perform path modelling in a further
stage. Path models are useful in intelligent surveillance systems and used for compact
representation of clusters, performing real-time anomaly detection (Morris & Trivedi,
2011), and high-level scene understanding (Lei et al., 2014), and route planning (Joseph
et al., 2011). Makris & Ellis (2005) modelled the path as an envelope, which denotes the
extent of a path by finding the two farthest samples in a cluster. Morris & Trivedi (2011)
used the weighted average of trajectories of each cluster to form the path model for that
cluster. Based on the dominant set clustering approach, Yiwen et al. (2014) proposed a
system that obtains the scene structure from clustered trajectories.

All these approaches, however, model the path after the trajectories are clustered.
Therefore, the performance of the modelled path is limited to how well trajectories are
clustered. Also, the modelled path is not used to improve the trajectory clustering.

Another well-known class of approaches in trajectory analysis is based on probabilistic
topic model (PTM) (Papadopoulos, 2008). In PTM approaches, trajectories are first
converted into a set of symbols via a pre-defined codebook. This new representation of
trajectories is then treated as documents while the symbols are treated as words. Compared
to a similarity-based approach, trajectory analysis methods based on PTM do not usually
require the number of clusters in advance.

Jeong, Chang & Choi (2011) used latent Dirichlet allocation (LDA) and the hidden
Markov model (HMM) to discover the semantic regions and the temporal relationship
between them. A two-level LDA topic model is proposed by Song et al. (Lei et al., 2014).
The first level LDA models the motion of single-agent as distributions over patch-based
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features. The second level LDA uses the output of the first-level to learn interactions over
multi-agents. This model, however, does not perform trajectory clustering.

Wang et al. (2011) proposed a dual hierarchical Dirichlet process (Dual-HDP). Unlike
previous PTM models, Dual-HDP is capable of clustering the trajectories and modelling
the semantic scene at the same time. Each semantic region is modelled as a distribution
over grids, and the scene is modelled as a distribution over the semantic regions. The
number of clusters and the semantic scene is decided automatically. Since the model relies
only on bag-of-grids representation, it cannot capture the long-term dependency between
observations. This results in having a partial path model for each cluster. Having a full
path model is an important step for interpreting agents’ movement in scenarios such as
highways and junctions.

Furthermore, since only quantised trajectories are used, the overall performance of
Dual-HDP is highly sensitive to grid size. Choosing a large grid size rapidly decreases the
performance due to quantisation error. On the other hand, choosing a small grid size
requires considerably more amount of data to learn the trajectory patterns.

This study proposed a trajectory clustering and path modelling system that clusters the
trajectories and models the path taken by each cluster at the same time. Our approach is
based on distant dependent Chinese restaurant process (DDCRP) (Blei & Frazier, 2011),
which is a generalisation of the normal Chinese restaurant process (CRP) (Pitman, 2002).

METHODS
Distance dependence chinese restaurant process
The Chinese restaurant process (CRP) is a distribution on partitions of integers proposed
by Pitman (2002). CRP can be explained by the following analogy: Imagine a Chinese
restaurant with an infinite number of tables. The first customer enters the restaurant and
sits at the first table with probability1. Next, customers enter the restaurant and sit at
occupied tables with probability proportional to the number of customers sitting on that
table or sit at an empty table with the probability relative to a parameter α. After this
process, which is known as a customer-table assignment, customers sitting on the same
table will share a similar dish. This process can be described as follows:

P (zi= k|z−i,α)∝

{
nk,k ≤K
α,k=K +1

(1)

where zi denotes table assignment for the ith customer, K is the total number of occupied
tables, and z−i is table assignmthe ent of all other customers except ith customer, and
nk is the total number of customers sitting on the ith table. More details of CRP and its
connection to Dirichlet process can be found in Gershman & Blei (2012).

The distance dependence Chinese restaurant process (DDCRP) generalises the CRP and
allows for a non-exchangeable distribution over partitions (Blei & Frazier, 2011). Unlike
CRP, where each customer is assigned to a table, in DDCRP each customer is assigned
to another customer with a probability relative to their distance/similarity. Therefore, the
more similar two customers, the more probable they will get a direct link. It is important to
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note that it is still possible for two customers with small similarities to be indirectly linked
to each other via intermediate customers. After this procedure, which is also known as a
customer to customer assignment, customers who are directly or indirectly linked will sit
down at a table and share a similar dish.

More formally, let dij represent the distance between ith and jth customers. Probability
of customer i have a direct link with customer j is calculated as:

P
(
ci= j|D,f ,τ

)
∝

{
τ , if i= j
f (dij), otherwise

(2)

where f (d) denotes a monolithically decreasing decaying function that satisfies f (∞)= 0,
D is the matrix of pairwise distance between customers, and τ is a constant that indicates
the probability of self-link.

The DDCRP was proposed originally for modelling non-exchangeable text documents
where the distance between the dates of documents determines their similarity. The
documents are converted into their bag-of-words (BoW) representation before the
posterior probability of DDCRP is calculated. Such a conversion to BoW representation is
a crucial step that makes the inference of DDCRP computationally tractable.

Recently researchers have adopted DDCRP for problems beyond language processing.
Ghosh et al. (2011) proposed a hierarchical extension of DDCRP for producing coarser
image segmentations in the form of human-like segmentations. In a more recent study,
Baldassano, Beck & Li (2015) used DDCRP to model a complex web of connections with a
small number of interacting units. The proposed method is used to model the connectivity
between sub-regions of the human brain and analysing human migration behaviour. Also,
Ren et al. (2016) used DDCRP for key frame selection from unordered image sets, where
the selected frames are used for dense 3D reconstruction.

Trajectory analysis with distance dependent CRP
Unlike text data where observations in documents are words sampled from a corpus with
a limited number of words, observations in trajectories are not discrete. Trajectories are
vectors with varying length where each observation gets a real value bounded by the scene’s
size. One can divide the scene into blocks of equal sizes and convert a trajectory into its
discrete form. After such a conversion, the resulting quantized trajectories are equal length
vectors and each observation gets a discrete value. The size of grids in this case, however,
will have a direct impact on the system performance. While theoretically smaller grids can
improve the performance, they require substantially more data for training.

Another disadvantage of treating trajectories as documents is the bag-of-words
representation. Such representation discards the order between observations. Discarding
the orders between samples in trajectory data is problematic since it is possible for agents
from opposite directions to share the same observations over grids. One solution to avoid
this problem is to quantise the direction of observations (Wang et al., 2011). Estimating the
direction of observation requires further processing and sometimes includes an inaccurate
estimation. Such a quantisation increases the size of the corpus and, therefore, requires
more data for training. In addition, with bag-of-word representation alone long-term
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dependencies between observation cannot be captured which results in having partial path
models in existing PTM approaches.

We addressed these problems by using similarity between trajectories as the prior
probability in DDCRP. Using such a prior probability limits the assignment of trajectories
and promotes trajectories to get linked based on how similar two trajectories are. In
addition to the similarity measure, whether the trajectories are linked together or not, also
will depend on their discrete observation over the grids. Since most similarity measures can
be applied prior to converting the trajectory into discrete form, such a formulation is less
sensitive to the choice of grid size. In addition, since some similarity measures, including
Modified Hausdorff and LCSS, also take the order of the observations into account, it is
not required to quantise the direction anymore.

Any raw trajectory Ti, is usually represented by a sequence of its ni observation
Ti = [oi,1,...,oi,l ,...,oi,ni]. In this representation, oi,l indicates lth observed position of
ith object. Let dij to indicate pairwise distance between ith and jth trajectories. This
distance can be of any general distance used to measure similarity between trajectories.
The result of pairwise distance between N trajectories can be stored in a distance matrix
and denoted as D∈<N×N .

Apart from the calculation of distance matrix discussed above, raw trajectories are
converted into bag-of-grids representation. For this, the scene is divided into M grid
cells of equal size. Based on the cell in which it falls into each observation of a trajectory
oi,l , is individually quantised. Then a raw trajectory, Ti, is approaximated by bag-of-grid
represetnation Xi ∈<

M . Each element of Xi(s) indicates the number of times ith trajectory
had an observation in the sth grid cell.

Using DDCRP’s metaphor, we use the bag-of-grid representation of trajectories as
customers, clusters as the tables and path models as dishes. Based on the definition of
DDCRP, it is not possible to draw the table directly. Instead, the outgoing link for each
customer needs to be drawn. Trajectories that directly or indirectly link together are
considered to be in the same cluster. All trajectories in the similar cluster share the same
path model which is a multinomial distribution over the grid cells. Each path model is
independently drawn from a base distributionG0. In our case,G0 is a Dirichlet distribution.
The full generative process for the news program is as follows:
1. For each trajectory, sample customer assignment Ci∼ ddCRP(D,f ,τ ) as explained in

Eq. (2).
2. Drive table assignment from customer assignment. For each table, k, sample its

parameter from the base distribution ϕk ∼G0

3. For each trajectory, independently draw Xi∼Mul(.|ϕzi)
The decaying function, f (.), in Eq. (2) was defined as:

f (d;γ ;γ0)= exp(−
d
γ
). (3)

With this function, the probability of linking two trajectories becomes smaller as their
distance increases. The parameter γ controls how fast this probability decayswith increasing
distance. The inference of DDCRP requires drawing samples for all samples which have
the possibility of being linked.
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Inference
The key problem that needs to be addressed is computing the posterior distribution of latent
customer assignment conditioned on the bag-of-grid cell representation of trajectoriesX1:N .
In our problem, the based distribution G0, is conjugate to the data generating distribution
P(Xi|Zci,G0). Therefore, the cluster parameters ϕk can be analytically marginalised. After
such a calculation, the posterior distribution is expressed by:

P
(
c1:N |X1:N ,D,f ,τ ,γ ,γ0

)
∝

N∏
i=1

P(ci|D,f ,τ ,γ ,γ0)P(X1:N |Z (c1:N )) (4)

where Z (c1:N ) denotes the table assignment and P(X1:N |Z (c1:N )) is the likelihood function
which can be expressed by Blei & Frazier (2011)

P (X1:N |Z (c1:N ))=
|Z (c1:N )|∏
k=1

P(Xzk(C1:N )|Z (c1:N )) (5)

with |Z (c1:N )| being the number of unique tables and zk (C1:N ) denoting all customers
assigned to table k.

Due to the combinatorial sum in the denominator, the analytical solution of the posterior
given by Eq. (4) is intractable. Instead of exact inference, collapsed Gibbs strategy (Blei &
Frazier, 2011) is used to derive the posterior inference where the customer assignment is
iteratively sampled from the following equation:

P(ci|c−i,X1:N ,D,f ,τ ,γ ,γ0)∝ P(ci|D,f ,τ )×P(X1:N |z(ci∪ c−i)) (6)

where c−i denotes all customer assignments except for ci. The first term on the right side of
the equation is DDCRP’s customer assignment discussed in Eq. (2), and the second term
is the likelihood term given by Eq. (5). More details can be found in the Supplemental
Material.

RESULTS AND DISCUSSION
The performance of the proposed approach was evaluated on the CROSS (Morris & Trivedi,
2011) and the Lankershim datasets (NGSIM: Next Generation Simulation, 2008).

The CROSS dataset provides objects trajectories and their ground truth activities. The
data are organized into train and test sets. There are 1,900 and 9,700 trajectories in the
train and test sets respectively. Two hundred samples in the test set are labeled as abnormal
activities. These samples were discarded in this study and we evaluated the proposed model
on 9,500 trajectories in the test set with legal activities (Fig. 1).

The Lankershim dataset is part of the Next Generation Simulation (NGSIM) program
provided by the US Federal Highway Administration (FHWA). The dataset contains videos
taken with overhead intersection cameras. The dataset also provided the trajectories of
moving vehicles. Based on the time the videos are collected, the data are placed into 8:30 am
to 8:45 am and 8:45 am to 9:00 am subsets. The trajectories took place near an intersection,
and trajectories outside of this area were removed (see Fig. 2). The corresponding X and
Y coordinate for this region were −80< X < 80 and 300< Y < 500 respectively. After
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Figure 1 Vehicle trajectories in CROSS dataset. The colors of trajectories indicate the ground truth ac-
tivity label.

Full-size DOI: 10.7717/peerjcs.206/fig-1

filtering the trajectories having less than ten observations, a total of 2212 trajectories were
obtained. Since this dataset does not provide activity labels for trajectories, the trajectories
were manually labelled into 21 activities (19 legal activities, and two activities where agents
took illegal maneuvers).

The main parameter that needs to be set prior to experiments is the size of the grid cells.
Theoretically, smaller grid cells produce a better result with the cost of requiring more
data. Based on the performed experiments, the cell size was set for the CROSS to 40×25
and for the Lankershim into 10×10 pixels. These choices of cell size divide the CROSS and
Lankershim into 9 by 19 and 16 by 20 equal sized grid cells respectively. Each raw trajectory
was converted into bag-of-grid representation mentioned in the section of Trajectory
Analysis with Distance Dependent CRP. The dimensions of bag-of-grids representations
are Xi ∈<

1×171 and Xi ∈<
1×320 for CROSS and Lankershim datasets respectively.

The correct clustering rate (CCR) is used to evaluate the clustering performance. The
CCR has been used as evaluation criteria to verify trajectory clustering algorithms in several
studies (Morris & Trivedi, 2009; Weiming et al., 2013; Zhang, Kaiqi & Tieniu, 2006). Given
the ground truth set G and resulting clusters set C, corresponding cluster that maximizes
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A B

Figure 2 The Lankershim dataset: (A) area of interest, (B) vehicle trajectories in the interest area col-
lected from 8:30 Am to 8:45 Am.

Full-size DOI: 10.7717/peerjcs.206/fig-2

the number of matched labels is found. The CCR is defined as

CCR=
1
N

K∑
i=1

pi (7)

where N is the number of trajectories, K is the number of clusters in the ground truth.
Given the assignment between ground truth and estimated cluster labels, pi is computed
as (Zhang, Kaiqi & Tieniu, 2006):

pi=

{∣∣ci∩gm∣∣; given ci ∈C assigned to gm ∈G
0; otherwise

(8)

The proposed method was compared with dual-HDP and three well-known distance
measure methods, LCSS, DTW, and modified Hausdorff (MH). For each distance, four
unsupervised clustering algorithms were used: K-mean clustering, spectral clustering,
agglomerative clustering, and graph-based clustering. The average CCR of clustering
algorithms for each distance method is reported in this study. One limitation of distance-
based clustering techniques is that they require the number of clusters to be given to
them.

To show the effect of choosing the number of clustering on the performance the
experiments were run with the different number of clusters, including the true value.
The other parameters of competitor methods were set during the course of experiments
to achieve their maximum accuracy. For the proposed methods, collapsed Gibbs was
performed for 100 samples. After each sampling, CCR was evaluated based on the customer
assignment result. Figure 3 shows CCR per sample for the Lankershim and CROSS datasets.
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A B

Figure 3 Clustering accuracy of (A) the CROSS dataset, (B) the Lankershim dataset.
Full-size DOI: 10.7717/peerjcs.206/fig-3

Table 1 The CCR Performance of different methods for the CROSS Dataset.

Number of Clusters 5 10 15 19 20 21 25 30

DTW 0.292 0.559 0.806 0.971 0.984 0.968 0.916 0.857
LCSS 0.291 0.555 0.805 0.986 0.971 0.952 0.864 0.792
MH 0.556 0.559 0.807 0.986 0.986 0.973 0.934 0.879
Dual HDP – – – – – 0.801 – –
DDCRP (DTW) – – – 0.986 – – – –
DDCRP (LCSS) – – – 0.993 – – – –
DDCRP (MH) – – – 0.989 – – – –

In all methods, CCR achieves greater than 0.9 after the 3rd sample. The average CCR is
obtained by averaging the CCR values after neglecting the first ten samples.

The results of trajectory clustering accuracy for the CROSS dataset are summarized
in Table 1. The best correct clustering rate is obtained by DDCRP when using LCSS as
a distance measure which produces 0.993. The average correct clustering rate of LCSS
with traditional clustering algorithm is 0.986. While this value is slightly less than the
performance produced by LCSS and DDCRP, it needs to be highlighted that traditional
clustering techniques achieved 0.986 correct clustering rate with the assumption of knowing
the true total number of clusters. Also, the proposedmethod improves the correct clustering
rate regardless of which similarity method is used. In other words, using DTW and MH as
similarity measure along with DDCRP achieve better average CCR compared to traditional
clustering algorithms.

Similarly, Table 2 summarizes the clustering accuracy for the Lankershim dataset. Using
DDCRP along with MH distance produces the best correct clustering rate of 0.998. Same
as CROSS dataset, the proposed method improves correct clustering rate regardless of
which similarity measure is used. The most notable improvement is when DTW is used as
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Table 2 The CCR Performance of different methods for the Lankershim dataset.

Number of Clusters 5 10 15 18 19 20 25 30

DTW 0.453 0.705 0.901 0.864 0.868 0.864 0.828 0.789
LCSS 0.529 0.846 0.901 0.924 0.925 0.931 0.912 0.899
MH 0.488 0.840 0.973 0.985 0.977 0.974 0.937 0.902
Dual HDP – – – 0.974 – – – –
DDCRP (DTW) – – – – 0.996 – – –
DDCRP (LCSS) – – – – 0.996 – – –
DDCRP (MH) – – – – 0.998 – – –

A B

Figure 4 Founded clusters: (A) the CROSS dataset by using the DDCRP and the LCSS distance meth-
ods, (B) the Lankershim dataset by using the DDCRP and theMH distance methods.

Full-size DOI: 10.7717/peerjcs.206/fig-4

a similarity measure. In this case, the average CCR for similarity-based clustering is 0.868
while the combination of DTW and DDCRP results in the CCR of 0.996.

After removing clusters with single trajectory and ignoring the initial samples, methods
based on DDCRP discovered 19 clusters for both the CROSS and the Lankershim datasets.
Figure 4 shows the discovered clusters in the 100th sample for the CROSS and Lankershim
datasets. The results shown in this figure are obtained by DDCRP using LCSS and MH
distances for the CROSS and Lankershim respectively. The discovered clusters are typical
activities in an intersection and include crossing the intersection, turning left, turning right,
and u-turn.

As discussed in the Trajectory Analysis with Distance Dependent CRP section, the size
of the grid impacts the accuracy of any PTM-based trajectory analysis system. Another
advantage of the proposed method compared to the Dual-HDP method is that it is less
sensitive to the choice of grid size. This is due to the fact that most PTMmodels, including
dual HDP, are based only on bag-of-grids representation of the trajectories. The proposed
method, however, uses both bag-of-grids and pairwise distance between raw trajectories.
Therefore, it can be expected that the proposed method is less sensitive to the choice of
grid sizes.
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A B

Figure 5 The impact of grid size on the clustering accuracy: (A) the CROSS dataset, (B) the Lanker-
shim dataset.

Full-size DOI: 10.7717/peerjcs.206/fig-5

Figure 5 shows the average the CCR of the DDCRP and dual-HDP systems for different
sizes of the grid. The grid size of 25×24 and 10×10 pixels produces 0.801 and 0.974
correct clustering rate for the dual-HDP method in the CROSS and Lankershim datasets
respectively. However, the accuracy substantially decreases by increasing or decreasing the
grid size. The proposed method, however, is more robust to the choice of grid size since
the pairwise distance between trajectories is independent of the choice of grid size.

The aim of trajectory path modelling is to discover the paths commonly taken by objects
in each cluster. One benefit of our method is its ability to model the path simultaneous to
trajectory clustering. In our study, each path is characterized by the distribution over grid
cells in a scene. Each cell for a path can be associated to any number in the range of 0 to 1,
where 0 are the cells that have no chance of being observed in that path. As the values of
a cell are closer to 1, this cell become more essential for the path, and the probability of it
being passed by trajectories belonging to that path increases.

The path modelling experiments were conducted with the same parameter setup
discussed earlier in this section. Figure 6 shows the cluster models for the CROSS and
Lankershim datasets. The blue cells are less likely to be observed by trajectories in that
cluster. Conversely, the red cells are more probably observed by trajectories. Then most
paths have their probable grid cells in the middle of their route, while when moving further
away to the edges of the routes, the probability of grid cells decreases.

CONCLUSION
This paper proposed an unsupervised approach for trajectory clustering and modelling.
The generative process of trajectory analysis was modelled via a probabilistic model. The
pairwise distances were used as prior in DDCRP to promoting similar trajectories to
be clustered. The DDCRP were used to combine the advantages of similarity-based and
PTM-based approaches. Compared to probabilistic topic approaches, our method is able to
model the full path taken by agents in each cluster. Unlike most similarity-based methods,
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A B

Figure 6 Cluster models: (A) the CROSS dataset, (B) the Lankershim dataset.
Full-size DOI: 10.7717/peerjcs.206/fig-6

our method drives the number of clusters automatically. The proposed trajectory analysis
system clusters the trajectories and models the clusters’ paths at the same time. Specifically,
raw trajectories were converted to bag-of-grid cells representation and considered each
cluster with its distribution over the grids. Experimental results confirmed the effectiveness
and usefulness of the proposed algorithm in trajectory clustering and modelling compared
to other methods. The proposed approach is planned to have an online learning capability,
where the cluster and path models keep updated as more data is observed.
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