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ABSTRACT

Knowledge graph completion aims to predict missing relations between entities in
a knowledge graph. One of the effective ways for knowledge graph completion is
knowledge graph embedding. However, existing embedding methods usually focus
on developing deeper and more complex neural networks, or leveraging additional
information, which inevitably increases computational complexity and is unfriendly
to real-time applications. In this article, we propose an effective BERT-enhanced
shallow neural network model for knowledge graph completion named
ShallowBKGC. Specifically, given an entity pair, we first apply the pre-trained
language model BERT to extract text features of head and tail entities. At the same

time, we use the embedding layer to extract structure features of head and tail
entities. Then the text and structure features are integrated into one entity-pair
representation via average operation followed by a non-linear transformation.
Finally, based on the entity-pair representation, we calculate probability of each
relation through multi-label modeling to predict relations for the given entity pair.
Experimental results on three benchmark datasets show that our model achieves a
superior performance in comparison with baseline methods. The source code of this
article can be obtained from https://github.com/Joni-gogogo/ShallowBKGC.
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Krompafs, Baier & Tresp (2015). In Freebase, 71% of 3 million person entities miss place-
of-birth information, 75% have no known nationality while 94% have no facts about their
parents (West et al., 2014). Therefore, much efforts have focused on the knowledge graph
completion (KGC) task, which aims to predict missing triplets in KGs by examining
existing ones.

Knowledge graph embedding is a dominant approach for KGC, which maps entities and
relations of a KG from a symbolic domain to a vector space and make predictions with
their embeddings (i.e., vectors). Among various knowledge graph embedding methods,
deep neural network-based models such as convolutional neural network (Dettmers et al.,
2018; Dai Quoc Nguyen, Nguyen ¢ Phung, 2018), capsule network (Nguyen et al., 2019),
graph neural network (Schlichtkrull et al., 2018; Nguyen et al., 2022; Tong et al., 2023),
graph attention network (Liang et al., 2023; Wang et al., 2023) and generative adversarial
network (Li et al., 2023) achieve state-of-the-art results.

In this article, we take a step back and propose a simple yet effective BERT-enhanced
shallow neural network model for KGC, referred to as ShallowBKGC. Our motivation is
based on the following considerations and observations: (1) deep neural network models
are usually extended versions of simple shallow neural network models, and improving
simple models can also produce corresponding improvements in complex deep models.
(2) It has been demonstrated that neural networks with even one single hidden layer are
universal approximators (Demir, Moussallem ¢ Ngomo, 2021; Ba ¢ Caruana, 2014),
which means that shallow neural networks can learn almost any complex function
previously learned by deep neural networks. Besides, the relatively low computational
complexity of shallow neural networks makes them more suitable for large-scale KGs.
Based on the above two observations, we prefer simple shallow neural network model
instead of complex deep neural network model. It should be explained here that this work
builds on a previous work (Jia, 2022), which we expand based on the next observation. i.e.,
(3) Most neural network-based methods learn embeddings merely from structured triplets,
ignoring rich text information contained in the entity name, which affects the accuracy of
KGC. Recently, a pre-trained language model BERT (Kenton ¢» Toutanova, 2019) has
achieved great success on multiple natural language processing tasks. Some works (Yao,
Mao & Luo, 2019a; Kim et al., 2020; Zha, Chen & Yan, 2022; Wang et al., 2022) represent
entities and relations using their text information, and fine-tune BERT to infer the missing
triplets. Although these works achieve appealing performance, they still fail to learn the
structural information of a KG, and the fine-tune is computationally inefficient. In order to
efficiently utilize both text and structural information, we apply BERT in the form of
feature extraction to enhance the shallow neural network model to further improve the
performance of KGC.

Our contributions in this article are summarized as follows:

e We propose ShallowBKGC, a BERT-enhanced shallow neural network model for KGC,
which utilizes both text and structural information for this task.
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e We introduce a pre-trained language model BERT in feature extraction manner to
obtain text features of entities, thereby further improving the performance of KGC
without retraining the proposed model.

» We conduct experiments on three benchmark datasets, and the experimental results
demonstrate that our model achieves a superior performance in comparison with
baseline methods.

RELATED WORK

Existing KGC methods can be roughly classified into four categories: translation-based
models, tensor decomposition-based models, neural network-based models and pre-
trained language/large language-based models.

Translation-based models
Translation-based models consider the relation between a head entity and a tail entity as a
translation operation in the vector space and calculate the distance between the head entity
vector and the tail entity vector to measure the plausibility of a triple. Bordes et al. (2013)
present the initial translation-based model TransE, which learns low-dimensional and
dense vectors for every entity and relation, so that relations correspond to translation
vectors operating on vectors of entities. Wang et al. (2014) present TransH, which
alleviates the complex relation problem in TransE by associating each relation with a
relation-specific hyperplane. Lin et al. (2015) present a path-based TransE, named
PTransE, which extends TransE by relation paths. Nguyen et al. (2016) present STransE
that combines SE (Bordes et al., 2011) and TransE for KGC. Sun et al. (2019) present
RotatE, which defines each relation as a rotation from head entity to tail entity in the
complex space. Le, Huynh ¢ Le (2021) present RotatH that combines RotatE and TransH
for KGC.

Models of this category have the advantages of simplicity, intuitiveness, and high
computational efficiency. However, research has shown that they have limitations in
expressive power and are not suitable for non-Euclidean spaces.

Tensor decomposition-based models
Tensor decomposition-based models use triangular norm to measure the plausibility of
triplets. Yang et al. (2015) present DistMult, which considers triplets as tensor
decomposition and constrains all relation embeddings to be diagonal matrices. ComplEx
(Trouillon et al., 2016) extends DistMult to the complex space to better model asymmetric
and inverse relations. Balazevic¢, Allen ¢ Hospedales (2019) present TuckER, which
performs KGC based on tucker decomposition of binary tensors of known triplets.
Inspired by the tucker decomposition of order-4 tensors, Shao et al. (2022) present a tensor
decomposition model for temporal KGC. Zhang et al. (2024) extend tensor decomposition
methods to temporal KGC.

Models of this category are proficient in capturing complex relations between entities
and relations in KGs. However, as the scale of KGs grows, the computational complexity of
these models may escalate rapidly.
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Neural network-based models

Various neural networks have been widely explored for KGC and achieved promising
performance. Dettmers et al. (2018) present a multi-layer convolutional model ConvE,
which explores convolutional neural network for KGC, and uses 2D convolution over
embeddings to predict missing triplets in a KG. Shang et al. (2019) present an end-to-end
graph structure-aware convolutional networks model SACN that combines graph
convolutional network (GCN) and ConvE for KGC. Dai Quoc Nguyen, Nguyen & Phung
(2018) present ConvKB, which utilizes convolutional neural network to capture the global
relationships among dimensional entries of entity and relation embeddings. CapsE
(Nguyen et al., 2019) combines ConvKB with capsule network for both KGC and search
personalization tasks. Schlichtkrull et al. (2018) present relational graph convolutional
networks and apply them to KGC. Vashishth et al. (2020) present CompGCN, which
leverages a variety of composition operations from knowledge graph embedding
techniques to jointly embed both entities and relation in a graph. SHALLOM (Demir,
Moussallem ¢ Ngomo, 2021) and the prior version of the model proposed in this article
ASLEEP (Jia, 2022) apply shallow neural network for KGC and achieve good performance
while maintaining high efficiency.

Models of this category have significant advantages in semantic feature learning, and
our proposed model belongs to this category. The main difference between them and our
model is that most of them usually rely on more deeper and complex neural networks
while our model employs shallow neural network, which is not computationally
demanding and friendly to real-time applications. Although there are several models that
use shallow neural networks for KGC, these models only use structural information and
ignore the rich information contained in text. Under the premise of keeping the model as
simple as possible, we consider both text and structural information for KGC.

Pre-trained language/large language-based models

Pre-trained language models and large language models have received widespread
attention in many natural language processing tasks, including KGC. Yao, Mao ¢ Luo
(2019a) explore the pre-trained language model BERT for KGC. StAR (Wang et al., 2021)
extends KG-BERT by taking into account structural information for KGC. Yao et al. (2023)
present KG-LLM, which investigates large language models, including ChatGLM (Du

et al., 2022) and LLaMA (Touvron et al., 2023) for KGC. Yang, Fang ¢ Zhou (2023) present
a constrained-prompt KGC based on large language model. Zhang et al. (2023) present
KoPA, which integrates pre-trained KG structural features with large language model for
KGC.

Models of this category achieve great success in KGC. However, these models usually
require diverse fine-tuning strategies, and mostly cost much time in training and inference.
It should be pointed out that the model we proposed also uses the pre-trained model
BERT. The difference from the existing model is that in order to keep the model as simple
as possible, we use BERT in a feature extraction manner, that is, the parameters in BERT
are not involved in training.
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OUR PROPOSED MODEL

Problem formulation

A KG is a type of multi-relational directed graph that typically consists of a collection of
triplets in the form of (h, r,t). It can be formally defined as ¥ = (&, %, .7 ), where 7
represents the set of all triplets, & and Z represent the sets of all entities and relations
respectively.

The objective of the KGC task is to predict missing relations in % based on the known
triplets .7. In other words, the aim of KGC is to develop a model that accepts a query
consisting of a head entity and a tail entity, (h;, 7, t;), and ranks all candidate relations
re € R to resolve the query (Lovelace ¢» Rose, 2022). An effective KGC model should
enable correct candidates to have higher rankings than incorrect candidates.

Model overview

Our proposed model ShallowBKGC takes as input an entity pair, and outputs the
probability that each relation exists between the two entities. As illustrated in Fig. 1, our
model consists of three key steps: (1) entity feature extraction, (2) entity-pair
representation, and (3) multi-label relation modeling. The detailed calculation process of
each step is as follows.

Entity feature extraction
Given an entity pair (h, t), our model extracts the features of the head and tail entities by
taking into account both text and structural information.

For text information, we apply the pre-trained language model BERT (Kenton ¢
Toutanova, 2019), which has achieved great success in multiple natural language
processing tasks, to extract text feature of the given entity. Figure 2 illustrates the
framework of BERT for entity text feature extraction. Formally, given the text information

of head and tail entities, i.e., head entity name h_text = {w" w" ..., w/;} and tail entity
name t_text = {w}, w5, ..., wi,} (since many entities lack descriptive information and

introducing additional information will increase computational complexity, we only use
the name information that each entity has as text information), we first add a special
classification token (CLS) and a separate token (SEP) at the beginning and end of the entity
name respectively to obtain the marked entity name. Then through the tokenizer we obtain
the representation of the marked entity name. Finally, we put the representation into
BERT to get the text features of the head and tail entities as follows:

C = BERT(CLS, w!, wh, ..., wl SEP); h, = C (1)
C = BERT(CLS, w},w, ..., wy, SEP); t, = C (2)

where C € R is the hidden vector of the special token (CLS), which contains the features
of the entire input text. Therefore, we use it as the text feature of the given entity.

For structural information, our model receives the IDs of the given head and tail
entities, and extracts the structure features of them through embedding layer as follows:
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Figure 1 The architecture of our proposed model ShallowBKGC.
Full-size &) DOT: 10.7717/peerj-cs.2058/fig-1

h, = Embedding layer(hp) (3)
t, = Embedding layer(t;p) (4)

where hy € RY, t, € R? are embeddings of structural information corresponding to head
and tail entities, respectively.

And then, we integrate entity text feature and entity structure feature through average
operation, and get the entity feature as,

h = ave(h;, h) (5)
t = ave(t, t,) (6)

For the sake of computational convenience, and considering the consistency of tensor
shapes, we intercept the first d columns of text features when fusing text and structure
features of entities.

Entity-pair representation

After getting the features of entities, our model integrates head entity feature and tail entity
feature into entity-pair representation through the average operation and a non-linear
transformation as follows:

E = ReLU(U - ave(h, t)) (7)

where U € R*¥¥ is the transformation matrix, and ave() denotes the average function,
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which aims to obtain the comprehensive features among each dimensional of head and tail
entity features.

Multi-label relation modeling

Since there may exist multiple relations between an entity pair, we model KGC as a multi-
label learning problem. Based on the obtained entity-pair representation in the previous
subsection, our model calculates the confidence scores for each relation as follows:

S=V-E (8)

where V € ER*K is the collection of weight vectors for each relation. Afterwards, the
sigmoid function is applied on each element of the score vector S to compute the
probability of each relation to exist:

1

=——i={1,2,...,R 9
gl { R[} )

pi
where |R| denotes the number of relations.

Model training
We define the loss function using cross-entropy as follows:

[R|
L=- Z)’ilog(Pi))Jr(l—Yi)log(l—pi) (10)
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where y; € {0,1} is the true value for relation i, p; is the predicted probability value for
relation i. The loss function is optimized with Adam (Kingma ¢ Ba, 2015), and dropout
(Srivastava et al., 2014) is employed for regularization.

EXPERIMENTS

Datasets

We evaluate our model ShallowBKGC on three benchmark datasets: WN18RR (Dettmers
et al., 2018), FB15k-237 (Toutanova & Chen, 2015) and YAGO3-10 (Mahdisoltani, Biega
¢ Suchanek, 2015). WN18RR and FB15k-237 are derived from the lexical KG WordNet
(Miller, 1995) and the real-world KG Freebase (Bollacker et al., 2008), respectively.
YAGO3-10 is a dataset containing general facts from Wikipedia. The experimental
datasets statistics are shown in Table 1.

Evaluation metrics

We use mean rank (MR), mean reciprocal rank (MRR) and Hits@N as evaluation metrics,
in which MR is the average rank of all test triplets, MRR is the average of the reciprocal
ranks, and Hits@N is the percentage of test triplets that are ranked within top N. They are
formally defined as follows:

1 | Tripletes|
R :m - rankiipier(i) (11)
1 |Triplet e 1
M Tripletea] 25 Fankgra) (12)
HitsGN — |triplet(i) € Tripletyes : ranKyiprer(iy < N| .

| Triplettest|

where |Triplet,q| is the number of test triplets, triplet(i) is the i-th triplet.

Additionally, to evaluate the model efficiency, we measure the running time of the
training phase. Record the average time of three epochs of the model on the dataset, in
seconds. Our experimental platform is ModelArts, and the specific configuration selected
is pytorch1.8-cudal0.2-cudnn7-ubuntul8.04, and a P100 GPU (16G).

Baseline methods

We compare our model against the following state-of-the-art KGC models, including
translation-based models TransE and RotatE, tensor decomposition-based models
DistMult and ComplEx, neural network-based models ConvE, SHALLOM and ASLEEP,
and pre-trained language/large language-based models KG-BERT, KG-ChatGLM-6B, KG-
LLaMA-7B and KG-LLaMA-13B. Below we briefly introduce these models.

e TransE (Bordes et al., 2013) is the initial translation-based model that views relations as
translations from head entities to tail entities on the low-dimensional space.

o DistMult (Yang et al., 2015) is a typical tensor decomposition-based model that restricts
n-by-n matrices representing relations to diagonal matrices.

o ComplEx (Trouillon et al., 2016) extends DistMult to the complex space.
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Table 1 Statistics of datasets.

Dataset #Entities #Relations #Train #Validation #Test

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

YAGO3-10 123,182 37 1,079,040 5,000 5,000
Note:

#Entities denotes the number of all unique entities. #Relations denotes the number of all unique relations. #Train,
#Validation and #Test denote the number of triplets contained in train set, validation set and test set, respectively.

 RotatE (Sun et al., 2019) is an efficient ranslation-based model that represents entities as
complex vectors and relations as rotations.

o ConvE (Dettmers et al., 2018) is a deep neural network-based model that applies
convolutional neural network for KGC.

e SHALLOM (Demir, Moussallem ¢ Ngomo, 2021) is a shallow neural network-based
model for KGC.

o ASLEEP (Jia, 2022) improves the way SHALLOM obtains entity pair representation, and
is the prior version of our proposed model.

o KG-BERT (Yao, Mao ¢ Luo, 2019b) is a pre-trained language-based model that firstly
employs BERT to KGC.

¢ KG-ChatGLM-6B, KG-LLaMA-7B, KG-LLaMA-13B (Yao et al., 2023) are large
language-based models that perform instruction tuning with ChatGLM (Du et al., 2022)
and LLaMA (Touvron et al., 2023) for KGC.

Hyperparameter optimization

We select the hyperparameters of ShallowBKGC by grid search based on Hits@1 of the
relation prediction task on the validation set of each dataset. We manually specify the
hyperparameter ranges: embedding size among {50, 100, 150}, epochs among

{50,100, 150}, batch size among {512,1000}, dropout rate among {0.25,0.5}, and
L,-normalizer among {0.1,0.01,0.001}. Table 2 shows parameters values in the
experiments.

Experimental results

In this section, we compare the performance of our model ShallowBKGC with that of the
baseline methods on the widely used relation prediction task. The task of relation
prediction is to complete a triplet (h, r, t) with  missing, i.e., to predict the missing r given
(h, t). From the relation prediction results shown in Tables 3-5, we summarize our key
observations in the following section.

(1) The shallow neural network-based models, i.e., our model ShallowBKGC and the
baselines ASLEEP and SHALLOM, outperform the translation-based model TransE, the
complex vector-based model ComplEx and RotatE, the deep neural network-based model
ConvE, the pre-trained language-based model KG-BERT, and even the large language-
based model KG-ChatGLM-6B, demonstrating the effectiveness of shallow neural network
for KGC. For example, compared to TransE, DistMult, ComplEx and RotatE, our model
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Table 2 Hyperparameter values.

Dataset FB15k-237 WNI18RR YAGO3-10

Embedding size 50 100 50

Epochs 150 100 100

Batch size 1,000 512 512

L,-normalizer 0.1 0.1 0.1

Table 3 Relation prediction results on FB15k-237.

Model MR MRR Hits@l Hits@3 RT

TransE (Bordes et al.,, 2013)* 1.352 0.966 0.946 0.984 31s

DistMult (Yang et al., 2015)* 1.927 0.875 0.806 0.936 43 s

ComplEx (Trouillon et al., 2016)* 1.494 0.924 0.879 0.970 112's

RotatE (Sun et al., 2019)* 1.315 0.970 0.951 0.980 >600 s

ConvE (Dettmers et al., 2018)* - 0.667 0.562 0.732 33s

SHALLOM (Demir, Moussallem ¢ Ngomo, 2021 ) 1.106 0.969 0.947 0.992 2s

ASLEEP (Jia, 2022) 1.109 0.970 0.949 0.992 2s

ShallowBKGC 1.108 0.972 0.952 0.993 3s
Note:

The best score is in bold, while the second best score is underlined. Results marked * are taken from Wang, Ren ¢&
Leskovec (2020) and Demir ¢ Ngomo (2021), respectively. T denotes results from our re-implementation. RT is the

abbreviation for running time.

Table 4 Relation prediction results on WN18RR.

Model MR MRR Hits@l Hits@3 RT
TransE (Bordes et al., 2013)* 2.079 0.784 0.669 0.870 36 s
DistMult (Yang et al., 2015)* 2.024 0.847 0.787 0.891 16 s
ComplEx (Trouillon et al., 2016)* 2.053 0.840 0.777 0.880 38 s
RotatE (Sun et al., 2019)* 2.284 0.799 0.735 0.823 >600 s
ConvE (Dettmers et al., 2018)* - 0.353 0.143 0.405 35s
SHALLOM (Demir, Moussallem ¢ Ngomo, 2021)" 1.201 0.925 0.866 0.985 3s
ASLEEP (Jia, 2022) 1.176 0.934 0.883 0.985 3s
ShallowBKGC 1.125 0.949 0.908 0.992 4s
Note:

The best score is in bold, while the second best score is underlined. Results marked * are taken from Wang, Ren ¢
Leskovec (2020) and Demir ¢ Ngomo (2021), respectively. y denotes results from our re-implementation. RT is the

abbreviation for running time.

ShallowBKGC achieves 45.8%, 44.4%, 45.2%, and 50.7% relative improvements in MR on
WNI18RR, respectively. Compared to ConvE, our model ShallowBKGC achieves 76.5%
and 38.9% absolute improvements in Hits@1 on WNI18RR and FB15k-237, respectively.
Compared to KG-BERT and KG-ChatGLM-6B, our model ShallowBKGC achieves 0.2%
and 11.7% absolute improvements in Hits@1 on YAGO3-10, respectively. It is worth
mentioning that the result of KG-ChatGLM-6B is lower than that of KG-BERT. This
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Table 5 Relation prediction results on YAGO3-10.

Model MR MRR  Hits@l Hits@3 RT
KG-BERT (Yao, Mao ¢ Luo, 2019a)* - - 0.681 - >1,300 s
KG-ChatGLM-6B (Yao et al., 2023)* - - 0.566 - -
KG-LLaMA-7B (Yao et al., 2023)* - - 0.702 - -
KG-LLaMA-13B (Yao et al., 2023)* - - 0.696 - -
SHALLOM (Demir, Moussallem ¢ Ngomo, 2021)" 1.465 0.776 0.556 0.994 47 s
ASLEEP (Jia, 2022)T 1.388 0.813 0.630 0.996 47 s
ShallowBKGC 1.301 0.837 0.683 0.996 51s
Note:

Results marked * are taken from Yao et al. (2023). The dash (-) denotes values missing. The best score is in bold, while
the second best score is underlined.

suggests that it is not the case that the more layers a model has or the newer the technology
is, the better the results will be.

(2) Comparing our model ShallowBKGC with ASLEEP and SHALLOM, we can see that
the MRR, Hits@1 and Hits@3 values of ShallowBKGC on the three datasets are better than
ASLEEP and SHALLOM. This indicates that it is beneficial to take both text and structural
information into account for KGC. Because the main difference between our model
ShallowBKGC and the baselines ASLEEP and SHALLOM is that our model ShallowBKGC
combines text and structural information for KGC, while ASLEEP and SHALLOM merely
rely on structural information.

(3) The RTs of our model ShallowBKGC on three benchmark datasets significantly
outperform the baselines, which shows the efficiency of our model. It should be noted that
in order to minimize the impact of programming differences, we use OpenKE (Han et al,
2018) to reproduce the running times of TransE, DistMult, ComplEx and RotatE. The RT's
of ConvE, SHALLOM, ASLEEP and KG-BERT are obtained from their corresponding
source codes. Due to permission issues, the RTs of KG-ChatGLM-6B,KG-LLaMA-7B and
KG-LLaMA-13B are missing. However, from the perspective of the number of layers and
parameter scale, the RTs of these models are likely to be larger than KG-BERT. More
formally, the time complexity of our model is O(d,) (where d, represents the dimension of
entities), which is the same as that of the baselines, except the language-based baselines.
From Wang et al. (2021), we can see that the most relevant language-based baseline KG-
BERT’s time complexity is O(L|E[*|R|), where L, is the length of triple text, |E| and |R| are
the numbers of entities and relations respectively. Additionally, the space complexity of
our model is O(L,|E|dsoken + |E|d.), where L, is the length of entity text, diok, is the
dimension of entity text tokens.

(4) It is worth noting that the results of ConvE are significantly lower than those of the
other models, probably because it relies on an improper pre-trained model for
initialization, and is trained on entity prediction task (i.e., given (h,r) predict ¢, or given
(r,t) predict h) but tested on relation prediction task. It has been demonstrated that the
initialization, hyperparameter optimization, and training strategies have significant effects
on prediction performance (Demir ¢» Ngomo, 2021; Ruffinelli, Broscheit ¢ Gemulla, 2020).
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Figure 3 The percentage of triplets corresponding to relations on the WN18RR test set.
Full-size k&l DOTI: 10.7717/peerj-cs.2058/fig-3

In contrast, our model ShallowBKGC is as simple as possible, it does not require retraining
the pre-trained model BERT, special hyperparameter optimization approach, or complex
training strategy, thus minimizing model uncertainty.

Fine-grained performance analysis

To further verify the capacity of our model from a fine-grained perspective, we plot the
percentage of each relation on WN18RR in Fig. 3, and report the Hits@N and MRR
performance on each relation in Figs. 4 and 5, respectively.

From these figures, we can observe that:

(1) From the perspective of Hits@N, there are five relations, i.e., _similar_to,
_member_of_domain_region, _instance_hypernym, _member_meronym, and
_derivationally_related_form, Hits@1 values exceed 90%. Ten relations Hits@3 values
exceed 90%. In particular, there are four relations, i.e., _similar_to,

_member_of _domain_region, _verb_group and _hypernym, Hits@3 values reached 100%.
Thus, the results are consistent with Table 4, which further demonstrates the effective of
our model at a fine-grained level.

(2) There are eight relations with MRR values exceeding 90%. They are _similar_to,
_member_of_domain_usage, _member_of _domain_region, _synset_domain_topic_of,
_instance_hypernym, _member_meronym, _derivationally_related_form and _hypernym.
Moreover, five of these eight relations Hits@1 values exceed 90%. This experimental result

once again demonstrates the effectiveness of our model and the consistency of the results at
a fine-grained level.

Ablation study

We conduct ablation studies to provide a more detailed analysis of the effectiveness of each
part of our model. The models used for comparison are the following ones: (a)
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ShallowBKGC-Text is the model that merely rely on text information, and (b)
ShallowBKGC-Structure is the model that merely rely on structural information.

Table 6 shows the relation prediction results on three datasets, i.e., FB15k-237,
WN18RR, and YAGO3-10. From which we can see that:

(1) ShallowBKGC outperforms ShallowBKGC-Text and ShallowBKGC-Structure in all
three datasets, indicating that considering both text and structural information is beneficial
to KGC. This is also consistent with the results of the previous experiments.

(2) ShallowBKGC-Structure achieves better results than ShallowBKGC-Text, the main
reason is that we set the entity text feature obtained by BERT untrainable to reduce the
computational complexity, this sacrifices the performance to a certain extent. It is worth
further explaining that from Tables 5 and 6, we can see that ShallowBKGC-Text
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Table 6 Ablation study tests on the three datasets.

Dataset Model MR MRR Hits@1 Hits@3 RT
FB15k-237 ShallowBKGC-Text 1.537 0.908 0.859 0.950 ls
ShallowBKGC-Structure 1.153 0.963 0.938 0.987 2s
ShallowBKGC 1.108 0.972 0.952 0.993 3s
WNI8RR ShallowBKGC-Text 1.307 0.891 0.813 0.971 1s
ShallowBKGC-Structure 1.163 0.932 0.876 0.991 3s
ShallowBKGC 1.125 0.949 0.908 0.992 4s
YAGO3-10 ShallowBKGC-Text 1.471 0.783 0.559 0.994 35s
ShallowBKGC-Structure 1.375 0.819 0.637 0.994 47 s
ShallowBKGC 1.301 0.837 0.683 0.996 51s
Note:

The best score of each dataset is in bold.

outperforms KG-ChatGLM-6B, considering that the latter has far more parameters than
the former, but the experimental results are very close, which also reflects the efficiency of
our model.

(3) ShallowBKGC-Text has the shortest RT because it has the fewest parameters. The
RTs of ShallowBKGC-structure and ShallowBKGC are close, indicating that our model do
not spend much time fusing text and structural information.

CONCLUSION

In this article, we propose a simple yet effective BERT-enhanced shallow neural network
model for KGC that jointly considers text and structural information. Specifically, given an
entity pair and the text information of the entities, our model first extracts the text features
of the entities by BERT in a feature extraction manner, and extracts the structure features
of the entities through the embedding layer. Then the text and structure features of the
head and tail entities are integrated into an entity-pair representation through an average
operation and a non-linear transformation, which aims to obtain the comprehensive and
rich features of the entities. Finally, based on the entity-pair representation and
considering that multiple relations may exist between entities, our model calculates the
probability of each relation through multi-label modeling. Experimental results on three
public datasets shown that our model achieves a superior performance in comparison with
the baseline methods.

In the future, we plan to (1) further study the performance of our model on two KGC
related tasks, i.e., triplet classification and entity prediction; (2) extend our model to
temporal KGC and link prediction in social networks tasks; (3) explore the possibilities and
performance of shallow neural networks on other tasks that can be organized into triplets.
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