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ABSTRACT
Mild cognitive impairment (MCI) is a precursor to neurodegenerative diseases such as
Alzheimer’s disease, and an early diagnosis and intervention can delay its progression.
However, the brain MRI images of MCI patients have small changes and blurry shapes.
At the same time, MRI contains a large amount of redundant information, which leads
to the poor performance of current MCI detection methods based on deep learning.
This article proposes anMCI detectionmethod that integrates the attentionmechanism
and parallel dilated convolution. By introducing an attention mechanism, it highlights
the relevant information of the lesion area in the image, suppresses irrelevant areas,
eliminates redundant information in MRI images, and improves the ability to mine
detailed information. Parallel dilated convolution is used to obtain a larger receptive
field without downsampling, thereby enhancing the ability to acquire contextual
information and improving the accuracy of small target classificationwhilemaintaining
detailed information on large-scale feature maps. Experimental results on the public
dataset ADNI show that the detection accuracy of the method onMCI reaches 81.63%,
which is approximately 6.8% higher than the basic model. The method is expected to
be used in clinical practice in the future to provide earlier intervention and treatment
for MCI patients, thereby improving their quality of life.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Neural Networks
Keywords Image analysis, Disease detection, Deep learning, Alzheimer’s disease detection,
Machine learning, Artificial intelligence, MRI, Cognitive impairment, Structural MRI

INTRODUCTION
As the trend of population aging continues to increase, cognitive impairment among the
elderly population has attracted increasing attention. As a state between normal aging
and Alzheimer’s disease (AD), mild cognitive impairment (MCI) detection has important
clinical and social significance. According to a report released by Alzheimer’s Disease
International, the number of people suffering from dementia worldwide in 2018 was
approximately 50 million, and it is estimated that this will double by 2050, with one
new person suffering from dementia globally every 3 s, two-thirds of the cases would
be classified as AD (Patterson, 2018). The Centers for Disease Control (CDC) in the
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United States believes AD has become the third leading cause of death after heart disease
and cancer (James et al., 2014). According to a series of reports on economic and social
development achievements for the 70th anniversary of the founding of the People’s
Republic of China released by China in 2019, the proportion of China’s population aged
65 and over is as high as 11.9%, and the prevalence of AD is increasing year by year (Ling et
al., 2020). It is expected that by 2050, the total number of AD patients in China will be close
to 28 million, becoming one of the countries with the largest number of AD patients and
the fastest-growing rate in the world (Clay et al., 2019). MCI is considered an early stage of
AD. Compared with the general population, patients with MCI have a significantly higher
probability of transforming to AD (Tahami Monfared et al., 2022). Early identification and
intervention of MCI are expected to delay or prevent the development of AD (Sabbagh et
al., 2020).

Currently, clinicalMCIdiagnosis usually relies onneuropsychological tests, such asMini-
Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Clinical
Dementia Rating (CDR) and the patient’s clinical manifestations are evaluated (Shie et al.,
2021). This method is easy to operate and time-consuming, but its accuracy is easily affected
by education level and involves a certain degree of subjectivity (Molinuevo et al., 2017). In
recent years, advances in medical imaging technology have provided new opportunities for
the diagnosis ofMCI, such as electroencephalogram (EEG), diffusion tensor imaging (DTI),
positron emission tomography (PET), magnetic resonance imaging (MRI), etc. (Shukla,
Tiwari & Tiwari, 2023; Subramanyam Rallabandi & Seetharaman, 2023; Yang et al., 2019).
Among them, MRI is a non-invasive medical imaging technology that is safe, harmless and
has high resolution. It can display the anatomical and functional information of the brain in
detail and is widely used in the diagnosis of neuropsychiatric diseases such as MCI and AD.
Compared with the normal aging process, the brain structure of MCI patients will show
abnormal enlargement and shrinkage, especially in specific areas such as the hippocampus
and lower lateral ventricles. However, in clinical practice, it is often difficult to precisely
locate these lesions by visual inspection. As a method that imitates the connection of
neurons in the human brain, deep learning can automatically learn and extract features
from data, and gradually understand complex patterns and relationships. This allows deep
learning to capture subtle changes in complex neuroimaging data, revealing biological
signatures associated with cognitive impairment. Therefore, the use of deep learning
to learn and extract valuable features from large-scale medical imaging data to achieve
automated detection of MCI detection has attracted widespread attention (Fathi, Ahmadi
& Dehnad, 2022).

Li et al. (2022) proposed an MCI identification method based on a three-dimensional
convolutional neural network (3-D CNN), which provides additional supervisory
information for supervised classification tasks through multi-channel contrastive
learning. Odusami et al. (2021) used fine-tuned ResNet18 to build a deep-learning
network for MCI recognition. Liu et al. (2020) proposed an MCI classification method
to enhance multi-modal MRI data feature representation by combining multi-view
information. Alyoubi et al. (2023) used the entorhinal cortex area in MRI and combined
different neural network architectures such as VGG16, Inception-V3 and ResNet50 to
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build an MCI model. Although brain MRI images have the advantage of providing rich
anatomical and functional information, there is a large amount of redundancy. During
the feature extraction process, due to the complexity of the brain structure, significant
lesion features are often obscured or ignored, resulting in the loss of useful information.
To overcome this problem, Qin et al. (2022) proposed a DHA-ResUNet method combined
with a hybrid attention mechanism to assist in the diagnosis of MCI. This method achieves
better recognition and localization of features by fusing channel attention and spatial
attention. Chen, Qiao & Zhu (2022) proposed an MCI diagnosis model based on multi-
view slice attention and 3D-CNN, which emphasizes specific 2D slices through a slice-level
attention mechanism to exclude redundant features. Zhang et al. (2022) proposed a deep
learning framework based on sMRI gray matter slices for MCI diagnosis. This method
uses the channel attention module to enhance the important information of the processed
object and suppress some irrelevant details. Table 1 summarizes existing MCI detection
methods.

Compared to natural images, medical images exhibit obvious target region localization
characteristics. The lesion location typically occupies a relatively small area of the entire
MRI image. Traditional methods integrate the channel attentionmechanism and the spatial
attention mechanism into the network in series. This type of method can achieve certain
results in the depth of the network, but it ignores the influence of global features and
often fails to perform well when processing fine-grained spatial information tasks. In this
study, we propose a convolutional neural network method based on attention mechanism
and parallel dilated convolution. Specifically, we introduce an attention mechanism to
highlight relevant information of the lesion area and suppress irrelevant areas, thereby
improving the ability to mine detailed information. At the same time, through parallel
dilated convolution, we achieve a larger receptive field and enhance the ability to obtain
contextual information. The main contributions of this study are summarized as follows:
1. Introducing an attention gate mechanism module suitable for medical images to

eliminate redundant information in medical images, highlight diseased areas, and
suppress the influence of irrelevant areas.

2. Use parallel dilated convolution to obtain a larger receptive field without
downsampling, thereby enhancing the ability to obtain contextual information while
maintaining detailed information on large-scale feature maps.

3. Experiments on the public data set ADNI proved that the accuracy of this method
in MCI detection was significantly improved, providing a feasible solution for future
clinical practice.
The rest of the article is organized as follows: the ‘‘Method’’ section describes our

method. ‘‘Results’’ introduces the dataset, evaluation indicators and experimental settings,
and demonstrates the effectiveness of the method through quantitative and qualitative
analyses. ‘‘Discussion’’ discusses some key factors that influence the performance of the
proposed method. Finally, ‘‘Conclusion’’ concludes our work.
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Table 1 Summary of MCI detection methods.

Author Dataset Subject Methodology Performance Contribution

Li et al. (2022) ADNI dataset
(T1w MRI)

928 subjects
(330 NC, 299
AD, 299 MCI):
3746 MRI images

3D CNN •MCI vs. NC: ACC= 80.44%,
SEN= 83.18%, SPE= 78.59%,
PRE= 72.33%, AUC= 80.89%,
F1= 77.38%.

The study used a multi-channel
contrastive learning strategy based
on multiple data transformation
methods (e.g., adding noise) to
combine supervised classification
loss with unsupervised
contrastive loss to improve
the classification accuracy
and generalization ability of
the network.

Odusami et al. (2021) ADNI dataset (fMRI) 138 subjects:
78,753 images

2D ResNet18 • CN vs. EMCI: ACC= 96.51%,
SEN= 98.62%, SPE= 99.96%.
• CN vs. LMCI: ACC= 74.91%,
SEN= 67.36%, SPE= 97.92%.

An improved ResNet18 model
fine-tuning framework is proposed
to achieve AD image classification of
seven binary categories by extracting
useful features in hippocampal
fMRI data.

Liu et al. (2020) ADNI dataset
(T1w MRI+rs-fMRI)

315 subjects
(105 LMCI, 105
EMCI, 105 NC)

MTFS-gLASSO-
TTR+multi-kernel
learning

• LMCI vs. NC: ACC= 88.5%,
SEN= 86.3%, SPE= 90.3%,
AUC= 89.7%.
• EMCI vs. NC: ACC= 82.7%,
SEN= 79.4%, SPE= 83.9%,
AUC= 83.2%.

This study proposes a method
to enhance feature representation
of multi-modal MRI data to improve
the performance of mild cognitive
impairment (MCI) classification by
combining multi-view information.

Alyoubi et al. (2023) ADNI dataset (T1w MRI) 188 subjects
(95 NC, 93 MCI):
779 3D-MRI images

VGG16,
Inception-V3
and ResNet50

• The best model’s (Inception-V3)
MCI vs. CN: ACC= 70%,
F1= 0.73%, SEN= 90%,
SPE= 54%, AUC= 69%.

The study noted that the
parahippocampal cortex already
showed underlying changes before
hippocampal atrophy. This means
that the parahippocampal
cortex can serve as a key
area for early diagnosis
of mild cognitive impairment (MCI),
providing the possibility for early
intervention and treatment.

Qin et al. (2022) ADNI dataset 43 aMCI, 46 sMCI,
5 oMCI

3D HA-ResUNet •aMCI vs. sMC: ACC= 100%,
SEN= 100%, SPE= 100%,
PRE= 100%, F1= 100%,
G-mean= 100%.

This study adopted an attribution-
based visual interpretability
method to reveal the regions and
features used by the model for
classification, providing a valuable
reference for physicians’ clinical
decision-making.

Chen, Qiao & Zhu (2022) ADNI-1 (1.5 T T1W sMR)
and ADNI-2 (3T T1W sMR)
datasets

• ADNI-1: 808 subjects
(183 AD, 229 CN, 167
pMCI, 229 sMCI).
• ADNI-2: 643 subjects
(143 AD, 184 CN,
75 pMCI, 241 sMCI).

Multiview-Slice
Attention and
3D CNN

• pMCI vs. sMCI: ACC= 80.1%,
SEN= 52.0%, SPE= 85.6%,
AUC= 78.9%.

This study considers the
characteristics of multi-view
slices and feature complementarity,
and proposes a method to
comprehensively utilize
multi-dimensional slice
features, allowing the model
to extract information more
effectively from magnetic
resonance imaging.

Zhang et al. (2022) ADNI dataset
(sMRI)

496 subjects
(139 AD, 198 MCI,
159 NC)

Attention
mechanism
+ 2D CNN

•MCI vs. NC: ACC= 67.1%,
SEN= 80.0%, SPE= 53.1%.

This method enhances gray matter
feature information through the
combination of slice areas and
attention mechanisms, thereby
improving the accuracy of
AD diagnosis.

METHOD
The development of deep neural networks has led to a huge leap in the field of
artificial intelligence. However, as the number of network layers increases, the vanishing
gradient problem gradually appears. This problem makes it difficult to update the
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Figure 1 Residual structure.
Full-size DOI: 10.7717/peerjcs.2056/fig-1

underlying network parameters, thus limiting further improvements in network depth
and performance. To deal with this challenge, He et al. (2016) proposed a deep residual
network (ResNet) in 2015. The core idea of ResNet is ‘‘residual learning’’. Unlike traditional
neural networks, which directly fit the input and output mapping layer by layer, ResNet
learns the residual between the output of the previous layer and the input of the current
layer, and adds the residual to the output of the previous layer to realize the transmission
and capture of information. The structure of ResNet is shown in Fig. 1.

This design has two-fold advantages. First, the residual module constructs a shortcut
for information dissemination. In traditional networks, information must pass through
a series of intermediate-weight layers. As the number of network layers increases, the
propagation loss of shallow features gradually accumulates. However, in ResNet, the
introduction of residuals greatly reduces the depth of information propagation in the
network, effectively reducing the loss of shallow features. Secondly, the iteration of the
residual module strengthens the ability to abstract features, which makes the network
more capable of deeply characterizing and abstracting the input data. In 2015, ResNet won
the championship in the ImageNet competition, reducing the Top-5 error rate to 3.57%.
Classic ResNet ranges from 18 to 152 layers (He et al., 2016), and its performance has been
verified at different scales. This study uses the basic ResNet18 as the backbone framework.
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Attention gate mechanism
The attention mechanism is a technology that simulates the operation of the human
brain. Its purpose is to imitate the selective attention characteristic phenomenon that
humans present in the process of information processing. This mechanism allows humans
to selectively focus on specific sources of information and thereby ignore information
that is irrelevant to the current task. Using this ability, humans can gain a more refined
and in-depth understanding of complex situations. With the continuous progress in the
fields of computer science and artificial intelligence, researchers have introduced attention
mechanisms into the field of deep learning to optimize the execution performance of
various tasks. Among them, the most representative works include the channel attention
mechanism proposed by Hu, Shen & Sun (2018) in 2017, the CBAM mechanism that
integrates channel attention and spatial attention proposed by Woo et al. (2018) in 2018,
and the 2020 (Wang et al., 2020) improved the channel attention mechanism, etc. By
generating weighted attention maps in the two dimensions of channel and space, the
network canmore effectively focus on key channel features and spatial location information.
This optimization method has achieved remarkable results in the field of natural image
processing.

However, compared with natural images, medical images have the characteristic of
localized target areas. Especially for the brain MRI images used in this study, the location
of the lesions only occupies a small area of the entire brain MRI image. Currently, methods
using channel attention mechanisms can automatically learn the importance between
different channels (feature maps), allowing the network to focus on information useful
for solving specific tasks. However, it often performs unsatisfactorily when processing
tasks with fine-grained spatial information. While methods based on spatial attention
mechanisms ignore the influence of global features. In the diagnosis of MCI, brain
MRI lesions show obvious localization characteristics, and early lesions are not obvious.
Therefore, during the diagnosis process, local information and global information need to
be effectively combined.

To address this problem, this study introduces an attention mechanism method that
targets the localization characteristics of targets in medical images, that is, the attention gate
mechanism (AG) (Schlemper et al., 2019). The structure of the attention gate mechanism is
shown in Fig. 2. Among them, xl is the local feature vector extracted from the middle layer
of the network, and gl represents the global feature vector obtained from the coarse-scale
part of the network, which contains abstract information of the target, such as size, position
and orientation. The global feature gl is used as a gating signal, and the local feature xl
is sent to the gated attention. The attention coefficient αl is calculated, and its value is
between the interval [0,1]. The calculation formula of attention coefficient αl is as follows:

qlatt ,i =9
T
(
σ1

(
W T

x x li +W
T
g g+bxg

))
+b9

αl = σ2
(
qlatt

(
x l,g ;2att

))
(1)

where σ1 and σ2 represent different activation functions. σ1 is a rectified linear unit (ReLU),
and σ2 is generally a Softmax function to ensure that the sum of attention coefficient
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Figure 2 Attention gate mechanism.
Full-size DOI: 10.7717/peerjcs.2056/fig-2

αli = eq
ql
att ,i
/∑

ie
ql
att ,i is 1. The output of the attention gate mechanism is completed by

a channel-based 1× 1× 1 convolutional linear transformation, including three parts:
Wx ∈RFl×Fint ,Wg ∈RFg×Fint and 9 ∈RFint×l . The corresponding bias terms are bxg ∈RFint

and b9 ∈R, respectively. The final weighted output is α̂l =
{
αlix

l
i
}n
i=1. It can be seen that in

the target area, the attention coefficient is larger, while in the background area, the attention
coefficient is smaller. Therefore, the method is able to extract feature responses relevant to
the target task from medical images and suppress the influence of useless features.

Parallel dilated convolution
An important challenge facing the field of MCI detection is that the lesion area appears
localized and its size is usually extremely small. Therefore, ensuring that these small-size
target features are not ignored during the recognition process has become one of the key
factors to ensure accurate recognition of the model. Classic classification networks at this
stage usually add pooling layers before and after the convolutional layer to increase the
receptive field of the network. However, the pooling operation will lead to the loss of some
spatial information, including important detailed features that may be included in the
original image, and may even directly ignore small-scale lesion features.

Dilated convolution, also known as atrous convolution, was first proposed by Yu &
Koltun (2015) in 2016. It was originally used to solve the problem of pooling operation
reducing image resolution and causing the loss of some features in image semantic
segmentation, as an alternative to the pooling layer. In a convolutional neural network, if
you directly remove the pooling layer that may reduce the image size, you will not be able to
increase the receptive field of the small-sized convolution kernel, and if you blindly increase
the size of the convolution kernel, it will significantly increase the number of parameters
of the network. By using a sparse kernel, dilated convolution expands the effective size
of the convolution kernel without increasing network parameters, thereby expanding the
receptive field of the network. This effect is similar to alternating convolutional and pooling
layers, but does not reduce the size of the feature map.

The basic principle of dilated convolution is to expand the convolution kernel parameters
that are originally closely connected according to a certain ratio, and use zero values to
separate these parameters. The separation distance is determined by the expansion rate. The
advantage of this design is that the receptive field of the network is expanded through the
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Figure 3 Dilated convolution.
Full-size DOI: 10.7717/peerjcs.2056/fig-3

expansion of the convolution kernel, but the kernel parameters involved in the calculation
do not increase, thus not increasing the computational burden. At the same time, the size
of the feature map after dilation convolution remains unchanged, effectively retaining
important detailed features.

Figure 3 shows a 3×3 dilated convolution kernel with different dilation rates. It can be
observed from the figure that when the dilation rate is 1, dilated convolution is no different
from ordinary convolution. When the dilation rate is 2, the interval between convolution
kernel elements is 1. After filling, the dilated convolution kernel is equivalent to a 5×5
convolution kernel. When dilated = 3, the interval between convolution kernel elements
is 2, which is equivalent to a receptive field of 7×7 convolution kernel. That is to say, for
a convolution kernel with an original size of k×k, when the expansion rate is d , the actual
side length of the convolution kernel will become k+(k−1)×(d−1).

For a two-dimensional input data, the formula of dilated convolution is defined as
follows:

y (m,n)=
M∑
i=1

N∑
j=1

x
(
m+ r · i,n+ r · j

)
w
(
i,j
)

(2)

where x (m,n) represents the input of the network, w
(
i,j
)
represents the filter of size

M×N , and r represents the expansion rate of the convolution kernel, and y (m,n) is the
output of the network. By introducing dilated convolution, a larger receptive field can
be obtained without the need for downsampling. This enables the retention of detailed
information and the rich acquisition of contextual information on large-scale feature maps.

To solve the problem of small-size target feature recognition inMCI detection, this study
introduces a parallel dilated convolution module, that is, Atrous Spatial Pyramid Pooling
(ASPP), into the network structure. The parallel dilated convolution module contains
multiple dilated convolution operations, and each operation uses a different dilation rate.
The output feature map of each dilated convolution operation preserves different scale
contextual information. By using the feature fusion method, the output feature maps of
each dilated convolution operation are stacked in the channel dimension to obtain richer
multi-scale feature representations. The ASPP is shown in Fig. 4.
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Figure 4 Atrous Spatial Pyramid Pooling (ASPP).
Full-size DOI: 10.7717/peerjcs.2056/fig-4

Figure 5 Overall network architecture.
Full-size DOI: 10.7717/peerjcs.2056/fig-5

Overall network architecture
To achieve good classification results for small target lesions, the network needs to obtain
rich lesion area information, including the shape and size of the lesion and other features.
These features usually exist in shallow networks, but because the lesion area is too small,
these shallow features will lose a lot of detailed information during the feature extraction
process. In this study, based on brain MRI images, we proposed an improved ResNet18
network for the detection of MCI with the help of an attention gate mechanism and parallel
dilated convolution. As shown in Fig. 5, this network utilizes the deepest feature map g
as a gating signal to provide contextual information for the feature maps of the second
and third ResNet blocks. The purpose of this operation is to prune redundant information
in shallow features to highlight the salient features of the lesion area. The deepest feature
map g is selected as the gating signal to ensure that the extracted contextual information
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is highly correlated with the deep features, thereby helping to accurately identify the lesion
area.

After eliminating redundant features, these features are input to the ASPP, and the
detailed information and contextual information of the large-scale feature map are
extracted through dilation convolution with different dilation rates. This step is crucial as
it allows the network to focus on features at multiple scales simultaneously, thus better
capturing the diversity of the lesion area. After obtaining the output of the ASPP, it is fused
with the gating signal g to further obtain the features of fused gating information and
multi-scale information. This fused feature has a larger scale range, which helps avoid the
loss of detailed features and effectively solves the problem of poor performance of existing
methods in classifying small target lesions.

RESULTS
Dataset
ADNI dataset
The data used in this study are derived from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (Mueller et al., 2005), which was created in 2004 and supported
by the National Aging National Institute of Biotechnology (NIA), National Institute of
Biomedical Imaging and Bioengineering (NIBIB) and several pharmaceutical companies
and institutions with financial support. ADNI’s primary research focus is tracking the
progression of early-stage AD and MCI. The database contains information on subjects’
MRI, PET, genetics, cognitive tests, cerebrospinal fluid and blood biomarkers. In this study,
we selected 3.0T MRI images of subjects in the ADNI database. These MRI images were
acquired with a scanner manufactured by SIEMENS, using the 3D MPRAGE protocol to
obtain sagittal MRI images. The images have an in-plane spatial resolution of 1.0×1.0mm2

and a sagittal slice thickness of 1.2 mm. Considering that the subjects’ longitudinal
examination data also contains valid information. Therefore, we performed longitudinal
time point acquisition and obtained 265 MRI samples from 127 MCI patients and 265
MRI samples from 75 normal controls (NC). Demographic information of subjects in the
ADNI database is presented in Table 2. Due to the large inter-subject variability of MRI,
to make the data distribution of the training set and the test set as close as possible while
avoiding data leakage, we took 25% of the subjects as the test set and the remaining 75%
as the training set.

Image preprocessing and data augmentation
Due to the high dimensionality of MRI and relatively sparse medical data, deep learning
algorithms face huge challenges in their training and convergence processes. Therefore,
all images must be preprocessed to map brain image samples to a common coordinate
space. This study uses the CAT12 toolkit of SPM12 (Gaser et al., 2022) to perform the
necessary processing on the above MRI images: (1) Skull stripping. Use the built-in skull
stripping function of CAT12 software to remove skull structures to exclude brain skull
information that is not relevant to the experiment; (2) Tissue segmentation. Segment
the MRI image into three tissue types: white matter, gray matter and cerebrospinal fluid.
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Table 2 Demographic information of subjects.

Diagnosis Subjects Gender (M /F) Age (Mean± SD) Scans

NC 127 64/63 75.72± 6.87 265
MCI 75 46/29 77.99± 8.10 265

Figure 6 MRI image preprocessing process. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerjcs.2056/fig-6

Since the gray matter tissue of the brain is susceptible to morphological changes caused
by MCI, this study uses the gray matter tissue of the subject’s brain as input; (3) Spatial
registration. Register the subject’s image to the MNI152 standard template established by
theMontreal Neurological Institute-Hospital (MNI) to reduce the differences in individual
brain spaces; (4) Modulation. Ensure that brain tissue is comparable in template space
while retaining differences between individuals; (5) Smooth. Spatial smooth is performed
on the image to reduce reconstruction errors and improve the consistency of the subject’s
brain image. After the above preprocessing steps, a brain MRI gray matter image with a
size of 84 × 102 × 84 was finally obtained. Figure 6 gives a schematic diagram of the
preprocessing process.

Deep learning methods are known for their powerful potential and highly complex
models, however, for these models to produce robust results, large image data sets are
usually required. Due to the high cost and difficulty of obtaining clinical data, enough data
cannot be obtained. In this study, we use data augmentation techniques such as flipping,
rotating, and adding noise to improve the training effect of the neural network model.
Among them, flipping the image vertically, horizontally and axial can increase the mirrored
version of the data, helping the model better capture different perspectives and features
in the image. The rotation operation can introduce more changes, making the model
better able to recognize objects at different angles. By adding random noise to the image to
simulate the uncertainty in the real world, it helps to improve the robustness of the model
and make it better able to deal with noise and interference in the real world. In this study,
we utilize these data augmentation techniques to expand the training data by 25 times.
This significantly improves the model’s generalization ability on unknown data.

Experimental setup
The experimental running system of this study is Ubuntu 20.04.6 LTS, the CPU is 12th
Gen Intel (R) Core (TM) i9-12900K with a main frequency of 3.9 GHz, the memory is
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64 GB, the GPU model is NVIDIA GeForce RTX 3080*2, and the video memory is 24
GB. The experimental environment is python3.8 and pytorch1.7.1. In the experiment,
the three-dimensional convolution kernel and fully connected weight parameters were
initialized with truncated normal distributed random numbers with a standard deviation
of 0.1. For the setting of hyperparameters, based on our experience and previous research,
we set the batch size to 8. Compared to larger batch sizes, smaller batch sizes promote
model convergence more effectively and are more efficient in terms of memory utilization.
For the choice of optimizer, we use the Adam optimizer. The Adam optimizer combines
the ideas of momentum and RMSprop, has the characteristics of adaptive learning rate,
and has outstanding performance in handling many tasks. At the same time, compared to
other optimizers, Adam is less sensitive to the selection requirements of hyperparameters.
For the learning rate, we follow the default value used in most current studies, which is
0.001. In addition, we also adopt a learning rate decay strategy, that is, after every 10 epochs,
the learning rate is adjusted to 0.1 times its original value. This strategy can improve the
performance and stability of the optimization algorithm, allowing the model to converge
to a better solution faster. The total training epochs are set to 50.

Evaluation indicators
This study uses common evaluation indicators in medical image classification tasks to
evaluate the performance of the model, including sensitivity (SEN), specificity (SPE),
accuracy (ACC) and F1-score (F1). The definitions of each indicator are as follows:

SEN =
TP

TP+FN
(3)

SPE =
TN

TN +FP
(4)

ACC =
TP+TN

TP+TN +FP+FN
(5)

f 1=
2× TP

TP+FP ×SEN
TP

TP+FP +SEN
. (6)

Among them, TP, TN, FP and FN represent true positive, true negative, false positive and
false negative, respectively. In addition, the area under the curve (AUC) is also introduced
to evaluate the overall classification performance of the model. AUC is the area enclosed
by the receiver operating characteristic (ROC) curve in the [0,1] interval and the X-axis,
which reflects the overall performance of the model. The larger the AUC value, the better
the model classification performance.

Experiment analysis
Figures 7 and 8 depict the training-validation loss and accuracy of the proposed method
across iteration epochs, along with the confusion matrix and ROC curve. First, from Fig.
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Figure 7 Training-validation loss and accuracy over iteration epochs.
Full-size DOI: 10.7717/peerjcs.2056/fig-7

Figure 8 The confusionmatrix and ROC curve of the proposed method.
Full-size DOI: 10.7717/peerjcs.2056/fig-8

7, it can be found that as the number of iterations increases, the training and validation
losses of the model gradually decrease and the accuracy gradually increases. In particular,
the proposed method reaches stable accuracy after about 15 epochs. This shows that
the proposed model can effectively reduce errors during the learning process and reach
acceptable performance in a relatively short time. However, we also noticed a large
difference in accuracy between the training and validation sets. This difference can be
attributed to the smaller sample size used in the study. As the number of iterations
increases, the model overfits on the training set. Further observing the confusion matrix
and ROC curve in Fig. 8, we can find that out of 147 test samples, 120 were successfully
predicted. This indicates that the proposedmethod achieves good performance in detecting
MCI. In addition, we also showed the ROC curve with an AUC value of 83.06%, which
further proved its effectiveness in detecting MCI.

Comparison of different ResNet architectures
To verify the performance differences on different ResNet architectures, we compared
several typical ResNet basic frameworks, including ResNet18, ResNet34, ResNet50,
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Table 3 The performance comparison between different ResNet architectures.

Architecture SEN SPE ACC AUC F1

ResNet18 63.01 86.49 74.83 83.08 71.32
ResNet34 53.42 94.59 74.15 81.90 67.24
ResNet50 64.38 83.78 74.15 80.64 71.21
ResNet101 61.64 77.03 69.39 79.67 66.67
ResNet152 58.90 82.43 70.75 76.03 70.75

ResNet101, and ResNet152. These different ResNet architectures have obvious differences
in depth, parameter volume and computational complexity, and have different impacts
on MCI detection tasks. The experimental results are shown in Table 3. We used a variety
of performance evaluation indicators to comprehensively evaluate the performance of
different ResNet architectures, including sensitivity, specificity, accuracy, F1 and AUC.

FromTable 3, it can be observed that ResNet18, ResNet34 and ResNet50 perform equally
well in terms of accuracy. However, ResNet101 and ResNet152, two relatively deep ResNet
architectures, show a clear downward trend in accuracy. This phenomenon is because as the
depth of the model increases, the network overfits, resulting in a decrease in generalization
performance on the test data. In addition, comparing ResNet18 and ResNet50, it can be
found that they are generally equivalent in various indicators. However, compared with
ResNet50, ResNet18 has a significantly lower number of parameters and computational
complexity, and has more advantages in model lightweight, which is of great significance
for MCI detection tasks in resource-constrained environments. Therefore, in this study,
we choose ResNet18 as the backbone framework for the task.

Comparison of different attention modules
To verify the effectiveness of the attentionmodule used in this study, we embedded different
types of attention modules into the ResNet-18 backbone framework and compared their
impact on model classification performance. In these experiments, we include a variety
of widely used attention modules, such as SENet (Hu, Shen & Sun, 2018), ECANet (Wang
et al., 2020) and CBAM (Woo et al., 2018), to ensure comprehensive evaluation, and the
experimental results are shown in Table 4.

Combining the results in Tables 3 and 4, we can clearly observe that after integrating
different types of attention modules into the network, the overall performance has
improved. This performance improvement is reflected in multiple key performance
indicators, including sensitivity, accuracy and F1. However, it is worth noting that
compared to other attention modules, the attention gate mechanism (AG) adopted in
this study shows compelling superiority in terms of accuracy and F1. This is because the
attention gate mechanism is a method proposed for the localization characteristics of the
target area of medical images. The method enables the network to focus more on the area
of interest, extract feature responses that are closely related to the task target, and effectively
suppress the influence of useless features, thereby better capturing key features in medical
images and improving the overall network performance.
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Table 4 The performance comparison between different attentionmodules.

Attentionmodule SEN SPE ACC AUC F1

SENet 65.75 85.14 75.51 81.58 72.73
ECANet 67.12 85.14 76.19 81.84 73.68
CBAM 72.60 79.73 76.19 82.32 75.18
AG 72.60 81.08 76.87 81.77 75.71

Table 5 The impact of different modules on the overall model performance.

Method SEN SPE ACC AUC F1

Baseline 63.01 86.49 74.83 83.08 71.32
Baseline+AG 72.60 (+9.59) 81.08 (−5.41) 76.87 (+2.04) 81.77 (−1.31) 75.71 (+4.41)
Baseline +AG+ASPP 75.34 (+12.33) 87.84 (+1.35) 81.63 (+6.8) 83.06 (−0.02) 80.29 (+8.97)

Notes.
The bold text represents the performance improvement over the baseline model.

Ablation experiment
To prove the effectiveness of the module design in the model proposed in this study, we
conducted an ablation experiment. The control variable method is used to gradually add
different modules of the model and evaluate the impact of each module on the overall
model performance. The experiment uses the ResNet18 basic network as the evaluation
baseline. The results are shown in Table 5.

It can be clearly observed from Table 5 that with the gradual increase of different
modules, the overall performance shows a gradual improvement trend. These results
indicate that each module has a positive impact on the performance of the model. It
is particularly worth noting that after adding the ASPP, the accuracy rate increased by
about 4.76%. This proves that this module can better capture important information in
images by introducing receptive fields of different scales, thereby improving classification
performance.

Comparison with other methods
To further verify the effectiveness of the method, we compared it with other work in the
literature. It is worth noting that the ADNI database contains longitudinal examination
data. To avoid data leakage leading to model overfitting, in this study we divided the data
based on subjects. In the comparison, we also only report methods that explicitly adopt this
strategy in the literature. Table 6 shows the performance comparison between the method
and existing work.

As can be seen from Table 6, the method used in this study has achieved significant
improvements in specificity and accuracy. Specificity and accuracy are key indicators for
measuring the performance of a classificationmodel. High specificity means that the model
is more able to correctly classify healthy samples as healthy, while high accuracy means
that the model is more able to correctly classify diseased samples as diseased. These results
indicate that our method is more accurate in distinguishing normal samples and MCI
patients, which is of great significance for early diagnosis and treatment of MCI.
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Table 6 The performance comparison between the method and existing work.

Study Subject Classifier SEN SPE ACC AUC F1

MCI NC

Zhang et al. (2022) 198 159 ResNet 80.00 53.10 67.10 – –
Marzban et al. (2020) 106 185 2D CNN – – 79.60 84.00 –
Heising & Angelopoulos (2022) 212 165 2D CNN 89.40 – 73.50 – 80.20
Zhang et al. (2023) 768 459 MRN 89.13 50.41 73.77 73.14 80.39
Aderghal et al. (2020) 672 627 LeNet 77.72 81.44 78.48 – –
Our 75 127 ResNet18-AG-ASPP 75.34 87.84 81.63 83.06 80.29

Figure 9 Grad-CAM visualized lesion area. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerjcs.2056/fig-9

Visualization
To further analyze the performance of the model proposed in this study, we adopted the
Gradient-weighted Class Activation Mapping (Grad-CAM) technology (Selvaraju et al.,
2017) to visualize the model’s performance in key areas of interest, thereby qualitatively
analyzing the effectiveness of the model in learning the characteristics of the lesion area.
The Grad-CAM generated by this study’s model is presented in Fig. 9, where blue represents
low-weighted regions and red represents high-weighted regions. It can be observed from
Fig. 9 that subjects have significantly high weights in the frontal and parietal regions.
These brain regions are closely related to key functions in cognitive processes, including
decision-making, planning, attention, working memory, and language comprehension.
The early stages of MCI are often accompanied by atrophy of these brain areas. To verify
the findings of the model, we further cooperated with professional doctors to carefully
confirm the brain lesions of the subjects. These results strongly demonstrate that the model
proposed in this study performs well in learning and utilizing lesion area information. It
can extract effective features from these key regions, enabling highly accurate classification
of MCI.
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Table 7 The performance under different backbone networks.

Backbone network SEN SPE ACC AUC F1

LeNet5 73.97 77.03 75.51 84.15 75.00
AlexNet 63.01 86.49 74.83 85.56 71.32
GoogLeNet 76.71 75.68 76.19 85.30 76.19
VGG16 65.75 89.19 77.55 88.04 74.42
ResNet18 75.34 87.84 81.63 83.06 80.29

DISCUSSION
In the previous sections, we verified the effectiveness of the proposed method. In this
section, we further discuss the key factors that affect the performance of the proposed
method, including the backbone network, data augmentation, hyperparameters, and
dataset distribution.

Impact of backbone network on performance
Besides ResNet, deep learning networks such as LeNet, AlexNet, GoogLeNet and VGG are
also widely used as backbone networks. To gain a deeper understanding of the impact of
different backbone networks on model performance, we conducted a comparative analysis
of LeNet5, AlexNet, GoogLeNet, VGG16 and ResNet18. The experimental results are
shown in Table 7. First, as a classic deep learning model, LeNet5 shows relatively high
sensitivity, but is slightly insufficient in other indicators. AlexNet performs well in terms
of specificity and AUC, but its sensitivity and accuracy are slightly insufficient. GoogLeNet
shows balanced performance, especially in AUC and F1 indicators. VGG16 achieved the
best performance in specificity and AUC, showing its adaptability to MCI detection tasks.
Finally, ResNet18 achieved excellent performance in accuracy and F1, demonstrating
its advantages in handling complex tasks. It can be seen that choosing an appropriate
backbone network is crucial to the performance of the model. One of the possible reasons
why VGG16 performs well in this task is that its deep structure is better able to extract
and characterize the features of the data. ResNet18, through its deep residual connection
design, shows better stability and robustness when handling more complex tasks.

Impact of data augmentation on performance
Data augmentation plays a vital role in the field of deep learning. Especially when clinical
data sets are small, data augmentation can not only improve classification accuracy but also
reduce the risk of overfitting. To verify the effectiveness of the data augmentation operation
used in this study, we show the classification results of our method before and after data
augmentation in Fig. 10. As can be seen from the figure, after using data augmentation
operations, the classification results have improved in various indicators. First, without
data augmentation, the classification accuracy is 77.55%, and with data augmentation,
the classification accuracy increases to 81.63%. This shows that data augmentation can
significantly improve the accuracy, thereby improving the reliability of clinical data analysis.
In addition, in terms of sensitivity and specificity, the data augmentation operation has
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Figure 10 The performance before and after data augmentation. no DA, No data augmentation; DA,
Data augmentation.

Full-size DOI: 10.7717/peerjcs.2056/fig-10

also been improved, which further confirms the effect of data augmentation in improving
model performance.

Impact of hyperparameters on performance
Hyperparameters play a vital role in deep learning, and they directly affect the
performance and training process of the model. In this part, we analyze the impact of
two hyperparameters, optimizer and batch size, on performance.

The batch size determines the number of samples used at each step in the training
process. We explored the performance when batch sizes were 8, 16, 32, 64, 128, and 256.
Figure 11 shows the performance of two key indicators (ACC and F1) at different batch
sizes. As can be seen from Fig. 11, as the batch size increases, the accuracy and F1 decrease
slightly. This is caused by the different gradient update frequencies under different batch
sizes. Larger batch sizes usually mean fewer gradient updates, which can cause the model
to converge slower during training, thus affecting performance indicators. In this study,
the model performed best when the batch size was 8. Although the ACC are slightly lower
at batch size 8 relative to some other batch sizes, the F1 performs best. This is because
when the batch size is 8, the model can more fully capture the subtle features of the data
and update the weights more frequently during the training process, resulting in better
performance.

Besides batch size, the optimizer is another hyperparameter that often receives attention.
In this study, we compare four common optimizers: stochastic gradient descent (SGD),
root mean square propagation (RMSprop), Momentum, and Adam, to evaluate their
impact on model performance. The experimental results are shown in Fig. 12. It can be
seen that from Fig. 12, SGD showed good results in terms of sensitivity, accuracy and
F1, but was slightly insufficient in specificity and AUC. RMSprop showed high specificity
but relatively low sensitivity, accuracy and F1. The momentum optimizer performs better
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Figure 11 The effect of different batch size on performance. ‘‘bs’’ represents the batch size, and bs8
means the batch size equal to 8.

Full-size DOI: 10.7717/peerjcs.2056/fig-11

Figure 12 The performance comparison using different optimizers.
Full-size DOI: 10.7717/peerjcs.2056/fig-12

in terms of sensitivity and F1, but slightly lower specificity and accuracy. The Adam
optimizer performs best in terms of accuracy and AUC, and is also competitive in other
indicators. The Adam optimizer combines the ideas of momentum and RMSprop, has the
characteristics of adaptive learning rate, and introduces a momentum term to accelerate
convergence. This makes Adam perform well in many tasks, especially when dealing
with complex non-convex optimization problems. Therefore, we choose to use the Adam
optimizer in this study, and compared with other optimizers, it is less sensitive to the
selection requirements of hyperparameters.
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Figure 13 The performance under different dataset distributions.
Full-size DOI: 10.7717/peerjcs.2056/fig-13

Robustness under different dataset distributions
Differences in data distributionmay lead to changes in model performance, so verifying the
performance of the model under different data distributions is crucial to evaluate its true
effect. In this study, we used a four-fold cross-validation to validate the model, that is, each
fold reserved 25% of the data for testing. Figure 13 shows the mean and standard deviation
of different performance indicators. The proposed method achieved a sensitivity of 71.5%
± 7.74%, a specificity of 89.73% ± 2.12%, an accuracy of 80.7% ± 3.96%, and an AUC
of 83.8% ± 5.63%, and an F1 of 78.13% ± 7.18%. These results show that our method
can maintain good performance under different data distributions. The large standard
deviation is due to the small data set, large inter-subject variability, and certain differences
in the data distribution of the training set and the test set under different data splits.

CONCLUSION
Since the brain MRI images of MCI patients have small changes and blurry shapes, and
MRI contains a large amount of redundant information, resulting in poor performance
of existing methods, a convolutional neural network that fuses the attention mechanism
and parallel dilated convolution is proposed. This network uses ResNet18 as the basic
framework, introduces an attention gate mechanism, highlights relevant information
of the lesion area in the image and suppresses irrelevant areas, eliminates redundant
information in MRI images, and improves the ability to mine detailed information. At
the same time, parallel dilated convolution is added to obtain a larger receptive field
without downsampling, thereby enhancing the ability to acquire contextual information
while maintaining detailed information on large-scale feature maps, thereby improving
the classification performance of the network. Experimental results on the public dataset
ADNI show that the model proposed in this study shows excellent performance in MCI

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2056 20/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2056/fig-13
http://dx.doi.org/10.7717/peerj-cs.2056


detection and effectively improves the detection rate of MCI screening. This discovery not
only has important clinical significance for MCI patients themselves, but also provides
strong support for doctors’ clinical decision-making.

Although the method has significant progress in MCI detection, there is still potential
for further improvements. The study mainly focused on structural MRI data, and
future research could explore other types of image data, such as functional MRI,
electroencephalography (EEG), and PET scans. These different types of data often provide
different perspectives and information levels, and their comprehensive use is expected to
improve the diagnostic accuracy and comprehensiveness of MCI. In addition, experimental
verification on public data sets provides preliminary evidence of the effectiveness of this
method, but in subsequent studies, the model needs to be further validated and applied in
real clinical settings. In a real clinical environment, the model may face more challenges
and complexities, such as differences between data collected by different devices, missing
data, etc., which all need to be taken into account.
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