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ABSTRACT
Existing global adversarial attacks are not applicable to real-time optical remote
sensing object detectors based on the YOLO series of deep neural networks, which
makes it difficult to improve the adversarial robustness of single-stage detectors. The
existing methods do not work well enough in optical remote sensing images, which
may be due to the mechanism of adversarial perturbations is not suitable. Therefore,
an adaptive deformation method (ADM) was proposed to fool the detector into
generating wrong predicted bounding boxes. Building upon this, we introduce the
Adaptive Deformation Method Iterative Fast Gradient Sign Method (ADM-I-FGSM)
and Adaptive Deformation Mechanism Projected Gradient Descent (ADM-PGD)
against YOLOv4 and YOLOv5. ADM method can obtain the deformation trend
values based on the length-to-width ratio of the prediction box, and the adversarial
perturbation trend generated based on these trend values has better adversarial effect.
Through experiments, we validate that our approach exhibits a higher adversarial
success rate compared to the state-of-the-art methods. We anticipate that our
unveiled attack scheme will aid in the evaluation of adversarial resilience of these
models.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
Keywords Optical remote sensing, Object detection, Adversarial example, Adaptive deformation
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INTRODUCTION
In recent years, deep neural networks (DNNs) have attained remarkable success in the
domain of optical remote sensing images (ORSIs) (Kun & Maozhen, 2022; Wangming
et al., 2022; Boya et al., 2021; Kaihua & Haikuo, 2022; Nan et al., 2022; Yuhao et al., 2021;
Xin et al., 2019). Despite complexity of vision tasks such as object detection in ORSIs, the
you only look once (YOLO) family of single-stage object detection algorithms
demonstrates a practical level of accuracy. On renowned datasets like NWPU VHR-10
data set (Gong et al., 2014; Gong, Peicheng & Junwei, 2016), YOLOv5’s accuracy surpasses
95% (Wangming et al., 2022). Object detection in ORSIs holds extensive applications in
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urban planning, environmental monitoring, and fire detection (Zhuotong, Haigang &
Jindi, 2021; Haoran & Chuan, 2023; Chunhua et al., 2023; Coulthart & Riccucci, 2022).
Nevertheless, it is essential to acknowledge that the object detector cannot learn beyond the
training set’s examples. Consequently, the detector model may fail to accurately detect the
target in the presence of interference. Similar to traditional image classification’s
adversarial examples (Yaoyao & Deng, 2021; Springer, Mitchell & Kenyon, 2021),
incorporating subtle perturbations into clean ORSI examples can cause the detector to
misclassify (Li et al., 2021). Hence, exploring adversarial examples in the realm of ORSIs
contributes to our deep understanding of the detector model and enhances the model’s
resistance against adversarial attacks.

Currently, researchers have proposed investigating the concept of adversarial examples
in the domain of ORSIs. Most of these studies have primarily focused on the visual task of
image classification (Hyun & Jongwook, 2022; Hyun & Jang-Woon, 2021; Hyun,
Kyoungmin & Sunghwan, 2022; Hyun & Sung Hwan, 2023; Hyun, 2023a), text
classification (Hyun, 2023b; Hyun & Sanghyun, 2023), audio classification (Hyun, 2023c),
brain computer interface (Hyun & Sanghyun, 2022), etc. These investigations have indeed
demonstrated the vulnerability of neural networks when applied in the context of optical
remote sensing. While a few studies have explored adversarial attacks against two-stage
detectors such as Faster RCNN and Fast RCNN, these findings cannot be directly
transferred to one-stage detectors like YOLO. This difficulty arises from the intricate
output structure of YOLO series detectors in detecting once, which includes confidence,
coordinate positioning, and target classification (Lulu et al., 2021). Some scholars have
conducted the attack of adversarial patches (Mingming et al., 2021; Zhiming et al., 2022;
Jarhinbek et al., 2023; Jiajun, Hussein & Evan, 2017; Yue et al., 2019; Haotian & Xu, 2022),
but these patches are easy to detect, and adversarial attacks are easier to defend (Zhen et al.,
2023; Ke et al., 2023). Moreover, a notable gap exists in the literature concerning the
adversarial loss function tailored to YOLO series detectors in ORSIs. Adversarial attacks
employing loss functions aligned with the characteristics of YOLO series models can result
in the loss of deceptive attributes for the adversarial perturbation. Consequently, research
on imperceptible adversarial attacks against the YOLO series proves to be more
challenging. Additionally, although some scholars (Bao, 2020; Haoran et al., 2021) have
conducted adversarial attacks against YOLO in natural image object detection, it is
imperative to acknowledge that optical remote sensing images typically possess more
intricate backgrounds and contain smaller targets. We tried some adversarial attack
methods (Im Choi & Qing, 2022) against the YOLO series used in natural image object
detection and the success rate of adversarial attack in ORSIs is lower than our expectation.
In the case of targeted adversarial attacks, the mean average precision (mAP) of almost all
models can still reach more than 10%. Hence, object detection in ORSIs presents a more
complex setting for adversarial attacks. As far as our knowledge extends, there has been no
research conducted on global and imperceptible adversarial attacks specifically targeting
the YOLO series in the field of ORSIs. Due to these factors, it becomes increasingly difficult
to further enhance the adversarial robustness of the YOLO model in the context of optical
remote sensing.
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Therefore, this research delves into the generation of adversarial examples against
YOLO series models for object detection in ORSIs. This study extensively analyzes the
internal workings of the YOLO model in the context of ORSIs. It is observed that the
limited success rate of adversarial attacks is primarily attributed to the inadequacy of the
utilized loss function in deceiving the model effectively. To address this, we propose the
Adaptive Deformation Method (ADM) for the predicted bounding box, which induces a
trend of adversarial perturbation during the generation of adversarial examples. This trend
significantly deviates the shape of the predicted bounding box from that of the ground-
truth bounding box, thus improving the adversarial attack effect. By incorporating the
improved Adaptive Deformation Method Iterative Fast Gradient Sign Method (ADM−I
−FGSM) and Adaptive Deformation Mechanism Projected gradient descent (ADM−PGD)
algorithms, superior adversarial attack rate can be achieved. Experimental results
demonstrate the effectiveness of these methods in generating enhanced adversarial
examples on diverse ORSIs datasets and various YOLO models, with little degradation in
image quality. The mean difference of PSNR (before and after adopting ADM method) is
0.02, and the mean difference of SSIM (before and after adopting ADMmethod) is 0.0003.

The main contributions of our article are as follows:

. We have successfully executed the global adversarial attack against YOLOv4 and
YOLOv5 in the domain of object detection in ORSIs. This endeavor carries profound
significance in bolstering the adversarial robustness of the model.

. We present an innovative approach called the Adaptive Deformation Method for
generated bounding boxes. This method intelligently identifies the deformation trend
based on the predicted bounding box to ground-truth bounding box ratio. By
incorporating this method into the loss function, we effectively address the limitations
associated with the low success rate of positional misdirection during adversarial
example generation.

. The ADM can significantly augment the impact of the localization adversarial loss
function when combined with powerful gradient-based attacks, resulting in improved
adversarial effects. Based on the best experimental results, our ADM method approach
successfully reduced the model’s accuracy on adversarial examples from 3.08% to 0.8%, a
reduction of 74%.

The article’s structure is as follows: “Related Work” provides a succinct overview of the
literature pertaining to the YOLO family object detector, adversarial attacks, and
adversarial attacks in remote sensing. “Method” delves into an in-depth explanation of the
mathematical mechanism behind our ADM method and the corresponding adversarial
attack algorithm. “Experiment” showcases the experimental results of adversarial attacks
on YOLOv4 and YOLOv5 models using two distinct datasets. Concluding the article,
“Conclusion” presents a summary of the findings.
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RELATED WORK
In this section, we will provide a concise overview of the literature pertaining to the YOLO
family of object detectors, adversarial attacks, and their application in the field of remote
sensing.

YOLO family objector detector
Since 2016, the YOLO model has gained popularity in the domains of intelligent
perception, such as autonomous driving systems and intelligent safeguard systems. This is
primarily due to its remarkable ability to swiftly detect objects in images, resulting in
frequent updates and rapid development of the YOLOmodel. The YOLOmodel employs a
grid-based approach, dividing the image into a set of grids, with each grid responsible for
detecting objects located at its center. One notable advantage is its utilization of direct
regression, significantly reducing computational requirements and improving processing
speed. In recent years, researchers have proposed subsequent iterations of the YOLO
model, including YOLOv6, YOLOv7, and YOLOv8, all of which have shown promising
outcomes in natural image object detection.

However, when it comes to optical remote sensing object detection tasks, the YOLOv6,
YOLOv7, and YOLOv8 models face challenges in meeting the demands of detecting small
objects, complex backgrounds, and dense targets. Consequently, these models have not
been widely adopted in this domain. In optical remote sensing object detection, the
YOLOv4 (Alexey, Chien & Hong, 2020) and YOLOv5 models are still preferred, as they
offer more balanced performance. In 2022, the advanced YOLOv4 framework (Kun &
Maozhen, 2022; Boya et al., 2021) was employed for object detection in ORSIs (Optical
Remote Sensing Images) to address interference caused by extensive multi-scale targets
and complex backgrounds. Additionally, the DRYDet detector (Wangming et al., 2022),
proposed in 2022, adopted the YOLOv5 model and utilized Huffman coding theory to
mitigate interference resulting from shared weights in object detection between the two
tasks. The YOLOv5 model builds upon the foundation of YOLOv4 by incorporating the
CSP structure into the Neck network, implementing the Focus operation, and replacing the
SPP layer with a more efficient Spatial Pyramid Pooling Fast layer.

Given these circumstances, this article opts to conduct adversarial attacks against the
YOLOv4 and YOLOv5 models in the context of ORSIs object detection.

Adversarial attacks against object detector
The adversarial attack technique for object detection in ORSIs poses a challenge when it
comes to patching in natural images. This difficulty arises from the fact that targets in
ORSIs are typically small and the image scale varies due to inconsistencies in the height
and focal length of the photography equipment. To overcome this, our research focuses on
generating adversarial examples to effectively launch adversarial attacks on the target
detector amidst global perturbations. The generation methods for adversarial examples
under global perturbation closely follow the methods used for natural image classification,
which include Iterative Fast Gradient Sign Method (I-FGSM) (Alexey, Ian & Samy, 2017),
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Projected gradient descent (PGD) (Aleksander et al., 2018), PGD algorithm with
changeable perturbation step (CPS-PGD) (Xiaoqin et al., 2022), among others.

I-FGSM, proposed in 2016, stands as an enhancement of the Fast Gradient Sign Method
(FGSM) (Ian, Jonathon & Christian, 2015). The core idea behind this method lies in
iteratively incorporating small step-size perturbations in the direction of the network
model’s gradient over the clean examples. The main distinction between PGD and I-FGSM
lies in the fact that an initial noise must be generated for the clean example before the
iteration process begins.

IFGSM and PGD are proposed techniques for generating adversarial examples in the
context of natural image classification. Adapting these approaches to the YOLO model for
object detection entails certain enhancements, such as modifying the loss function and
adjusting parameter settings.

The Objectness-Aware Adversarial Training algorithm (Im Choi & Qing, 2022) is
proposed to implement the adversarial attack on YOLOv4. By transforming the loss
function of the adversarial attack and fusing the FGSM and PGD methods the adversarial
attack on natural image target detection is realized. Inspired by the PGD method, CPS-
PGD introduces a linearly changing perturbation step to launch an adversarial attack on
the YOLOv4 object detector. The CPS-PGD algorithm can be described as follows.

eps steps ¼ linspace eps; eps=2; iterð Þ
x0 ¼ x þ h � noise
xtþ1 ¼ xt þ eps steps � sign rxJ xt; yð Þð Þ
where eps steps is the linearly perturbation step size, eps is the maximum amount of
perturbation, and iter is the maximum number of iterations. CPS-PGD has demonstrated
promising results when applied to the YOLOv4 model in object detection.

Adversarial attacks in remote sensing
Currently, the majority of research in optical remote sensing primarily aims to enhance the
adversarial robustness of neural networks in remote sensing applications such as land
classification, object detection, and semantic segmentation.

Wojciech et al. (2018) was the first to introduce the concept of adversarial example
attacks in remote sensing image classification models. They proposed a numerical
estimation-based adversarial attack method. This technique emulates physical adversarial
attacks by introducing an n� n patch in the center of remote sensing images. The
calculation of the patch method involves utilizing the inverse gradient of the classification
network’s loss function, while also incorporating a penalty term, denoted as d, to enhance
visual sensitivity.

In 2020, Li et al. (2019) provided the definition of adversarial examples in the context of
remote sensing images. They utilized two methods for adversarial attacks, namely the
FGSM and the I−FGSM, to target two networks. These experiments served as initial
evidence to confirm the vulnerability of remote sensing image recognition to adversarial
attacks. In subsequent studies conducted in 2021, Yonghao, Bo & Liangpei (2021a, 2021b)
and Li et al. (2021) extended the application of adversarial attacks to remote sensing land
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classification and scene classification. They also explored the visualization and
transferability aspects of adversarial attacks across multiple neural networks. Building
upon their previous work, Yonghao & Pedram (2022) further delved into black-box
adversarial attacks in the domain of remote sensing scene classification.

Object detection, as a computer vision task, is inherently more intricate compared to
classification. Adversarial example attacks targeted at object detection in remote sensing
images pose even greater challenges. In 2021, Maoxun & Xingxing (2021) and Xingxing &
Maoxun (2023) proposed the Adversarial Pan-Sharpening (APS) method for generating
adversarial examples. This approach leverages a weighted calculation involving four loss
functions to facilitate white-box adversarial attacks against the Faster R-CNNmodel. Patch
adversarial attacks appear to fool single-stage detectors (Mingming et al., 2021; Zhiming
et al., 2022; Jarhinbek et al., 2023). These attacks mostly target aircraft and more visually
detectable adversarial patches are often adopted, which are more physical. Several defenses
have been proposed to defend against patch adversarial attacks (Zhen et al., 2023; Ke et al.,
2023).

However, there is an insufficiency in existing research concerning global adversarial
attacks on single-stage object detection algorithms. Hence, the primary objective of this
article is to delve into adversarial attacks specifically directed at YOLOv4 and YOLOv5 in
ORSIs. This attack strategy involves constructing the requisite loss function for adversarial
attacks, carefully analyzing the output data structure of the detector model. Our intention
is to propose a more optimized loss function that enhances the efficacy of adversarial
attacks. Subsequently, this function is applied to widely employed I-FGSM and PGD
adversarial algorithms, which we then evaluate across diverse datasets.

METHOD
In this section, we begin by presenting the complete intersection over union (C-IoU)
(Zhaohui et al., 2022) incorporated into the loss function of YOLOv4. Subsequently, we
introduce the ADM for predicted bounding boxes, aiming to enhance the effectiveness of
adversarial attacks.

Motivation
Within the YOLOv4 loss function, the C-IoU is employed to compute the loss for target
positioning, comparing the predicted box with the actual box. During this calculation
process, a scaling factor, denoted as ‘v’, is introduced to consider the width and height of
the predicted box, and its explanation is provided below.

v ¼ 4
p2

arctan
wgt

hgt
� arctan

w
h

� �
(1)

where wgt and hgt are the width and height of the ground-truth bounding box, w and h are
the width and height of the predicted bounding box. During the model training process,
this calculation method facilitates minimizing the disparity between the width and height
ratios of the predicted bounding box and those of the actual bounding box. Nevertheless,
this loss function predominantly influences the aspect ratio of the predicted bounding box
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during adversarial attacks, having limited impact on its numerical value. In the view of the
fact that the purpose of adversarial examples is to make the prediction of the detector
model wrong, from the perspective of object detection, if the shape of the predicted
bounding box is changed as much as possible, as is shown in Fig. 1, the generated
adversarial examples can often achieve a higher attack success rate.

Adaptive deformation method
To engender the requisite alteration to the predicted bounding box, the elongations of
greater magnitude should be further extended and those of lesser length contracted, hence
advocating for the implementation of a box deformation loss function. Therefore,
ADM_rate is first introduced as follow.

AD rate ¼ sigmod

min
w
wgt

;
h
hgt

� �

max
w
wgt

;
h
hgt

� �
0
BBB@

1
CCCA (2)

where sigmod is the activation function. Given the ambiguity surrounding the dimensions
—width and height—of the imminent bounding box prior to detection, the ratio of the true
values of these dimensions to those of the ground-truth bounding box, serves as an
indicator for the sides that need resizing. The proportion of sides necessitating contraction
is viewed as the numerator, while those requiring extension form the denominator.
ADM_rate poses closer proximity to one upon the forecast bounding box nearing the
ground-truth counterpart, and verges on zero otherwise. To safeguard the contraction of
the bounding box’s shorter side and augmentation of the lengthier one during
deformation, we incorporate the sum of the areas of the impending bounding box and the
ground-truth bounding into the calculation for the loss function.

LADM ¼ 1� AD rate=
Spr
Sgt

� �
(3)

where Spr is the area of the predicted bounding box and Sgt is the area of the ground-truth
bounding box. Adding area to the loss function prevents the scenario where only the
shorter edges contract or only the longer edges expand when the anticipated bounding box
undergoes deformation.

Additionally, we incorporate a localization loss function, classification loss function,
and confidence loss function into the computation of the comprehensive loss function. For
the localization loss function, we opted for C_IoU as the loss outcome, while for the
classification loss function, we utilized the cross-entropy loss function. Furthermore, the
confidence loss function is determined by the mean square error between the predicted
confidence and the C_IoU confidence. The specifics are outlined below.

Lloc ¼ 1� C IoU (4)
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Lcls ¼ � 1
N

X
ylog zð Þ (5)

Lhas obj ¼ 1
N

X
i

ŷi �
C IoU þ 1

2

� �2

(6)

Given the aforementioned quartet of loss functions, presented below is the formulation
for the amalgamated loss function.

Ladm�adv ¼ aLhas obj þ bLcls þ gLloc þ mLADM (7)

where a, b, g, m are the weight parameters of each loss function. As for the configuration
of these weight parameters, we shall delve extensively into their exploration within the
experimental hyper-parameter studies section.

Attack algorithms
In this section, we enhance the existing adversarial example generation algorithms, namely
I-FGSM and PGD, and introduce two novel algorithms, namely ADM-I-FGSM and ADM-
PGD.

Algorithms 1 and 2 delineate the overarching framework of ADM-I-FGSM and ADM-
PGD, respectively. The overall methodology bears resemblance to the I-FGSM and PGD
algorithms, but the computation of gradients incorporates a loss function centered around
predicted bounding box deformation.

Where clipx;e x0ð Þ ¼ min 255; x þ e;max 0; x � e; x0ð Þð Þ. In terms of algorithm
performance, the ADM-I-FGSM algorithm and ADM-PGD algorithm have the same time
complexity as the I-FGSM algorithm and PGD algorithm, and only need to increase the
calculation time of the box deformation loss function in the each iteration.

Figure 1 Schematic of the predicted bounding box deformation loss function. The blue dashed line
shows the change trend of the loss function affecting the predicted bounding box.

Full-size DOI: 10.7717/peerj-cs.2053/fig-1
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EXPERIMENT
In this section, we begin by providing a comprehensive overview of our experimental setup
and the evaluation methods employed. Subsequently, we showcase the robustness of
ADM-I-FGSM and ADM-PGD against adversarial attacks across various datasets,
including YOLOv4, YOLOv5, NWPU VHR-10 (Gong et al., 2014; Gong, Peicheng &
Junwei, 2016), and DIOR (Li et al., 2020). Comparisons with other baseline methods are
also presented. Furthermore, we delve into the weight adjustments of the loss functions
and the number of iterations through hyper-parameter studies and experimentally analyze
the impact of the ADM parameter variations on the adversarial attack efficacy. Lastly, we
conduct empirical analyses to examine the effect of ADM on image quality.

Experimental setting
Dataset
In order to assess the effectiveness and generality of adversarial attacks, we have chosen
two datasets: NWPU VHR-10 (NWPU) and DIOR. By using different datasets for training
and testing, we ensure that the results are not biased towards the specific characteristics of

Algorithm 1 ADM-I-FGSM.

Input: Input image x, Target network D, ADM Adversarial Loss Function Ladm�adv

Output: Adversarial Image xadv

Parameters: Iteration Number iter, Basic Step Size for Iteration eps

1. x0 ¼ x

2. for j in range iterð Þ:
3. xjþ1 ¼ clipx;e xadv þ eps � rxLadm�adv xj

� �� �
4. xadv ¼ xjþ1

5. End

Algorithm 2 ADM-PGD.

Input: Input image x, Target network D, Adversarial Loss Function Ladm�adv

Output: Adversarial Image xadv

Parameters: Iteration Number iter, Basic Step Size for Iteration eps, Noise initialization coefficient e

1. Set Gaussian Noise as initial noise

2. x0 ¼ clipx;e x þ e � noiseð Þ
3. xadv ¼ x0

4. for j in range iterð Þ:
5. xjþ1 ¼ clipx;e xadv þ eps � rxLadm�adv xj

� �� �
6. xadv ¼ xjþ1

7. End
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a single dataset. In the NWPU dataset, we randomly selected 160 out of 800 images as the
test set, while the remaining images were utilized for model training. In the DIOR dataset,
we randomly used 5,862 images for model training, and randomly selected 1,173 images in
the validation dataset as the adversarial test images. These test sets also serve as validation
sets for evaluating the performance of adversarial examples.

Models
To evaluate the effectiveness of the adversarial methods, we utilize two popular object
detection models, namely YOLOv4 and YOLOv5. We train these models on two distinct
datasets, NWPU VHR-10 and DIOR, resulting in five different models: YOLOv4-NWPU,
YOLOv4-DIOR, YOLOv5s-NWPU, YOLOv5m-DIOR and YOLOv5l-DIOR. The
YOLOv4-NWPU model achieves an accuracy of 89.52% on the NWPU test dataset, while
the YOLOv5s-NWPU model achieves an accuracy of 90.37% on the same test dataset. In
contrast, the YOLOv4-DIOR model accomplishes an accuracy of 71.70% on the test
dataset, while the YOLOv5m-DIOR model achieves an accuracy of 73.10% and the
YOLOv5l-DIOR model achieves an accuracy of 73.93% on the DIOR test dataset.

Baselines
Our approach employs FGSM (Im Choi & Qing, 2022), PGD-10 (Im Choi & Qing, 2022),
I-FGSM (Alexey, Ian & Samy, 2017), PGD (Aleksander et al., 2018), and CPS-PGD
(Xiaoqin et al., 2022) as benchmarks to assess the enhancements provided by our ADM
method. Since the three methods FGSM (Im Choi & Qing, 2022), PGD-10 (Im Choi &
Qing, 2022) and CPS-PGD (Xiaoqin et al., 2022) are themselves adversarial attack methods
for natural image object detection, we strictly follow the way in the article to implement
them. The I-FGSM (Alexey, Ian & Samy, 2017) and PGD (Aleksander et al., 2018) methods
are adversarial attacks against image classification. Therefore, we change the loss function
into classification loss, location loss and confidence loss. These loss functions do not
include our ADM method, so that we can better show the effectiveness of our ADM
method.

Implementation details
In the adversarial attack experiment, the maximum amount of perturbation allowed is set
to 6.0, which means that each pixel in the generated adversarial example can be modified
by up to six units of distance from its original value. The number of iterations is set to 10,
which means that the attack algorithm will repeat the perturbation process 10 times to
iteratively generate more effective adversarial examples. In each iteration, the amount of
perturbation applied is set to 1.0, meaning that each pixel in the adversarial example can be
modified by up to 1 unit of distance from its previous value in that iteration.

Metric
The assessment approach primarily focuses on appraising the adversarial efficacy, utilizing
the disparity between the mean average precision (mAP) (Xiaoqin et al., 2022) of the
model on pristine instances and the mAP of the adversarial instances as a metric to gauge
the adversarial performance of the attack methodologies. Furthermore, we assess the visual
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fidelity of the generated adversarial instances employing two evaluation techniques,
namely peak signal to noise ratio (PSNR) (Chan & Whiteman, 1983) and structural
similarity (SSIM) (Wang et al., 2004).

Attacking results
We implement adversarial attack targeting both YOLOv4, YOLOv5s, YOLOv5m and
YOLOv5l architectures applied to the NWPU and DIOR datasets. Employing I-FGSM,
PGD, CPS-PGD, ADM-I-FGSM, and ADM-PGD techniques, we generate adversarial
instances targeting the YOLOv4-NWPU, YOLOv5s-NWPU, YOLOv4-DIOR, YOLOv5m-
DIOR and YOLOv5l-DIOR models. The outcomes are presented comprehensively in
Table 1. YOLOv5x has not been extensively investigated in adversarial attack research
experiments, consequently, we opted not to conduct adversarial experiments on
YOLOv5x.

Table 1 showcases that the mAP of the same model in detecting adversarial samples
generated by ADM-I-IFGSM or ADM-PGD is significantly lower compared to other
baseline attacks. This clearly signifies the superior white-box attack capabilities of ADM-I-
FGSM and ADM-PGD in deceiving the detector. For instance, when applied to the
YOLOv4-NWPU model, the ADM-I-FGSM method reduces the detection accuracy from
89.52% to a mere 0.8%, which remains the highest among all the evaluated methods.
Relative to the tertiary baseline methodologies, our technique substantially augments the
efficacy of adversarial attacks.

Evidently, in identical parametric combinations, the mAP of the YOLOv4-NPWU
detector plunges to a 0.8% and 3.08% with ADM-I-FGSM and I-FGSM attacks.
Equivalently, with ADM-PGD and PGD attacks, the mAP witnesses a decline to 2.24% and
4.53%, respectively. These enhancements by 74.02% and 50.55% establish conclusively that
our technique can effectively bolster the success of adversarial attacks.

In the adversarial experiments conducted on the YOLOv5model, we observed that most
of the adversarial methods employing ADM exhibit significantly enhanced adversarial
attack success rate. Through comparison, we conclude that adversarial attacks with ADM
method have similar success rates of adversarial attacks on different configurations of
YOLOv5 model, that is, the success rate of adversarial attacks does not decrease with the
increase of the complexity of the model architecture. However, the CPS-PGD method
demonstrates better performance compared to ADM-I-FGSM in the terms of the
adversarial attack success rate against YOLOv5l. Upon conducting an in-depth analysis, it
becomes evident that the CPS-PGD method primarily enhances adversarial performance
by gradually reducing the step size of each adversarial perturbation. Conversely, the ADM
method relies on a novel loss mechanism, facilitating the extraction of more significant
adversarial perturbations. It is important to note that these two approaches are not
mutually exclusive in generating adversarial perturbations. Further research explorations
are warranted in subsequent stages.

We note that the excellent results of adversarial attacks against the YOLOv4-NWPU
model are worthy of further attention. In order to delve deeper into the robustness of our
ADM method, we conduct a comprehensive analysis. We scrutinize the Average Precision
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(AP) of each category of the YOLOv4-NWPU detector. Table 2 delineates the AP of various
targets detected by the YOLOv4-NWPU model under diverse adversarial attacks with or
without our ADM method, alongside a comparison of AP before and after adopting our

Table 1 The mAP of AMD-I-FGSM and AMD-PGD on YOLOv4-NWPU model, YOLOv5s-NWPU
model, the YOLOv4-DIOR model, YOLOv5m-DIOR model and YOLOv5l-DIOR model.

Model Method Para setting mAP B

a b g m

YoloV4-NWPU FGSM (Im Choi & Qing, 2022) – – – – 67.97%

PGD-10 (Im Choi & Qing, 2022) – – – – 7.05%

I-FGSM 5.0 1.0 5.0 0.0 3.08%

PGD 5.0 1.0 5.0 0.0 4.53%

CPS-PGD 1.0 1.0 1.0 0.0 3.46%

ADM-I-IFGSM (Ours) 5.0 1.0 5.0 2.9 0.8%

ADM -PGD (Ours) 5.0 1.0 5.0 4.1 2.24%

YoloV5s-NWPU FGSM (Im Choi & Qing, 2022) – – – – 58.32%

PGD-10 (Im Choi & Qing, 2022) – – – – 13.48%

I-FGSM 1.0 5.0 1.0 0.0 7.14%

PGD 1.0 5.0 3.0 0.0 11.78%

CPS-PGD 1.0 1.0 1.0 0.0 7.2%

ADM-I-IFGSM (Ours) 1.0 5.0 1.0 2.1 6.56%

ADM–PGD (Ours) 1.0 5.0 3.0 3.3 10.50%

YoloV4-DIOR FGSM (Im Choi & Qing, 2022) – – – – 43.52%

PGD-10 (Im Choi & Qing, 2022) – – – – 5.38%

I-FGSM 5.0 5.0 5.0 0.0 2.53%

PGD 5.0 5.0 3.0 0.0 2.55%

CPS-PGD 1.0 1.0 1.0 0.0 2.83%

ADM-I-IFGSM (Ours) 5.0 5.0 5.0 2.6 2.04%

ADM-PGD (Ours) 5.0 5.0 3.0 2.7 1.88%

Yolov5m-DIOR FGSM (Im Choi & Qing, 2022) – – – – 46.14%

PGD-10 (Im Choi & Qing, 2022) – – – – 10.54%

I-FGSM 1.0 5.0 5.0 0.0 4.95%

PGD 1.0 1.0 1.0 0.0 6.92%

CPS-PGD 1.0 1.0 1.0 – 4.33%

ADM-I-IFGSM (Ours) 1.0 5.0 5.0 3.3 2.84%

ADM-PGD (Ours) 1.0 1.0 1.0 6.8 4.64%

Yolov5l-DIOR FGSM (Im Choi & Qing, 2022) – – – – 48.74%

PGD-10 (Im Choi & Qing, 2022) – – – – 10.07%

I-FGSM 5.0 3.0 3.0 0.0 4.84%

PGD 3.0 3.0 1.0 0.0 5.26%

CPS-PGD 1.0 1.0 1.0 0.0 3.09%

ADM-I-IFGSM (Ours) 5.0 3.0 3.0 1.3 3.18%

ADM-PGD (Ours) 3.0 3.0 1.0 2.8 4.09%
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ADMmethod. Through the experimental findings we conclude that our ADM method can
optimize the adversarial attack for most targets, particularly those with high precision, such
as airplane, baseball diamond, tennis court and so on. Nonetheless, it must be acknowledged
that in cases where the targets are densely concentrated, such as centralized parking lots or
clustered storage tank constructions, the optimization effect of our ADMmethod may have
adverse implications. Upon scrutinizing the underlying rationale, we observed that this is
due to the alteration in the shape of the predicted bounding box by our ADM method,
leading to an intersection between the predicted bounding box and the ground-truth
bounding box of adjacent targets. The predicted bounding boxes of the same classification
are aggregated for evaluation, as the detector cannot discern which nearby target the current
predicted bounding box indicates. Hence, the weight ratio of each loss function in
adversarial attacks should be paid more attention, which may affect the success rate of
adversarial attacks.

Hyper-parameter studies
To further investigate the correlation between the sub-function of the loss function, the
maximum number of iterations and the efficacy of the adversarial algorithm, we conducted
a comprehensive examination of the parameter configuration of the loss function and
different maximum number of iterations.

The first experimental methodology employed is as follows: The YOLOv4-NWPU
model was selected as the target for adversarial attacks, and the parameters of the loss
function were adjusted dynamically. This dynamic adjustment process consisted of two
stages: the basic hyper-parameter setting and the ADM hyper-parameter setting.

During the first stage, with the ADM hyper-parameter μ set to 0, we selected α from a set
of four values 0.01, 1, 3, 5, and β and γ from four different cases 0, 1, 3, 5. This meticulous
configuration ensured a non-zero loss value, leading to a total of 128 distinct parameter
combinations that were subjected to separate experimentation for evaluation of their
adversarial performance.

Table 2 The different targets’ AP of YOLOv4-NWPU under different adversarial attacks.

Kind name I-FGSM ADM-I-FGSM Difference PGD ADM-PGD Difference

Airplane 6.64% 1.62% 5.02% 9.50% 3.27% 6.23%

Ship 1.81% 0.43% 1.38% 2.73% 1.30% 1.43%

Storage tank 0.25% 1.62% -1.36% 0.40% 3.25% −2.85%

Baseball diamond 7.72% 0.93% 6.79% 15.76% 1.39% 14.37%

Tennis court 9.10% 0.12% 8.99% 9.23% 0.39% 8.84%

Basketball court 0.01% 0.01% 0.00% 0.01% 0.01% 0.00%

Ground track field 4.99% 1.05% 3.94% 6.82% 3.08% 3.74%

Harbor 0.02% 0.01% 0.02% 0.54% 0.93% −0.39%

Bridge 0.01% 0.00% 0.01% 0.01% 0.00% 0.01%

Vehicle 0.28% 2.19% −1.91% 0.33% 8.79% −8.46%

mAP 3.08% 0.8% 2.28% 4.53% 2.24% 2.29%

Note:
The difference is equal to the AP without ADM method minus the AP with ADM method.
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Upon completing the first stage, we selected three parameter combinations with the
most promising results from the basic hyper-parameter comparison. Building upon this
foundation, we then dynamically adjusted the value of μ in the subsequent stage. With a
range of 0 to 9.9 and a step size of 0.1, we conducted 200 additional tests using the ADM-I-
FGSM and ADM-PGD methods, comparing their respective performance in adversarial
scenarios.

The basic hyper-parameter setting
Following 128 tests on both the I-FGSM and PGD methods, we identified three parameter
combinations that exhibited outstanding performance in adversarial attacks. These
combinations were obtained by exhaustively exploring 64 combinations within the I-
FGSM and PGD attack methods, and the specific results are presented in Table 3. It is
worth noting that although these three combinations serve as excellent baseline schemes,
they do not represent the absolute optimal solutions due to the limitations of our
exploration. They are used as comparative benchmarks for enhancing the proposed
scheme in this study. Leveraging these three baseline schemes, we dynamically adjusted μ

to identify the parameter combination with the highest performance.

The ADM hyper-parameter setting
The experimentation concerning μ parameter configuration is conducted atop the
aforementioned three benchmarks, with results depicted in Figs. 2 and 3. These charts
present the x-axis as μ, the ADM hyper-parameter’s value, while the y-axis showcases mAP
pertaining to the adversarial attack featuring varied hyper-parameter combinations. A
dotted line illustrates the detection accuracy of adversarial samples at μ’s null value, serving
as a comparative benchmark to demonstrate the adversarial attack’s efficacy devoid of our
ADM method. The subsection beneath this dotted line suggests an enhanced value of μ,
signifying a superior adversarial attack effect compared to when μ equals zero. Conversely,
it indicates an inferior μ value. Black square representations signal the optimum value for
the ADM hyper-parameter μ, and these precise values are laid out in Table 4.

Figures 2 and 3 show the change of the influence of μ value change on the success rate of
adversarial attack under various plans. The solid line is the success rate change curve, and
the dashed line is the reference line when μ equals 0. From the perspective of mAP
variation trend, the correlation between the ADM hyper-parameter μ and the potency of
adversarial attacks is not merely linear. For example, in the case of Plan A combination of
ADM-I-FGSM algorithm, when μ is in the range of 1.7 and 3.3 the mAP of adversarial
sample detection is better than that when μ is equal to 0. And when μ is equal to other
values, the adversarial attack effect will become worse. Comprehensive experimental
results, we can summarize that our ADM method often needs to cooperate with other loss
functions in the process of adversarial examples generation, that is, a reasonable weight
needs to be assigned between various loss function. Secondly different models often have
different optimal solutions for hyper-parameters, but the method of finding the optimal
solutions for hyper-parameters can be repeated.
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Table 3 The mAP of three basic hyper-parameter combinations in I-FGSM and PGD.

Method Plan Para. setting mAP B

a b g

I-FGSM A 1.0 1.0 5.0 2.36%

B 3.0 1.0 3.0 3.17%

C 5.0 1.0 5.0 3.08%

PGD A 1.0 1.0 5.0 4.55%

B 3.0 1.0 3.0 4.18%

C 5.0 1.0 5.0 4.53%

Figure 2 The mAP of the ADM-I-IFGSM method with different parameters in the case of varying
with the ADM hyper-parameter μ. Full-size DOI: 10.7717/peerj-cs.2053/fig-2

Figure 3 The mAP of the ADM-PGD method with different parameters in the case of varying with
the ADM hyper-parameter μ. Full-size DOI: 10.7717/peerj-cs.2053/fig-3
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A continual rise in μ engenders poorer adversarial attack effects than without our ADM
method. The inclined trajectory of the curve delineating the association between hyper-
parameters and mAP in both ADM-PGD and ADM-I-FGSM methodologies corroborates
the proficiency of our ADM method in ameliorating the potency of adversarial attacks
within a distinct ambit of the ADM hyper-parameter μ. A holistic appraisal infers that
trivial values of μ in our ADM method might downplay its significance in adversarial
sample generation, whereas an excessive weightage of the same may negate the impact of
other loss functions in the sample generation chain.

The second experimental method is as follows: YOLOv4-NWPU model is selected as
the adversarial attack target, I-FGSM, PGD, ADM-I-FGSM, ADM-PGD are used as the
adversarial attack baseline methods, and the maximum number of iterations of each
adversarial attacks is dynamically adjusted. The maximum number of iterations is
dynamically adjusted from 1 to 15 with a step size of 1.

The experimental results are presented in Fig. 4. The graph shows the accuracy of the
target detector for different maximum number of iterations. The lower accuracy of the
attacked detector indicates the higher success rate of the adversarial attack, that is, the
better the attack effect. Through the experimental results, we can get the following
conclusions: (1) When the maximum number of iterations is the same, the adversarial
attack method using our ADM method has better adversarial attack effect; (2) When the
maximum number of iterations is larger enough, for example, when the maximum
iteration number is greater than 10, the mAP change tends to be flat, the method using our
ADM method has better adversarial attack effect. That is to say, our ADM method is able
to better extract the characteristics of the perturbation under multiple iterations of
adversarial attacks.

Further studies
To thoroughly analyze the image quality of this approach, we employ two evaluation
methods, namely PSNR and SSIM, to assess the adversarial samples generated by two
different techniques: ADM-I-FGSM and ADM-PGD. These samples are evaluated against
YOLOv4-NWPU using 132 positive images from the NWPU VNR-10 test set. The
obtained results are then juxtaposed with the adversarial samples produced by the I-FGSM
and PGD methodologies. The comparative outcomes can be visualized in Fig. 5. It should
be noted that Plan C was employed for all the tested methodologies.

Table 4 The optimal solution and the optimal mAP for μ in the ADM-I-FGSM and ADM-PGD.

Method Plan m mAP B

ADM-I-FGSM A 1.7 1.46%

B 0.9 1.45%

C 2.9 0.8%

ADM-PGD A 2.5 2.93%

B 3.0 2.55%

C 4.1 2.24%
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The critical data depicted in Fig. 5 encompass the utmost, minimum, and mean values.
Based on the findings within the diagram, it can be inferred that the adoption of our ADM
method exerts negligible influence on the PSNR values of the image. To illustrate, the mean
PSNR andminimum PSNR values of the adversarial examples generated by ADM-I-FGSM
only exhibit a marginal increment of 0.01 and 0.2, respectively, as compared to those of the
adversarial examples generated by I-FGSM. Furthermore, the maximum PSNR value of the
adversarial samples produced by ADM-I-FGSM is merely 0.04 lower than that of the
samples generated by I-FGSM. This subtle discrepancy in PSNR substantiates that our
method has virtually no impact on the PSNR of adversarial samples.

Likewise, it can be concluded that the utilization of our ADM method has minimal
effect on the SSIM values of the adversarial examples. For instance, the disparity in average
SSIM value between the adversarial samples generated by ADM-PGD and PGD is less than
0.0001, and the variation in maximum SSIM value is 0.0002, while the difference in
minimum SSIM value is 0.0016. This slight dissimilarity affirms that our ADM method
exerts limited influence on the SSIM values of adversarial samples.

Figure 4 The mAP of the I-FGSM, PGD, ADM-I-FGSM and ADM-PGD with different maximum
number of iterations. Full-size DOI: 10.7717/peerj-cs.2053/fig-4

Figure 5 The PSNR and SSIM of the ADM-I-FGSM and ADM-PGD.
Full-size DOI: 10.7717/peerj-cs.2053/fig-5

Dai et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2053 17/22

http://dx.doi.org/10.7717/peerj-cs.2053/fig-4
http://dx.doi.org/10.7717/peerj-cs.2053/fig-5
http://dx.doi.org/10.7717/peerj-cs.2053
https://peerj.com/computer-science/


In conclusion, the aforementioned evidence leads to an intriguing deduction: our
method not only enhances the performance of the adversarial attack approach but also has
an almost negligible impact on the quality of ORSIs.

CONCLUSION
In our investigation, we introduce an innovative adversarial attack technique anchored in
our adaptive deformation method (ADM) within the prediction box contour, targeting
YOLOv4 and YOLOv5 models pertinent to optical remote sensing. Benchmarked against
methodologies such as FGSM, PGD-10, I-FGSM, PGD, and CPS-PGD, the empirical data
procured from NWPU VHR-10 and DIOR datasets delineates the enhanced adversarial
performance of our method, inflicting barely perceptible degradation in the image quality
of the adversarial samples. Contrastingly, the trials rendered less satisfactory adversarial
attack performance towards the YOLOv5-NWPU model, implying underlying
complexities that demand thorough exploration. Prospectively, we aim to investigate our
ADM’s transferability. We anticipate that our unveiled attack scheme will aid in the
evaluation of adversarial resilience of these models, assess the efficacy of diverse defense
strategies and facilitate the development of object detection models of augmented security.
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