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ABSTRACT
The convergence of smart technologies and predictive modelling in prisons presents
an exciting opportunity to revolutionize the monitoring of inmate behaviour,
allowing for the early detection of signs of distress and the effective mitigation of
suicide risks. While machine learning algorithms have been extensively employed in
predicting suicidal behaviour, a critical aspect that has often been overlooked is the
interoperability of these models. Most of the work done on model interpretations for
suicide predictions often limits itself to feature reduction and highlighting important
contributing features only. To address this research gap, we used Anchor
explanations for creating human-readable statements based on simple rules, which,
to our knowledge, have never been used before for suicide prediction models. We also
overcome the limitation of anchor explanations, which create weak rules on high-
dimensionality datasets, by first reducing data features with the help of SHapley
Additive exPlanations (SHAP). We further reduce data features through anchor
interpretations for the final ensemble model of XGBoost and random forest. Our
results indicate significant improvement when compared with state-of-the-art
models, having an accuracy and precision of 98.6% and 98.9%, respectively. The
F1-score for the best suicide ideation model appeared to be 96.7%.

Subjects Computer Vision, Data Mining and Machine Learning, Visual Analytics, Internet of
Things
Keywords Ensemble, SHAP, Model reduction, Smart prisons, Machine learning

INTRODUCTION
Suicide is a death caused by one’s actions or will with the intent of harming themselves
(Centers for Disease Control and Prevention, 2022). Suicide remains one of the leading
causes of death, with an estimated more than 700,000 deaths worldwide, of which about
77% deaths occur in low and middle-income countries (World Health Organization, 2021).
Suicidal behaviour covers a broad spectrum of signs, including suicidal thoughts, ideations,
communicating plans, and finally, attempting suicide. The control, legality, duration, and
other characteristics of such manifestations also differ. Such differences are often the result
of culture, lifestyle conditions, family ties, gender, medical history, and age. Furthermore,
the suffering associated with someone’s death extends beyond just that person. It impacts
their family and close ones around them, which in turn could possibly induce suicidal
behaviour in them, too (Fonseca-Pedrero & Al-Halabí, 2021).
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Through studies done in the past, suicide rates have been observed to vary between
genders along with the legality of suicide attempts. Generally, for men, the number of
suicide attempts is less than that for women, but are far less lethal due to more lethal
methods being used by men. Suicidal behaviour and the number of suicide attempts have
been observed to be higher in people suffering from mental disorders like depression and
schizophrenia or are involved in drug abuse like alcohol (Fonseca-Pedrero & Al-Halabí,
2021; Hegerl, 2022).

Suicidal behaviour and its causes remain a complex multi-factorial problem of which
timely predicting or classifying a person as suicidal, though very important, remains a
challenging classification problem. Alongside the advancements in the artificial
intelligence domain, utilizing machine learning techniques for classifying and predicting
suicidal behaviour, self-harm, and suicidal ideations has been a growing trend in recent
years. In the context of smart prison technologies, the integration of machine learning
models for predicting suicidal behaviour among inmates represents a crucial and
innovative advancement (Aldhaheri et al., 2022). While smart prisons have primarily been
associated with enhancing security and control, the well-being of inmates has remained
under-explored. Smart prisons, equipped with intelligent monitoring systems and the
Internet of Things (IoT) infrastructure, can offer a unique opportunity to address the
pressing issue of mental health within the prison environment (Kaun & Stiernstedt, 2020;
Singh et al., 2021).

The convergence of smart technologies and predictive modelling in prisons opens up
new avenues for monitoring inmate behaviour, detecting signs of distress, and ultimately
mitigating suicide risks (Ul haq et al., 2020; Altaf Khattak, Nasralla & Rehman, 2022). By
harnessing real-time data from inmate databases, our research bridges the gap between
smart prison technology and mental health concerns. In this work, we will propose an
approach employing machine-learning techniques to create human-readable statements
and rules for identifying suicidal behaviour. In a world where urban environments are
increasingly linked to the development of mental health disorders, the integration of smart
healthcare technologies into the prison context becomes even more significant (Alwakeel
et al., 2023). By aligning with the principles of smart healthcare, our research not only
advances suicide prediction within smart prisons but also contributes to the broader
discourse on the intersection of technology, mental health, and imprisonment (Nasralla
et al., 2023).

Furthermore, big data service architectures can allow for scalable and efficient machine
learning pipelines for suicide prediction within smart prisons (Wang et al., 2020). As well
as blockchain-based scheme for secure data sharing for protecting inmate data privacy
while enabling the deployment of machine learning models in smart prisons (Singh et al.,
2021). Finally, the secure electronic medical record authorization systems can offer a
secure method for clinicians to access inmate electronic medical records on smart devices,
empowering them to make informed decisions regarding suicide prevention (Chen et al.,
2020). These studies play a vital role in shaping our future efforts for suicide prediction
within the unique context of smart prisons.
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Despite the fact that there have been a lot of prior studies on model performances,
comparisons, and improving classification outcomes (Jadoon et al., 2023; Mujahid et al.,
2023). Such works are often limited to technical improvements instead of explaining the
black-box models for clinician decision-making purposes. There has been some progress
on interpreting black-box models through SHapley Additive exPlanations (SHAP)
(Lundberg & Lee, 2017) and local interpretable model agnostics explanations (LIME)
(Ribeiro, Singh & Guestrin, 2016b), which can calculate and highlight the important
features having the most positive contribution towards accurate classifications (Fonseca-
Pedrero & Al-Halabí, 2021; Knapič et al., 2021; Nordin et al., 2023). However, such works
still lack condition-based rule explanations that will be easy to understand by clinicians
and people in general. Most of the past research often utilises a relatively high number of
features compared to ours, which leads to lower accuracy and complex models.

We use anchor explanations, which are based on a specific approach that generates local
explanations by finding easy-to-understand rules or conditions that hold for a given
instance with high certainty in binary classifications (Ribeiro, Singh & Guestrin, 2018). The
rules are designed to capture the key features while leaving out the rest, leading to
explanations that are more concise in human-readable if-then conditions (Belle &
Papantonis, 2021). Such simple rules are essential for developing model interpretations
that support clinicians’ decision-making without requiring a deep understanding of the
computer domain. We further discuss anchor explanations in “Interpretation &
Dimensionality Reduction via Anchor”.

However, for datasets having a large number of features, the anchor’s local explanations
can suffer in discriminating relevant features, leading to subpar performance and possibly
exclusion of essential features (Nordin et al., 2023). To address this drawback, we first
calculated and highlighted the key features that contributed to classifications through
SHAP. Since SHAP interpretations are not straightforward if-then statements, we then use
anchor explanations for creating human-readable statements. We use an anchor on the
datasets having only those important features which were noted through SHAP. By doing
so, we are able to both highlight the essential features that support accurate classifications
and interpret those features in if-then statements that are understandable by humans,
which is crucial for explaining models to non-computer field experts like clinicians.

The dataset used in our article available freely for research purposes is sourced from the
Criminal Justice Co-Occurring Disorder Screening Instrument (CODSI) provided by the
Inter-university Consortium for Political and Social Research (ICPSR 27963 study by
Sacks, 2011). The CODSI study incorporates the Texas Christian University Drug Screen
(TCUDS) for substance abuse evaluation and deploys three mental disorder screening
components (the Global Appraisal of Individual Needs Short Screener version 1 (GSS),
Mental Health Screening Fomr (MHSF), and Modified MINI Screen (MMS)),
benchmarking them against the Structured Clinical Interview for DSM-IV (SCID).
Additionally, the dataset delves into the influence of race on screening results. This rich
dataset, comprising information about 353 inmates in 14 U.S. facilities participating in
prison-based drug abuse treatment programs, is an invaluable resource for enhancing our
understanding of mental and substance use disorder screening within the criminal justice
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context. In our research, we explore this dataset, which encompasses a wealth of variables,
to develop an explainable model that can assist clinicians in their decision-making
processes regarding suicide risk.

Interpretability methods
System designers and end users can benefit from knowing why machine learning models
perform the way they do in a variety of ways, including model selection, feature
engineering, the ability to believe and act on predictions, and more user-friendly user
interfaces. Thus, interpretability has emerged as a crucial issue in machine learning, and
research into interpretable models has experienced a resurgence in attention.

Such interpretable models are valued for their transparency since they are as accurate as
non-interpretable ones in some situations. When interpretability is crucial, they may even
be favoured even when they are inaccurate. But limiting machine learning to
understandable models is frequently a serious drawback. As a result, model-agnostic
explanations of machine learning predictions can address the issue of black-box machine
learning models and offer crucial flexibility in the choice of models, explanations, and
representations, improving debugging, comparison, and interfaces for a variety of users
and models (Ribeiro et al., 2016).

Interpretability approaches like SHAP (Lundberg & Lee, 2017), LIME (Ribeiro, Singh &
Guestrin, 2016a), and Anchor (Ribeiro, Singh & Guestrin, 2018) can help with the
explainability of machine learning models. Below is a brief introduction to each approach
but we go in detail on SHAP and anchor in “Methodology”.

. SHAP: It is based on Shapley game theory and aims to provide each feature a
contribution score showing how much it contributes to a certain prediction. Simply said,
the model’s performance when features are added and removed is used to calculate the
contribution score, which is then averaged over a permutation of features set. It offers a
straightforward and consistent manner to comprehend the significance of specific
features in a model’s prediction.

. LIME: It operates by picking a particular case or prediction and creating a
straightforward, locally accurate model that simulates the complicated model’s
behaviour close to the selected occurrence. By building a clearer, more straightforward
surrogate model, it explains why a specific prediction was made.

. Anchor: By determining the key features of a prediction, it develops straightforward,
human-understandable “if-then” rules. These rules are intended to be precise and
concise, making them understandable to non-experts and promoting confidence in the
model’s decision-making process. The reason behind its name is the fact that it
“anchors” or fixes the most crucial features upon which the prediction value is relying
on.

Ethical considerations
The potential benefits of artificial intelligence (AI) for mental health are evident.
Compared to conventional methods, it may aid in more accurate patient diagnosis, better
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clinical decision-making, and the detection of suicide risk. Large amounts of text can be
analysed with the use of AI technology, such as content from microblogs and electronic
health records. The World Health Organisation has set high goals for how suicide rates are
tracked, suicidal people are identified, and psychological aid is provided (Mörch, Gupta &
Mishara, 2019).

Despite its potential for good, AI creates a number of ethical concerns, such as the
dangers of discrimination, a lack of respect for personal privacy, and a general lack of
transparency. These dangers have been researched, and recommendations have been made
to reduce them. However, they frequently are not protected by the present legal
frameworks. Guidelines frequently lack procedures for enforcing and reinforcing them,
which renders them useless. Significant ethical questions are also raised by the use of AI to
mental health and suicide prevention. For instance, it is challenging to gain informed
permission when utilising large-scale datasets to prevent suicide and AI-based detection
systems may as well make classification mistakes (Mörch, Gupta & Mishara, 2019).

Companies must implement standardised and responsible systems to arrive at morally
defensible and consistent responses since the ethical issues surrounding the use of AI in
suicide prevention lack defined and anticipated consequences. However, there are
currently no standards for the moral application of AI to either mental health generally or
suicide prevention. The absence of rules may be the reason why ethical concerns with the
use of big data or artificial intelligence in publications on suicide prevention are rarely
discussed. In an effort to strengthen the ethical oversight of AI, few declarations and
checklists of principles have been issued such as the EU published suggestions and
standards for “trustworthy” AI (Floridi, 2021). It serves as a baseline for responsible AI
development. These declarations are a positive step forward, however they frequently do
not state how to use them in practice (Mörch, Gupta & Mishara, 2019).

In this article, we explore various classification models to achieve optimal performance.
We delved into the evaluation and comparison of seven different classification models,
which are discussed in detail in “Models”, aiming to identify the most effective approach
for suicide prediction. After a comprehensive analysis, we determined that a combination
of Extreme Gradient Boosting (XGBoost; XGB) and random forest (RF), forming an
ensemble model, yielded exceptional results and surpassed the individual models while
delivering superior predictive power.

Furthermore, we concentrated on improving the analytical process’s efficiency in our
study. In order to do this, we reduced the processed dataset to just 12 and 19 features using
the anchor library that also serves as the basis for the rules that are generated. The full list
of these features are listed in “Interpretation & Dimensionality Reduction via Anchor”.
Notably, no demographic data, like age, gender, ethnicity, etc., is included in these
attributes. It is reasonable to say, then, that the final models only take into account aspects
related to mental health and life circumstances, and do not make any discrimination based
on demographic criteria.

We also discuss and compare the importance of anchor rules alongside SHAP and
pairwise correlation with few medical professionals from psychology and psychiatry.
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As further explained in “Optimizing Explanatory Rule Generation”, we also refactored
the original code of a function in anchor library in order to reduce redundancy and
improve the execution speed. Our rule generation speed was significantly increased as a
result of this optimisation.

Finally we also test our trained ensemble model on National Survey on Drug Use and
Health (NSDUH) dataset for the years 2015–2019 from Kaggle in order to assess the
generalizability and achieved greater performance without prior training on the same
dataset (Gallamoza, 2021).

The novelty of this article lies in forming a workflow for successfully utilizing anchor
rules on high dimensional dataset, improving its execution time and achieving
classification performance without prior training on NSDUH dataset.

The rest of the article is organized as follows. “Literature Review” discusses background
knowledge and past work. “Methodology” explains our work and models. “Experimental
Setup” describes the performance metrics that we use to evaluate our model performances.
“Results & Comparisons” shows our results and comparisons with the state-of-the-art
results. “Conclusion & Future Work” draws a comprehensive explanation of our
conclusions and future work.

LITERATURE REVIEW
To provide a solid foundation for the study, this section presents a comprehensive review
of the relevant literature on suicide prediction, outlining the key themes, theories, and
empirical findings.

Electronic health records
In this section, we delve into a comprehensive examination of research papers that
primarily emphasize approaches for suicide prediction using clinical datasets. These
datasets typically consist of electronic health records, which encompass a diverse range of
data types, including numerical, categorical, and a combination of both.

In their respective studies, authors Nordin et al. (2022) and Boudreaux et al. (2021)
conducted systematic reviews of machine learning techniques for suicide prediction,
focusing on research articles published between January 2016 and September 2021. Nordin
et al. (2022) found that ensemble methods were frequently employed, with regression,
support vector machines, and decision trees also being popular choices. Bayesian and
instance-based methods like k-nearest neighbors were used as well, the reviewed papers
generally demonstrated moderate levels of accuracy as shown in Table 1. In contrast,
Boudreaux et al. (2021) discussed the application of machine learning techniques to
healthcare datasets for suicide prediction, highlighting the use of support vector machines,
random forests, and ensemble methods. They noted the challenge of data imbalance in
suicide prediction datasets and the issue of overfitting in models. Additionally, they
emphasized the value of natural language processing for converting unstructured clinician
notes into structured data, but they did not address methods for model interpretability,
feature reduction, or model simplification.
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Horvath et al. (2021), McMullen et al. (2021), Oh et al. (2017) test the effect of suicide
ideation on accurate predictions, as a majority of suicide attempters do not disclose suicide
ideation before making an attempt. In McMullen et al. (2021), the authors examined the
impact of suicide ideation on the predictive validity of suicide crisis syndrome (SCS) using
various prediction models, revealing that while suicide ideation need not be a prerequisite
for diagnosing SCS, it still plays a significant role in the diagnostic framework. Current
suicide ideation was the top-performing item on the chi-squared distribution, albeit
contributing minimally to predictive metrics with SCS. In Horvath et al. (2021), the
authors used prediction models, including gradient boosted trees, random forest, and
logistic regression, along with a neural network, to evaluate the influence of borderline
personality disorder (BPD) and antisocial personality disorder (APD) in predicting suicide
behavior. They found that BPD was a key factor, while APD had limited relevance, and
achieved promising F1 accuracy scores in suicide prediction even without suicide ideation
features, with gradient tree boosting excelling. The authors also simplified the feature set
for practical application without sacrificing performance. Furthermore, in Oh et al. (2017),
a neural network model with 41 input variables emphasized participant-reported
subjective symptoms and psychological states over conventional suicide predictors. The
model effectively distinguished between suicide and non-suicide attempters, with the Scale
for Suicide Ideation (SSI) ranking relatively low among all variables. The study shed light
on the importance of various feature importance metrics like SHAP values and cross-
entropy values, particularly in the context of a larger feature set.

Hettige et al. (2017), Kirlic et al. (2021), Navarro et al. (2021), Nordin et al. (2023), Van
Vuuren et al. (2021), van Mens et al. (2020), Walsh, Ribeiro & Franklin (2017) have
explored the application of machine learning models, including random forest and
Gradient Boosting, in predicting suicide behavior. Nordin et al. (2023), applied random
forest and Gradient Boosting to a clinical dataset, with Gradient Boosting outperforming
random forest and identifying ethnicity, suicidal thinking, and prior suicide attempts as
critical variables. Navarro et al. (2021) used random forest on a large population-based

Table 1 Accuracy results of methods from articles reviewed in the systematic review (Nordin et al., 2022).

Article References Method name Accuracy

Nordin et al. (2021) NaÏves bayes 0.82

Barros et al. (2016), Kirlic et al. (2021), Kim, Lee & Lee (2021), Nordin et al. (2021), van Mens et al. (2020) K-nearest neighbors 0.73–0.89

Amini et al. (2016), Chen et al. (2020), Horvath et al. (2021), Jung et al. (2019), Oh et al. (2017), Oh et al.
(2020)

Deep neural network 0.62–0.78

Edgcomb et al. (2021) Classification & regression
tree (CART)

0.80

Burke et al. (2020), Barros et al. (2016),Horvath et al. (2021), Lin et al. (2020),Oh et al. (2020), van Mens et al.
(2020)

Decision tree 0.72–0.91

Amini et al. (2016), Barros et al. (2016), Choi et al. (2018),Hettige et al. (2017), Kessler et al. (2017), Kirlic et al.
(2021), Nordin et al. (2021), Oh et al. (2020), Passos et al. (2016), van Mens et al. (2020)

Support vector machine
(SVM)

0.78–0.84

Amini et al. (2016), Nordin et al. (2021) Logistic regression 0.64–0.83
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dataset, separating predictions by gender and achieving a 0.5 sensitivity and 0.76 specificity
for females, using mean decrease in prediction accuracy to assess feature importance. An
ensemble model with various base learners was created for college student predictions
(Kirlic et al., 2021), emphasizing factors like depression and anxiety. Although feature
importance was assessed using different metrics, it was noted that feature interactions were
not considered comprehensively. Random forest was also applied to electronic health
record data (van Mens et al., 2020), where Shapley values were recommended as a more
comprehensive alternative to permutation importance. Finally, in a study involving
schizophrenia patients (Hettige et al., 2017), various machine learning models were
compared, with least absolute shrinkage and selection operator (LASSO) showing the best
performance, and feature importance interpretations were done using support vector
classification (SVC) and Elastic Net, although SHAP was suggested for a more
comprehensive understanding of feature importance.

In Barak-Corren et al. (2017), the authors used a naïve Bayesian classifier model on
Electronic Health Records (EHR) data, finding that suicidal behavior was more common
in men, associated with “separated”marital status, and prevalent among African American
and Hispanic patients. The model detected 44% of male and 46% of female suicidal cases
but had limitations due to the assumption of feature independence and less flexibility in
handling complex decision boundaries. In study (Ribeiro et al., 2016), a meta-analysis of
172 studies using Comprehensive Meta-Analysis and MetaDiSc revealed that prior self-
injurious thoughts and behaviors were significant risk factors for suicidal thoughts,
attempts, and mortality, with prior suicidal ideation being the strongest predictor. Suicide
ideation and prior suicide attempts were the best predictors of suicide death, with non-
suicidal self-injury (NSSI) only slightly increasing the odds of an attempt.

Natural language processing
In this section, we conduct a review of papers that concentrate on the utilization of natural
language processing techniques for the purpose of suicide prediction, with a primary focus
on textual content sourced from social media platforms and textual datasets.

Natural language processing (NLP) (Bird, Klein & Loper, 2009) has shown promising
results for detection of suicidal behavior in textual datasets and from electronic health
records, as discussed by the authors in Fonseka, Bhat & Kennedy (2019), Velupillai et al.
(2019). Velupillai et al. (2019) emphasize the potential of natural language processing
(NLP) in detecting suicidal behavior in textual data, highlighting its superiority over time-
consuming risk assessment tools due to its accuracy, feasibility, and speed, particularly on
large datasets. They underscore the adaptability of NLP models to the dynamic nature of
suicidal ideation, which is heavily influenced by environmental factors. Additionally, the
authors stress the significance of leveraging social media as a rich source of online text
related to mental health, as many suicides occur without prior mental health assessment or
treatment. In Fonseka, Bhat & Kennedy (2019), the authors discuss NLP’s role in
interpreting and responding in natural human language, particularly in clinical notes from
electronic medical records (EMRs), where it achieves relatively high accuracy in predicting
suicidal ideation. Furthermore, NLP’s real-time data capture on social media platforms
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allows for early identification of suicidality, while conversational agents on these platforms
aim to reduce suicidal behavior through positive feedback.

Comparative analysis
Popular machine learning interpretability strategies include LIME, SHAP, statistical
methods, and Anchor rules. Each has advantages and disadvantages when it comes to
suicide prediction.

LIME offers local interpretations of model predictions by approximating the behavior of
the underlying model to help comprehend suicide risk in specific cases. It is flexible and
model-independent, but it is susceptible to interpretation instability due to fluctuations in
perturbations and can overlook global trends.

By allocating contributions to each feature, SHAP values provide a consistent method to
explain the output of any machine learning model and reveal which individual features
affect suicide prediction. Scalability and accuracy may be constrained by their
computational expense for large datasets and possible oversimplification of nonlinear
relationships.

Statistical techniques provide clear frameworks for analysis of coefficients in suicide risk
prediction. Complex nonlinear correlations between predictors may be difficult for
statistical models to capture, which could result in oversimplified depictions of the risk
factors for suicide. They might not take full use of the predictive capacity of machine
learning algorithms, which would restrict their capacity to identify minute but crucial
patterns in the data that are pertinent to the prediction of suicide.

Anchor rules offer human-readable and interpretable if-then rules that sufficiently and
clearly explain model predictions. These rules can be useful for clinical decision-making in
the prevention of suicide. Decision boundaries in the feature space can be transparently
identified with their help, providing clear insight into the circumstances in which the
model predicts a high or low probability of suicide. For high-dimensional datasets, anchor
rules may oversimplify intricate relationships in the data and rule generation may be
computationally intensive.

To our knowledge in the domain of suicide prediction models, some studies have
incorporated the use of SHAP for quantifying feature importance by considering the
contributions of individual features and their interactions, even more fewer are studies
aiming to enhance the accuracy of the models by utilizing approach of feature reduction on
datasets or creating ensemble models for robust performances. Furthermore within our
understanding, ours is the first study to use anchor explanations for suicide prediction by
creating simple human-readable rules and conditions. We also bypass weakness of anchor
against high dimensional datasets by reducing the data to important features only via
SHAP.

By incorporating SHAP, Anchor explanations, and ensemble methods, we can advance
suicide prediction research by improving interpretability, capturing complex feature
interactions, enhancing model performance, and generating more comprehensive insights.
These approaches offer valuable contributions to the field and have the potential to
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enhance our ability to identify individuals at risk of suicide and provide effective
interventions to prevent such tragic outcomes.

METHODOLOGY
To provide a comprehensive understanding of our approach, this section outlines the steps
taken to conduct our work, including details about data preprocessing, data balancing,
models, dimensionality reduction, ensemble of models and cross validation approaches.

Overview
Our research article is driven by four primary objectives, each contributing to a
comprehensive exploration of the critical issue of suicide prediction.

First and foremost, we endeavor to develop an effective framework for suicide
prediction, harnessing advanced machine learning techniques to create a model that can
accurately identify individuals at risk. Additionally, we confront the challenges associated
with anchor explanations on high-dimensional datasets. Anchors are pivotal for model
interpretability, but their effectiveness can diminish in the face of complex, high-
dimensional data. Our research seeks to innovate and adapt anchor explanations to
overcome these limitations.

Furthermore, we emphasize the significance of providing transparent and actionable
interpretations for model decisions using anchor explanations. In an era where AI and
machine learning are increasingly integrated into decision-making processes, ensuring that
model outcomes are understandable and trustworthy is of paramount importance.

Lastly, our study delves into the impact of including or excluding features related to
suicidal ideation in datasets used for predictive models. Understanding how the presence
or absence of such features influences model performance is essential for tailoring
predictive systems to real-world applications. In summary, our research encompasses a
multifaceted approach, striving to improve suicide prediction, enhance model
interpretability, and shed light on the influence of suicidal ideation features on predictive
accuracy and utility.

The raw dataset comprises an extensive set of 915 features, including numerical and
categorical features, which are converted using One Hot Encoding. To ensure efficient
analysis, the dataset is preprocessed into two separate subsets. The first subset contains
2,337 features, including suicide ideation features, while the second subset consists of 2,314
features without any suicide ideation features.

The XGBoost algorithm is employed to train models on each of these preprocessed
datasets independently. Subsequently, the SHAP method is utilized to identify the most
important contributing features from the XGBoost models. These features are then used to
create reduced datasets, which are refined to contain 27 features in both datasets.

The reduced datasets are utilized to re-train XGBoost models, taking advantage of the
selected 27 features. To interpret the predictions made by these new models, Anchor
explanations are applied, generating interpretable rules for each prediction. These Anchor
rules are subsequently analyzed to reduce the datasets even further, resulting in the final
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subsets containing 12 and 19 features, respectively, for including suicide ideation features
and without it.

To enhance the predictive performance and exploit the strengths of different
algorithms, an ensemble model is constructed by combining XGBoost and random forest.
This ensemble model integrates the diverse perspectives and predictive capabilities of both
algorithms, leading to improved accuracy and robustness in the final results with the final
refined datasets. We also compared ensemble model results with previous datasets,
showing fairly improved results with each feature reduction step.

By following this comprehensive methodology, which is also depicted in Fig. 1, this
research aims to provide valuable insights into suicide prediction. The combination of
preprocessing techniques, feature selection, model interpretation, and ensemble modelling
contributes to a holistic approach to understanding and predicting suicide ideation among
patients. Each step is discussed in detail in the following subsections below.

Figure 1 Overview of methodology for classification on the reduced dataset. Full-size DOI: 10.7717/peerj-cs.2051/fig-1
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In the Algorithm 1, we represent our process of refining and reducing the dataset for
training on an ensemble model consisting of XGboost and random forest. We load the
CSV data file (D) and perform data cleaning operations to ensure data quality and remove
non-important features. We then apply one-hot encoding to convert categorical variables
and fill missing values with mean values. The processed dataset is then split into two
datasets: one containing suicide ideation features (Suicide_D) and the other without
suicide ideation features (NonSuicide_D).

Algorithm 1 Algorithm to obtain ensemble of XGBoost and random forest models with reduced
datasets.

1: (Input: CSV Data File - D)

2: (Outputs: Trained Ensemble Model - ENS, SHAP Features - SF, Anchor Explanations - AE)

3: D ← Load(D)

4: D ← cleaning(D)

5: D ← OneHotEncoding(D)

6: D ← FillMean(D)

7: Suicide_D ← D

8: NonSuicide_D ← SuicideFiltered(D)

9: DS Suicide_D, NonSuicide_D

10: for datasets D in DS do

11: T, S ← 80_20_split(D)

12: XGB ← Fit(T)

13: XGB ← Pred(S)

14: SF ← SHAP(XGB)

15: RDS SelectData(SF,D)

16: end for

17: for datasets D in RDS do

18: T, S ← 80_20_split(D)

19: XGB ← Fit(T)

20: XGB ← Pred(S)

21: AE ← Anchor(XGB)

22: FDS SelectData(AE,D)

23: end for

24: ENS ← XGB, RF

25: for datasets D in FDS do

26: T, S ← 80_20_split(D)

27: ENS ← Fit(T)

28: ENS ← Pred(S)

29: DisplayResults(ENS, AE, SF)

30: end for
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For each of these datasets, we split it into training (T) and testing (S) sets using an 80–20
split ratio. Next, an XGB model is trained on the training set and used to make predictions
on the testing set. The SHAP feature values (SF) are calculated using the XGB model,
providing insights into the importance of different features in making predictions. We
then create two reduced datasets (RDS), each having their top 27 important features only,
and proceed to the next stage.

For each of the reduced datasets (RDS), we repeat the training and prediction steps
using XGBoost (XGB) and generate anchor explanations (AE) using the XGB model. The
anchor explanations provide simple human-interpretable rules that explain the model’s
predictions per instance/patient. We analyze the anchor rules and further reduce both of
the datasets to 12 and 19 features (FDS), including suicide ideation features and without
such features, respectively.

Finally, we create an ensemble model (ENS) from XGBoost (XGB) and random forest
(RF) models. For each of the final datasets (FDS), the ensemble model is trained and used
to make predictions. The results, including the trained ensemble model (ENS), anchor
explanations (AE), and SHAP feature values (SF), are displayed.

Preprocessing
As part of our data processing before training models, we first removed features that were
unimportant for model training and prediction, such as fields for dates, location, ID
numbers, etc. Removing unimportant fields reduced the dataset to 860 features from 915.
Even though most of the data for questions were recorded in numerical format and
explained through separate directories (Sacks, 2011) for the meaning of each numerical
data. A few of the questions had additional data fields, namely “other”, which was in
categorical format. Some examples of the categorical features in the dataset are “Other
Specified Current Living Situation”, ”Other Specified Employment past 6 months”,
“Specify Other Offense Committed”, “Other Specified Drug”, etc.

For the categorical features, instead of simply mapping categorical values to discrete
numerical values, we used Pandas get_dummies (McKinney, 2011) one hot encoding to
convert it into numerical features, resulting in an increase for the total number of fields to
2,337. Each categorical feature was in its own column, having a value of 1 (exists as a yes)
and 0 (exists as a no). This allows for learning the complex combinations of demographics
and real-life events per patient that have an impact on suicidal behaviour. The impact of

Table 2 Feature count in datasets.

Dataset description Total features

Raw dataset 915

Reduced to important features 860

Categorical features conversion 2,337

Final suicidal ideation dataset 2,337

Final without suicidal ideation dataset 2,314
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such demographical and risk factors on suicidal ideation are discussed by authors (Crepet
et al., 1996; Goktekin et al., 2018; Gould et al., 1996; Heikkinen, Aro & Lönnqvist, 1994;
Nock et al., 2008; Zhang et al., 2013).

We created two separate datasets for training models and comparing. One dataset
contained all of the final features, resulting in a total of 2,337 features, this is the dataset
with suicidal ideation features included in it. The second dataset was decreased to 2,314
features by removing any feature with suicide terms mentioned in them, this dataset is
without suicidal ideation features.

Table 2 shows the total number of feature counts in each dataset.

Data balancing
For further optimizing the classification performance of each of the seven models, we
implemented and compared four Synthetic Minority Oversampling TEchnique (SMOTE)
(Chawla et al., 2002) variants as well as three NearMiss (Lemaître, Nogueira & Aridas,
2017) variants and recorded its results.

SMOTE is an over-sampling technique, but instead of just duplicating the minority class
to the equal majority class in terms of data count, the k-nearest neighbour (KNN) (Kramer
& Kramer, 2013) method is used by SMOTE to generate synthetic data. SMOTE begins by
randomly selecting data from the minority class, after which its k-nearest neighbours are
determined. The k-nearest neighbour was selected at random, and the random data would
then be combined to create synthetic data. This process is repeated until the minority class
equals the majority class.

The four variants of SMOTE used are namely SMOTE, Borderline-SMOTE, SVM
SMOTE, and Adaptive Synthetic Sampling (ADASYN). Borderline-SMOTE is a variation
of SMOTE where, instead of selecting data at random, it exclusively creates synthetic data
along the decision boundary of the classes. SVM SMOTE is a variation of Borderline-
SMOTE where instead of using KNN, it uses support vector machine (SVM) (Hearst et al.,
1998) to create synthetic data. ADASYN is a variation of SMOTE where synthetic data is
created based on data density (Chawla et al., 2002).

All of the SMOTE variants were implemented on the training data features and on the
training output variable.

NearMiss is an under-sampling technique where the majority class is reduced to match
the minority class size based on the distance between the classes. Three variants of
NearMiss were used that are assigned using “version” ranging from 1 to 3. In version 1,
majority class data is selected, having a minimum average distance from the three closest
minority data points. In version 2, majority class data is selected, having a minimum
average distance from the three furthest minority data points. In version 3, majority class
data is selected, having a minimum average distance from each of the minority data points
(Lemaître, Nogueira & Aridas, 2017).

All of the NearMiss versions were implemented on the training data features and on the
training output variable.

All versions of NearMiss decreased the classification performance of independent
models. In contrast, borderline-SMOTE showed better classification performance
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compared to other variations of SMOTE. However, during our final reduced datasets and
ensemble model, the borderline-SMOTE slightly reduced the classification performance;
hence, we do not implement it in the final ensemble model predictions.

Models
We built total of seven classification models to compare its performance with each other
and with results from similar studies. These models were specifically selected due to their
reliable performance for handling classification tasks even on small sized datasets.

The seven models were XGBoost (Chen & Guestrin, 2016), random forest (Ho, 1995),
decision tree (Wu et al., 2008), a fully connected three layer neural network using Keras on
top of TensorFlow (Chollet, 2015), logistic regression (Cox, 1958), linear regression (Yan &
Su, 2003) and CatBoost (Prokhorenkova et al., 2018). XGBoost and CatBoost are variants
of gradient boosting algorithms.

A decision tree is a tree structure resembling a flowchart-like structure, where each
internal node represents a test on an attribute, each branch is a test result, and each
terminal node (leaf node) is the final class label that will be predicted by a series of tests
through the internal nodes (Wu et al., 2008).

XGBoost incorporates the use of gradient-boosted decision trees, which are sequentially
built. The entire independent variables are given weights and fed into each of the decision
trees which predicts results. Each weight of variable predicted wrong by a tree is increased
and fed into the next decision tree. These unique predictors are then combined to produce
an accurate and robust model. Finding the parameters h that suit the training data xi and
labels yi the best is the essence of training XGBoost, yi can be from tasks like regression or
classification. To determine how well the XGBoost model fits the training set of the data,
we must first define the objective function that will be employed. Regularization term and
training loss together form the objective function.

ObjðhÞ ¼ TðhÞ þ RðhÞ (1)

where TðhÞ is the training loss function showing how predictive the model is respective to
training data, and RðhÞ is the regularization function controlling the model’s complexity
for avoiding overfitting. Equation (2) illustrates another way to express the objective
function.

ObjðhÞ ¼ l
X
k

ðbyk; ykÞ
 !

þ
X
r

�ðfrÞ
 !

(2)

where the training loss function lðPkðbyk; ykÞÞ is showing difference between actual yi and
predicted byi values, ðPr �ðfrÞÞ is the regularization term defining complexity of the
XGBoost model (Chen & Guestrin, 2016).

Random forest is a grouping technique of independent decision tree training forming an
ensemble model, having bootstrapping and aggregation as well. Bootstrapping describes
the parallel training of many individual decision trees on various subsets of the training
dataset using various subsets of the available features. Bootstrapping ensures that every
decision tree in the random forest is distinct, which reduces the random forest’s total
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variance. Through bootstrap aggregation and random feature selection, the predictions are
averaged to get the final prediction (Ho, 1995).

For XGBoost, the gradient boosting model was used with a learning task set to “binary:
logistic”, which is suitable for binary classification between two classes. The learning rate
for XGBoost and CatBoost were set to 0.3 and 0.1, respectively, which controls how rapidly
the model changes to adapt to the data. The total number of tree models to create and learn
was set to 100, with the maximum depth for each tree set to 5.

For the decision tree model and random forest, Gini Impurity was used as criteria for
measuring split quality. The total number of trees to generate and train by random forest
was set to 500. The maximum depth of the tree was set to five in the case of the decision
tree model but was not constrained for the random forest model.

Logistic regression and linear regression were used with their default parameters.
Neural network using Keras was built with an input layer with a number of nodes equal

to dataset features size, two hidden layers with node count 12 and eight with activation
functions sigmoid and relu respectively. The final output layer had only 1 node with
activation function sigmoid. The activation function calculates and decides whether each
node should be activated or not. It also gives the model non-linearity, allowing it to adapt
to a variety of data and differentiate between the outcomes.

Outputs of linear regression and neural network were probability values ranging from 0
to 1, which we converted to class prediction values with a threshold of 0.5, while the output
of other models were discrete class prediction values having values as 0 (non-suicidal) or 1
(suicidal).

The above discussed hyper-parameters are also shown in Table 3.
Each of the seven models was trained separately on both of the datasets (with and

without suicidal ideation features), and results were recorded. To further improve the
models performance, we used KNN-imputer to fill missing values and Standard-Scalar to
standardize the data values by bringing each feature value to unit variance, both methods
were implemented through sci-kit learn library (Pedregosa et al., 2011) on training and
testing of data features.

Table 3 Hyper-parameters of the models used.

Models Task Iterations Depth Learning rate

XGBoost Binary logistic 100 5 0.3

Random forest Gini impurity 500 − ×

Decision tree Gini impurity × 5 ×

CatBoost − 100 5 0.1

Neural network Adam 150 3 −

Logistic regression Liblinear − × ×

Linear regression × × × ×

Note:
x stands for not applicable, − stands for default parameters.
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Dimensionality reduction via SHAP
SHAP is a powerful and versatile model-agnostic method designed to provide local
explanations of feature importance in predictive models. It offers a way to decompose a
model’s predictions into contributions from individual features based on the concept of
SHpley values (Belle & Papantonis, 2021; Lundberg & Lee, 2017; Shapley, 1953a).

By leveraging game theory techniques, SHAP enables the interpretation of machine
learning model outputs. It employs traditional SHapley values from game theory (Shapley,
1953b) and their associated extensions to establish a connection between optimal credit
allocation and local explanations.

Eðb0Þ ¼ �i þ
XK
j¼1

�jb
0
j (3)

where E is representing the explanation model with b0 shows the basic features. The
maximum size of the collation is represented by K, and feature attribution is shown by �.
Each feature’s attribution can be computed by Eqs. (4) and (5) as per the author’s
recommendation in Lundberg & Lee (2017).

�j ¼
X
S�Ifjg

jSj!ðK � jSj � 1Þ!
K!

½fyðS [ fjgÞ � fyðSÞ� (4)

fyðSÞ ¼ X½f ðyÞjyS� (5)

where a subset of the input features are represented by S, a set of all inputs is represented by
I. Expected value of the function on subset S is represented by X½f ðyÞjyS�.

A Python package known as Shapash (MAIF, 2021) with an aim to make machine
learning accessible to all users and interpretable. The project was created by data scientists
from MAIF. Shapash is compatible with SHAP and processes local explanations using
SHAP’s backend.

We used Python packages SHAP and SHAPASH on XGBoost to visualize the important
features that provided the most positive contributions to the learning and prediction of
models. We were able to reduce both of the datasets having suicidal ideation and without
suicidal ideation to only 27 features while retaining the classification performance.

Figure 2 shows the top 27 features that contribute the most to the classification
performance of the model without suicidal ideation dataset. Figure 3 shows the top 27
features that contribute the most to the classification performance of the model with the
suicidal ideation dataset.

In Figs. 2 and 3, we show a bar plot displaying SHAP contribution values for each data
feature, providing a clear visual representation of the impact of individual features on
XGboost model’s predictions. Each feature is represented by a horizontal bar, where the
length of the bar corresponds to the magnitude of its SHAP contribution. Features with
higher bars indicate a greater influence on the model’s output, while shorter bars suggest
relatively lower importance. This visualization allows for a quick and intuitive
understanding of which features are driving the model’s predictions the most.
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In our study, we use SHAP for identifying and quantifying the impact of individual
features on model predictions. The top contributing feature plots for SHAP were used to
guide the selection of top 27 features for both datasets. This choice was taken since
XGBoost’s performance held true for both the original dataset and the smaller dataset of 27
features. This feature selection process is a crucial component of our methodology for
aiding in the dimensionality reduction and improving the predictive performance of our
models. By strategically employing SHAP to select and prioritize the most influential
features, we aim to boost the predictive accuracy and overall performance of our machine
learning models, thereby contributing to the advancement of our research objectives.

The algorithm for this subsection is explained in Supplemental Material in greater detail
than already shown in Algorithm 1.

Figure 2 Feature contributions by SHAP values excluding suicidal ideation features.
Full-size DOI: 10.7717/peerj-cs.2051/fig-2
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Interpretation & dimensionality reduction via anchor
In this section, we discuss our approach of anchoring with SHAP-reduced datasets. We
also discuss details about anchor explanations and their outputs for our datasets.

Through SHAP, we are able to reduce datasets having suicidal ideations and with no
suicidal ideations to its top 27 contributing features while retaining independent model
classification performance. We further use anchor explanation (Ribeiro, Singh & Guestrin,
2018) on XGBoost to sufficiently anchor each prediction locally. Anchor creates a rule
based on perturbation strategy that is much closer to human understandings in such a way
that any changes to other features of the instance do not affect the prediction, meaning the
prediction on which anchor holds remains almost always the same.

From Ribeiro, Singh & Guestrin (2018), an anchor is formally defined through the
Eq. (6):

Figure 3 Feature contributions by SHAP values including suicidal ideation features.
Full-size DOI: 10.7717/peerj-cs.2051/fig-3
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ENrðkjPÞ ½1mðrÞ¼mðkÞ� � s; PðrÞ ¼ 1 (6)

where r represents an instance that is being explained, basically a row of tabular data. P is a
set of predicates meaning the rule or anchor, such that PðrÞ ¼ 1 when all feature predicates
specified by P match the feature values of r. The classification model XGBoost is
represented by m. NrðkjPÞ denotes the distribution of r0s neighbours that match P. The
precision threshold is represented by s, which in our case was the default parameter of
0.95, only rules with a local fidelity of at least the specified precision threshold are regarded
as legitimate outcomes.

We use anchor explanation on both datasets having 27 top contributing features and
record prediction rules in a flat file. Through the recorded anchor rules, we were able to
observe the most important features for being used as anchors in predictions. We further
reduced the dataset having no suicidal ideation features to only 19 features from the
previous 27 features and reduced the dataset having suicidal ideation features to only 12
features from the previous 27 features.

Table 4 highlights a few examples, specifically patient 6th and 7th from our data for our
XGBoost model, showing the prediction along with the rule that anchors such prediction.
Anchor also shows what amount of perturbation space’s instances it applies to through its
coverage value, in which how accurate it is through its precision value. For example, in 7th

patient prediction. The rule states that since the patient had more than two hospitalizations
due to psych problems in the past and has attempted suicide at least once because of
depressive disorders, the patient is being classified as suicidal. The rule is 96% accurate in
6% of the perturbation space cases, meaning that the expected outcome is virtually entirely
due to the displayed predicates.

Tables S1 and S2 list the important features that anchor explanations selected in if-then
statements from the SHAP reduced datasets, along with their total count across entire 71
predictions.

In Figs. S1 and S2, we use grid as a visual representation for depicting pairwise
correlations between features in the datasets. Each feature is represented as a label, while

Table 4 Some examples of anchor rules from our XGBoost model.

# Performance Anchor explanation rule

6 Prediction: non-suicidal (Suicide thoughts lifetime � 0.00)

Precision: 1 AND

Coverage: 0.07 (Number of people dependent past
6 months > 4.00)Anchor test precision: 1

Anchor test coverage: 0.01

7 Prediction: suicidal (Lifetime suicide attempts due to depressive disorders > 0.00)

Precision: 0.96

Coverage: 0.06 AND

Anchor test precision: 1 (Number of hospitalizations due to psych problems in life > 2.00)

Anchor test coverage: 0.01
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the correlations between the features is represented by colour and value on the grid. The
colour of the box provides an approximation of the correlation value, with highly saturated
colours like dark blue or near black indicating positive correlations and less saturated
colours like white representing negative correlations. By observing the correlation grid, one
can quickly identify patterns and relationships between different features, facilitating a
deeper understanding of the inter-dependencies within the dataset.

The primary goal of the Anchor library is to produce understandable rules by choosing
the features that are most important to the classification. In this instance, the library
narrowed down the original set of 27 features to the top 12 and 19 features, respectively.
The reason these features were picked in particular is that the Anchor library determined
they were necessary for rule generation and omitted the rest by itself, which simplified the
model’s complexity while maintaining its interpretability.

The algorithm for this subsection is explained in Supplemental Material in Algorithm 1
in greater detain than already shown in Algorithm 1.

Ensemble of models
The ensemble method is a learning algorithm that combines several machine learning
models to form one optimal model, the final predictions are based on weighted votes of
predictions from the separate models (Dietterich, 2000). We created an ensemble of models
using voting classifier (Pedregosa et al., 2011). A voting classifier is a machine learning
model that predicts a class value by training on an ensemble of several models. It merely
averages the results of each classifier that was passed into it to predict the output class
based on the highest majority of votes from each classifier. The notion is to build a single
model that learns from separate models and predicts output based on their aggregate
majority of voting rather than building separate dedicated models and determining the
results for each of them.

Initially, we included five models, namely XGBoost, random forest, decision tree,
logistic regression and CatBoost, which we reduced to mainly two models, XGBoost and
random forest, which gave results similar to the original ensemble. The final ensemble
model was trained and tested on reduced datasets from anchor, having 19 features for
datasets without suicidal ideation features and having 12 features for dataset with suicidal
ideation features.

Cross validation
In order to rigorously assess the performance of the ensemble models containing XGBoost
and random forest, we employed 10-fold Cross Validation and Leave-One-Out (LOO)
from Pedregosa et al. (2011). The 10-fold Cross Validation was used on all of the ensemble
models recording its accuracy and F1 Score, while Leave-One-Out was used to record
accuracy only on all of our models.

These cross-validation techniques are valuable for several reasons. Firstly, the dataset
might contain variations and outliers that can affect model performance. By using 10-fold
Cross-Validation, the data is divided into ten subsets, and the model is trained and tested
on each subset. This provides a robust estimate of model performance and helps to detect
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potential overfitting or underfitting. Additionally, LOO, which treats each data point as a
separate test case, offers an unbiased evaluation, especially important when working with a
relatively small dataset like this. By combining the results from these techniques, we can
gain confidence in the ensemble model’s generalization capabilities and make informed
decisions about its suitability for the specific task with a focus on mitigating overfitting and
ensuring reliable predictions.

Optimizing explanatory rule generation
We modified ‘add_names_to_exp’ function from ‘anchor_tabular.py’ from anchor library
to remove redundancy and improve execution time of the library in creating explanatory
rules by refactoring the original code for execution time efficiency. The Algorithm 2
explains the original workings of the function and Algorithm 3 explains the modified
version of the same function.

In the original Algorithm 2 and the modified Algorithm 3, Indices contains numerical
indices of the feature names from explanation data structures Exp[Features]. Exp[Names]
is an empty list to store names associated with the features when fully processed in to rules.
OrdinalRanges initializes an empty dictionary to store information about ordinal feature
ranges. The first loop over Indices iterates and extracts information from the Mapping
dictionary to determine whether features are ordinal or categorical. If they are ordinal, a
maximum and minimum value of ∞ is set to be compared and replaced later on.
HandledSet is an empty set to keep track of which features have already been handled
preventing repeated processing on same feature that is already processed. Second loop over
Indices iterates for creating final feature explanatory rules. If the operator is eq (equal), it
constructs a rule based on the feature name and the specific value from the Mapping
dictionary. Otherwise, for other operators geq and leq, it calculates ranges and constructs
explanatory rules like ‘Feature > Value’ or ‘Value � Feature � Value’ based on the ordinal
information. Finally, the constructed explanatory rules are appended to the Exp[Name]
list. In summary, it uses the data structure Exp containing numerical processed
information of rule generation to process and replace with human-readable feature names
based on index mappings and ordinal range information for final outputs from anchor
library.

In the modified Algorithm 3, we removed first loop entirely since we can adjust and use
OrdinalRanges within the second loop, going from two-pass approach to a single-pass
approach. This results in only one loop over all Indices instead of two loops without any
changes in the workings of the code. The modifications results in less execution time since
redundant checks and assignments are entirely skipped. In our modified algorithm, we
initialize HandledSet before the loop and OrdinalRanges inside the loop since only geq and
leq operators were being checked. We handle the eq operator without considering the
HandledSet as in original algorithm, and combine geq and leq handling into a single pass.
Both algorithms ultimately create explanatory rules and set results to Exp[Name], but the
specific execution order and handling of operators and duplicates differ between the two
algorithms.
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Evaluation of generalizability
We obtained the National Survey on Drug Use and Health (NSDUH) dataset for the years
2015–2019 from Kaggle in order to assess the generalizability or transferability of our

Algorithm 2 Original algorithm to obtain explanatory rules in Anchor Tabular.

1: procedure ADD NAMES TO EXPLANATIONS(DataRow, Exp, Mapping)

2: Indices ← Exp[Features]

3: Create empty Exp[Names]

4: Exp[Features] ← Mapping[Names]

5: Create empty OrdinalRanges

6: for indices I in Indices do

7: f, op, v ← Mapping[I]

8: if op is geq or leq then

9: if f not in OrdinalRanges then

10: OrdinalRanges[f] ← [�1;þ1]

11: end if

12: end if

13: if op is geq then

14: OrdinalRanges½f �½0� ← MAX(OrdinalRanges½f �½0�; v)
15: end if

16: if op is leq then

17: OrdinalRanges½f �½1� ← MAX(OrdinalRanges½f �½1�; v)
18: end if

19: end for

20: Create empty HandledSet

21: for indices I in Indices do

22: f, op, v ← Mapping[I]

23: if op is eq then

24: creates Fname rule with feature name and categorical value

25: else

26: if f in HandledSet then

27: Continue

28: end if

29: geq, leq  OrdinalRanges½f �
30: Creates Fname rule with feature names and ordinal values

31: end if

32: end for

33: Exp[Name]  Fname

34: end procedure
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trained ensemble model on a different dataset (Gallamoza, 2021). The raw dataset includes
2,812 features for 282,768 participants that were gathered between 2015 and 2019. The
features included questions about drug use, thoughts and ideas of suicide, and more.

We searched and compared those features in the NSDUH dataset based on our anchor’s
top features, which were 12 and 19, respectively, for datasets with and without suicidal
ideation features. We were able to test our trained ensemble model on the new dataset by
highlighting a total of eight features that overlapped between the two datasets. Table 5
mentions the names of the overlapping features.

Since the NSDUH dataset and the prior dataset are primarily in numerical format,
processing of both was done in a similar manner. In order to maintain consistency with the

Algorithm 3 Modified algorithm to obtain explanatory rules in Anchor Tabular.

1: procedure ADD NAMES TO EXPLANATIONS(DataRow, Exp, Mapping)

2: Indices ← Exp[Features]

3: Create empty Exp[Names]

4: Exp[Features] ← Mapping[Names]

5: Create empty OrdinalRanges

6: Create empty HandledSet

7: for indices I in Indices do

8: f, op, v ← Mapping[I]

9: if op is eq then

10: creates Fname rule with feature name and categorical value

11: else

12: if f in HandledSet then

13: Continue

14: end if

15: OrdinalRanges[f] ← [�1;þ1]

16: if op is geq then

17: OrdinalRanges½f �½0� ← MAX(OrdinalRanges½f �½0�; v)
18: end if

19: if op is leq then

20: OrdinalRanges½f �½1� ← MAX(OrdinalRanges½f �½1�; v)
21: end if

22: geq, leq OrdinalRanges½f �
23: Creates Fname rule with feature names and ordinal values

24: end if

25: end for

26: Exp[Name] Fname

27: end procedure
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previous dataset, which had values 0 for no and 1 for yes, we had to first map the values
from 2 to 0 for no and 1 to 1 for yes in the NSDUH dataset. Based on information from the
guidebooks/codebooks of the dataset, we had to remove records of a small number of
participants who had poor feature data or who declined to answer questions. As a result,
our final test dataset had eight features for a total of 281,739 participants.

Validating with medical professionals
In order to validate the importance and understandability of simplistic if-then anchor rules
for suicide prediction and clinical scenarios, we discussed our Fig. 3 from SHAP plot,
Fig. S2 from features pairwise correlation along with few anchor rules such as shown in
Table 4 depicting the same features with several medical professionals in our local area.
Generally it has been observed that all of the three samples shown to them were not
entirely clear to them at first as they did not have any background from computer science
or previously came across such techniques before. Though it has also been observed that
upon explaining to them, they were able to understand and grasp the anchor rules the
fastest. The pairwise correlation proved to be the most difficult for them to understand or
grasp the idea of it. Out of them, four medical professionals from fields of psychology and
psychiatry were able to understand and provide valuable feedback which we have discussed
below.

In discussions with the medical professionals, it became apparent that there is a
consensus regarding the significance of understanding each individual patient rather than
relying on analysis techniques such as SHAP or pairwise correlation for entire groups of
patients.

Medical professional 1 stressed the significance of taking into account unique patient
characteristics, such as the severity of their depression, whether they are contemplating
suicide right now, or have attempted suicide in the past. Because suicidal behaviour is
influenced by a variety of circumstances and predisposing factors, they emphasised the
importance of personalised assessments. Medical professional 2 agrees, pointing out that
important elements of personal risk profiles include things like age, gender, social support,
and past life experiences.

Table 5 Common features between the two datasets (Sacks, 2011) and (Gallamoza, 2021).

Feature name

Age of first cocaine use

Lifetime suicide attempts due to depressive disorders

Suicide thoughts lifetime

Significant problems with suicidal thoughts in life

Age of first tobacco use

Shoplifting—lifetime

Age of first marijuana use

Ever attempted suicide
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Although medical professionals 2 and 3 acknowledge the importance of thorough
analysis, they recommend giving known or understood key characteristics precedence over
minute details. Emotional distress, unemployment, and social standing are among the
common themes that they have observed to influence suicide risk in various patient
populations. By focusing on the most important risk factors, this method enables a
targeted assessment that can help in successful intervention strategies.

Medical professionals express a preference for anchor statements due to their clarity and
simplicity in conveying important patient characteristics and risk factors. Unlike complex
visualizations like SHAP plots, anchor statements provide clear and concise rules that
facilitate understanding and interpretation for both clinicians and stakeholders for each
unique patient as an individual. This accessibility enhances the practical utility of
predictive models in real-world clinical settings.

EXPERIMENTAL SETUP
Dataset
For assessing our models’ performance and for the purpose of comparing our findings with
those of other papers, we recorded accuracy, F1-score, precision, sensitivity, area under the
curve (AUC), positive predictive values (PPV), logloss, true positives, true negatives, false
positives, and false negatives. These evaluation metrics are selected to have a well-rounded
view of models performance and be able to focus on false negatives along with accuracy.

When comparing two classification models, higher accuracy means that the model is
better at correctly identifying both positive and negative cases. An improved overall
performance in terms of correctly identifying positive cases is typically regarded as having
a higher F1 score. It is a harmonic mean of precision and sensitivity. A higher precision
means that the model produces fewer false positive results. A model with lower sensitivity
will be less accurate at detecting positive cases. A high AUC shows that the model can
simultaneously attain high precision and sensitivity. A higher PPV indicates better
performance in terms of accurate positive predictions. The predicted probabilities are
more likely to match the actual probabilities when the logloss is lower. In other words, the
model assigns larger probabilities to the correct class and is more definite about its
predictions.

True positives show that suicidal patients were correctly labelled as suicidal, while true
negatives show that non-suicidal patients were correctly labelled as non-suicidal. On the
other hand, false positives show howmany non-suicidal patients were incorrectly classified
as suicidal and false negatives show how many suicidal patients were incorrectly classified
as non-suicidal. In this domain, fewer false negatives are more crucial than false positives
since we do not want to ignore suicidal patients as non-suicidal.

For this comparative study, dataset was selected from the Criminal Justice Co-
Occurring Disorder Screening Instrument (CODSI) ICPSR 27963 study from Inter-
university Consortium for Political and Social Research (Sacks, 2011). The dataset
addresses critical shortcomings in mental and substance use disorder screening tools.
These instruments often lack validation for use within the criminal justice system and
typically assess only one disorder at a time, limiting their effectiveness in identifying co-
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occurring disorders (COD). To tackle these issues, the CODSI study explores innovative
methods to rapidly, accurately, and conveniently evaluate individuals in the criminal
justice system for COD. It incorporates the Texas Christian University Drug Screen
(TCUDS) for substance abuse assessment and evaluates three mental disorder screening
components (GSS, MHSF, and MMS), benchmarking them against the Structured Clinical
Interview for DSM-IV (SCID). Additionally, the dataset explores the impact of race on
screening results. This dataset is freely available for research, offering valuable insights into
enhancing mental and substance use disorder screening within the criminal justice context.

The dataset represents information about US inmates across 14 facilities participating in
prison-based drug abuse treatment programs. It contains records for total of 353 prisoners
for which we identified 915 independent variables as features and one dependent feature
variable namely “suicide ever attempted in life”. The dataset is of tabular form mostly
consisting of numerical values with few being categorical that we process into numerical
values through One-Hot Encoding. Out of the 915 variables in the dataset, some variables
were derived using simple formulas (using if-else statements) from other source variables.
We included both source and derived variables in our study. Each dataset was divided into
80% training data and 20% testing data using train_test_split (Pedregosa et al., 2011).

Table 6 shows the demographics about the prisoners in dataset.

Platform configuration
In our study and proposed approach, we developed Python notebooks on Kaggle, a web-
based data science platform known for hosting datasets, competitions, and facilitating the
implementation of machine learning models. We utilized notebooks available through a
free Kaggle account, which imposes certain limitations, including a maximum of 30 GB of

Table 6 Demographic overview of prisoners.

Description Labels Total

Ethnicity White 137

African American 96

Latino 120

Gender Male 207

Female 146

Marital status Never married 142

Legally married 83

Living as married 31

Separated 25

Divorced 64

Widowed 8

Suicidal thoughts Yes 57

No 296

Suicide attempts Yes 59

No 294
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RAM access and 73 GB of disk storage. It is worth noting that we refrained from
employing any GPU accelerators in our notebooks, models, or methods.

RESULTS AND COMPARISONS
In this section, we discuss our model results with processed datasets having 2,337 and
2,314 for suicidal ideation (SI) and without suicidal ideation (WSI) features, respectively.
We discuss model results with datasets having only 27 features for SI and WSI from
SHAP’s explanation. We also compare final ensemble results with datasets having only 12
features for SI and 19 features for WSI highlighted from anchor explanations. Finally, we
compare our final anchor reduced model performances with state-of-the-art models from
Horvath et al. (2021) and Nordin et al. (2023).

Models become simpler as the number of features is decreased, which speeds up
training and uses less computational power. Furthermore, simpler models are easier to
comprehend and interpret, which makes it easier to share the model’s insights with
stakeholders. Notably, the models’ accuracy keeps getting better even with the smaller
feature space. This emphasises how crucial feature selection is to improving model
performance. The selected features captures the most important parts of the data for
classification, leading to better predictive accuracy, even though fewer features could
potentially mean losing some information. The interpretability of the models tends to rise
with decreasing feature count. It is simpler to comprehend the elements influencing the
model’s predictions when there are fewer features as discussed in “Interpretation &
Dimensionality Reduction via Anchor”. Given that stakeholders can more easily
understand the reasoning behind the model’s decisions, this is in line with the principles of
transparency and trust in machine learning models.

Figure 4 Comparing model accuracy, precision and sensitivity with Nordin et al. (2023).
Full-size DOI: 10.7717/peerj-cs.2051/fig-4
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The features identified through anchor explanations for WSI and SI are shown through
SHAP summary plots as well in Figs. 3 and 4, in the Supplemental Material respectively.
These SHAP plots give insights into the driving factors for the model’s predictions through
color-coded representation for feature value and contributions.

The Tables 7 and 8 show classification performance for our base models trained with
datasets of SI and WSI without any feature reductions or SMOTE. The results show better
classification performance by XGBoost, CatBoost and random forest, because of which we
select XGBoost and random forest for our ensemble model. We did not use CatBoost as
part of our ensemble model despite having better performance than random forest since it
is generally recommended for datasets having a large number of records, with small
datasets, it can have generalizability problems. The Tables 9 and 10 show classification

Table 7 Base model performance comparison with processed datasets without feature reductions.

Metrics XGB XGBsi RF RFsi CAT CATsi

Accuracy (%) 90.140 95.770 83.100 87.320 88.730 95.770

F-1 Score 0.830 0.927 0.651 0.749 0.570 0.888

Precision 0.901 0.958 0.831 0.873 0.887 0.958

Sensitivity 0.643 0.786 0.286 0.429 0.111 0.667

AUC 0.804 0.893 0.625 0.706 0.556 0.833

PPV 0.818 1.000 0.667 0.857 1.000 1.000

Logloss 1.135 0.486 1.946 1.459 1.297 0.486

True positive 9 11 4 6 1 6

True negative 55 57 55 56 62 62

False positive 2 0 2 1 0 0

False negative 5 3 10 8 8 3

Note:
XGB, XGBoost; RF, random forest; CAT, CatBoost. Models trained without suicidal ideation features unless shown with
SI (with suicidal ideation).

Table 8 Base model performance comparison with processed datasets without feature reductions.

Metrics NN DT LOG LIN

Accuracy (%) 77.460 85.920 74.650 67.610

F-1 Score 0.491 0.778 0.620 0.546

Precision 0.775 0.859 0.746 0.676

Sensitivity 0.071 0.643 0.429 0.357

AUC 0.473 0.778 0.627 0.540

PPV 0.250 0.643 0.375 0.263

Logloss 0.563 1.622 2.919 2.383

True positive 1 9 6 5

True negative 54 52 47 43

False positive 3 5 10 14

False negative 13 5 8 9

Note:
NN, neural network; DT, decision tree; LOG, logistic regression; LIN, linear regression. Models trained without suicidal
ideation features.
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performance for our base models trained with balanced datasets of SI and WSI through
borderline-SMOTE without any feature reduction. The results show better classification
performance for linear regression and random forest with borderline-SMOTE, but overall,
in most of the cases, even after the ensemble model of XGBoost and random forest, the
performance dropped. Hence, we do not use borderline-SMOTE for our final ensemble
training and testing.

In Table 11, we are comparing our ensemble model of XGBoost and random forest
performance with the above-mentioned datasets. The classification performance metrics
show how reducing the number of features in datasets to important contributing features

Table 9 Base model performance comparison with processed datasets and borderline SMOTE
without feature reductions.

Metrics XGB XGBsi RF RFsi CAT CATsi

Accuracy (%) 90.140 92.960 91.550 88.730 88.730 80.280

F-1 Score 0.830 0.886 0.859 0.812 0.767 0.718

Precision 0.901 0.930 0.915 0.887 0.887 0.803

Sensitivity 0.643 0.786 0.714 0.643 0.667 1.000

AUC 0.804 0.875 0.840 0.795 0.793 0.887

PPV 0.818 0.846 0.833 0.750 0.545 0.391

Logloss 1.135 0.811 0.973 1.297 1.297 2.270

True positive 9 11 10 9 6 9

True negative 55 55 55 54 57 48

False positive 2 2 2 3 5 14

False negative 5 3 4 5 3 0

Note:
XGB, XGBoost; RF, random forest; CAT, CatBoost. Models trained without suicidal ideation features unless shown with
SI (with suicidal ideation).

Table 10 Base model performance comparison with processed datasets and borderline SMOTE
without feature reductions.

Metrics NN DT LOG LIN

Accuracy (%) 61.970 84.510 73.240 76.060

F-1 Score 0.523 0.748 0.608 0.632

Precision 0.620 0.845 0.732 0.761

Sensitivity 0.429 0.571 0.429 0.429

AUC 0.593 0.742 0.618 0.653

PPV 0.240 0.615 0.353 0.400

Logloss 0.839 1.784 3.081 1.909

True positive 6 8 6 6

True negative 38 52 46 48

False positive 19 5 11 9

False negative 8 6 8 8

Note:
NN, neural network; DT, decision tree; LOG, logistic regression; LIN, linear regression. Models trained without suicidal
ideation features.
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by SHAP greatly improves the classification results by reducing the false negatives (suicidal
patients that were incorrectly marked as non-suicidal) almost by half in case of WSI and
from 3 to only 1 in case of SI dataset. It also shows how further reduction of features
through anchor explanations improves the results slightly further, as well in the case of the
WSI dataset by improving on the false negative by 1, though there is no change in SI
dataset classification. Proving that by using anchor explanations on reduced important
features of the dataset from SHAP, not only can we get human-readable if-then statements
for explaining the predictions reasoning but also improve classification performance on
the further reduced datasets.

In Table 12 and Fig. 4, we are comparing our final ensemble model trained on reduced
datasets from anchor explanations with model results from Nordin et al. (2023). The

Table 11 Model performance comparison with processed datasets, SHAP-reduced datasets, and anchor-reduced datasets.

Metric Ensemble Ensemble-SI Ensemble-SHAP Ensemble-SHAP SI Ensemble-Anchor Ensemble-Anchor SI

Accuracy (%) 91.550 95.770 92.960 98.590 94.370 98.590

F1-Score 0.727 0.888 0.814 0.967 0.859 0.967

Precision 0.915 0.958 0.930 0.986 0.944 0.986

Sensitivity 0.333 0.667 0.556 0.889 0.667 0.889

AUC 0.667 0.833 0.770 0.944 0.825 0.944

PPV 1.000 1.000 0.833 1.000 0.857 1.000

Logloss 0.973 0.486 0.811 0.162 0.649 0.162

True positive 3 6 5 8 6 8

True negative 62 62 61 62 61 62

False positive 0 0 1 0 1 0

False negative 6 3 4 1 3 1

Note:
SI indicates datasets including suicidal ideation features.

Table 12 Model performance comparisons with Nordin et al. (2023) and Horvath et al. (2021).

Metrics Our Models Nordin et al. Horvath et al.

Ens Ens-SI RF GB XGB XGB-SI RF RF-SI

Accuracy (%) 94.370 98.590 84.000 86.000 … … … …

Precision 0.944 0.986 0.840 0.850 0.917 0.786 0.714 0.909

Sensitivity 0.667 0.889 0.840 0.850 0.786 0.786 0.714 0.714

AUC 0.825 0.944 … … 0.875 0.955 0.822 0.893

PPV 0.857 1.000 … … 0.786 0.786 0.714 0.714

Logloss 0.649 0.162 … … 0.334 0.277 1.661 1.108

True positives 6 8 … … 11 11 10 10

True negatives 61 62 … … 56 54 53 56

False positives 1 0 … … 3 3 4 4

False negatives 3 1 … … 1 3 4 1

Note:
SI indicates datasets including suicidal ideation features. Ens indicates our ensemble model trained with anchor features.
XGB, RF, GB indicates XGBoost, Random Forest, Gradient Boosting respectively. … indicates metric not available to
compare.
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authors used a different, much smaller dataset than ours, having only 75 patients with 18
total features. Their models are trained on datasets having suicidal ideation features
involved in them, for which they highlight past suicide attempts and suicide ideation as the
main contributing features. Our ensemble model trained on the SI dataset greatly
outperforms the results from their models in terms of accuracy, precision and sensitivity,

Figure 5 Comparing model F1-score, precision and sensitivity with Horvath et al. (2021).
Full-size DOI: 10.7717/peerj-cs.2051/fig-5

Figure 6 Comparing model AUC, PPV and log loss with Horvath et al. (2021).
Full-size DOI: 10.7717/peerj-cs.2051/fig-6
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meaning our models were able to classify true positives and true negatives more accurately.
Compared to the authors’models, our model trained on theWSI dataset slightly lacks only
in sensitivity performance, indicating lower performance of correctly predicting positive
cases.

In Table 12, Figs. 5 and 6, we are comparing our final ensemble model trained on
reduced datasets from anchor explanations with model results from Horvath et al. (2021).
The authors used the same dataset but processed it differently as their processed dataset
without suicidal ideation has a total of 641 features only, possibly because they removed
non-numeric categorical features as well. Our ensemble models outperform theirs except
in the case of our WSI-trained model with their XGBoost model, which, too, is trained on a
dataset without suicidal ideation features. In this case, our model has slightly lower
sensitivity and slightly higher false negatives but lower false positives. Our WSI model still
outperforms the other models, and our model trained on the SI dataset outperforms all of
the author’s models.

The model’s predictions in relation to the actual ground truth are summarised in the
confusion matrix, as shown in Fig. S5. The confusion matrix in a binary classification
scenario, such as ours, is a 2� 2 matrix. A different combination of predicted and actual
class labels is represented by each cell in the matrix. The true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) components of the confusion matrix are
essential for evaluating the predictive power of the model. TP (suicidal predicted as
suicidal) and TN (non-suicidal predicted as non-suicidal) are the ones that are predicted
correctly, while FP (non-suicidal predicted as suicidal) and FN (suicidal predicted as non-
suicidal) are the ones that are predicted incorrectly.

The Table 13 shows the comparison in accuracy and F-1 score of our ensemble models
with our original results and with 10-fold cross validation. There is a minor decrease in
results compared to our previous results. The Table 14 shows the comparison in accuracy
for our original ensemble models with 10-fold cross validation and leave-one-out (LOO).
There is a slight increase when using LOO in some cases compared to our cross validated
ensemble models.

It is important to recognize that such variations are not uncommon in machine learning
experiments. The slight decrease in performance observed with 10-fold Cross-Validation
can be attributed to the nature of this technique, which divides the data into ten subsets,

Table 13 Comparison of original ensemble model results with 10-fold cross validation (CV) results.

Models Original accuracy (%) Original F1-score CV accuracy (%) CV F1-score

Ensemble 91.550 0.727 88.288 0.527

Ensemble-SI 95.770 0.888 89.729 0.567

Ensemble SHAP 92.960 0.814 90.394 0.669

Ensemble SHAP-SI 98.590 0.967 93.990 0.796

Ensemble anchor 94.370 0.859 90.394 0.660

Ensemble anchor-SI 98.590 0.967 95.740 0.871

Note:
SI indicates datasets including suicidal ideation features.
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potentially leading to a less complex model that generalizes better. On the other hand, the
slight improvement observed with LOO suggests that individual data points may contain
unique information that contributes positively to the model’s overall performance. It is
worth noting that the original results, albeit slightly better, still remain within a similar
range of performance. Despite various cross validation approaches, our results still show
models trained with anchor reduced features to be performing better than entire datasets
or SHAP reduced features.

These observations underscore the importance of choosing the most appropriate cross-
validation technique for a specific dataset and problem domain. The variations in results
can be seen as an opportunity for a deeper exploration of the interplay between model
complexity, dataset characteristics, and cross-validation methods, offering valuable
insights for future research and model refinement.

The bar plot in Fig. 7 serves as a visual representation of the execution time required for
running the ensemble models trained on original, SHAP reduced and anchor reduced

Figure 7 Execution time of our ensemble models on 10-fold cross-validation for performance impact
assessment. Full-size DOI: 10.7717/peerj-cs.2051/fig-7

Table 14 Comparison of 10-fold cross validation (CV) anchor ensemble model results with leave-
one-out (LOO) results.

Models Original accuracy (%) CV accuracy (%) LOO accuracy (%)

Ensemble 91.550 88.288 88.385

Ensemble-SI 95.770 89.729 90.652

Ensemble SHAP 92.960 90.394 90.085

Ensemble SHAP-SI 98.590 93.990 95.751

Ensemble anchor 94.370 90.394 90.935

Ensemble anchor-SI 98.590 95.740 96.034

Note:
SI indicates datasets including suicidal ideation features.
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datasets with and without SI features while utilizing 10-fold cross-validation procedure.
The execution time is averaged for total of three executions of the models. The primary
objective being to assess its impact on performance. This analysis seeks to understand the
impact of number of features and type of datasets on the training models which results are
discussed in Table 13.

Comparing execution time of anchors
In this section we compare the averaged precision performance and execution time of
original anchor library and our modified anchor library for three execution runs of the
program. All executions are performed on the top 27 features of SHAP on XGBoost model
having same parameters as discussed in “Methodology”.

The Fig. 8 compares the execution time for original and modified anchor across three
executions separately. The execution time difference between the WSI (Without Suicide
Ideation) and SI (Suicide Ideation) models can be observed to be between ranges 50–63%
and 44–51% respectively. The Fig. 9 compares the averaged execution time for original and
modified anchor across three executions. For the averaged execution times, the difference
between the WSI and SI models can be observed to be 45.1% and 38.7% respectively. As
per Fig. 9, the total difference in averaged execution time for both WSI and SI models can
be observed to be 41.8%.

The Fig. 10 shows the averaged precision value for all 71 patient’s explanatory rules for
WSI and SI models. We can observe almost no change in the performance across all three
execution runs. The Fig. 11 shows the averaged precision value of the three execution runs,
where there is no change being observed while having noticeable differences in execution
time as shown in Figs. 8 and 9.

Figure 8 Comparing execution time of original and modified anchor library across three runs.
Full-size DOI: 10.7717/peerj-cs.2051/fig-8

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 35/46

http://dx.doi.org/10.7717/peerj-cs.2051/fig-8
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


Testing generalizability
In this section we compare the results of our ensemble model on the common eight
features with NSDUH dataset discussed in “Methodology”.

When the ensemble model was tested on the NSDUH dataset without having been
specifically trained on it beforehand, its performance on a number of metrics was
noticeably better than that of the original dataset. The accuracy increased significantly

Figure 9 Comparing average execution time of original and modified anchor library for three runs.
Full-size DOI: 10.7717/peerj-cs.2051/fig-9

Figure 10 Comparing average precision of original and modified anchor library for three runs.
Full-size DOI: 10.7717/peerj-cs.2051/fig-10
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from 95.770% to a remarkable 99.560%, suggesting a significant improvement in overall
predictive capacity. The mentioned results are compared in Table 15. Furthermore, the
sensitivity increased dramatically from 0.778 to 1.000, indicating a higher accuracy in
identifying positive cases. This significant increase in sensitivity suggests a lower possibility
of false negatives, which is important in situations where correctly identifying positive
cases is critical.

Additionally, there was a significant increase in the AUC from 0.881 to 0.998, indicating
improved ability to distinguish between positive and negative cases. This enhancement
highlights the model’s resilience and ability to generate more precise forecasts on unknown

Figure 11 Comparing average precision of original and modified anchor library averaged for three
runs. Full-size DOI: 10.7717/peerj-cs.2051/fig-11

Table 15 Our ensemble model results trained and tested on Sacks (2011) and tested on (Gallamoza,
2021) for generalizability based on eight common features.

Metrics Original ensemble Test on NSDUH dataset

Accuracy (%) 95.770 99.560

F-1 score 0.900 0.880

Precision 0.958 0.996

Sensitivity 0.778 1.000

AUC 0.881 0.998

PPV 0.875 0.617

Logloss 0.486 0.051

True positive 7 1,813

True negative 61 250,627

False positive 1 1,126

False negative 2 0
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data from the NSDUH dataset. Notably, the log loss sharply decreased from 0.486 to 0.051,
signifying a substantial decrease in the degree of uncertainty surrounding the model’s
predictions.

It is interesting to note that although the precision increased slightly from 0.958 to
0.996, the PPV decreased significantly from 0.875 to 0.617. This decrease implies that
although the model has improved its accuracy in identifying positive cases, it might now be
more cautious when forecasting positive occurrences.

This result demonstrates the model’s improved generalizability over a range of datasets
and points to its potential for wider real-world application outside of the training set.

CONCLUSION AND FUTURE WORK
In conclusion, this study presents a novel and explainable model designed to facilitate the
generation of human-readable statements, thereby potentially aiding clinicians in their
decision-making processes. Our study demonstrates that the inclusion of features related
to suicidal ideation significantly enhances the model’s performance compared to datasets
without such features. Notably, we contribute valuable insights by introducing the use of
anchor explanations for predicting suicide behaviour, marking the first instance of
employing anchor explanations in this classification context. Furthermore, our research
demonstrates a successful strategy for mitigating the limitations of the anchor method
through the reduction of dataset dimensions using SHAP before employing the anchor
explainer.

In summary, our research underscores the potential of explainable models in assisting
clinicians within the smart prison environment and contributes to the advancement of
suicide behaviour prediction. As we address the present limitations and encourage further
exploration, we anticipate our work to pave the way for more robust and accurate
predictive models in the field of mental health within the context of smart prisons and
correctional facilities.

Our proposed model’s robustness and reliability was tested by validation on a larger
dataset with a more extensive sample of patients from NSDUH dataset and achieved
greater performance and results without prior training on the same dataset.

The perspectives offered by medical professionals emphasise the significance of
customised evaluation in forecasting the likelihood of suicide. Predictive models can assist
targeted interventions and improve clinical decision-making by emphasising critical risk
factors and concentrating on particular patient characteristics. A viable method for
converting intricate predictive models into useful insights that physicians can use to
inform tailored patient care is the use of anchor statements. Furthermore, although
medical professional 2 emphasized the need to include gender and age in analysis, it should
be noted that both of these features were bypassed by SHAP and anchor as other features
were contributing more towards the prediction. Also to avoid biasing in the models, these
characteristics are best to be left out of final classification features.

However, it is important to acknowledge certain notable limitations in our research.
Firstly, our dataset lacked specific information regarding the type of occupation held by

each patient. This information could be particularly pertinent in the context of suicide risk
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classification, as the nature of one’s job can shed light on their lifestyle, stress levels, and
emotional well-being. Therefore, future research should aim to incorporate data about the
type of job held by patients, enabling a more nuanced analysis of their mental health and
risk factors. It was also highlighted by medical professional 2 and 3.

By addressing these limitations and expanding the scope of our research to encompass a
wider variety of patient profiles, we can further enhance the utility and relevance of our
model in clinical decision-making processes, making it a valuable tool for mental health
professionals in diverse healthcare settings.

LIST OF SYMBOLS
h Parameters to a function

obj h Objective function to XGBoost

�ðfrÞ Regularization term For XGBoost complexity

APD Antisocial personality disorder

BPD Borderline personality disorder

D Dataframe of a dataset

Eðb0Þ Explanation model

b0 Basic features of the model

EHR Electronic health records

ENS Ensemble model

FDS Dataset after feature reduction process

fyðSÞ Expected value of a function on subset S

LIME Local interpretable model agnostics explanations

NSSI Non-suicidal self-injury

NonSuicide_D Dataframe of dataset containing suicidal ideation features

NPV Negative predictive value

RðhÞ Regularization function

RF Random forest classification model

SI Suicidal ideations

SMOTE Synthetic minority oversampling technique

SHAP Shapley additive explanations

SCS Suicide crisis syndrome

SITB Self-injurious thoughts and behaviors

Suicide_D Dataframe of dataset containing SI Features

SF SHAP list of top features

TðhÞ Training loss function

T, S Training and testing sets of data

T Total usage count of feature in AE in all predictions

TNS Total usage count of feature in AE in non-suicidal predictions

TS Total usage count of feature in AE in suicidal predictions

PPV Positive predictive value
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XGB XGBoost classification model

y Actual values

ŷ Predicted values

yi Labels for training data

ACKNOWLEDGEMENTS
The authors thank the Smart Systems Engineering Lab for providing the needed
environment and resources to conduct the research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received support from the Prince Sultan University for the Article Processing
Charges (APC) of this publication. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Prince Sultan University for the Article Processing Charges (APC).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Khayyam Akhtar conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Muhammad Usman Yaseen conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the article, and approved the final draft.

. Muhammad Imran performed the experiments, analyzed the data, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

. Sohaib Bin Altaf Khattak performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

. Moustafa M. Nasralla conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) dataset is available in
the Supplemental File and at

https://doi.org/10.3886/ICPSR27963.v1.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 40/46

http://dx.doi.org/10.7717/peerj-cs.2051#supplemental-information
https://doi.org/10.3886/ICPSR27963.v1
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


The dataset was selected from the Criminal Justice Co-Occurring Disorder Screening
Instrument (CODSI) ICPSR 27963 study from Inter-university Consortium for Political
and Social Research (Sacks, 2011).

The NSDUH dataset is available in the Supplemental File and at: https://www.datafiles.
samhsa.gov/dataset/national-survey-drug-use-and-health-2015-nsduh-2015-ds0001.

The dataset is available at GitHub and Zenodo:
- https://github.com/KhayyamAkhtar/Inmate-Suicidal-Behavior-Prediction-in-Smart-

Prisons/tree/main.
- Khayyam Akhtar. (2024). KhayyamAkhtar/Inmate-Suicidal-Behavior-Prediction-in-

Smart-Prisons: Suicidal Behavior Prediction Smart Prisons Source Code v1.0 (v1.0).
Zenodo. https://doi.org/10.5281/zenodo.11046490.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2051#supplemental-information.

REFERENCES
Aldhaheri MAMM, Xia B, Nepal M, Chen Q. 2022. Selecting key smart building technologies for

uae prisons by integrating analytical hierarchy process (AHP) and fuzzy-TOPSIS. Buildings
12:2074 DOI 10.3390/buildings12122074.

Altaf Khattak SB, Nasralla MM, Rehman IU. 2022. The role of 6G networks in enabling future
smart health services and applications. In: 2022 IEEE International Smart Cities Conference
(ISC2). Piscataway: IEEE, 1–7.

Alwakeel A, Alwakeel M, Zahra SR, Saleem TJ, Hijji M, Alwakeel SS, Alwakeel AM, Alzorgi S.
2023. Common mental disorders in smart city settings and use of multimodal medical sensor
fusion to detect them. Diagnostics 13:1082 DOI 10.3390/diagnostics13061082.

Amini P, Ahmadinia H, Poorolajal J, Moqaddasi Amiri M. 2016. Evaluating the high risk groups
for suicide: a comparison of logistic regression, support vector machine, decision tree and
artificial neural network. Iranian Journal of Public Health 45(9):1179–1187.

Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH, Nock MK, Smoller JW,
Reis BY. 2017. Predicting suicidal behavior from longitudinal electronic health records.
American Journal of Psychiatry 174(2):154–162 DOI 10.1176/appi.ajp.2016.16010077.

Barros J, Morales S, Echávarri O, García A, Ortega J, Asahi T, Moya C, Fischman R, Maino MP,
Núñez C. 2016. Suicide detection in Chile: proposing a predictive model for suicide risk in a
clinical sample of patients with mood disorders. Revista Brasileira de Psiquiatria 39(1):1–11
DOI 10.1590/1516-4446-2015-1877.

Belle V, Papantonis I. 2021. Principles and practice of explainable machine learning. Frontiers in
Big Data 4:39 DOI 10.3389/fdata.2021.688969.

Bird S, Klein E, Loper E. 2009. Natural language processing with Python: analyzing text with the
natural language toolkit. Sebastopol, CA: O’Reilly Media, Inc.

Boudreaux ED, Rundensteiner E, Liu F, Wang B, Larkin C, Agu E, Ghosh S, Semeter J, Simon
G, Davis-Martin RE. 2021. Applying machine learning approaches to suicide prediction using
healthcare data: overview and future directions. Frontiers in Psychiatry 12:1301
DOI 10.3389/fpsyt.2021.707916.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 41/46

http://dx.doi.org/10.7717/peerj-cs.2051#supplemental-information
https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2015-nsduh-2015-ds0001
https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2015-nsduh-2015-ds0001
https://github.com/KhayyamAkhtar/Inmate-Suicidal-Behavior-Prediction-in-Smart-Prisons/tree/main
https://github.com/KhayyamAkhtar/Inmate-Suicidal-Behavior-Prediction-in-Smart-Prisons/tree/main
https://doi.org/10.5281/zenodo.11046490
http://dx.doi.org/10.7717/peerj-cs.2051#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2051#supplemental-information
http://dx.doi.org/10.3390/buildings12122074
http://dx.doi.org/10.3390/diagnostics13061082
http://dx.doi.org/10.1176/appi.ajp.2016.16010077
http://dx.doi.org/10.1590/1516-4446-2015-1877
http://dx.doi.org/10.3389/fdata.2021.688969
http://dx.doi.org/10.3389/fpsyt.2021.707916
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


Burke TA, Jacobucci R, Ammerman BA, Alloy LB, Diamond G. 2020.Using machine learning to
classify suicide attempt history among youth in medical care settings. Journal of Affective
Disorders 268:206–214 DOI 10.1016/j.jad.2020.02.048.

Centers for Disease Control and Prevention. 2022. Suicide prevention. Available at https://www.
cdc.gov/suicide/facts/index.html (accessed 13 June 2023).

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research 16:321–357 DOI 10.1613/jair.953.

Chen T, Guestrin C. 2016. XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794.

Chen C-L, Huang P-T, Deng Y-Y, Chen H-C,Wang Y-C. 2020.A secure electronic medical record
authorization system for smart device application in cloud computing environments. Human-
Centric Computing and Information Sciences 10(1):21 DOI 10.1186/s13673-020-00221-1.

Choi SB, Lee W, Yoon J-H, Won J-U, Kim DW. 2018. Ten-year prediction of suicide death using
cox regression and machine learning in a nationwide retrospective cohort study in South Korea.
Journal of Affective Disorders 231:8–14 DOI 10.1016/j.jad.2018.01.019.

Chollet F. 2015. Keras: the python deep learning library, Keras. Available at https://keras.io/
(accessed 14 October 2022).

Cox DR. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B (Methodological) 20(2):215–232 DOI 10.1111/j.2517-6161.1958.tb00292.x.

Crepet P, Caracciolo S, Fabbri D, Tomelli A, Tugnoli S, Molinari S. 1996. Suicidal behavior and
community mental health care in Emilia-Romagna (Italy). OMEGA-Journal of Death and Dying
33(3):193–206 DOI 10.2190/FJAH-K59H-NB2F-0E2V.

Dietterich TG. 2000. Ensemble methods in machine learning. In: Multiple Classifier Systems: First
International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1. Berlin
Heidelberg: Springer, 1–15.

Edgcomb JB, Shaddox T, Hellemann G, Brooks JO. 2021. Predicting suicidal behavior and self-
harm after general hospitalization of adults with serious mental illness. Journal of Psychiatric
Research 136:515–521 DOI 10.1016/j.jpsychires.2020.10.024.

Floridi L. 2021. Establishing the rules for building trustworthy AI. Ethics, Governance, and Policies
in Artificial Intelligence 144:41–45 DOI 10.1007/978-3-030-81907-1.

Fonseca-Pedrero E, Al-Halabí S. 2021. Suicidal behavior prevention: the time to act is now. Clínica
y Salud 32(2):89–92 DOI 10.5093/clysa2021a17.

Fonseka TM, Bhat V, Kennedy SH. 2019. The utility of artificial intelligence in suicide risk
prediction and the management of suicidal behaviors. Australian & New Zealand Journal of
Psychiatry 53(10):954–964 DOI 10.1177/0004867419864428.

Gallamoza B. 2021. National Survey of Drug Use and Health (2015–2019). Available at https://
www.kaggle.com/datasets/bgallamoza/national-survey-of-drug-use-and-health-20152019
(accessed 25 February 2024).

Goktekin MC, Atescelik M, Gurger M, Yildiz M, Kara B. 2018. Demographical characteristics of
patients attempting suicide and factors having impact on recurrent suicide attempts. Current
Medicine Research and Practice 8(5):165–169 DOI 10.1016/j.cmrp.2018.09.004.

Gould MS, Fisher P, Parides M, Flory M, Shaffer D. 1996. Psychosocial risk factors of child and
adolescent completed suicide. Archives of General Psychiatry 53(12):1155–1162
DOI 10.1001/archpsyc.1996.01830120095016.

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. 1998. Support vector machines. IEEE
Intelligent Systems and their Applications 13(4):18–28 DOI 10.1109/5254.708428.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 42/46

http://dx.doi.org/10.1016/j.jad.2020.02.048
https://www.cdc.gov/suicide/facts/index.html
https://www.cdc.gov/suicide/facts/index.html
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1186/s13673-020-00221-1
http://dx.doi.org/10.1016/j.jad.2018.01.019
https://keras.io/
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://dx.doi.org/10.2190/FJAH-K59H-NB2F-0E2V
http://dx.doi.org/10.1016/j.jpsychires.2020.10.024
http://dx.doi.org/10.1007/978-3-030-81907-1
http://dx.doi.org/10.5093/clysa2021a17
http://dx.doi.org/10.1177/0004867419864428
https://www.kaggle.com/datasets/bgallamoza/national-survey-of-drug-use-and-health-20152019
https://www.kaggle.com/datasets/bgallamoza/national-survey-of-drug-use-and-health-20152019
http://dx.doi.org/10.1016/j.cmrp.2018.09.004
http://dx.doi.org/10.1001/archpsyc.1996.01830120095016
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


Hegerl U. 2022. Prevention of suicidal behavior. Dialogues in Clinical Neuroscience 18:183–190
DOI 10.31887/DCNS.2016.18.2/uhegerl.

Heikkinen M, Aro H, Lönnqvist J. 1994. Recent life events, social support and suicide. Acta
Psychiatrica Scandinavica 89(s377):65–72 DOI 10.1111/j.1600-0447.1994.tb05805.x.

Hettige NC, Nguyen TB, Yuan C, Rajakulendran T, Baddour J, Bhagwat N, Bani-Fatemi A,
Voineskos AN, Mallar Chakravarty M, De Luca V. 2017. Classification of suicide attempters in
schizophrenia using sociocultural and clinical features: a machine learning approach. General
Hospital Psychiatry 47(2):20–28 DOI 10.1016/j.genhosppsych.2017.03.001.

Ho TK. 1995. Random decision forests. In: Proceedings of 3rd International Conference on
Document Analysis and Recognition. Vol. 1, Piscataway: IEEE, 278–282.

Horvath A, Dras M, Lai CCW, Boag S. 2021. Predicting suicidal behavior without asking about
suicidal ideation: machine learning and the role of borderline personality disorder criteria.
Suicide and Life-Threatening Behavior 51(3):455–466 DOI 10.1111/sltb.12719.

Jadoon EK, Khan FG, Shah S, Khan A, ElAffendi M. 2023. Deep learning-based multi-modal
ensemble classification approach for human breast cancer prognosis. IEEE Access 11:85760–
85769 DOI 10.1109/ACCESS.2023.3304242.

Jung JS, Park SJ, Kim EY, Na K-S, Kim YJ, Kim KG. 2019. Prediction models for high risk of
suicide in korean adolescents using machine learning techniques. PLOS ONE 14(6):e0217639
DOI 10.1371/journal.pone.0217639.

Kaun A, Stiernstedt F. 2020. Doing time, the smart way? Temporalities of the smart prison. New
Media & Society 22(9):1580–1599 DOI 10.1177/1461444820914865.

Kessler RC, Hwang I, Hoffmire CA, McCarthy JF, Petukhova MV, Rosellini AJ, Sampson NA,
Schneider AL, Bradley PA, Katz IR, Thompson C, Bossarte RM. 2017. Developing a practical
suicide risk prediction model for targeting high-risk patients in the veterans health
administration. International Journal of Methods in Psychiatric Research 26(3):e1575
DOI 10.1002/mpr.1575.

Kim S, Lee H-K, Lee K. 2021. Detecting suicidal risk using MMPI-2 based on machine learning
algorithm. Scientific Reports 11(1):15310 DOI 10.1038/s41598-021-94839-5.

Kirlic N, Akeman E, DeVille DC, Yeh H-W, Cosgrove KT, McDermott TJ, Touthang J, Clausen
A, Paulus MP, Aupperle RL. 2021. Amachine learning analysis of risk and protective factors of
suicidal thoughts and behaviors in college students. Journal of American College Health 71:1863–
1872 DOI 10.1080/07448481.2021.1947841.

Knapič S, Malhi A, Saluja R, Främling K. 2021. Explainable artificial intelligence for human
decision support system in the medical domain. Machine Learning and Knowledge Extraction
3(3):740–770 DOI 10.3390/make3030037.

Kramer O, Kramer O. 2013. K-nearest neighbors. In: Dimensionality Reduction with Unsupervised
Nearest Neighbors. Berlin, Germany: Springer, 13–23.

Lemaître G, Nogueira F, Aridas CK. 2017. Imbalanced-learn: a python toolbox to tackle the curse
of imbalanced datasets in machine learning. The Journal of Machine Learning Research
18(1):559–563 ArXiv preprint DOI 10.48550/arXiv.1609.06570.

Lin G-M, Nagamine M, Yang S-N, Tai Y-M, Lin C, Sato H. 2020.Machine learning based suicide
ideation prediction for military personnel. IEEE Journal of Biomedical and Health Informatics
24(7):1907–1916 DOI 10.1109/JBHI.2020.2988393.

Lundberg SM, Lee S-I. 2017. A unified approach to interpreting model predictions. Advances in
Neural Information Processing Systems 30. ArXiv preprint DOI 10.48550/arXiv.1705.07874.

MAIF. 2021. shapash. Available at https://github.com/MAIF/SHAPash (accessed 9 November
2022).

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 43/46

http://dx.doi.org/10.31887/DCNS.2016.18.2/uhegerl
http://dx.doi.org/10.1111/j.1600-0447.1994.tb05805.x
http://dx.doi.org/10.1016/j.genhosppsych.2017.03.001
http://dx.doi.org/10.1111/sltb.12719
http://dx.doi.org/10.1109/ACCESS.2023.3304242
http://dx.doi.org/10.1371/journal.pone.0217639
http://dx.doi.org/10.1177/1461444820914865
http://dx.doi.org/10.1002/mpr.1575
http://dx.doi.org/10.1038/s41598-021-94839-5
http://dx.doi.org/10.1080/07448481.2021.1947841
http://dx.doi.org/10.3390/make3030037
http://dx.doi.org/10.48550/arXiv.1609.06570
http://dx.doi.org/10.1109/JBHI.2020.2988393
http://dx.doi.org/10.48550/arXiv.1705.07874
https://github.com/MAIF/SHAPash
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


McKinney W. 2011. pandas: a foundational Python library for data analysis and statistics. Python
for High Performance and Scientific Computing 14(9):1–9.

Mörch C-M, Gupta A, Mishara BL. 2019. Canada protocol: an ethical checklist for the use of
artificial intelligence in suicide prevention and mental health. ArXiv preprint ArXiv: 1907.07493
DOI 10.1016/j.artmed.2020.101934.

McMullen L, Parghi N, Rogers ML, Yao H, Bloch-Elkouby S, Galynker I. 2021. The role of
suicide ideation in assessing near-term suicide risk: a machine learning approach. Psychiatry
Research 304(7):114118 DOI 10.1016/j.psychres.2021.114118.

Mujahid M, Rehman A, Alam T, Alamri FS, Fati SM, Saba T. 2023. An efficient ensemble
approach for Alzheimer’s disease detection using an adaptive synthetic technique and deep
learning. Diagnostics 13(15):2489 DOI 10.3390/diagnostics13152489.

Nasralla MM, Khattak SBA, Ur Rehman I, Iqbal M. 2023. Exploring the role of 6G technology in
enhancing quality of experience for m-health multimedia applications: a comprehensive survey.
Sensors 23(13):5882 DOI 10.3390/s23135882.

Navarro MC, Ouellet-Morin I, Geoffroy M-C, Boivin M, Tremblay RE, Côté SM, Orri M. 2021.
Machine learning assessment of early life factors predicting suicide attempt in adolescence or
young adulthood. JAMA Network Open 4(3):e211450
DOI 10.1001/jamanetworkopen.2021.1450.

Nock MK, Borges G, Bromet EJ, Alonso J, Angermeyer M, Beautrais A, Bruffaerts R, Chiu WT,
de Girolamo G, Gluzman S, de Graaf R, Gureje O, Haro JM, Huang Y, Karam E, Kessler RC,
Lepine JP, Levinson D, Medina-Mora ME, Ono Y, Posada-Villa J, Williams D. 2008. Cross-
national prevalence and risk factors for suicidal ideation, plans and attempts. British Journal of
Psychiatry 192(2):98–105 DOI 10.1192/bjp.bp.107.040113.

Nordin N, Zainol Z, Mohd Noor MH, Chan LF. 2021. A comparative study of machine learning
techniques for suicide attempts predictive model. Health Informatics Journal
27(1):146045822198939 DOI 10.1177/1460458221989395.

Nordin N, Zainol Z, Mohd Noor MH, Chan LF. 2022. Suicidal behaviour prediction models using
machine learning techniques: a systematic review. Artificial Intelligence in Medicine
132(2):102395 DOI 10.1016/j.artmed.2022.102395.

Nordin N, Zainol Z, Mohd Noor MH, Chan LF. 2023. An explainable predictive model for suicide
attempt risk using an ensemble learning and shapley additive explanations (SHAP) approach.
Asian Journal of Psychiatry 79(12):103316 DOI 10.1016/j.ajp.2022.103316.

Oh J, Yun K, Hwang J-H, Chae J-H. 2017. Classification of suicide attempts through a machine
learning algorithm based on multiple systemic psychiatric scales. Frontiers in Psychiatry 8:192
DOI 10.3389/fpsyt.2017.00192.

Oh B, Yun J-Y, Yeo EC, Kim D-H, Kim J, Cho B-J. 2020. Prediction of suicidal ideation among
korean adults using machine learning: a crosssectional study. Psychiatry Investigation
17(4):331–340 DOI 10.30773/pi.2019.0270.

Passos IC, Mwangi B, Cao B, Hamilton JE, Wu M-J, Zhang XY, Zunta-Soares GB, Quevedo J,
Kauer-Sant’Anna M, Kapczinski F, Soares JC. 2016. Identifying a clinical signature of
suicidality among patients with mood disorders: a pilot study using a machine learning
approach. Journal of Affective Disorders 193:109–116 DOI 10.1016/j.jad.2015.12.066.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in Python. The Journal of
Machine Learning Research 12:2825–2830 ArXiv preprint DOI 10.48550/arXiv.1201.0490.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 44/46

http://dx.doi.org/10.1016/j.artmed.2020.101934
http://dx.doi.org/10.1016/j.psychres.2021.114118
http://dx.doi.org/10.3390/diagnostics13152489
http://dx.doi.org/10.3390/s23135882
http://dx.doi.org/10.1001/jamanetworkopen.2021.1450
http://dx.doi.org/10.1192/bjp.bp.107.040113
http://dx.doi.org/10.1177/1460458221989395
http://dx.doi.org/10.1016/j.artmed.2022.102395
http://dx.doi.org/10.1016/j.ajp.2022.103316
http://dx.doi.org/10.3389/fpsyt.2017.00192
http://dx.doi.org/10.30773/pi.2019.0270
http://dx.doi.org/10.1016/j.jad.2015.12.066
http://dx.doi.org/10.48550/arXiv.1201.0490
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. 2018. CatBoost: unbiased
boosting with categorical features. Advances in Neural Information Processing Systems 31
DOI 10.48550/arXiv.1706.09516.

Ribeiro JD, Franklin JC, Fox KR, Bentley KH, Kleiman EM, Chang BP, Nock MK. 2016. Self-
injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death:
a meta-analysis of longitudinal studies. Psychological Medicine 46(2):225–236
DOI 10.1017/S0033291715001804.

Ribeiro MT, Singh S, Guestrin C. 2016a. Model-agnostic interpretability of machine learning.
ArXiv preprint DOI 10.48550/arXiv.1606.05386.

Ribeiro MT, Singh S, Guestrin C. 2016b. Why should i trust you? Explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1135–1144.

Ribeiro MT, Singh S, Guestrin C. 2018. Anchors: high-precision model-agnostic explanations.
Proceedings of the AAAI Conference on Artificial Intelligence 32(1):1527–1535
DOI 10.1609/aaai.v32i1.11491.

Sacks S. 2011. Criminal justice drug abuse treatment studies (CJ-DATS): the criminal justice co-
occurring disorder screening instrument (CJ-CODSI), 2002–2008 [United States].

Shapley LS. 1953a. Stochastic games. Proceedings of the National Academy of Sciences of the United
States of America 39(10):1095–1100 DOI 10.1073/pnas.39.10.1095.

Shapley LS. 1953b. A value for n-person games. In: Contributions to the Theory of Games II.
Princeton: Princeton University Press, 307–317.

Singh SK, Azzaoui AE, Kim TW, Pan Y, Park JH. 2021.DeepBlockScheme: a deep learning-based
blockchain driven scheme for secure smart city. Human-Centric Computing and Information
Sciences 11:12 DOI 10.22967/HCIS.2021.11.012.

Ul haq AK, Khattak A, Jamil N, Asif Naeem M, Mirza F. 2020. Data analytics in mental
healthcare. Scientific Programming 2020:2024160 DOI 10.1155/2020/2024160.

van Mens K, Elzinga E, Nielen M, Lokkerbol J, Poortvliet R, Donker G, Heins M, Korevaar J,
Dückers M, Aussems C, Helbich M, Tiemens B, Gilissen R, Beekman A, de Beurs D. 2020.
Applying machine learning on health record data from general practitioners to predict
suicidality. Internet Interventions 21:100337 DOI 10.1016/j.invent.2020.100337.

Van Vuuren CL, van Mens K, de Beurs D, Lokkerbol J, van der Wal MF, Cuijpers P, Chinapaw
MJM. 2021. Comparing machine learning to a rule-based approach for predicting suicidal
behavior among adolescents: results from a longitudinal population-based survey. Journal of
Affective Disorders 295:1415–1420 DOI 10.1016/j.jad.2021.09.018.

Velupillai S, Hadlaczky G, Baca-Garcia E, Gorrell GM, Werbeloff N, Nguyen D, Patel R,
Leightley D, Downs J, Hotopf M, Dutta R. 2019. Risk assessment tools and data-driven
approaches for predicting and preventing suicidal behavior. Frontiers in Psychiatry 10:36
DOI 10.3389/fpsyt.2019.00036.

Walsh CG, Ribeiro JD, Franklin JC. 2017. Predicting risk of suicide attempts over time through
machine learning. Clinical Psychological Science 5(3):457–469 DOI 10.1177/2167702617691560.

Wang J, Yang Y, Wang T, Simon Sherratt R, Zhang J. 2020. Big data service architecture: a
survey. Journal of Internet Technology 21(2):393–405 DOI 10.3966/160792642020032102008.

World Health Organization. 2021. Suicide. Available at https://www.who.int/news-room/fact-
sheets/detail/suicide (accessed 14 June 2023).

Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu
PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D. 2008. Top 10 algorithms in data mining.
Knowledge and Information Systems 14(1):1–37 DOI 10.1007/s10115-007-0114-2.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 45/46

http://dx.doi.org/10.48550/arXiv.1706.09516
http://dx.doi.org/10.1017/S0033291715001804
http://dx.doi.org/10.48550/arXiv.1606.05386
http://dx.doi.org/10.1609/aaai.v32i1.11491
http://dx.doi.org/10.1073/pnas.39.10.1095
http://dx.doi.org/10.22967/HCIS.2021.11.012
http://dx.doi.org/10.1155/2020/2024160
http://dx.doi.org/10.1016/j.invent.2020.100337
http://dx.doi.org/10.1016/j.jad.2021.09.018
http://dx.doi.org/10.3389/fpsyt.2019.00036
http://dx.doi.org/10.1177/2167702617691560
http://dx.doi.org/10.3966/160792642020032102008
https://www.who.int/news-room/fact-sheets/detail/suicide
https://www.who.int/news-room/fact-sheets/detail/suicide
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/


Yan X, Su XG. 2003. Linear regression analysis. In: Theory and Computing. Hackensack: World
Scientific DOI 10.1142/6986.

Zhang XY, Al Jurdi RK, Zoghbi AW, Chen DC, Xiu MH, Tan YL, Yang FD, Kosten TR. 2013.
Prevalence, demographic and clinical correlates of suicide attempts in Chinese medicated
chronic inpatients with schizophrenia. Journal of Psychiatric Research 47(10):1370–1375
DOI 10.1016/j.jpsychires.2013.05.024.

Akhtar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2051 46/46

http://dx.doi.org/10.1142/6986
http://dx.doi.org/10.1016/j.jpsychires.2013.05.024
http://dx.doi.org/10.7717/peerj-cs.2051
https://peerj.com/computer-science/

	Predicting inmate suicidal behavior with an interpretable ensemble machine learning approach in smart prisons
	Introduction
	Literature review
	Methodology
	Experimental setup
	Results and comparisons
	Conclusion and future work
	List of Symbols
	flink8
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


